JP2009068031A - HIGH STRENGTH FeNi-BASED ALLOY - Google Patents

HIGH STRENGTH FeNi-BASED ALLOY Download PDF

Info

Publication number
JP2009068031A
JP2009068031A JP2007234859A JP2007234859A JP2009068031A JP 2009068031 A JP2009068031 A JP 2009068031A JP 2007234859 A JP2007234859 A JP 2007234859A JP 2007234859 A JP2007234859 A JP 2007234859A JP 2009068031 A JP2009068031 A JP 2009068031A
Authority
JP
Japan
Prior art keywords
phase
feni
strength
alloy
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007234859A
Other languages
Japanese (ja)
Inventor
Hiroshi Haruyama
博司 春山
Shinya Konno
晋也 今野
Jun Sato
順 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007234859A priority Critical patent/JP2009068031A/en
Publication of JP2009068031A publication Critical patent/JP2009068031A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength FeNi-based alloy having excellent hydrogen embrittlement resistance and satisfying ≥1,200 MPa. <P>SOLUTION: The high strength FeNi-based alloy is composed of a γ' phase strengthened type FeNi-based alloy, and whose chemical composition after solution heat treatment and aging heat treatment satisfies C(Ni, Al, Cr, Fe, Mo, Si, Ti, C)=xCγ(21.5, 0.02, 16.5, 59.9, 1.43, 0.54, 0.13, 0)+yCγ' (71.9, 1.98, 0.30, 7.68, 0.01, 0.08, 18.1, 0)+zCα(0, 0, 0.06, 0, 0.05, 0.81, 3, 18.6), wherein, x+y+z=1, 0.12<y<0.23, and 0<z<0.01. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、γ′相強化型FeNi基合金に係り、特に、高圧水素環境で使用される部材である耐水素脆化特性に優れた高強度FeNi基合金に関する。   The present invention relates to a γ 'phase strengthened FeNi base alloy, and more particularly to a high strength FeNi base alloy having excellent hydrogen embrittlement resistance, which is a member used in a high pressure hydrogen environment.

近年、70MPa級の高圧水素ステーションの開発が進められている。環境は現状の35MPa級と比較して非常に過酷となるため、高圧水素機器部材には、優れた耐水素脆化特性だけでなく、機器のコンパクト化の要求に対応した高強度な材料が必要とされている。   In recent years, development of a 70 MPa class high-pressure hydrogen station has been underway. The environment is much harsh compared to the current 35 MPa class, so high-pressure hydrogen equipment members need not only excellent hydrogen embrittlement resistance but also high-strength materials that meet the demands for compact equipment. It is said that.

タービン材料として実績のある15Cr−26Ni−1.3Mo合金(以下、A286と呼称する)は、水素環境中での強度劣化がほとんどないため、高圧水素環境において高強度が必要とされる部位に使用されている。   15Cr-26Ni-1.3Mo alloy (hereinafter referred to as A286), which has a proven track record as a turbine material, has almost no deterioration in strength in a hydrogen environment, so it is used for parts that require high strength in a high-pressure hydrogen environment. Has been.

A286は、γ′相(Ni3[Al,Ti])析出強化型のFeNi基合金で、強度は1000MPa級であることが非特許文献1に開示されているが、機器のコンパクト化の要求に対しては強度不足である。 A286 is a γ ′ phase (Ni 3 [Al, Ti]) precipitation strengthened type FeNi-based alloy, and it is disclosed in Non-Patent Document 1 that the strength is 1000 MPa class. On the other hand, the strength is insufficient.

また、高圧水素ステーション機器は、一般に常温で使用されるため、タービン材料で重要な高温強度よりも、常温での強度と耐水素脆化特性が必要とされ、かつコスト低減のためにも安価であることが望ましい。   In addition, since high-pressure hydrogen station equipment is generally used at room temperature, it requires strength at room temperature and resistance to hydrogen embrittlement rather than high-temperature strength, which is important for turbine materials, and is also inexpensive for cost reduction. It is desirable to be.

Aerospace Structural Metals HandbookAerospace Structural Metals Handbook

本発明は、上記のような事情に鑑みてなされたものであり、その目的は耐水素脆化特性に優れた1200MPa以上の高強度FeNi基合金を提供するものである。   This invention is made | formed in view of the above situations, The objective is providing the high strength FeNi base alloy of 1200 Mpa or more excellent in the hydrogen embrittlement resistance.

本発明の高強度FeNi基合金は、γ′相強化型FeNi基合金であって、γ相,γ′相,炭化物相(α)の化学組成(重量%)を、それぞれ
Cγ(Ni,Al,Cr,Fe,Mo,Si,Ti,C)、
Cγ′(Ni,Al,Cr,Fe,Mo,Si,Ti,C)、
Cα(Ni,Al,Cr,Fe,Mo,Si,Ti,C)
とし、x,y,zを、それぞれγ,γ′,αの相分率としたとき、溶体化熱処理及び時効熱処理後の合金の化学組成
C(Ni,Al,Cr,Fe,Mo,Si,Ti,C)
が、式(1)で表され、残部は不可避不純物とする成分から成ることを特徴とする。
The high-strength FeNi base alloy of the present invention is a γ 'phase strengthened FeNi base alloy, and the chemical composition (wt%) of the γ phase, γ' phase, and carbide phase (α) is set to Cγ (Ni, Al, Cr, Fe, Mo, Si, Ti, C),
Cγ ′ (Ni, Al, Cr, Fe, Mo, Si, Ti, C),
Cα (Ni, Al, Cr, Fe, Mo, Si, Ti, C)
Where x, y, z are the phase fractions of γ, γ ′, α, respectively, and the chemical composition of the alloy after solution heat treatment and aging heat treatment C (Ni, Al, Cr, Fe, Mo, Si, Ti, C)
Is represented by the formula (1), and the balance consists of components that are inevitable impurities.

式(1)は、以下のとおりである。   Formula (1) is as follows.

C(Ni,Al,Cr,Fe,Mo,Si,Ti,C)=xCγ(21.5,0.02 ,16.5,59.9,1.43,0.54,0.13,0)+yCγ′(71.9,
1.98,0.30,7.68,0.01,0.08,18.1,0)+zCα(0,0 ,0.06,0,0.05,0,81.3,18.6) 式(1)
ただし、x+y+z=1,0.12<y<0.23,0<z<0.01であり、式(1)の合金組成に対して、Ni:±2.0重量%,Al:±0.1重量%,Cr:±1.0重量%,Fe:±3.0重量%,Mo:±0.1重量%,Si:±0.1重量%,Ti:±0.1重量%,C:±0.03重量%以内とする。
C (Ni, Al, Cr, Fe, Mo, Si, Ti, C) = xCγ (21.5, 0.02, 16.5, 59.9, 1.43, 0.54, 0.13, 0 ) + YCγ ′ (71.9,
1.98, 0.30, 7.68, 0.01, 0.08, 18.1, 0) + zCα (0,0,0.06,0,0.05,0,81.3,18. 6) Formula (1)
However, x + y + z = 1, 0.12 <y <0.23, 0 <z <0.01, and with respect to the alloy composition of the formula (1), Ni: ± 2.0% by weight, Al: ± 0 0.1 wt%, Cr: ± 1.0 wt%, Fe: ± 3.0 wt%, Mo: ± 0.1 wt%, Si: ± 0.1 wt%, Ti: ± 0.1 wt%, C: Within ± 0.03% by weight.

また、本発明のFeNi基合金において、更に、Mn:0〜1.0重量%,B:0〜0.02重量%,Mg:0.001〜0.01重量%,V:0.01〜0.50重量%,Co:0〜1.0重量%,W:0〜1.0重量%のうち少なくとも一種類以上を含むことも好ましい。   Further, in the FeNi-based alloy of the present invention, Mn: 0 to 1.0 wt%, B: 0 to 0.02 wt%, Mg: 0.001 to 0.01 wt%, V: 0.01 to It is also preferable to include at least one of 0.50 wt%, Co: 0 to 1.0 wt%, and W: 0 to 1.0 wt%.

また、本発明のFeNi基合金において、γ′相の平均粒径が15〜25nmであることが好ましい。   In the FeNi-based alloy of the present invention, the average particle size of the γ ′ phase is preferably 15 to 25 nm.

また、本発明の高強度FeNi基合金を部材として高圧水素流量計,高圧水素配管等の高圧水素機器に用いることが好ましい。   The high-strength FeNi-based alloy of the present invention is preferably used as a member for high-pressure hydrogen equipment such as a high-pressure hydrogen flow meter and high-pressure hydrogen piping.

本発明により、γ相,γ′相,α相の化学組成を変えずにFeNi基合金の高強度化が可能となり、耐水素脆化特性に優れた高強度化FeNi基合金の提供が可能となった。   According to the present invention, it is possible to increase the strength of the FeNi base alloy without changing the chemical composition of the γ phase, γ ′ phase, and α phase, and it is possible to provide a high strength FeNi base alloy having excellent hydrogen embrittlement resistance. became.

以下に、本発明における耐水素脆化性高強度FeNi基合金の特徴を示す。   The characteristics of the hydrogen embrittlement resistant high strength FeNi base alloy in the present invention will be described below.

FeNi基合金は、主にマトリクスであるγ相と析出物であるγ′(Ni3[Al,Ti])相,γ″(Ni3Nb)相,α(TiC,NbC)相等からなる合金であり、γ′相あるいはγ″相、またはその両者を主な析出強化相としている。 An FeNi-based alloy is an alloy mainly composed of a γ phase as a matrix and a γ ′ (Ni 3 [Al, Ti]) phase, a γ ″ (Ni 3 Nb) phase, an α (TiC, NbC) phase and the like as precipitates. In other words, the γ ′ phase or the γ ″ phase, or both, is the main precipitation strengthening phase.

高強度化するためにNbを添加することは有効であるが、γ″相強化型のFeNi基合金は水素脆化し、機械的特性が低下することが知られている。この理由として、γ″相は完全整合析出物であるものの、格子ミスフィットが大きく、水素をトラップするためであると考えられる。   Although it is effective to add Nb to increase the strength, it is known that the γ ″ phase strengthened FeNi base alloy becomes hydrogen embrittled and the mechanical properties are lowered. Although the phase is a perfectly matched precipitate, the lattice misfit is large, which is considered to trap hydrogen.

また、本発明者らは、これまでにNbCを含むFeNi基合金が水素脆化することを確認しているため、炭化物相はTiCであることが好ましい。   Moreover, since the present inventors have confirmed that an FeNi-based alloy containing NbC has been hydrogen embrittled so far, the carbide phase is preferably TiC.

FeNi基合金においては、Feが多過ぎるとフェライトが生成し、一方、Niが多過ぎるとニッケル水素化物が生成するため、それぞれ水素脆化することになる。   In an FeNi-based alloy, if too much Fe is formed, ferrite is generated. On the other hand, if too much Ni is formed, nickel hydride is formed, and each of them becomes hydrogen embrittled.

本発明者らは、水素感受性が低く、かつ、高強度化が可能な合金として、FeとNiとのバランスが良く、水素脆化因子になる可能性があるγ″相およびNbCを含まないγ′相強化型FeNi基合金に着目し、その水素脆化特性について検討した。   As an alloy having low hydrogen sensitivity and high strength, the present inventors have a good balance between Fe and Ni and a γ ″ phase that may become a hydrogen embrittlement factor and a γ that does not contain NbC. Focusing on the phase strengthened FeNi-based alloy, its hydrogen embrittlement characteristics were examined.

その結果、γ相とγ′相とα(TiC)相の化学組成が、それぞれ式(2),式(3),式(4)に示す重量%のときに、耐水素脆化特性が優れていることを見出した。   As a result, the hydrogen embrittlement resistance is excellent when the chemical composition of the γ phase, γ ′ phase and α (TiC) phase is the weight% shown in the formulas (2), (3) and (4), respectively. I found out.

Cγ(Ni,Al,Cr,Fe,Mo,Si,Ti,C)=Cγ(21.5,0.02 ,16.5,59.9,1.43,0.54,0.13,0) 式(2)
Cγ′(Ni,Al,Cr,Fe,Mo,Si,Ti,C)=Cγ′(71.9,
1.98,0.30,7.68,0.01,0.08,18.1,0) 式(3)
Cα(Ni,Al,Cr,Fe,Mo,Si,Ti,C)=Cα(0,0,0.06 ,0,0.05,0,81.3,18.6) 式(4)
これらの化学組成のγ相,γ′相及びα相のみにより構成されるFeNi基合金は、式(1)で表すことができ、どの相分率においてもNi3NbやNbCのような水素脆化因子になりうる相が析出しないため、優れた耐水素脆化特性を示す。
Cγ (Ni, Al, Cr, Fe, Mo, Si, Ti, C) = Cγ (21.5, 0.02, 16.5, 59.9, 1.43, 0.54, 0.13, 0 Formula (2)
Cγ ′ (Ni, Al, Cr, Fe, Mo, Si, Ti, C) = Cγ ′ (71.9,
(1.98, 0.30, 7.68, 0.01, 0.08, 18.1, 0) Equation (3)
Cα (Ni, Al, Cr, Fe, Mo, Si, Ti, C) = Cα (0, 0, 0.06, 0, 0.05, 0, 81.3, 18.6) Equation (4)
An FeNi-based alloy composed only of γ phase, γ ′ phase and α phase having these chemical compositions can be expressed by the formula (1), and hydrogen embrittlement such as Ni 3 Nb or NbC is obtained at any phase fraction. Since a phase that can be a forming factor does not precipitate, it exhibits excellent hydrogen embrittlement resistance.

γ相,γ′相及びα相の化学組成が式(2),式(3),式(4)から外れた場合には、析出物であるγ′相,α相とマトリクスであるγ相との格子ミスフィットが増加し、これらが水素トラップサイトになりうるため、各構成相の化学組成を変えると耐水素脆化性が損なわれる可能性が高くなる。   When the chemical composition of the γ phase, γ ′ phase, and α phase deviates from the equations (2), (3), and (4), the precipitates are the γ ′ phase, the α phase, and the γ phase that is the matrix. Since the lattice misfits of these components can be increased and these can become hydrogen trap sites, the hydrogen embrittlement resistance is likely to be impaired when the chemical composition of each constituent phase is changed.

一方、強度特性に関して、本発明者らは、γ相,γ′相及びα相の化学組成を式(2),式(3),式(4)の状態に維持したままγ′相を増量することにより、耐水素脆化特性を損なうことなく高強度化できると考え、本発明に至った。   On the other hand, regarding the strength characteristics, the present inventors increased the amount of γ ′ phase while maintaining the chemical composition of the γ phase, γ ′ phase, and α phase in the state of Formula (2), Formula (3), and Formula (4). By doing so, it was considered that the strength could be increased without impairing the hydrogen embrittlement resistance, and the present invention was achieved.

ここで、γ′相分率(y)の下限は、引張強さの下限値を1200MPaとして、その強度に相当する値である0.12(12重量%)とした。   Here, the lower limit of the γ ′ phase fraction (y) was set to 0.12 (12 wt%), which is a value corresponding to the strength, with the lower limit of the tensile strength being 1200 MPa.

一方、γ′相分率の増加に伴いγ′相の固溶温度が上昇するため、γ′量が多過ぎると製造性が低下する。従って、γ′相分率の上限は鍛造可能なγ′相分率の上限、即ちγ′相の固溶温度が998℃となる0.23(23重量%)とした。   On the other hand, since the solid solution temperature of the γ ′ phase increases with an increase in the γ ′ phase fraction, if the amount of γ ′ is too large, the productivity decreases. Therefore, the upper limit of the γ ′ phase fraction is set to 0.23 (23 wt%) at which the solid solution temperature of the γ ′ phase becomes 998 ° C., that is, the upper limit of the γ ′ phase fraction that can be forged.

α相分率(z)は、TiCを過度に析出させるとγ′相の析出に寄与するTi量が減少するため、最大で0.01(1重量%)とした。   The α phase fraction (z) was set to 0.01 (1 wt%) at the maximum because Ti content contributing to the precipitation of the γ ′ phase decreased when TiC was excessively precipitated.

γ相分率(x)は、γ相分率及びα相分率を決めることにより、x+y+z=1から決定される。   The γ phase fraction (x) is determined from x + y + z = 1 by determining the γ phase fraction and the α phase fraction.

式(1)の各組成において、Ni:±2.0重量%,Al:±0.1重量%,Cr:±1.0重量%,Fe:±3.0重量%,Mo:±0.1重量%,Si:±0.1重量%,Ti:±0.1重量%,C:±0.03重量%以内であっても本発明合金の耐水素脆化特性が大幅に損なわれることはないため、各元素をこれらの範囲に限定した。   In each composition of formula (1), Ni: ± 2.0% by weight, Al: ± 0.1% by weight, Cr: ± 1.0% by weight, Fe: ± 3.0% by weight, Mo: ± 0.0%. Even if it is within 1% by weight, Si: ± 0.1% by weight, Ti: ± 0.1% by weight, C: ± 0.03% by weight, the hydrogen embrittlement resistance of the alloy of the present invention is greatly impaired. Therefore, each element was limited to these ranges.

また、(1)式に含まれない元素として、Mn:0〜1.0重量%,B:0〜0.02重量%,Mg:0.001〜0.01重量%,V:0.01〜0.50重量%,Co:0〜1.0重量%,W:0〜1.0重量%を含有しても良い。   Further, as elements not included in the formula (1), Mn: 0 to 1.0 wt%, B: 0 to 0.02 wt%, Mg: 0.001 to 0.01 wt%, V: 0.01 ˜0.50 wt%, Co: 0 to 1.0 wt%, W: 0 to 1.0 wt% may be contained.

本発明の合金は、γ相,γ′相,α相の相分率により合金組成が決定するため、成分ごとに分けて範囲を限定するものではなく、上記の成分範囲を外れると、格子ミスフィットが増加することにより、耐水素脆化特性が損なわれることを示している。   In the alloy of the present invention, the alloy composition is determined by the phase fraction of the γ phase, the γ ′ phase, and the α phase. Therefore, the range is not limited separately for each component. This shows that the hydrogen embrittlement resistance is impaired by increasing the fit.

γ′相強化型FeNi基合金を高強度化するには、γ′相を微細かつ多量に析出させることが有効である。本発明合金におけるγ′相の平均粒径は、15〜25nmであることが好ましい。   In order to increase the strength of the γ 'phase strengthened FeNi base alloy, it is effective to precipitate the γ' phase in a fine and large amount. The average particle size of the γ ′ phase in the alloy of the present invention is preferably 15 to 25 nm.

熱処理は、溶体化処理を900℃〜980℃で1〜2時間行った後、水冷し、次に時効処理を700℃〜760℃で16時間以上行った後、室温まで炉冷することが望ましく、この熱処理によって、上記に記載の平均粒径を有する鍛造可能な耐水素性高強度FeNi基合金を作製することができる。   As for the heat treatment, it is desirable that the solution treatment is performed at 900 ° C. to 980 ° C. for 1 to 2 hours, followed by water cooling, and then the aging treatment is performed at 700 ° C. to 760 ° C. for 16 hours or more, followed by furnace cooling to room temperature. By this heat treatment, a forgeable hydrogen-resistant high-strength FeNi-based alloy having the above-described average particle diameter can be produced.

本発明の合金は、上記の通りの特徴を持つものであり、以下、本発明の実施の形態について説明するが、本発明はこれらの実施例に限定されるものではない。   The alloy of the present invention has the characteristics as described above. Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these examples.

表1に、本発明合金及び従来材の化学組成の例を示す。   Table 1 shows examples of chemical compositions of the alloys of the present invention and the conventional materials.

Figure 2009068031
発明材A〜Dは、本発明合金の中で、それぞれγ′相分率を0.12,0.15,0.20,0.23、α相分率を従来材Aと同様(0.005)としたときの組成の一例である。
Figure 2009068031
Inventive materials A to D are 0.12, 0.15, 0.20, 0.23 and α phase fractions in the alloys of the present invention, respectively. 005) is an example of the composition.

従来材Aは、A286の代表組成、また従来材BはNb添加により高強度化したγ′相強化型高強度FeNi基合金の一例であり、それぞれ比較材として使用した。   The conventional material A is an example of a representative composition of A286, and the conventional material B is an example of a γ ′ phase strengthened high strength FeNi base alloy that has been strengthened by adding Nb, and was used as a comparative material.

従来材A及び発明材A〜Dは、真空誘導溶解及び真空アーク再溶解による真空二重溶解で10kgのインゴットを作製し、鍛造により30×30mm断面の角材とした。   For the conventional material A and the inventive materials A to D, a 10 kg ingot was prepared by vacuum double melting by vacuum induction melting and vacuum arc remelting, and a square material having a cross section of 30 × 30 mm was formed by forging.

熱処理については、980℃で2時間保持して溶体化熱処理した後、水冷し、次に720℃で24時間保持して時効熱処理した後、室温まで炉冷した。従来材Bは、高周波真空溶解により10kgのインゴットを作製し、鍛造により30×30mm断面の角材とした。熱処理は980℃で2時間保持して溶体化熱処理した後、空冷し、次に840℃で8時間保持した後,730℃で24時間保持して二段時効処理を行い、室温まで炉冷した。   With respect to the heat treatment, solution heat treatment was carried out by holding at 980 ° C. for 2 hours, followed by water cooling, followed by aging heat treatment at 720 ° C. for 24 hours, and then furnace cooling to room temperature. For the conventional material B, a 10 kg ingot was prepared by high-frequency vacuum melting, and a square material having a 30 × 30 mm cross section was formed by forging. The heat treatment was held at 980 ° C. for 2 hours, followed by solution heat treatment, then air cooling, then held at 840 ° C. for 8 hours, then held at 730 ° C. for 24 hours, and then subjected to two-stage aging treatment, and the furnace was cooled to room temperature .

図1は、γ′相分率と引張強さの関係を示す。また、従来材A及び本発明材におけるそれぞれのγ′相分率も同図中に示した。この結果、γ′相分率の増加に伴い高強度化されていることが確認された。   FIG. 1 shows the relationship between the γ ′ phase fraction and the tensile strength. In addition, the γ ′ phase fractions in the conventional material A and the material of the present invention are also shown in FIG. As a result, it was confirmed that the strength was increased as the γ ′ phase fraction increased.

図2は、陰極チャージ時間と引張強さとの関係を示す。強度特性に及ぼす水素の影響を調べる目的で、各材料について、陰極チャージ法により水素チャージした後、引張試験を実施した。陰極チャージは0.05MのH2SO4と0.01MのKSCNを有する電解液に、試験片とPt電極及び熱電対を入れ、試験片を陰極(−)、Pt電極を陽極(+)として55℃で200mAの定電流を6時間,10時間流して実施した。 FIG. 2 shows the relationship between cathode charge time and tensile strength. In order to investigate the influence of hydrogen on strength properties, each material was charged with hydrogen by the cathodic charging method and then subjected to a tensile test. Cathode charge is placed in an electrolyte solution containing 0.05 M H 2 SO 4 and 0.01 M KSCN, and a test piece, a Pt electrode and a thermocouple are placed, and the test piece is used as a cathode (−) and the Pt electrode is used as an anode (+). A constant current of 200 mA was flowed at 55 ° C. for 6 hours and 10 hours.

引張試験は、2.5×10-4のひずみ速度で行った。 The tensile test was performed at a strain rate of 2.5 × 10 −4 .

その結果、従来材及び発明材とも大幅な強度の低下は見られなかった。   As a result, neither the conventional material nor the inventive material showed a significant decrease in strength.

図3は、陰極チャージ時間と水素脆化指標の関係を示す。ここで、耐水素脆化特性を表す指標として、式(5)を定義して比較した。   FIG. 3 shows the relationship between the cathode charge time and the hydrogen embrittlement index. Here, equation (5) was defined and compared as an index representing the hydrogen embrittlement resistance.

[水素脆化指標]=[水素チャージ後の伸び率]/[水素チャージ前の伸び率] 式(5)
水素脆化指標は、1に近いほど耐水素脆化特性が高い材料であり、水素脆化の少ない材料であることを示す。この結果、Nb添加により高強度化した従来材Bが最も水素脆化指標の低下が顕著であった。
[Hydrogen embrittlement index] = [Elongation after hydrogen charge] / [Elongation before hydrogen charge] Formula (5)
The hydrogen embrittlement index is closer to 1, indicating that the material has higher hydrogen embrittlement resistance and less hydrogen embrittlement. As a result, the decrease in the hydrogen embrittlement index was most remarkable in the conventional material B which was strengthened by adding Nb.

次に、水素脆化指標が低い材料は従来材Aであり、発明材の耐水素脆化特性が従来材A及びBと比較して優れていることが確認された。   Next, the material having a low hydrogen embrittlement index is the conventional material A, and it was confirmed that the hydrogen embrittlement resistance of the inventive material is superior to the conventional materials A and B.

表2は、本発明合金及び従来材Aの熱処理後のγ′相の平均粒径及び面積率を示す。   Table 2 shows the average grain size and area ratio of the γ ′ phase after heat treatment of the alloy of the present invention and the conventional material A.

Figure 2009068031
合金組成及び熱処理は、表1に示した材料と同一であり、熱処理後の試験片断面を鏡面研磨した後、電解エッチングを施し、走査電子顕微鏡を用いて10万倍の倍率で観察した。
Figure 2009068031
The alloy composition and the heat treatment were the same as those shown in Table 1. The cross section of the test piece after the heat treatment was mirror-polished, then subjected to electrolytic etching, and observed at a magnification of 100,000 times using a scanning electron microscope.

γ′相の平均粒径は、一つの視野について20個以上測定した。   The average particle diameter of the γ ′ phase was measured by 20 or more for one visual field.

その結果、平均粒径は従来材と発明材で大差なかったが、面積率の増加に伴い粒子間距離が減少していた。合金の強度を増すには微細なγ′相が析出することが好ましく、平均粒径は15〜25nmであることが好ましい。   As a result, the average particle size did not differ greatly between the conventional material and the invention material, but the interparticle distance decreased with an increase in the area ratio. In order to increase the strength of the alloy, it is preferable that a fine γ 'phase is precipitated, and the average particle size is preferably 15 to 25 nm.

図4は、本発明の実施の一例として、高圧水素環境機器の一つである高圧水素流量計の模式図を示す。   FIG. 4 shows a schematic diagram of a high-pressure hydrogen flow meter that is one of high-pressure hydrogen environmental equipment as an example of the implementation of the present invention.

水素流量計1は、U字状のセンサチューブ2と、センサチューブを加振する加振器3と、流入側及び流出側のセンサチューブの振動による変位を検出するピックアップ4と、センサチューブが固定されたベース5を有する。   The hydrogen flow meter 1 includes a U-shaped sensor tube 2, a vibrator 3 that vibrates the sensor tube, a pickup 4 that detects displacement due to vibration of the sensor tube on the inflow side and the outflow side, and the sensor tube. The base 5 is provided.

本実施例では、センサチューブ2に高強度な本発明材A〜Dを適用することによって、センサチューブ2の外径が従来材よりも減少する。   In the present embodiment, the high-strength invention materials A to D are applied to the sensor tube 2 so that the outer diameter of the sensor tube 2 is smaller than that of the conventional material.

従って、流体による振動が従来よりも容易となり測定ノイズが減少する。その結果、機器のコンパクト化と所定の性能を達成することが可能となった。   Therefore, vibration due to the fluid is easier than before, and measurement noise is reduced. As a result, it has become possible to achieve a compact device and a predetermined performance.

本実施例では高圧水素流量計を示したが、その他にも高圧水素配管等の耐水素脆化特性と高強度を要する機器部材として、本発明合金は適用可能である。   Although the high-pressure hydrogen flowmeter is shown in this embodiment, the alloy of the present invention can be applied to other equipment members that require hydrogen embrittlement resistance and high strength such as high-pressure hydrogen piping.

本発明は、耐水素脆化特性に優れた高強度化FeNi基合金を提供することが可能となるため、高圧水素流量計や高圧水素配管等の耐水素脆化特性と高強度を要する高圧水素機器用の部材として、利用可能である。   The present invention makes it possible to provide a high-strength FeNi-based alloy having excellent hydrogen embrittlement resistance, so that high-pressure hydrogen that requires hydrogen embrittlement resistance and high strength, such as a high-pressure hydrogen flow meter and a high-pressure hydrogen pipe. It can be used as a member for equipment.

γ′相分率と引張強さの関係を示す図である。It is a figure which shows the relationship between (gamma) 'phase fraction and tensile strength. 陰極チャージ時間と引張強さの関係を示す図である。It is a figure which shows the relationship between cathode charge time and tensile strength. 陰極チャージ時間と水素脆化指標の関係を示す図である。It is a figure which shows the relationship between a cathode charge time and a hydrogen embrittlement parameter | index. 本発明の実施の一例としてのコリオリ式流量計の模式図を示す。The schematic diagram of the Coriolis type flow meter as an example of implementation of this invention is shown.

符号の説明Explanation of symbols

1 水素流量計
2 センサチューブ
3 加振器
4 ピックアップ
5 ベース
1 Hydrogen flow meter 2 Sensor tube 3 Exciter 4 Pickup 5 Base

Claims (5)

γ′相強化型FeNi基合金において、
γ相,γ′相,炭化物相(α)の化学組成(重量%)を、それぞれ
Cγ(Ni,Al,Cr,Fe,Mo,Si,Ti,C)、
Cγ′(Ni,Al,Cr,Fe,Mo,Si,Ti,C)、
Cα(Ni,Al,Cr,Fe,Mo,Si,Ti,C)
とし、x,y,zを、それぞれγ,γ′,αの相分率としたとき、
溶体化熱処理及び時効熱処理後の合金の化学組成
C(Ni,Al,Cr,Fe,Mo,Si,Ti,C)
が、式(1)で表され、残部は不可避不純物とする成分から成ることを特徴とする高強度FeNi基合金。
C(Ni,Al,Cr,Fe,Mo,Si,Ti,C)=xCγ(21.5,0.02 ,16.5,59.9,1.43,0.54,0.13,0)+yCγ′(71.9,
1.98,0.30,7.68,0.01,0.08,18.1,0)+zCα(0,0 ,0.06,0,0.05,0,81.3,18.6) 式(1)
ただし、x+y+z=1,0.12<y<0.23,0<z<0.01であり、式(1)の合金組成に対して、Ni:±2.0重量%,Al:±0.1重量%,Cr:±1.0重量%,Fe:±3.0重量%,Mo:±0.1重量%,Si:±0.1重量%,Ti:±0.1重量%,C:±0.03重量%以内とする。
In the γ ′ phase strengthened FeNi base alloy,
The chemical composition (% by weight) of the γ phase, γ ′ phase, and carbide phase (α) is expressed as Cγ (Ni, Al, Cr, Fe, Mo, Si, Ti, C),
Cγ ′ (Ni, Al, Cr, Fe, Mo, Si, Ti, C),
Cα (Ni, Al, Cr, Fe, Mo, Si, Ti, C)
And x, y, z are phase fractions of γ, γ ′, α, respectively,
Chemical composition of the alloy after solution heat treatment and aging heat treatment C (Ni, Al, Cr, Fe, Mo, Si, Ti, C)
Is a high-strength FeNi-base alloy represented by the formula (1), with the balance being components that are inevitable impurities.
C (Ni, Al, Cr, Fe, Mo, Si, Ti, C) = xCγ (21.5, 0.02, 16.5, 59.9, 1.43, 0.54, 0.13, 0 ) + YCγ ′ (71.9,
1.98, 0.30, 7.68, 0.01, 0.08, 18.1, 0) + zCα (0,0,0.06,0,0.05,0,81.3,18. 6) Formula (1)
However, x + y + z = 1, 0.12 <y <0.23, 0 <z <0.01, and with respect to the alloy composition of the formula (1), Ni: ± 2.0% by weight, Al: ± 0 0.1 wt%, Cr: ± 1.0 wt%, Fe: ± 3.0 wt%, Mo: ± 0.1 wt%, Si: ± 0.1 wt%, Ti: ± 0.1 wt%, C: Within ± 0.03% by weight.
請求項1において、Mn:0〜1.0重量%,B:0〜0.02重量%,Mg:0.001〜0.01重量%,V:0.01〜0.50重量%,Co:0〜1.0重量%,W:0〜1.0重量%のうち、少なくとも一種類以上の元素を含むことを特徴とする高強度FeNi基合金。   In claim 1, Mn: 0 to 1.0 wt%, B: 0 to 0.02 wt%, Mg: 0.001 to 0.01 wt%, V: 0.01 to 0.50 wt%, Co A high-strength FeNi-based alloy comprising at least one element selected from: 0 to 1.0% by weight and W: 0 to 1.0% by weight. 請求項1又は2において、γ′相の平均粒径が15〜25nmであることを特徴とする高強度FeNi基合金。   The high-strength FeNi base alloy according to claim 1 or 2, wherein the average particle diameter of the γ 'phase is 15 to 25 nm. 請求項1,2又は3に記載の高強度FeNi基合金を部材とすることを特徴とする高圧水素流量計。   A high-pressure hydrogen flowmeter comprising the high-strength FeNi-based alloy according to claim 1, 2 or 3 as a member. 請求項1,2又は3に記載の高強度FeNi基合金を部材とすることを特徴とする高圧水素配管。   A high-pressure hydrogen pipe comprising the high-strength FeNi-based alloy according to claim 1, 2 or 3 as a member.
JP2007234859A 2007-09-11 2007-09-11 HIGH STRENGTH FeNi-BASED ALLOY Pending JP2009068031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007234859A JP2009068031A (en) 2007-09-11 2007-09-11 HIGH STRENGTH FeNi-BASED ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007234859A JP2009068031A (en) 2007-09-11 2007-09-11 HIGH STRENGTH FeNi-BASED ALLOY

Publications (1)

Publication Number Publication Date
JP2009068031A true JP2009068031A (en) 2009-04-02

Family

ID=40604608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007234859A Pending JP2009068031A (en) 2007-09-11 2007-09-11 HIGH STRENGTH FeNi-BASED ALLOY

Country Status (1)

Country Link
JP (1) JP2009068031A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068919A (en) * 2009-09-24 2011-04-07 Hitachi Ltd Fe-ni based alloy with high-strength hydrogen embrittlement resistant
WO2014030705A1 (en) 2012-08-24 2014-02-27 株式会社日本製鋼所 Ni-based alloy having excellent hydrogen embrittlement resistance, and method for producing ni-based alloy material
JP2014047409A (en) * 2012-09-03 2014-03-17 Nippon Steel & Sumitomo Metal High-strength austenitic stainless steel for high-pressure hydrogen gas
CN116891984A (en) * 2023-09-11 2023-10-17 成都先进金属材料产业技术研究院股份有限公司 Fe-Cr-Ni intermediate alloy for hydrogen-resistant stainless steel and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068919A (en) * 2009-09-24 2011-04-07 Hitachi Ltd Fe-ni based alloy with high-strength hydrogen embrittlement resistant
WO2014030705A1 (en) 2012-08-24 2014-02-27 株式会社日本製鋼所 Ni-based alloy having excellent hydrogen embrittlement resistance, and method for producing ni-based alloy material
KR20150034282A (en) 2012-08-24 2015-04-02 더 재팬 스틸 워크스 엘티디 Ni-based alloy having excellent hydrogen embrittlement resistance, and method for producing ni-based alloy material
JP2014047409A (en) * 2012-09-03 2014-03-17 Nippon Steel & Sumitomo Metal High-strength austenitic stainless steel for high-pressure hydrogen gas
CN116891984A (en) * 2023-09-11 2023-10-17 成都先进金属材料产业技术研究院股份有限公司 Fe-Cr-Ni intermediate alloy for hydrogen-resistant stainless steel and preparation method thereof
CN116891984B (en) * 2023-09-11 2024-02-02 成都先进金属材料产业技术研究院股份有限公司 Fe-Cr-Ni intermediate alloy for hydrogen-resistant stainless steel and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6336367B2 (en) Ultra-high strength alloy for harsh oil and gas environments and manufacturing method
CN103189531B (en) The Ni-Mo-Cr alloy of high temperature low-thermal-expansion
CN113646458B (en) Nickel alloy with good corrosion resistance and high tensile strength and method for producing semi-finished products
EP2479302B1 (en) Ni-based heat resistant alloy, gas turbine component and gas turbine
JP2014047409A (en) High-strength austenitic stainless steel for high-pressure hydrogen gas
JP2016037664A (en) Austenitic heat resistant alloy member
US20190071754A1 (en) Cr BASED TWO-PHASE ALLOY AND PRODUCT THEREOF
JP5324149B2 (en) Corrosion resistant austenitic stainless steel
JP2018131667A (en) Ni-BASED ALLOY, GAS TURBINE MATERIAL, AND METHOD FOR PRODUCING Ni-BASED ALLOY HAVING EXCELLENT CREEP PROPERTY
JP2009068031A (en) HIGH STRENGTH FeNi-BASED ALLOY
Zhu et al. A modified HR3C austenitic heat-resistant steel for ultra-supercritical power plants applications beyond 650° C
JP2013227644A (en) Austenite-based heat resistant alloy
JP5372467B2 (en) Austenitic stainless steel with excellent hydrogen embrittlement resistance
JP4784501B2 (en) High pressure hydrogen flow meter
JP5561583B2 (en) High pressure hydrogen components
JP2010280950A (en) Heat resistant steel for exhaust valve and method for producing the same
JP6602462B2 (en) Chromium-based two-phase alloy and product using the two-phase alloy
JP6733211B2 (en) Ni-based superalloy for hot forging
JP5858424B2 (en) Stainless steel for polymer electrolyte fuel cell separator and method for producing the same
WO2015038406A1 (en) Wear resistant alloy
JP2012140689A (en) Duplex stainless steel excellent in toughness
JP5599850B2 (en) Ni-base alloy excellent in hydrogen embrittlement resistance and method for producing Ni-base alloy material excellent in hydrogen embrittlement resistance
JP2020084265A (en) Austenitic heat resistant alloy and austenitic heat resistant alloy component
JPH07150289A (en) Cr-series heat resistance steel excellent in high temperature strength
JP5218201B2 (en) Weld metal and weld material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807