JP2009074734A - Themoacoustic engine - Google Patents

Themoacoustic engine Download PDF

Info

Publication number
JP2009074734A
JP2009074734A JP2007243472A JP2007243472A JP2009074734A JP 2009074734 A JP2009074734 A JP 2009074734A JP 2007243472 A JP2007243472 A JP 2007243472A JP 2007243472 A JP2007243472 A JP 2007243472A JP 2009074734 A JP2009074734 A JP 2009074734A
Authority
JP
Japan
Prior art keywords
pipe
piston
thermoacoustic engine
heat
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007243472A
Other languages
Japanese (ja)
Other versions
JP5098534B2 (en
Inventor
Masabumi Nogawa
正文 野川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2007243472A priority Critical patent/JP5098534B2/en
Publication of JP2009074734A publication Critical patent/JP2009074734A/en
Application granted granted Critical
Publication of JP5098534B2 publication Critical patent/JP5098534B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a themoacoustic engine, making the thermoacoustic engine in a compact manner. <P>SOLUTION: A high temperature buffer 3, a heat sink 4, a stack 5 and a radiator 6 are disposed in a pipe 2 filled with a working fluid, and the thermoacoustic engine 1 for causing pressure fluctuation in the pipe in a process of radiating some of heat energy obtained from an external heat source by the heat sink 4 as enthalpy through the stack 5 from the radiator 6 to the outside includes a free piston mechanism 7 as a phase control mechanism for controlling the timing of the pressure fluctuation in the pipe 2 and the positional change of the working fluid. The free piston mechanism 7 includes: a piston 8 freely displaceable in the pipe 2; a coil spring 9 for applying energizing force to the piston 8; and an elastic force setting mechanism 10 (an electromagnet 11 and an electromagnetic force control means 12) for variably setting the elastic force generated by the coil spring 9. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱音響機関に関し、中でも、圧力発生器又は冷熱発生器として稼動可能な熱音響機関に関する。   The present invention relates to a thermoacoustic engine, and more particularly to a thermoacoustic engine operable as a pressure generator or a cold heat generator.

熱音響機関は、スターリングエンジンが有するような、パワーを外部へ取り出すためのピストン等の機械的な可動部分がなく、シンプルな構成で、圧力発生器又は冷熱発生器として働く。例えば、従来の熱音響機関を利用した冷凍機は、高温吸熱器(加熱器)、2つのスタック、2つの放熱器(室温放熱器)、低温吸熱器(冷熱器)、共鳴管、バッファタンクの要素から基本的に構成されている。   The thermoacoustic engine does not have a mechanical movable part such as a piston for taking out power to the outside as the Stirling engine has, and functions as a pressure generator or a cold generator with a simple configuration. For example, a refrigerator using a conventional thermoacoustic engine includes a high-temperature heat absorber (heater), two stacks, two radiators (room temperature radiator), a low-temperature absorber (cooler), a resonance tube, and a buffer tank. Basically composed of elements.

熱音響機関の基本構成形状としては、現在のところ三つある。一つ目は、全体の配管並びに要素構成が直線的なもの、すなわち、両端部は行き止まり構成となっているものである(非特許文献2中の図1参照)。二つ目は、全体構成がループ状につながっているものである(非特許文献3中の図1参照)。三つ目は、ループ構成に直線構成を組み込んだループ・直線構成である(非特許文献1中の図1参照)。   There are currently three basic components of thermoacoustic engines. The first is that the entire piping and the element configuration are linear, that is, both end portions have dead ends (see FIG. 1 in Non-Patent Document 2). The second is that the entire configuration is connected in a loop (see FIG. 1 in Non-Patent Document 3). The third is a loop / linear configuration in which a linear configuration is incorporated into the loop configuration (see FIG. 1 in Non-Patent Document 1).

また、特許文献1には、作動気体が封入されるループ管と、前記ループ管と連通する直管状のシリンダと、前記シリンダの背部に接続された共鳴タンクと、前記ループ管内にそれぞれ配置された高温側再生器及び低温側再生器と、前記直管状のシリンダ内に配置されたピストンと、を有し、前記シリンダ、前記ピストン及び前記共鳴タンクから共鳴器を構成し、前記ピストンが前記シリンダ内を振動することによって、高温側再生器から出力される仕事量を大きくすることが可能なP−X位相差(作動気体の圧力Pとガスピストンの変位Xの位相差)を得ることを特徴とする熱音響冷凍機が提案されている。   Further, in Patent Document 1, a loop tube filled with working gas, a straight tubular cylinder communicating with the loop tube, a resonance tank connected to a back portion of the cylinder, and a loop tube are disposed in the loop tube, respectively. A high-temperature-side regenerator and a low-temperature-side regenerator, and a piston disposed in the straight tubular cylinder, the resonator comprising the cylinder, the piston, and the resonance tank, wherein the piston is located in the cylinder Is obtained by obtaining a PX phase difference (a phase difference between the pressure P of the working gas and the displacement X of the gas piston) capable of increasing the work output from the high temperature side regenerator. A thermoacoustic refrigerator has been proposed.

八束他、熱音響エンジン内のワークフローの測定、第7回スターリングサイクルシンポジウム講演論文集、2003、P97−98.Yatsuka et al., Workflow measurement in thermoacoustic engine, Proceedings of the 7th Stirling Cycle Symposium, 2003, P97-98. 森田浩之他、熱音響冷凍機の特性、第3回スターリングサイクルシンポジウム講演論文集、1999、P145−148.Hiroyuki Morita et al., Thermoacoustic refrigerator characteristics, Proceedings of the 3rd Stirling Cycle Symposium, 1999, P145-148. 田中峰雄他、ループ型熱音響エンジンの圧力振幅分布、第4回スターリングサイクルシンポジウム講演論文集、2000、P101−102.Tanaka, M., et al., Pressure amplitude distribution of loop type thermoacoustic engine, Proceedings of the 4th Stirling Cycle Symposium, 2000, P101-102. 特開2006−118728号公報(明細書の段落0012〜0014参照)JP 2006-118728 A (see paragraphs 0012 to 0014 of the specification)

上記した三つの熱音響機関のうち、熱音響効果による音響パワーや冷凍出力の性能が最も高いものが、ループ・直線構成のものである。しかし、ループ・直線構成のものは、全体の構成が大きなものになるという問題がある。   Of the three thermoacoustic engines described above, the one having the highest acoustic power and refrigeration output performance due to the thermoacoustic effect is a loop / linear configuration. However, the loop / straight line configuration has a problem that the overall configuration becomes large.

他の二つの熱音響機関においても、管内の圧力変動と作動流体の位置変動のタイミングのずれ(位相差)を大きくするためには、管を長くしたり、共鳴管やバッファタンクを接続したりする必要があるため、同様に、全体の構成が大きなものになっている。   In the other two thermoacoustic engines, in order to increase the difference in timing (phase difference) between the pressure fluctuation in the pipe and the position fluctuation of the working fluid, the pipe is lengthened, or a resonance pipe or a buffer tank is connected. Similarly, the overall configuration is large.

特許文献1の熱音響冷凍機によれば、ピストンを設けることによって、共鳴タンク等の小型化を図っている。しかしながら、熱音響冷凍機においては、ある一点の条件でしか十分な特性が得られないという傾向があるため、所望の冷凍能力を得るために、熱音響冷凍機の様々な条件、例えば、ループ管の長さや温度条件に応じてピストンの特性を変える必要があるという問題がある。特許文献1には、このような問題点及びピストンの特性を変更する手段が開示されていない。   According to the thermoacoustic refrigerator of Patent Document 1, a resonance tank or the like is miniaturized by providing a piston. However, in a thermoacoustic refrigerator, there is a tendency that sufficient characteristics can be obtained only under a certain condition. Therefore, in order to obtain a desired refrigeration capacity, various conditions of the thermoacoustic refrigerator, for example, loop tubes are used. There is a problem that it is necessary to change the characteristics of the piston in accordance with the length and temperature conditions. Patent Document 1 does not disclose such a problem and means for changing the characteristics of the piston.

本発明の目的は、熱音響機関をコンパクトに構成できる熱音響機関を提供することである。   The objective of this invention is providing the thermoacoustic engine which can comprise a thermoacoustic engine compactly.

本発明は、第1の視点において、作動流体が充填された管内に、少なくとも一つの吸熱器、スタック及び放熱器が配置されて、外部の熱源より前記吸熱器が得た熱エネルギーの一部をエンタルピーとして前記スタックを経由して前記放熱器から外部へ放熱する過程で前記管内に圧力変動を発生させるか又は前記管内の圧力変動を冷熱に変化させる熱音響機関であって、前記管内の圧力変動と前記作動流体の位置変動のタイミングをコントロールする位相制御機構を有し、前記位相制御機構は、前記管内で変位自在なピストンと、前記ピストンに付勢力を付与する弾性手段と、前記弾性手段が発生する弾性力を可変に設定する弾性力設定機構と、を備えたフリーピストン機構を含む、ことを特徴とする熱音響機関を提供する。なお、このフリーピストン機構は、単に管内の作動流体の動きを制御するような機構である。本発明による熱音響機関においては、スターリングエンジンのようにパワーを直接取り出すためのピストン機構は不要となる。   In the first aspect of the present invention, at least one heat absorber, a stack, and a heat radiator are arranged in a pipe filled with a working fluid, and a part of the heat energy obtained by the heat absorber from an external heat source is obtained. A thermoacoustic engine that generates pressure fluctuation in the pipe in the process of radiating heat from the radiator through the stack to the outside as enthalpy or changes the pressure fluctuation in the pipe to cold, and the pressure fluctuation in the pipe And a phase control mechanism that controls the timing of position fluctuation of the working fluid, the phase control mechanism comprising: a piston that is displaceable within the pipe; an elastic means that applies a biasing force to the piston; and the elastic means There is provided a thermoacoustic engine including a free piston mechanism including an elastic force setting mechanism that variably sets the generated elastic force. The free piston mechanism is simply a mechanism that controls the movement of the working fluid in the pipe. In the thermoacoustic engine according to the present invention, there is no need for a piston mechanism for directly extracting power as in the Stirling engine.

本発明によれば、管内の振動系の特性を可変に設定することができるフリーピストン機構を設けたことにより、熱音響機関の管長さを大幅に低減しても、又は共鳴管やバッファタンクを管に接続しなくても、或いは、直管構造の熱音響機関であっても、管内の圧力変動と作動流体の位置変動とのタイミングのずれを大きくして、大きな仕事、例えば、圧力変動や冷凍能力を得ることができる。また、本発明によれば、フリーピストン機構の弾性特性を容易に可変に(例:バネ定数の変更)設定することができるため、様々な条件、例えば、外部の熱源の温度、室温、管の形状などに応じて最適な振動系の特性を設定し、上記タイミングの十分なずれを得ることができる。この結果、熱音響機関をコンパクトに構成しながら、様々な条件下で所望の性能を容易に得ることができる。   According to the present invention, by providing a free piston mechanism that can variably set the characteristics of the vibration system in the pipe, the pipe length of the thermoacoustic engine can be greatly reduced, or the resonance pipe and the buffer tank can be installed. Even if it is not connected to a pipe or a thermoacoustic engine with a straight pipe structure, a large work, for example, pressure fluctuation or Refrigerating capacity can be obtained. In addition, according to the present invention, the elastic characteristics of the free piston mechanism can be easily set to be variable (eg, change of spring constant), so various conditions such as the temperature of the external heat source, the room temperature, the tube An optimal vibration system characteristic can be set according to the shape and the like, and a sufficient deviation in the above timing can be obtained. As a result, it is possible to easily obtain desired performance under various conditions while configuring the thermoacoustic engine to be compact.

本発明の好ましい実施の形態において、本発明の熱音響機関は、外部から熱入力を得て、出力として圧力変動を発生する圧力発生器、或いは、外部から熱入力を得て、出力として冷熱を発生する冷凍器として用いられる。   In a preferred embodiment of the present invention, the thermoacoustic engine of the present invention obtains heat input from the outside and generates a pressure fluctuation as an output, or obtains heat input from the outside and produces cold as an output. Used as a freezer that generates.

本発明の好ましい実施の形態において、吸熱器が高温吸熱器(加熱器)、放熱器が第1の室温放熱器となり、高温吸熱器、第1の室温放熱器及びそれらの間に配置される第1のスタックからなる構成部分が、外部からの熱を圧力変動に変える圧力発生器として働く。   In a preferred embodiment of the present invention, the heat absorber becomes a high-temperature heat absorber (heater), the radiator becomes a first room temperature radiator, and the high-temperature heat absorber, the first room temperature radiator, and the first arranged between them. A component consisting of one stack acts as a pressure generator that converts external heat into pressure fluctuations.

本発明の好ましい実施の形態において、吸熱器が低温吸熱器(冷熱器)、放熱器が第2の室温放熱器となり、低温吸熱器、第2の室温放熱器及びそれらの間に配置される第2のスタックからなる構成部分が、低温発生器(冷凍器)として働く。   In a preferred embodiment of the present invention, the heat absorber becomes a low-temperature heat absorber (cooler), and the radiator becomes a second room temperature radiator, and the low-temperature heat absorber, the second room temperature radiator, and the first arranged between them. The component consisting of two stacks acts as a low temperature generator (freezer).

本発明の好ましい実施の形態において、高温吸熱器(加熱器)、第1のスタック及び第1の室温放熱器の部分が圧力発生器として働き、第1の室温放熱器、低温吸熱器(冷熱器)、第2のスタック及び第2の室温放熱器の部分が低温発生器として働く。   In a preferred embodiment of the present invention, the high temperature heat absorber (heater), the first stack, and the first room temperature radiator function as a pressure generator, and the first room temperature radiator, low temperature heat absorber (cooler) ), The second stack and the portion of the second room temperature radiator act as a low temperature generator.

本発明の好ましい実施の形態においては、前記圧力発生器及び前記低温発生器が組み合わされて、冷凍機が構成される。   In a preferred embodiment of the present invention, the pressure generator and the low temperature generator are combined to constitute a refrigerator.

本発明の好ましい実施の形態においては、弾性手段を備えたフリーピストン機構を導入することにより、位相制御機構として働く共鳴管及びバッファタンクを不要としたり、熱音響機関の直線構成部の大きさを低減したりすることができる。   In a preferred embodiment of the present invention, by introducing a free piston mechanism provided with elastic means, a resonance tube and a buffer tank that function as a phase control mechanism are not required, and the size of the linear component of the thermoacoustic engine is reduced. Can be reduced.

本発明の好ましい実施の形態において、前記弾性手段は、機械的ばね、ガスばね及び両者の複合体の何れかである。例えば、弾性手段として、ストローク幅が取れ、装填が簡単なコイルバネが用いられる。   In a preferred embodiment of the present invention, the elastic means is any one of a mechanical spring, a gas spring, and a composite of both. For example, a coil spring that can take a stroke width and is easy to load is used as the elastic means.

本発明の好ましい実施の形態において、前記弾性手段は、温度により形状ないし弾性定数が変化する形状記憶合金である。形状記憶合金を温度制御することによりフリーピストン機構の特性が容易に可変される。   In a preferred embodiment of the present invention, the elastic means is a shape memory alloy whose shape or elastic constant changes with temperature. By controlling the temperature of the shape memory alloy, the characteristics of the free piston mechanism can be easily varied.

本発明の好ましい実施の形態において、前記弾性力設定機構は、前記弾性力ないし弾性定数を可変する電磁石を含む。これによって、フリーピストン機構の特性を容易に可変に設定することができる。   In a preferred embodiment of the present invention, the elastic force setting mechanism includes an electromagnet that varies the elastic force or the elastic constant. As a result, the characteristics of the free piston mechanism can be easily set to be variable.

本発明の好ましい実施の形態において、前記管内に、前記吸熱器、前記スタック、前記放熱器、前記フリーピストン機構が直線状に配列される。これによって、熱音響機関がよりコンパクトに構成される。   In a preferred embodiment of the present invention, the heat absorber, the stack, the radiator, and the free piston mechanism are linearly arranged in the pipe. Thereby, a thermoacoustic engine is comprised more compactly.

以下、図面を参照して本発明の一実施例を説明する。図1は、本発明の一実施例に係る熱音響機関の構成図である。   An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a thermoacoustic engine according to an embodiment of the present invention.

図1を参照すると、この熱音響機関1は、直線構成の音響発信器であって、外部から熱入力を得て、出力として圧力変動を発生する機関として働き、外部の熱源より吸熱器4が得た熱エネルギーの一部を、エンタルピーとしてスタック5を経由して放熱器6から外部へ放熱する過程で管2内に圧力変動を発生させる。   Referring to FIG. 1, a thermoacoustic engine 1 is a linear acoustic transmitter, which receives heat input from the outside and works as an engine that generates pressure fluctuations as an output. Pressure fluctuation is generated in the pipe 2 in the process of radiating a part of the obtained thermal energy as enthalpy via the stack 5 to the outside from the radiator 6.

熱音響機関1においては、作動流体が充填された管2内に、順に、高温バッファ3、吸熱器(高温吸熱器、加熱器)4、スタック5及び放熱器6が配置されている。放熱器6の一側には、管2内の圧力変動と作動流体の位置変動のタイミングをコントロールする位相制御機構として、フリーピストン機構7が配置されている。   In the thermoacoustic engine 1, a high-temperature buffer 3, a heat absorber (high-temperature heat absorber, heater) 4, a stack 5, and a radiator 6 are sequentially arranged in a tube 2 filled with a working fluid. On one side of the radiator 6, a free piston mechanism 7 is arranged as a phase control mechanism that controls the timing of the pressure fluctuation in the pipe 2 and the position fluctuation of the working fluid.

フリーピストン機構7は、管2内で変位自在であるピストン8と、ピストン8に付勢力を付与するコイルスプリング(弾性手段)9と、コイルスプリング9が発生する弾性力を可変に設定する弾性力設定機構10を備えている。弾性力設定機構10は、管2内に配置された電磁石11と、電磁石11が発生する電磁力を可変する電磁力制御手段12と、を有している。   The free piston mechanism 7 includes a piston 8 that is displaceable in the pipe 2, a coil spring (elastic means) 9 that applies a biasing force to the piston 8, and an elastic force that variably sets the elastic force generated by the coil spring 9. A setting mechanism 10 is provided. The elastic force setting mechanism 10 includes an electromagnet 11 disposed in the tube 2 and an electromagnetic force control means 12 that varies the electromagnetic force generated by the electromagnet 11.

電磁力制御手段12は、例えば、電磁石11に供給する電流を可変することにより、電磁力を可変に設定することができる。ピストン8の一部又は全部は、磁力に感応する部材から形成されており、電磁石11が発生する電磁力の大きさに応じて、ピストン8が電磁石11の方へ引き寄せられる。このようにして、コイルスプリング9がピストン8に作用する弾性力が可変され、コイルスプリング9の見掛け上のバネ定数が可変され、すなわち、ピストン8の振動特性が可変される。   The electromagnetic force control means 12 can set the electromagnetic force variably, for example, by changing the current supplied to the electromagnet 11. Part or all of the piston 8 is formed of a member sensitive to magnetic force, and the piston 8 is drawn toward the electromagnet 11 in accordance with the magnitude of the electromagnetic force generated by the electromagnet 11. In this way, the elastic force that the coil spring 9 acts on the piston 8 is varied, the apparent spring constant of the coil spring 9 is varied, that is, the vibration characteristics of the piston 8 are varied.

ここで、ピストン8に加わる作動流体の圧力変動、すなわち、作動流体から構成される仮想的なガスピストンによる圧力変動をF(t)、ピストン8の変位をx、ピストン8の質量をm、コイルスプリング9のバネ定数をkとすると、管2内の振動系は、F(t)=mx”+kx、と表すことができる。本実施例においては、電磁力制御手段12によって、バネ定数kを可変していくことにより、最適な振動特性を設定することができる。   Here, the pressure fluctuation of the working fluid applied to the piston 8, that is, the pressure fluctuation caused by the virtual gas piston composed of the working fluid is F (t), the displacement of the piston 8 is x, the mass of the piston 8 is m, the coil If the spring constant of the spring 9 is k, the vibration system in the tube 2 can be expressed as F (t) = mx ″ + kx. In this embodiment, the spring constant k is set by the electromagnetic force control means 12. By making it variable, optimal vibration characteristics can be set.

以上説明した本発明の一実施例に係る熱音響機関1の動作を説明する。図1を参照すると、外部の熱源から供給される熱によって吸熱器4を室温よりも少なくとも高温(例えば摂氏200度程度)に加熱し、放熱器6を室温に設定すると、吸熱器4、スタック5及び放熱器6の構成部分が、外部からの熱を管2内の作動流体の圧力変動に変える圧力発生器として働く。このとき、フリーピストン機構7によって、管2内の圧力変動と作動流体の位置変動のタイミングがずらされる。このタイミングのずれは、弾性力設定機構10において、電磁力制御手段12が電磁石11が発生する電磁力を可変することにより、様々な条件に応じて任意に最適な状態で設定することができる。   The operation of the thermoacoustic engine 1 according to the embodiment of the present invention described above will be described. Referring to FIG. 1, when the heat absorber 4 is heated to at least a temperature higher than room temperature (for example, about 200 degrees Celsius) by heat supplied from an external heat source, and the radiator 6 is set to room temperature, the heat absorber 4 and the stack 5 And the component part of the heat radiator 6 functions as a pressure generator which changes the heat from the outside into the pressure fluctuation of the working fluid in the pipe 2. At this time, the timing of the pressure fluctuation in the pipe 2 and the position fluctuation of the working fluid is shifted by the free piston mechanism 7. This timing shift can be set in an optimal state according to various conditions by changing the electromagnetic force generated by the electromagnet 11 in the elastic force setting mechanism 10.

本実施例の熱音響機関1においては、このようなフリーピストン機構7を設けたことにより、熱音響機関1の管長さを大幅に低減しても、或いは、共鳴管やバッファタンクを接続しなくても、上記タイミングの十分なずれを得ることができる。また、本実施例の熱音響機関1によれば、フリーピストン機構7の特性を容易に可変に設定することができるため、様々な条件、例えば、外部の熱源の温度、室温、管2の形状などに応じて、上記タイミングの十分なずれを得ることができる。この結果、熱音響機関1をコンパクトに構成しながら、熱音響機関1の性能を高めることができる。   In the thermoacoustic engine 1 of the present embodiment, by providing such a free piston mechanism 7, the tube length of the thermoacoustic engine 1 can be greatly reduced, or no resonance tube or buffer tank is connected. However, a sufficient deviation in the timing can be obtained. Further, according to the thermoacoustic engine 1 of the present embodiment, the characteristics of the free piston mechanism 7 can be easily variably set. Therefore, various conditions such as the temperature of the external heat source, the room temperature, the shape of the tube 2 Depending on the above, a sufficient deviation in the timing can be obtained. As a result, it is possible to improve the performance of the thermoacoustic engine 1 while configuring the thermoacoustic engine 1 to be compact.

本発明による熱音響機関は、圧力発生器、又は冷熱発生器、或いは発電機として適用される。   The thermoacoustic engine according to the present invention is applied as a pressure generator, a cold heat generator, or a generator.

本発明の一実施例に係る熱音響機関の構成図である。It is a block diagram of the thermoacoustic engine which concerns on one Example of this invention.

符号の説明Explanation of symbols

1 熱音響機関
2 管
3 高温バッファ
4 吸熱器(高温吸熱器、加熱器)
5 スタック
6 放熱器(室温放熱器)
7 フリーピストン機構(位相制御機構)
8 ピストン(フリーピストン)
9 コイルスプリング(弾性手段)
10 弾性力設定機構
11 電磁石
12 電磁力制御手段
1 Thermoacoustic engine 2 Tube 3 High temperature buffer 4 Heat absorber (High temperature heat absorber, heater)
5 Stack 6 Heatsink (Room temperature heatsink)
7 Free piston mechanism (phase control mechanism)
8 Piston (free piston)
9 Coil spring (elastic means)
DESCRIPTION OF SYMBOLS 10 Elastic force setting mechanism 11 Electromagnet 12 Electromagnetic force control means

Claims (5)

作動流体が充填された管内に、少なくとも一つの吸熱器、スタック及び放熱器が配置されて、外部の熱源より前記吸熱器が得た熱エネルギーの一部をエンタルピーとして前記スタックを経由して前記放熱器から外部へ放熱する過程で前記管内に圧力変動を発生させるか又は前記管内の圧力変動を冷熱に変化させる熱音響機関であって、
前記管内の圧力変動と前記作動流体の位置変動のタイミングをコントロールする位相制御機構を有し、
前記位相制御機構は、前記管内で変位自在なピストンと、前記ピストンに付勢力を付与する弾性手段と、前記弾性手段が発生する弾性力を可変に設定する弾性力設定機構と、を備えたフリーピストン機構を含む、ことを特徴とする熱音響機関。
At least one heat absorber, stack and heat radiator are arranged in a tube filled with working fluid, and the heat radiation via the stack is made with a part of the thermal energy obtained by the heat absorber from an external heat source as enthalpy. A thermoacoustic engine that generates pressure fluctuations in the pipe in the process of radiating heat from the vessel or changes the pressure fluctuations in the pipe to cold,
A phase control mechanism for controlling timing of pressure fluctuation in the pipe and position fluctuation of the working fluid;
The phase control mechanism includes a free-displacement piston including a piston that is displaceable in the pipe, an elastic means that applies an urging force to the piston, and an elastic force setting mechanism that variably sets the elastic force generated by the elastic means. A thermoacoustic engine including a piston mechanism.
前記弾性力設定機構は、前記弾性力を可変する電磁石を含む、ことを特徴とする請求項1記載の熱音響機関。   The thermoacoustic engine according to claim 1, wherein the elastic force setting mechanism includes an electromagnet that varies the elastic force. 前記管内に、前記吸熱器、前記スタック、前記放熱器、前記フリーピストン機構が直線状に配列される、ことを特徴とする請求項1又は2記載の熱音響機関。   The thermoacoustic engine according to claim 1 or 2, wherein the heat absorber, the stack, the heat radiator, and the free piston mechanism are linearly arranged in the pipe. 前記弾性手段は、機械的ばね、ガスばね及び両者の複合体の何れかである、ことを特徴とする請求項2記載の熱音響機関。   The thermoacoustic engine according to claim 2, wherein the elastic means is any one of a mechanical spring, a gas spring, and a composite of both. 前記弾性手段は、形状記憶合金である、ことを特徴とする請求項2記載の熱音響機関。   The thermoacoustic engine according to claim 2, wherein the elastic means is a shape memory alloy.
JP2007243472A 2007-09-20 2007-09-20 Thermoacoustic engine Expired - Fee Related JP5098534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007243472A JP5098534B2 (en) 2007-09-20 2007-09-20 Thermoacoustic engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243472A JP5098534B2 (en) 2007-09-20 2007-09-20 Thermoacoustic engine

Publications (2)

Publication Number Publication Date
JP2009074734A true JP2009074734A (en) 2009-04-09
JP5098534B2 JP5098534B2 (en) 2012-12-12

Family

ID=40609881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243472A Expired - Fee Related JP5098534B2 (en) 2007-09-20 2007-09-20 Thermoacoustic engine

Country Status (1)

Country Link
JP (1) JP5098534B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144983A (en) * 2010-01-13 2011-07-28 Isuzu Motors Ltd Thermoacoustic engine
JP2015504505A (en) * 2011-11-14 2015-02-12 ゼネラル・エレクトリック・カンパニイ Wet gas compression system with thermoacoustic resonator
CN106549604A (en) * 2016-11-01 2017-03-29 陈曦 Based on thermoacoustic effect and the exhaust system and method for electret acoustic-electrical transducer
US9777951B2 (en) 2011-12-05 2017-10-03 Tokai University Educational System Thermoacoustic engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814679A (en) * 1994-06-29 1996-01-19 Zexel Corp Thermo-acoustic freezing cycle and cooling device
JP2002310503A (en) * 2001-04-12 2002-10-23 Paloma Ind Ltd Hot water heater
JP2003324932A (en) * 2002-04-26 2003-11-14 Denso Corp Thermoacoustic generator
JP2005180396A (en) * 2003-12-22 2005-07-07 Toyota Motor Corp Energy recovery device of internal combustion engine
JP2006118728A (en) * 2004-10-19 2006-05-11 Daikin Ind Ltd Thermoacoustic refrigeration machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814679A (en) * 1994-06-29 1996-01-19 Zexel Corp Thermo-acoustic freezing cycle and cooling device
JP2002310503A (en) * 2001-04-12 2002-10-23 Paloma Ind Ltd Hot water heater
JP2003324932A (en) * 2002-04-26 2003-11-14 Denso Corp Thermoacoustic generator
JP2005180396A (en) * 2003-12-22 2005-07-07 Toyota Motor Corp Energy recovery device of internal combustion engine
JP2006118728A (en) * 2004-10-19 2006-05-11 Daikin Ind Ltd Thermoacoustic refrigeration machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144983A (en) * 2010-01-13 2011-07-28 Isuzu Motors Ltd Thermoacoustic engine
JP2015504505A (en) * 2011-11-14 2015-02-12 ゼネラル・エレクトリック・カンパニイ Wet gas compression system with thermoacoustic resonator
US9777951B2 (en) 2011-12-05 2017-10-03 Tokai University Educational System Thermoacoustic engine
CN106549604A (en) * 2016-11-01 2017-03-29 陈曦 Based on thermoacoustic effect and the exhaust system and method for electret acoustic-electrical transducer
CN106549604B (en) * 2016-11-01 2018-10-30 陈曦 Exhaust system based on thermoacoustic effect and electret acoustic-electrical transducer and method

Also Published As

Publication number Publication date
JP5098534B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
Wang et al. A high efficiency hybrid stirling-pulse tube cryocooler
JP2009074722A (en) Phase change type thermoacoustic engine
JP2007237020A (en) Thermoacoustic device
Hu et al. Parameter sensitivity analysis of duplex Stirling coolers
WO2003089848A1 (en) Cascaded thermoacoustic devices
Tijani et al. Study of a coaxial thermoacoustic-Stirling cooler
Pang et al. Theoretical and experimental study of a gas-coupled two-stage pulse tube cooler with stepped warm displacer as the phase shifter
JP4362632B2 (en) Pulse tube refrigerator
JP2014525534A (en) Gamma-type free piston Stirling engine with opposed pistons
CN110701822B (en) Heat energy driven thermoacoustic and electric card coupled refrigerating system
JP2007530911A (en) Cryogenic cooler system with frequency-converting mechanical resonator
JP5098534B2 (en) Thermoacoustic engine
JPH07116986B2 (en) Staring machine
JP2009236456A (en) Pulse tube-type heat storage engine
JPS58500450A (en) Stirling engine with parallel flow heat exchanger
Zhu Step piston pulse tube refrigerator
US9127864B2 (en) Regenerative refrigerator
JP5453950B2 (en) Thermoacoustic engine
JP2006118728A (en) Thermoacoustic refrigeration machine
JP5655313B2 (en) Thermoacoustic engine
JP5067260B2 (en) Free piston type Stirling cycle machine
CN102734099A (en) Low-grade heat source driven standing wave type gas and liquid phase change thermoacoustic engine
WO2005094445A2 (en) Pulser tube cryocooler with mean pressure variations
JP2000337724A (en) Acoustic refrigeration system
JPH06137697A (en) Heat-driven type refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees