JP2009075134A - Identification device for bacterium or toxic substance - Google Patents

Identification device for bacterium or toxic substance Download PDF

Info

Publication number
JP2009075134A
JP2009075134A JP2009000361A JP2009000361A JP2009075134A JP 2009075134 A JP2009075134 A JP 2009075134A JP 2009000361 A JP2009000361 A JP 2009000361A JP 2009000361 A JP2009000361 A JP 2009000361A JP 2009075134 A JP2009075134 A JP 2009075134A
Authority
JP
Japan
Prior art keywords
sample
electromagnetic wave
bacteria
toxic substance
bacterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009000361A
Other languages
Japanese (ja)
Inventor
Junichi Nishizawa
潤一 西澤
Toru Kurabayashi
徹 倉林
Ken Sudo
建 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009000361A priority Critical patent/JP2009075134A/en
Publication of JP2009075134A publication Critical patent/JP2009075134A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an identification device for a bacterium or a toxic substance, capable of identifying quickly and exactly a kind of the bacterium, virus or the like by a medical doctor or a medical person concerned, without depending on an analytical expert. <P>SOLUTION: This identification device is provided with a sealed type cell constituted of a material substantially transparent with respect to 0.1-10THz of electromagnetic wave, and for sealing a sample 3 containing at least the bacterium or the toxic substance, a variable wavelength electromagnetic wave generator 1 for irradiating one part of the sample 3 with the electromagnetic wave, and a detector 4 for detecting the electromagnetic wave transmitted through the sample 3 or reflected by the sample 3, and the kind of bacterium or toxic substance is identified based on an output from the detector 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電磁波の照射を利用した細菌又は毒性物質の同定装置に関する。   The present invention relates to an apparatus for identifying bacteria or toxic substances using electromagnetic wave irradiation.

近年、その応用が注目されているテラヘルツ電磁波(1THz=1012Hz)は、光の周波数と電波の周波数の境界に当たる。光の周波数はおよそ30−1000THzであるのに対して、マイクロ波やミリ波などの電波の周波数は0.1THz以下の周波数を持っている。 In recent years, terahertz electromagnetic waves (1 THz = 10 12 Hz), whose application has attracted attention, hit the boundary between the frequency of light and the frequency of radio waves. The frequency of light is approximately 30 to 1000 THz, whereas the frequency of radio waves such as microwaves and millimeter waves has a frequency of 0.1 THz or less.

この周波数のギャップを埋めるのがTHz波帯である。テラヘルツ発生においては、その原理的方法に基づきテラヘルツ時間領域分光法(THz Time-Domain Spectroscopy;THz−TDS)、テラヘルツパラメトリック発振器(THz Parametric Oscillator;THz−TPO)、GaP等の半導体結晶を用いたテラヘルツ差周波発生(THz Different Frequency Generation;THz−DFG)、あるいはp型ゲルマニウムレーザや量子カスケードレーザなどの半導体デバイスを用いたテラヘルツ電磁波発生方法が実現されている。   The THz waveband fills this frequency gap. In the generation of terahertz, terahertz using a semiconductor crystal such as terahertz time-domain spectroscopy (THz-TDS), terahertz parametric oscillator (THz-TPO), or GaP based on the principle method. A terahertz electromagnetic wave generation method using a semiconductor device such as differential frequency generation (THz-DFG) or a p-type germanium laser or a quantum cascade laser has been realized.

特に、GaPを用いた差周波発生では0.15〜7THzという他に類を見ない広範囲において波長可変で高出力のテラヘルツ電磁波の発生が実現されている(例えば、非特許文献1を参照)。   In particular, in the difference frequency generation using GaP, generation of a terahertz electromagnetic wave having a variable wavelength and a high output is realized in an unparalleled range of 0.15 to 7 THz (see, for example, Non-Patent Document 1).

細菌、すなわちバクテリアやウィルスは、その存在により食物の腐敗や変質が生じ、ある種のバクテリアやウィルスが生体内で異常増殖した場合には、人体にさまざまな病気が引き起こされる。   Bacteria, that is, bacteria and viruses, cause food spoilage and alteration due to their presence, and when certain bacteria and viruses grow abnormally in vivo, various diseases are caused in the human body.

このような感染症を引き起こす細菌としては、ブドウ球菌属、レンサ球菌属、レジオネラ菌属、ビブリオ科、嫌気性細菌、スピロヘータ、リケッチア、クラミジア等多種多様である。これらの微生物は宿主の組織に寄生し、増殖しながら毒素を生産するので人体に炎症を引き起こすことになる。昨今では、病原体コロナウイルスの増殖によって引き起こされる、新型肺炎SARS(重症急性呼吸器症候群)が流行し社会問題となっている。   There are various types of bacteria that cause such infectious diseases such as Staphylococcus, Streptococcus, Legionella, Vibrioaceae, anaerobic bacteria, spirochetes, rickettsia, and chlamydia. These microorganisms parasitize host tissues and produce toxins as they grow, causing inflammation in the human body. Recently, a new type of pneumonia SARS (severe acute respiratory syndrome) caused by the growth of the pathogen coronavirus is prevalent and has become a social problem.

また貝毒などに代表されるように、海水中の毒素を持ったプランクトンが貝に蓄積され、これを摂取する人間が中毒を起こすという2次的な事例も多く発生している。   In addition, as represented by shellfish poisons, there are many secondary cases in which plankton with toxins in seawater accumulates in shellfish, and humans who ingest it cause poisoning.

さらに昨今では、テロリズムが凶悪化し、いわゆるバイオテロと呼ばれる生物化学兵器が用いられる事例が発生しており、百万分の1グラム以下の量で5〜7日間以内に致死率100%に達するアントラックス(炭疽)や、呼吸筋をマヒさせて36時間以内に死にいたらしめることのできるボツリヌス毒素等が含まれている。   In recent years, terrorism has worsened and so-called bioterrorism has been used in cases where biochemical weapons are used. Untracks reaches a fatality rate of 100% within 5 to 7 days with an amount of 1 millionth of a gram or less. (Anthrax) and botulinum toxin that can cause death within 36 hours after paralysis of respiratory muscles.

一般には、これらの感染症は発熱や嘔吐、腹痛、あるいは呼吸困難などの副次的に生じる人体の影響によって判断されることが多く、例えばSARSでは空港において旅客の発熱を熱画像(サーモグラフィー)を用いて発熱者を検出した例は記憶に新しい。   In general, these infections are often judged by secondary effects of the human body such as fever, vomiting, abdominal pain, or dyspnea. For example, in SARS, a fever of a passenger is taken as a thermal image (thermography) at the airport. An example of using a fever to detect is new to memory.

T.Tanabe, K.Suto, J.Nishizawa, T.Kimura, K.Saito, Journal of Applied Physics 93, 4610 (2003)T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, K. Saito, Journal of Applied Physics 93, 4610 (2003)

上述したような感染症に関する検査は、スクリーニング検査(免疫生化学検査)およびさらに詳細な確認検査(免疫組織化学検査)などが行われるために結果がでるまでに数日かかる。これらの検査は時間を要するため、あるいは専門家・資格者による熟練と種々の試薬を取り扱える環境が常に要求されることから、遠隔地に試料を送り検査結果を待つという方法以外に手はなかった。以上の問題を鑑み、分析の専門家の手によらず、医師もしくは医療関係者が迅速かつ的確にバクテリアやウィルスの検出を感染者に接しながら(遠隔地へ試料を送付せずに)行う必要がある。   Tests relating to infectious diseases as described above take several days until results are obtained because screening tests (immunobiochemical tests) and more detailed confirmation tests (immunohistochemical tests) are performed. Since these inspections require time, or because there is always a need for expert and qualified personnel and an environment that can handle various reagents, there was no other way than sending samples to remote locations and waiting for inspection results. . In view of the above problems, it is necessary for doctors or medical personnel to quickly and accurately detect bacteria and viruses in contact with infected persons (without sending samples to remote locations), regardless of the analysis specialist's hands. There is.

本発明は、上記の従来技術の欠点を除くためになされたものであって、バクテリアやウィルスにテラヘルツ電磁波を照射し、バクテリアやウィルスに特有の吸収スペクトラム情報を得ることにより、既存のスペクトル情報を基にパターン認識を行い該バクテリアやウィルスの種類を同定する細菌又は毒性物質の同定装置を提供することにある。   The present invention has been made to eliminate the above-mentioned disadvantages of the prior art, and irradiates bacteria and viruses with terahertz electromagnetic waves to obtain absorption spectrum information peculiar to bacteria and viruses. An object of the present invention is to provide a bacterium or toxic substance identification device for recognizing a pattern and identifying the kind of the bacterium or virus.

上記問題を解決するために、本発明の特徴は、細菌又は毒性物質のDNA構造、あるいは細菌による生成毒素や細菌の寄生によってもたらされた蛋白質変性等に特有の0.1〜10THzにおける固有振動数に等しい周波数のテラヘルツ電磁波を照射するための可変波長電磁波発生装置を具備し、試料を透過あるいは反射するテラヘルツ電磁波の強度を前記周波数帯に感度をもつ検出器を用い測定し、スペクトル情報を得る。このスペクトルはいわゆる被測定物質の指紋情報であり、予め測定された標準サンプルのスペクトル情報を基にパターン認識され、細菌の同定が行われる。
また本発明では、対象となるものが細菌や毒性物質であり、大気中あるいは環境への拡散を防ぐことを考慮した試料閉じ込め方式のセル構造を提案する。この方法によって例えば水分を含む生体サンプルでは、テラヘルツ電磁波の減衰が問題になることに着目し、任意の厚さ(例えば10μm程度)に薄くした状態で測定するための試料薄膜化セル構造を持つ。さらに極微量の試料分析を実現するため、パイプ状試料閉じ込め方式の導波管型セルを用いることを特徴とする。
細菌又は毒性物質の固有振動周波数帯はほぼ0.1〜10THzにあり、それぞれバクテリアやウィルスの種類、すなわち構造因子に関連した特徴的異なる指紋スペクトラムを有する。しかし、この帯域はこれまで細菌又は毒性物質の検査に用いられたことは無かった。本発明はこの帯域を利用することにより新たな検出方法および装置を実現でき、簡便かつ迅速な検査が可能となる。
In order to solve the above problems, the present invention is characterized by a natural vibration at 0.1 to 10 THz, which is peculiar to a DNA structure of a bacterium or a toxic substance, or a protein modification caused by a toxin produced by a bacterium or a parasitic of a bacterium. Equipped with a variable wavelength electromagnetic wave generator for irradiating terahertz electromagnetic waves with a frequency equal to the number, and measuring the intensity of the terahertz electromagnetic waves transmitted or reflected through the sample using a detector having sensitivity in the frequency band to obtain spectral information . This spectrum is so-called fingerprint information of the substance to be measured, and pattern recognition is performed based on spectrum information of a standard sample measured in advance to identify bacteria.
In addition, the present invention proposes a cell structure of a sample confinement system that takes into consideration prevention of diffusion into the atmosphere or the environment, which are bacteria and toxic substances. With this method, for example, a biological sample containing moisture has a problem of attenuation of terahertz electromagnetic waves, and has a sample thinned cell structure for measurement in a state of being thinned to an arbitrary thickness (for example, about 10 μm). Furthermore, in order to realize a very small amount of sample analysis, a pipe-type sample confinement type waveguide cell is used.
The natural vibration frequency band of bacteria or toxic substances is approximately 0.1 to 10 THz, and each has a characteristic fingerprint spectrum related to the type of bacteria or virus, that is, the structure factor. However, this zone has never been used to test for bacteria or toxic substances. The present invention can realize a new detection method and apparatus by using this band, and enables simple and quick inspection.

本発明の電磁波の照射を利用した細菌又は毒性物質の同定装置は、細菌や毒性物質のDNA構造、変性蛋白質、あるいは食品等で増殖するバクテリアやウィルスの構造に対応する固有振動数に等しい周波数の電磁波を照射し、その吸収特性から物質を同定することができるので、バクテリアやウィルスの検出および毒素の検出が迅速かつ簡便に行うことが可能になる。さらに、炭疽菌やボツリヌス毒素等の検出にも対応できるので、バイオテロ対策にも有効な細菌又は毒性物質の同定装置を提供するものである。   The identification device for bacteria or toxic substances using electromagnetic wave irradiation according to the present invention has a frequency equal to the natural frequency corresponding to the structure of bacteria or viruses that grow on DNA structures, denatured proteins, foods, etc. of bacteria or toxic substances. By irradiating electromagnetic waves and identifying the substance from its absorption characteristics, it becomes possible to quickly and easily detect bacteria and viruses and detect toxins. Furthermore, since it can respond also to detection of anthrax, botulinum toxin, etc., the present invention provides an identification apparatus for bacteria or toxic substances that is also effective for bioterrorism countermeasures.

電磁波の透過を利用した細菌又は毒性物質の同定装置を示す図である。It is a figure which shows the identification apparatus of bacteria or a toxic substance using permeation | transmission of electromagnetic waves. 試料閉じ込め方式のセル構造、(1)平面型セル構造、(2)導波路型セル構造を示す図である。It is a figure which shows the cell structure of a sample confinement system, (1) planar type cell structure, and (2) waveguide type cell structure. 電磁波の反射を利用した細菌又は毒性物質の同定装置を示す図である。It is a figure which shows the identification apparatus of bacteria or a toxic substance using reflection of electromagnetic waves. 平面型セル構造の試作行程を示す図である。It is a figure which shows the trial manufacture process of a planar cell structure. 導波路型セル構造の試作行程を示す図である。It is a figure which shows the trial manufacture process of a waveguide type cell structure. 細菌の培養を含む電磁波の照射を利用した細菌又は毒性物質の同定装置の概略図である。It is the schematic of the identification apparatus of bacteria or a toxic substance using the irradiation of electromagnetic waves including culture | cultivation of bacteria.

図2に示すような被測定試料中にバクテリア、ウィルスおよび毒性物質を封入し、図1に示すような装置により、所定周波数のテラヘルツ電磁波を照射し、その吸収特性からバクテリア、ウィルスおよび毒性物質の種類を同定することができる。   Bacteria, viruses and toxic substances are enclosed in a sample to be measured as shown in FIG. 2, and a terahertz electromagnetic wave having a predetermined frequency is irradiated by an apparatus as shown in FIG. The type can be identified.

本発明による電磁波の照射を利用した細菌又は毒性物質の測定システムの概略図を図1に示した。可変波長電磁波発生装置1としては、GaP結晶を用いた差周波テラヘルツ波発生装置が用いられる。またGaP結晶に代わりLiNbO結晶を用いると、差周波発生やパラメトリックオシレーションにより0.7THzから2.5THzのテラヘルツ電磁波を得ることができる。さらには、可変波長電磁波発生装置1として、ガンダイオード、タンネットダイオード、あるいはp型ゲルマニウムレーザや量子カスケードレーザなどの電子デバイスを用いることもできる。 A schematic diagram of a measurement system for bacteria or toxic substances using electromagnetic wave irradiation according to the present invention is shown in FIG. As the variable wavelength electromagnetic wave generator 1, a differential frequency terahertz wave generator using a GaP crystal is used. When a LiNbO 3 crystal is used instead of the GaP crystal, a terahertz electromagnetic wave of 0.7 THz to 2.5 THz can be obtained due to difference frequency generation or parametric oscillation. Furthermore, as the variable wavelength electromagnetic wave generator 1, a Gunn diode, a tannet diode, or an electronic device such as a p-type germanium laser or a quantum cascade laser can be used.

特に、GaPを用いた差周波発生では0.15〜7THzという他に類を見ない広範囲において波長可変で高出力のテラヘルツ電磁波の発生が実現されている。この方法では、第1のポンプ光に波長1.064μmのYAGレーザを用い、第2のポンプ光源すなわち波長可変光源としてインジェクションシーディング装置を具備したオプティカルパラメトリックオシレータ(OPO)を用いる。   In particular, in the difference frequency generation using GaP, generation of a terahertz electromagnetic wave having a variable wavelength and a high output is realized in an unparalleled range of 0.15 to 7 THz. In this method, a YAG laser having a wavelength of 1.064 μm is used as the first pump light, and an optical parametric oscillator (OPO) equipped with an injection seeding device is used as the second pump light source, that is, the wavelength tunable light source.

このようなOPOはYAGレーザの第3高調波すなわち波長355nm光で励起されることにより波長縮退を避けることができ、さらにインジェクションシーディングの効果によりOPOの線幅を狭くすることができる。このため、差周波として発生するテラヘルツ電磁波の線幅も同様に狭くなる。   Such OPO can be prevented from wavelength degeneration by being excited by the third harmonic of the YAG laser, that is, light having a wavelength of 355 nm, and the line width of the OPO can be narrowed by the effect of injection seeding. For this reason, the line width of the terahertz electromagnetic wave generated as the difference frequency is similarly reduced.

また第2の方法として、ポンプ光としてCr:FORSTERITE(Cr添加カンラン石)レーザを用いることもできる。このレーザはCrの準位を用いているためにインジェクションシーディングなしのOPOに比べて線幅が極めて狭い。Cr:FORSTERITEレーザは波長1.064μmのYAGレーザを用い励起されるが、z前述のOPOのように第3高調波を用いないので効率が高い。Cr:FORSTERITEレーザの波長可変範囲は、1.15μmから1.35μmまでの範囲であり、二つのCr:FORSTERITEレーザをポンプ光源として用い、一方を固定波長で、他方を波長可変ポンプ光源として用い、インジェクションシーディングなしで差周波発生させることができる。   As a second method, a Cr: FORSTERITE (Cr-added olivine) laser can be used as pump light. Since this laser uses the Cr level, the line width is extremely narrow compared to OPO without injection seeding. The Cr: FORSTERITE laser is excited by using a YAG laser having a wavelength of 1.064 μm, but it is highly efficient because it does not use the third harmonic unlike the above-mentioned OPO. The wavelength tunable range of the Cr: FORSTERITE laser is the range from 1.15 μm to 1.35 μm, two Cr: FORSTERITE lasers are used as pump light sources, one is a fixed wavelength, and the other is used as a wavelength tunable pump light source, Difference frequency can be generated without injection seeding.

可変波長電磁波発生装置1より発生したテラヘルツ電磁波は、自由空間に放射され、レンズ2等によって集光系が構成される。レンズの材質としては、テラヘルツ電磁波が透過する材料である必要があり、石英、ポリエチレン、あるいはテラヘルツ電磁波透過性のシクロオレフィンポリマー系樹脂材料が用いられる。試料3は通常、パウダー状に粉砕され乾燥後テフロン(登録商標)あるいはポリエチレンのパウダーと混合しペレット状に加工される。ペレットの大きさは、約10mmφであり、厚さは0.1mm〜5mmである。試料3はxおよびy軸上の移動・調整により分析点が決定される。検出器4としては、広い波長感度特性をもつ焦電検知器や、ボロメータなどが用いられる。また検出器で検知された信号は信号処理部5によってスペクトル情報として処理・記憶される。   The terahertz electromagnetic wave generated from the variable wavelength electromagnetic wave generator 1 is radiated into free space, and a condensing system is configured by the lens 2 and the like. The material of the lens needs to be a material that transmits terahertz electromagnetic waves, and quartz, polyethylene, or a cycloolefin polymer resin material that transmits terahertz electromagnetic waves is used. Sample 3 is usually pulverized into a powder, dried, mixed with Teflon (registered trademark) or polyethylene powder, and processed into a pellet. The size of the pellet is about 10 mmφ, and the thickness is 0.1 mm to 5 mm. The analysis point of the sample 3 is determined by movement and adjustment on the x and y axes. As the detector 4, a pyroelectric detector having a wide wavelength sensitivity characteristic, a bolometer, or the like is used. The signal detected by the detector is processed and stored as spectrum information by the signal processing unit 5.

図1における試料3は細菌又は毒性物質によって構成されるため、大気中あるいは環境への拡散を防ぐことを考慮した試料閉じ込め方式のセル構造が不可欠である。   Since the sample 3 in FIG. 1 is composed of bacteria or toxic substances, a cell structure of a sample confinement system in consideration of preventing diffusion into the atmosphere or the environment is indispensable.

図2に試料閉じ込め方式のセル構造を示した。(1)は平面型セル構造を有しており、(2)は導波路型セル構造を有している。平面型セル構造は平面型セル32と試料31およびキャップ33によって構成され、平面型セル32およびキャップは石英、テフロン(登録商標)、ポリエチレンあるいは樹脂などのテラヘルツ電磁波に対して透明な材料が用いられる。この方法によって例えば水分を含む生体サンプルでは、テラヘルツ電磁波の減衰が問題になるが、試料厚さを例えば10μm程度に薄くした状態では水分が存在しても透過特性を測定できる。   FIG. 2 shows a cell structure of the sample confinement method. (1) has a planar cell structure, and (2) has a waveguide cell structure. The planar cell structure includes a planar cell 32, a sample 31, and a cap 33. The planar cell 32 and the cap are made of a material that is transparent to terahertz electromagnetic waves such as quartz, Teflon (registered trademark), polyethylene, or resin. . For example, in a biological sample containing moisture, attenuation of terahertz electromagnetic waves becomes a problem by this method. However, when the thickness of the sample is reduced to, for example, about 10 μm, transmission characteristics can be measured even when moisture is present.

さらに極微量の試料分析を実現するため、パイプ状試料閉じ込め方式の導波管型セルを用いることを特徴とする。図2の(2)に示すように微量の試料61は導波路型セル62中に図のように置かれている。導波路型セル62は、例えば石英管内径0.1mm〜1mmφで長さ1cm程度のチューブで内面に金をコーティングしたものを用いる。導波路型セルの一方から照射されたテラヘルツ電磁波はチューブ内で多重反射することで、微量の試料61に効率的に照射されることから高感度分析が可能となる。さらに本構造では試料(例えば粉末)の大気中あるいは環境への拡散を防ぐためにキャップ63を設けている。   Furthermore, in order to realize a very small amount of sample analysis, a pipe-type sample confinement type waveguide cell is used. As shown in FIG. 2B, a small amount of sample 61 is placed in a waveguide type cell 62 as shown. As the waveguide type cell 62, for example, a quartz tube having an inner diameter of 0.1 mm to 1 mmφ and a length of about 1 cm and having an inner surface coated with gold is used. The terahertz electromagnetic wave irradiated from one of the waveguide type cells is reflected multiple times in the tube, so that a very small amount of the sample 61 is efficiently irradiated, thereby enabling high sensitivity analysis. Further, in this structure, a cap 63 is provided to prevent the sample (for example, powder) from diffusing into the atmosphere or the environment.

図3に示したのは被測定試料の反射を検出することを特徴とする、電磁波の照射を利用した細菌又は毒性物質の測定システムの概略図である。この方法は試料3のテラヘルツ電磁波透過性が悪い場合に用いられ、透過でスペクトラムが得られにくい場合に有効である。可変波長電磁波発生装置1より発生したテラヘルツ電磁波は、自由空間に放射され、レンズ2等によって集光系が構成される。ミラー6を通過したテラヘルツ電磁波は試料3の表面に照射され反射したテラヘルツ電磁波は、ミラー6で反射し検出器4で検出される。反射したテラヘルツ電磁波は試料3の表面近傍の構造に特有の吸収特性を保持しているので、透過特性の場合(図1に示した)と同様に物質の同定が可能である。試料3はxおよびy軸上の移動・調整により分析点が決定される。   FIG. 3 is a schematic diagram of a measurement system for bacteria or toxic substances using electromagnetic wave irradiation, which is characterized by detecting reflection of a sample to be measured. This method is used when the sample 3 has poor terahertz electromagnetic wave transmission, and is effective when it is difficult to obtain a spectrum through transmission. The terahertz electromagnetic wave generated from the variable wavelength electromagnetic wave generator 1 is radiated into free space, and a condensing system is configured by the lens 2 and the like. The terahertz electromagnetic wave that has passed through the mirror 6 is irradiated on the surface of the sample 3 and reflected, and the terahertz electromagnetic wave reflected by the mirror 6 is detected by the detector 4. Since the reflected terahertz electromagnetic wave retains the absorption characteristic peculiar to the structure near the surface of the sample 3, the substance can be identified as in the case of the transmission characteristic (shown in FIG. 1). The analysis point of the sample 3 is determined by movement and adjustment on the x and y axes.

図2の(1)に示した平面型セル構造の試作行程を図4に示した。試料37は細菌および毒性物質を含むので、大気中あるいは環境への拡散を防ぐことを考慮した工程を用いている。平面型セル32およびキャップ材料33はテラヘルツ電磁波に対して透明な材料である石英、ポリエチレン、テフロン(登録商標)あるいは、シクロオレフィンポリマー系の特殊樹脂などが用いられる。平面型セル32は例えば10μmの凹部を持ち、凹部の深さにより被測定試料厚みが決まるように工夫された構造をもっている。(1)前記凹部はエッチング等により所定の深さの凹みが予め形成される。(2)次に試料供給装置38よりペースト化した液状試料37を供給するが、凹部を埋める量より過剰に供給する必要がある。ここで、液状試料は粉末であっても同じ工程を取り得る。(3)に示すように清浄で硬質の平板状の刃39で、表面を一定の力で走査することにより一定厚みの被測定試料を形成でき、最後に(4)に示すようにキャップ33を設置する。   A trial production process of the planar cell structure shown in FIG. 2 (1) is shown in FIG. Since the sample 37 contains bacteria and toxic substances, a process that takes into consideration prevention of diffusion into the atmosphere or the environment is used. As the planar cell 32 and the cap material 33, quartz, polyethylene, Teflon (registered trademark), or a cycloolefin polymer-based special resin that is transparent to terahertz electromagnetic waves is used. The planar cell 32 has, for example, a 10 μm recess, and has a structure that is devised so that the thickness of the sample to be measured is determined by the depth of the recess. (1) The recess is formed in advance with a predetermined depth by etching or the like. (2) Next, the paste-like liquid sample 37 is supplied from the sample supply device 38, but it is necessary to supply it in excess of the amount filling the recess. Here, even if the liquid sample is a powder, the same steps can be taken. As shown in (3), a sample to be measured having a constant thickness can be formed by scanning the surface with a constant force with a clean and hard flat blade 39, and finally a cap 33 as shown in (4). Install.

上記方法により工程を自動化することで、細菌又は毒性物質を大気中あるいは環境への拡散を防ぐことができ、安全な試料作成が可能となる。また薄膜化した試料を作成できるので、水分を多く含む試料などでテラヘルツ電磁波の透過率が極端に落ちる場合も、試料の薄膜化によって物質特有の吸収特性を測定できる。   By automating the process by the above method, diffusion of bacteria or toxic substances into the atmosphere or the environment can be prevented, and safe sample preparation becomes possible. In addition, since a thinned sample can be prepared, even when the transmittance of terahertz electromagnetic waves is extremely lowered in a sample containing a lot of moisture, the absorption characteristic peculiar to a substance can be measured by thinning the sample.

さらに本試料作成法によれば、試料の厚みを常に一定にできるので定量評価に適している。定量評価に関しては、試料の膜厚に応じてテラヘルツ電磁波の吸収量が変化するので、試料厚みを一定にすることが必要である。   Furthermore, this sample preparation method is suitable for quantitative evaluation because the thickness of the sample can always be constant. Regarding quantitative evaluation, since the amount of terahertz electromagnetic wave absorption changes according to the film thickness of the sample, it is necessary to make the sample thickness constant.

図2の(2)に示した導波管型セル構造の試作行程を図5に示した。導波管型セル62は、例えば石英管内径0.1mm〜1mmφで長さ1cm程度の内面に金をコーティングしたものを用い、まず、テラヘルツ電磁波透過性のキャップ材料63’に先端を浸し所定の膜厚のキャップ63を導波管型セル62の一端に形成する。キャップ材料63’は溶融あるいは溶剤を含むペースト状のものが用いられる。次に、導波管型セル62の内部に液体状の試料材料61’を封入するため、真空の環境で、一端をキャップ材で封止された導波管型セル62を試料材料61’に浸し(真空含浸)、次に環境を窒素の圧力で加圧することで(加圧含浸)、試料61を導波管型セル62中に封入する。この後、液切り工程および後処理工程により導波管型セル62の外側などに付着した試料材料61’を除去する。試料材料61’が粉体の場合には真空含浸および加圧含浸を行わなくとも圧着により試料61を導波管型セル62中に封入することも可能である。次に、キャップ63を開放端に前記キャップ形成工程と同様のプロセスにより形成し、洗浄工程を経て導波管型セル構造が完成する。   A trial production process of the waveguide type cell structure shown in (2) of FIG. 2 is shown in FIG. The waveguide type cell 62 uses, for example, a quartz tube having an inner diameter of 0.1 mm to 1 mmφ and a gold coating on the inner surface of about 1 cm. First, the tip is immersed in a terahertz electromagnetic wave permeable cap material 63 ′ and a predetermined thickness is used. A cap 63 having a film thickness is formed at one end of the waveguide type cell 62. As the cap material 63 ', a paste or a paste containing a solvent or a solvent is used. Next, in order to enclose the liquid sample material 61 ′ inside the waveguide type cell 62, the waveguide type cell 62 whose one end is sealed with a cap material is used as the sample material 61 ′ in a vacuum environment. The sample 61 is enclosed in the waveguide type cell 62 by dipping (vacuum impregnation) and then pressurizing the environment with nitrogen pressure (pressure impregnation). Thereafter, the sample material 61 ′ adhering to the outside of the waveguide type cell 62 and the like is removed by a liquid draining process and a post-processing process. When the sample material 61 ′ is powder, the sample 61 can be sealed in the waveguide type cell 62 by pressure bonding without performing vacuum impregnation and pressure impregnation. Next, the cap 63 is formed at the open end by the same process as the cap forming step, and the waveguide type cell structure is completed through the cleaning step.

図6に示したのは、電磁波の照射を利用した細菌又は毒性物質の測定システムの概略図であり、培養容器を含んでいることを特徴とする。ある種の細菌はその数が微量である場合には、培養によって細菌の数を増やし、精度よく分析することが有効である。図中71はテラヘルツ電磁波透過型培養容器であり、石英、ポリエチレン、テフロン(登録商標)あるいは、シクロオレフィンポリマー系の特殊樹脂などの材質からなる。最近を塗布した培養質72は所定の環境で培養容器71に封入されている。この培養容器は培養装置73で所定のプロセス後、測定システムにおいて分析される。各コロニーに対応したスペクトラムの測定と、所定周波数のテラヘルツ電磁波照射時の反射強度から画像情報を得ることもできる。このため検出器4の出力とx、y、zステージの位置を信号処理部5で処理し、所定の周波数での画像情報を得ることができる。図6に示した測定システムは反射型であるが、検出器4を試料3の下方に設置することにより、透過による測定システムを実現できることは言うまでもない。   FIG. 6 is a schematic diagram of a bacteria or toxic substance measurement system using electromagnetic wave irradiation, which is characterized by including a culture vessel. When the number of certain types of bacteria is very small, it is effective to increase the number of bacteria by culturing and analyze with high accuracy. In the figure, reference numeral 71 denotes a terahertz electromagnetic wave transmission type culture vessel, which is made of a material such as quartz, polyethylene, Teflon (registered trademark), or a special resin based on cycloolefin polymer. The culture material 72 to which the latest is applied is sealed in the culture vessel 71 in a predetermined environment. This culture container is analyzed in the measurement system after a predetermined process by the culture apparatus 73. Image information can also be obtained from the measurement of the spectrum corresponding to each colony and the reflection intensity at the time of irradiation with a terahertz electromagnetic wave of a predetermined frequency. Therefore, the output of the detector 4 and the positions of the x, y, and z stages can be processed by the signal processing unit 5 to obtain image information at a predetermined frequency. Although the measurement system shown in FIG. 6 is a reflection type, it goes without saying that a transmission measurement system can be realized by installing the detector 4 below the sample 3.

以上により、本発明によれば細菌又は毒性物質に固有の固有振動数に等しい周波数の電磁波を照射し、その吸収特性から物質を同定することができるので、電磁波の照射を利用した細菌又は毒性物質の同定装置は、バクテリアやウィルスの検出および毒素の検出が迅速かつ簡便に行うことが可能になるので医療や、生体化学の分野で広く応用される可能性が高い。   As described above, according to the present invention, an electromagnetic wave having a frequency equal to the natural frequency specific to a bacterium or a toxic substance can be irradiated, and the substance can be identified from its absorption characteristics. This identification apparatus can quickly and easily detect bacteria and viruses and detect toxins, so it is highly likely to be widely applied in the fields of medicine and biochemistry.

1…可変波長電磁波発生装置
2…レンズ
3…試料
4…検出器
5…信号処理部
6…ミラー
7…x、y、z移動ステージ
31、61…試料
32…平面型セル
33、63…キャップ
37…液状試料
38…試料供給装置
39…刃
61’…試料材料
63’…キャップ材料
71…培養容器
72…培養質
73…培養装置
DESCRIPTION OF SYMBOLS 1 ... Variable wavelength electromagnetic wave generator 2 ... Lens 3 ... Sample 4 ... Detector 5 ... Signal processing part 6 ... Mirror 7 ... X, y, z movement stage 31, 61 ... Sample 32 ... Planar cell 33, 63 ... Cap 37 ... Liquid sample 38 ... Sample supply device 39 ... Blade 61 '... Sample material 63' ... Cap material 71 ... Culture container 72 ... Culture quality 73 ... Culture device

Claims (5)

0.1〜10THzの電磁波にほぼ透明な材料によって構成され、少なくとも細菌又は毒性物質を含む試料を密封する密閉型セルと、
前記電磁波を前記試料の少なくとも一部に照射する可変波長電磁波発生装置と、
前記試料を透過あるいは前記試料から反射した前記電磁波を検出する検出器
とを備え、前記検出器の出力から前記細菌又は毒性物質の種類を同定することを特徴とする細菌又は毒性物質の同定装置。
A sealed cell that is made of a material that is substantially transparent to electromagnetic waves of 0.1 to 10 THz and seals a sample containing at least bacteria or toxic substances;
A variable wavelength electromagnetic wave generator for irradiating at least a part of the sample with the electromagnetic wave;
A detector for detecting the electromagnetic wave transmitted through the sample or reflected from the sample, and identifying the type of the bacterium or toxic substance from the output of the detector.
前記密閉型セルが、
前記試料を収納する凹部と、
前記試料を覆うキャップ
を有する平面型セル構造であることを特徴とする請求項1に記載の細菌又は毒性物質の同定装置。
The sealed cell is
A recess for storing the sample;
The bacteria or toxic substance identification device according to claim 1, wherein the device has a planar cell structure having a cap covering the sample.
前記密閉型セルが、パイプ状をなし、前記密閉型セルの両端に前記試料を覆うキャップを有する導波路型セル構造であることを特徴とする請求項1に記載の細菌又は毒性物質の同定装置。   The bacteria or toxic substance identification device according to claim 1, wherein the sealed cell has a waveguide-type cell structure having a pipe shape and caps covering the sample at both ends of the sealed cell. . 前記密閉型セルの内面に金属をコーティングしたことを特徴とする、請求項3に記載の細菌又は毒性物質の同定装置。   The bacteria or toxic substance identification device according to claim 3, wherein a metal is coated on an inner surface of the sealed cell. 前記可変波長電磁波発生装置が、GaP結晶若しくはLiNbO結晶を用いた差周波テラヘルツ波発生装置、ガンダイオード、タンネットダイオード、p型ゲルマニウムレーザ及び量子カスケードレーザのいずれかであることを特徴とする請求項1〜4のいずれか1項に記載の細菌又は毒性物質の同定装置。 The variable wavelength electromagnetic wave generator is any one of a difference frequency terahertz wave generator using a GaP crystal or a LiNbO 3 crystal, a Gunn diode, a tannet diode, a p-type germanium laser, and a quantum cascade laser. Item 5. The apparatus for identifying bacteria or toxic substances according to any one of Items 1 to 4.
JP2009000361A 2009-01-05 2009-01-05 Identification device for bacterium or toxic substance Pending JP2009075134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000361A JP2009075134A (en) 2009-01-05 2009-01-05 Identification device for bacterium or toxic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009000361A JP2009075134A (en) 2009-01-05 2009-01-05 Identification device for bacterium or toxic substance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003436471A Division JP2005172779A (en) 2003-12-10 2003-12-10 Method and apparatus for measuring bacteria, virus and toxic substance by irradiation with electromagnetic wave

Publications (1)

Publication Number Publication Date
JP2009075134A true JP2009075134A (en) 2009-04-09

Family

ID=40610190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000361A Pending JP2009075134A (en) 2009-01-05 2009-01-05 Identification device for bacterium or toxic substance

Country Status (1)

Country Link
JP (1) JP2009075134A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007669A (en) * 2009-06-26 2011-01-13 Nippon Telegr & Teleph Corp <Ntt> Terahertz spectroscopic system and substance identification method
WO2017038714A1 (en) * 2015-08-28 2017-03-09 国立大学法人大阪大学 Device for measurement, and measurement apparatus using same
JP2020034317A (en) * 2018-08-28 2020-03-05 株式会社堀場製作所 Analysis method, analysis cell, and analyzer
JP2020511652A (en) * 2016-12-01 2020-04-16 ユニバーシティ・オブ・ソウル・インダストリー・コーオパレイション・ファウンデイションUniversity Of Seoul Industry Cooperation Foundation DNA analysis method and DNA analysis apparatus using terahertz wave

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506186A (en) * 1992-04-21 1995-07-06 サーメデイツクス・インコーポレイテツド In-situ instruments and methods for measuring electromagnetic properties of various process materials using cut-off frequency characterization and analysis
JPH11505026A (en) * 1996-02-03 1999-05-11 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Microwave cavity for continuous gas spectrometry.
JP2000088739A (en) * 1998-09-09 2000-03-31 Toppan Printing Co Ltd Micro small film-thickness cell for measuring infrared characteristics of liquid
JP2003505130A (en) * 1999-07-23 2003-02-12 テラビュー リミテッド Radiation probe and caries detection
JP2003508748A (en) * 1999-08-30 2003-03-04 ユーロ−セルティーク,エス.エイ. In situ method for measuring release of a substance from a dosage form
WO2003023383A2 (en) * 2001-09-12 2003-03-20 Teraview Limited Imaging apparatus and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506186A (en) * 1992-04-21 1995-07-06 サーメデイツクス・インコーポレイテツド In-situ instruments and methods for measuring electromagnetic properties of various process materials using cut-off frequency characterization and analysis
JPH11505026A (en) * 1996-02-03 1999-05-11 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Microwave cavity for continuous gas spectrometry.
JP2000088739A (en) * 1998-09-09 2000-03-31 Toppan Printing Co Ltd Micro small film-thickness cell for measuring infrared characteristics of liquid
JP2003505130A (en) * 1999-07-23 2003-02-12 テラビュー リミテッド Radiation probe and caries detection
JP2003508748A (en) * 1999-08-30 2003-03-04 ユーロ−セルティーク,エス.エイ. In situ method for measuring release of a substance from a dosage form
WO2003023383A2 (en) * 2001-09-12 2003-03-20 Teraview Limited Imaging apparatus and method
JP2005504959A (en) * 2001-09-12 2005-02-17 テラビュー リミテッド Image processing apparatus and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007669A (en) * 2009-06-26 2011-01-13 Nippon Telegr & Teleph Corp <Ntt> Terahertz spectroscopic system and substance identification method
WO2017038714A1 (en) * 2015-08-28 2017-03-09 国立大学法人大阪大学 Device for measurement, and measurement apparatus using same
JPWO2017038714A1 (en) * 2015-08-28 2018-06-21 国立大学法人大阪大学 Measuring device and measuring apparatus using the same
JP2020511652A (en) * 2016-12-01 2020-04-16 ユニバーシティ・オブ・ソウル・インダストリー・コーオパレイション・ファウンデイションUniversity Of Seoul Industry Cooperation Foundation DNA analysis method and DNA analysis apparatus using terahertz wave
JP2020034317A (en) * 2018-08-28 2020-03-05 株式会社堀場製作所 Analysis method, analysis cell, and analyzer
JP7201366B2 (en) 2018-08-28 2023-01-10 株式会社堀場製作所 Analysis method, analysis cell, and analysis device

Similar Documents

Publication Publication Date Title
JP2005172779A (en) Method and apparatus for measuring bacteria, virus and toxic substance by irradiation with electromagnetic wave
Dobroiu et al. Terahertz imaging system based on a backward-wave oscillator
Leahy-Hoppa et al. Ultrafast laser-based spectroscopy and sensing: applications in LIBS, CARS, and THz spectroscopy
EP1632769B1 (en) Apparatus and method for detecting scattering material by terahertz wave transmission while eliminating unscattered component transmitted in a rectilinear manner
De Luca et al. Modulated Raman spectroscopy for enhanced cancer diagnosis at the cellular level
Schirmer et al. Biomedical applications of a real-time terahertz color scanner
Dasa et al. Multispectral photoacoustic sensing for accurate glucose monitoring using a supercontinuum laser
Shchepetilnikov et al. Quantitative analysis of water content and distribution in plants using terahertz imaging
Velpula et al. Femtosecond laser-induced damage characterization of multilayer dielectric coatings
Di Fabrizio et al. Performance evaluation of a THz pulsed imaging system: Point spread function, broadband THz beam visualization and image reconstruction
Li et al. Time-domain terahertz optoacoustics: manipulable water sensing and dampening
JPWO2008026523A1 (en) Near-field light measurement method and near-field light measurement device
JP2005172775A (en) Method and device for inspecting food using irradiation with electromagnetic wave
JP2009075134A (en) Identification device for bacterium or toxic substance
Okada et al. Label-free observation of micrometric inhomogeneity of human breast cancer cell density using terahertz near-field microscopy
Braeuer et al. In situ Raman analysis of CO2—Assisted drying of fruit-slices
Minkevičius et al. Titanium-based microbolometers: Control of spatial profile of terahertz emission in weak power sources
Al-Hujazy et al. Design considerations for integration of terahertz time-domain spectroscopy in microfluidic platforms
JP2007178414A (en) Method and system for testing sugar content
Zolliker et al. Real-time high resolution thz imaging with a fiber-coupled photo conductive antenna and an uncooled microbolometer camera
Christensen et al. Intrinsic spectral resolution limitations of QEPAS sensors for fast and broad wavelength tuning
Sim et al. Synergetic resonance matching of a microphone and a photoacoustic cell
Sirleto et al. Analysis of pulses bandwidth and spectral resolution in femtosecond stimulated Raman scattering microscopy
Xiao Photothermal radiometry for skin research
Khosroshahi et al. Non-destructive assessment of milk quality using pulsed UV photoacoustic, fluorescence and near FTIR spectroscopy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002