JP2009067756A - Thin metallic wire or metal particle catalyst-containing cosmetic - Google Patents

Thin metallic wire or metal particle catalyst-containing cosmetic Download PDF

Info

Publication number
JP2009067756A
JP2009067756A JP2007240481A JP2007240481A JP2009067756A JP 2009067756 A JP2009067756 A JP 2009067756A JP 2007240481 A JP2007240481 A JP 2007240481A JP 2007240481 A JP2007240481 A JP 2007240481A JP 2009067756 A JP2009067756 A JP 2009067756A
Authority
JP
Japan
Prior art keywords
porous body
metal catalyst
metal
cosmetics
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007240481A
Other languages
Japanese (ja)
Other versions
JP5497260B2 (en
Inventor
Koichi Kitahata
幸一 北畑
Yasuhiro Okubo
泰宏 大久保
Hiroko Sato
裕子 佐藤
Masaaki Yanagi
正明 柳
Hironobu Nanbu
宏暢 南部
Yoshiki Yamazaki
義樹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kagaku KK
Original Assignee
Taiyo Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kagaku KK filed Critical Taiyo Kagaku KK
Priority to JP2007240481A priority Critical patent/JP5497260B2/en
Publication of JP2009067756A publication Critical patent/JP2009067756A/en
Application granted granted Critical
Publication of JP5497260B2 publication Critical patent/JP5497260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cosmetic having excellent antioxidative potency and stability, as chapped skin symptoms, in which peroxide lipid is increased and flexibility is lost and wrinkle of the skin is increased in aged skin, not having smoothness because of dryness is recognized and so-called active oxygen produced from oxygen in the air influenced by ultraviolet light, an enzyme, etc. is thought as one of causative substances by which these skin symptoms are exhibited. <P>SOLUTION: The cosmetic comprises a metal catalyst including: a porous body having pores having ≥1 nm and ≤50 nm central pore diameter; and a thin metal wire or metal particles formed in the pores and having ≥1 nm and ≤50 nm average diameter. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、抗酸化力を有する化粧料用金属触媒に関する   The present invention relates to a metal catalyst for cosmetics having antioxidative power.

老化した皮膚では過酸化脂質が増大し、柔軟性、弾力性を失い、皮膚のしわが増大し、乾燥して滑らかさのない荒れ肌症状が認められている。これらの皮膚症状が現れる原因物質の一つとして、大気中の酸素が紫外線や酵素等の影響を受けて生成するいわゆる活性酸素が考えられている。この活性酸素は脂肪酸を酸化し、過酸化物を生成させる。その上、生成した過酸化物と活性酸素は、生体に対してコラーゲン線維の架橋、ヒアルロン酸の断片化、連鎖的ラジカルの発生による組織の損傷等の悪影響を及ぼし、その結果として、皮膚のしわや弾力の消失、脱毛といった生体の老化を促進するといわれている。従って、活性酸素を消去する事は、皮膚の老化を改善あるいは予防する点で皮膚にとって非常に重要な事であり、皮膚化粧料に求められる重要な要素である。   In aged skin, lipid peroxide increases, softness and elasticity are lost, wrinkles of the skin increase, and dry and rough skin symptoms are not smooth. As one of the causative substances in which these skin symptoms appear, so-called active oxygen is considered that oxygen in the atmosphere is generated under the influence of ultraviolet rays or enzymes. This active oxygen oxidizes fatty acids and produces peroxides. In addition, the peroxide and active oxygen produced have adverse effects on the living body, such as collagen fiber cross-linking, hyaluronic acid fragmentation, and tissue damage due to the generation of chain radicals. It is said to promote aging of the body such as loss of elasticity, hair loss and hair loss. Therefore, elimination of active oxygen is very important for the skin in terms of improving or preventing skin aging, and is an important factor required for skin cosmetics.

従来、抗酸化剤としてはビタミンA、ビタミンC、ビタミンE等のビタミン類が主に使用されてきた(例えば、非特許文献1参照。)。また近年、金コロイドを抗酸化剤として使用する技術も提案されている(例えば、特許文献1参照。)。しかしながら、これらの抗酸化剤はその安定性や機能において満足できるものではなかった。   Conventionally, vitamins such as vitamin A, vitamin C, and vitamin E have been mainly used as antioxidants (see, for example, Non-Patent Document 1). In recent years, a technique using gold colloid as an antioxidant has also been proposed (see, for example, Patent Document 1). However, these antioxidants are not satisfactory in terms of their stability and function.

「化粧品の有用性」、薬事日報社、P237〜241、2001年3月31日発行“Usefulness of Cosmetics”, Yakuji Nipposha, P237-241, published on March 31, 2001 特開2004−285166号公報(P1〜P9)JP 2004-285166 A (P1 to P9)

本発明の目的は優れた抗酸化力を有する化粧料用金属触媒及びこれを含有する化粧料を提供する事にある。   The objective of this invention is providing the metal catalyst for cosmetics which has the outstanding antioxidant power, and the cosmetics containing this.

すなわち、本発明は、
(1)平均細孔直径が1nm以上50nm以下であり無機骨格を有する多孔体と、該多孔体の細孔内に形成された、平均直径が1nm以上50nm以下である金属細線又は金属粒子を備えた化粧料用金属触媒。
(2)多孔体がX線回折パターンにおいて、d間隔が2nmより大きい位置に少なくとも1つのピークを持ち、該多孔体の細孔内に形成された、平均直径が1nm以上50nm以下である金属細線又は金属粒子を備えた前記(1)記載の化粧料用金属触媒。
(3)無機骨格を有する多孔体がシリケートからなる前記(1)又は(2)記載の化粧料用金属触媒。
(4)抗酸化力を有する事を特徴とした前記(1)〜(3)いずれか記載の化粧料用金属触媒。
(5)前記(1)〜(4)いずれか記載の化粧料用金属触媒を含有する化粧料。
That is, the present invention
(1) A porous body having an average pore diameter of 1 nm to 50 nm and having an inorganic skeleton, and a fine metal wire or metal particle having an average diameter of 1 nm to 50 nm formed in the pores of the porous body Metal catalyst for cosmetics.
(2) In the X-ray diffraction pattern of the porous body, a fine metal wire having at least one peak at a position where the d interval is larger than 2 nm and having an average diameter of 1 nm to 50 nm formed in the pores of the porous body Or the metal catalyst for cosmetics as described in said (1) provided with the metal particle.
(3) The metal catalyst for cosmetics according to (1) or (2), wherein the porous body having an inorganic skeleton is composed of silicate.
(4) The metal catalyst for cosmetics according to any one of the above (1) to (3), which has an antioxidant power.
(5) A cosmetic containing the cosmetic metal catalyst according to any one of (1) to (4).

本発明により抗酸化力の優れた化粧料を提供する事ができる。   According to the present invention, a cosmetic having an excellent antioxidant power can be provided.

本発明の化粧料用金属触媒は、無機骨格を有する多孔体とその細孔内に形成された金属細線又は金属粒子から構成される。   The metal catalyst for cosmetics of this invention is comprised from the porous body which has inorganic frame | skeleton, and the metal fine wire or metal particle formed in the pore.

無機骨格を有する多孔体の平均細孔直径は1nm以上50nm以下が好ましい。平均細孔直径が1nm未満である場合は、細孔内に金属細線又は金属粒子が導入され難く細孔内への担持率が低くなり、化粧料に含有させた場合、抗酸化力を効率的に発揮できない。また平均細孔直径が50nmを超える場合は、金属細線又は金属粒子の比表面積が減少して化粧料に含有させた場合、抗酸化力を効率的に発揮できない。   The average pore diameter of the porous body having an inorganic skeleton is preferably 1 nm or more and 50 nm or less. When the average pore diameter is less than 1 nm, it is difficult to introduce fine metal wires or metal particles into the pores, and the loading rate in the pores is low. It cannot be demonstrated. Moreover, when the average pore diameter exceeds 50 nm, the specific surface area of the fine metal wires or metal particles decreases, and when it is contained in the cosmetic, the antioxidant power cannot be efficiently exhibited.

多孔体は、そのX線回折パターンにおいてd間隔が2nmより大きい位置に少なくとも1つのピークを持つ事が好ましく、d間隔が3nmより大きい位置に少なくとも1つのピークを持つ事がより好ましい。   The porous body preferably has at least one peak at a position where the d interval is larger than 2 nm in the X-ray diffraction pattern, and more preferably has at least one peak at a position where the d interval is larger than 3 nm.

多孔体は無機骨格を有し、該無機骨格はシリケート等の無機酸化物の高分子主鎖からなる。シリケート基本骨格中のケイ素原子に代える原子、又はシリケート骨格に付加する原子としては、アルミニウム、チタン、マグネシウム、ジルコニウム、タンタル、ニオブ、モリブデン、コバルト、ニッケル、ガリウム、ベリリウム、イットリウム、ランタン、ハフニウム、スズ、鉛、バナジウム、ホウ素等を挙げる事ができる。   The porous body has an inorganic skeleton, and the inorganic skeleton is composed of a polymer main chain of an inorganic oxide such as silicate. As atoms replacing silicon atoms in the silicate basic skeleton, or atoms added to the silicate skeleton, aluminum, titanium, magnesium, zirconium, tantalum, niobium, molybdenum, cobalt, nickel, gallium, beryllium, yttrium, lanthanum, hafnium, tin , Lead, vanadium, boron and the like.

多孔体を構成し得るその他の無機骨格としては、非Si系のジルコニア、チタニア、酸化ニオブ、酸化タンタル、酸化タングステン、酸化スズ、酸化ハフニウム、アルミナ等の無機酸化物、又はそれらの無機酸化物からなる基本骨格中に上記のシリケート骨格に付加する原子を組み込んだ複合酸化物が挙げられる。   Other inorganic skeletons that can constitute the porous material include non-Si based zirconia, titania, niobium oxide, tantalum oxide, tungsten oxide, tin oxide, hafnium, alumina, and other inorganic oxides, or those inorganic oxides. And a composite oxide in which an atom added to the silicate skeleton is incorporated in the basic skeleton.

なお、多孔体を構成する無機の基本骨格の側鎖に種々の有機基等が付与されていてもよい。かかる側鎖としては、チオール基又はチオール基を含む有機基、メチル基、エチル基等の低級アルキル基、フェニル基、カルボキシル基、アミノ基、ビニル基等が挙げられる。   In addition, various organic groups etc. may be provided to the side chain of the inorganic basic skeleton constituting the porous body. Examples of such side chains include thiol groups or organic groups containing thiol groups, lower alkyl groups such as methyl groups and ethyl groups, phenyl groups, carboxyl groups, amino groups, and vinyl groups.

多孔体の無機骨格成分としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等のアルコキシシラン、ケイ酸ソーダ、カネマイト(kanemite、NaHSi・3HO)又はシリカを用いる事ができる。これらの骨格成分はシリケート骨格を形成する。なお、本発明においては、低級アルキル基やフェニル基等の官能基のシリケート骨格への導入は、相当する官能基を有するアルコキシシランを用いて行う事ができる。 As the inorganic skeleton component of the porous body, alkoxysilane such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, sodium silicate, kanemite (NaHSi 2 O 5 .3H 2 O) or silica can be used. These skeletal components form a silicate skeleton. In the present invention, introduction of a functional group such as a lower alkyl group or a phenyl group into a silicate skeleton can be performed using an alkoxysilane having a corresponding functional group.

上記多孔体の製造方法については特に限定するものではないが、例えば、界面活性剤を鋳型として用いて縮重合し、その後、界面活性剤を除去する事によって得る事ができる。   The method for producing the porous body is not particularly limited. For example, it can be obtained by polycondensation using a surfactant as a template, and then removing the surfactant.

本発明において多孔体を形成するための鋳型として使用される界面活性剤は、陽イオン性、陰イオン性、非イオン性のうちのいずれであってもよく、具体的には、アルキルトリメチルアンモニウム(好ましくはアルキル基の炭素数が8〜22のアルキルトリメチルアンモニウム)、アルキルアンモニウム、ジアルキルジメチルアンモニウム、ベンジルアンモニウムの塩化物、臭化物、ヨウ化物又は水酸化物の他、脂肪酸塩、アルキルスルホン酸塩、アルキルリン酸塩、ポリエチレンオキサイド系非イオン性界面活性剤、一級アルキルアミン等が挙げられるが抗酸化力の観点よりアルキルトリメチルアンモニウムが好ましい。   The surfactant used as a template for forming the porous body in the present invention may be any of cationic, anionic, and nonionic. Specifically, alkyltrimethylammonium ( Preferably, the alkyl group has 8 to 22 carbon atoms (alkyltrimethylammonium), alkylammonium, dialkyldimethylammonium, benzylammonium chloride, bromide, iodide or hydroxide, fatty acid salt, alkylsulfonate, alkyl Examples thereof include phosphates, polyethylene oxide nonionic surfactants, primary alkylamines and the like, but alkyltrimethylammonium is preferred from the viewpoint of antioxidant power.

上記の界面活性剤のうち、ポリエチレンオキサイド系非イオン性界面活性剤としては、疎水性成分として炭化水素基、親水性部分としてポリエチレンオキサイド、をそれぞれ有するポリエチレンオキサイド系非イオン性界面活性剤等が挙げられる。このような界面活性剤としては、具体的には、C1633(OCHCHOH(以下、このような構造をC16EOと略して記載する)、C12EO、C16EO10、C16EO20、C18EO10、C18EO20、C1835EO10等が挙げられる。 Among the above surfactants, examples of the polyethylene oxide nonionic surfactant include polyethylene oxide nonionic surfactants each having a hydrocarbon group as a hydrophobic component and polyethylene oxide as a hydrophilic portion. It is done. Specifically, as such a surfactant, C 16 H 33 (OCH 2 CH 2 ) 2 OH (hereinafter, such a structure is abbreviated as C 16 EO 2 ), C 12 EO 4 , C 16 EO 10 , C 16 EO 20 , C 18 EO 10 , C 18 EO 20 , C 18 H 35 EO 10 and the like can be mentioned.

また、本発明においては、オレイン酸、ラウリン酸、ステアリン酸、パルミチン酸等の脂肪酸とソルビタンとのエステル、又はこれらのエステルにポリエチレンオキサイドが付加した化合物を用いる事ができる。このような界面活性剤としては、TritonX−100(アルドリッチ)、ポリエチレンオキサイド(20)ソルビタンモノラウリレート(Tween20、アルドリッチ)、ポリエチレンオキサイド(20)ソルビタンモノパルミテート(Tween40)、ポリエチレンオキサイド(20)ソルビタンモノステアレート(Tween60)、ポリエチレンオキサイド(20)ソルビタンモノオレート(Tween80)、ソルビタンモノパルミテート等が挙げられる。本発明においては、上記の界面活性剤のうちの1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   In the present invention, esters of fatty acids such as oleic acid, lauric acid, stearic acid, and palmitic acid and sorbitan, or compounds obtained by adding polyethylene oxide to these esters can be used. Examples of such a surfactant include Triton X-100 (Aldrich), polyethylene oxide (20) sorbitan monolaurate (Tween 20, Aldrich), polyethylene oxide (20) sorbitan monopalmitate (Tween 40), polyethylene oxide (20) sorbitan. Examples include monostearate (Tween 60), polyethylene oxide (20) sorbitan monooleate (Tween 80), sorbitan monopalmitate, and the like. In the present invention, one of the above surfactants may be used alone, or two or more may be used in combination.

さらに、本発明においては、トリブロックコポリマー型のポリアルキレンオキサイドを用いる事ができ、中でもポリエチレンオキサイド鎖−ポリプロピレンオキサイド鎖−ポリエチレンオキサイド鎖型、又はポリプロピレンオキサイド鎖−ポリエチレンオキサイド鎖−ポリプロピレンオキサイド鎖型のトリブロックコポリマーが好適に使用される。ここで、ポリエチレンオキサイド鎖−ポリプロピレンオキサイド鎖−ポリエチレンオキサイド鎖型のトリブロックコポリマーを(EO)(PO)(EO)と表すと、各アルキレンオキサイドのユニット数は好ましくはx=5〜110、y=15〜70であり、より好ましくはx=15〜20、y=50〜60である。他方、ポリプロピレンオキサイド鎖−ポリエチレンオキサイド鎖−ポリプロピレンオキサイド鎖型のトリブロックコポリマーを(PO)(EO)(PO)と表すと、各アルキレンオキシドのユニット数は、好ましくはx=5〜110、y=15〜70であり、より好ましくはx=15〜20、y=50〜60である。このようなトリブロックコポリマーとしては、具体的には、(EO)(PO)70(EO)、(EO)13(PO)30(EO)13、(EO)20(PO)30(EO)20、(EO)26(PO)39(EO)26、(EO)17(PO)56(EO)17、(EO)17(PO)58(EO)17、(EO)20(PO)70(EO)20、(EO)80(PO)30(EO)80、(EO)106(PO)70(EO)106、(EO)100(PO)39(EO)100、(EO)19(PO)33(EO)19、(EO)26(PO)39(EO)26等が挙げられ、これらのトリブロックコポリマーはBASF社等より商業的に入手可能であり、また、小規模製造レベルで所望のx値とy値とを有するものを得る事もできる。さらに、これらのトリブロックコポリマーは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Further, in the present invention, a triblock copolymer type polyalkylene oxide can be used. Among them, a polyethylene oxide chain-polypropylene oxide chain-polyethylene oxide chain type or a polypropylene oxide chain-polyethylene oxide chain-polypropylene oxide chain type Block copolymers are preferably used. Here, when a triblock copolymer of polyethylene oxide chain-polypropylene oxide chain-polyethylene oxide chain type is represented as (EO) x (PO) y (EO) x , the number of units of each alkylene oxide is preferably x = 5 to 110. , Y = 15 to 70, more preferably x = 15 to 20 and y = 50 to 60. On the other hand, when a polypropylene oxide chain-polyethylene oxide chain-polypropylene oxide chain type triblock copolymer is represented as (PO) x (EO) y (PO) x , the number of units of each alkylene oxide is preferably x = 5 to 110. , Y = 15 to 70, more preferably x = 15 to 20 and y = 50 to 60. Specific examples of such a triblock copolymer include (EO) 5 (PO) 70 (EO) 5 , (EO) 13 (PO) 30 (EO) 13 , (EO) 20 (PO) 30 (EO). ) 20 , (EO) 26 (PO) 39 (EO) 26 , (EO) 17 (PO) 56 (EO) 17 , (EO) 17 (PO) 58 (EO) 17 , (EO) 20 (PO) 70 (EO) 20 , (EO) 80 (PO) 30 (EO) 80 , (EO) 106 (PO) 70 (EO) 106 , (EO) 100 (PO) 39 (EO) 100 , (EO) 19 (PO ) 33 (EO) 19, ( EO) 26 (PO) 39 (EO) 26 and the like, these triblock copolymers are commercially available from BASF Corp. and the like, also, small manufacturing level In may be obtained those having a desired x and y values. Furthermore, these triblock copolymers may be used individually by 1 type, and may be used in combination of 2 or more type.

さらにまた、本発明においては、エチレンジアミンの2つの窒素原子にそれぞれ2つのポリエチレンオキサイド鎖−ポリプロピレンオキサイド鎖が結合したスターダイブロックコポリマーをテンプレートとして使用する事ができる。このようなスターダイブロックコポリマーとしては、具体的には、{(EO)113(PO)22NCHCHN{(PO)22(EO)113、{(EO)(PO)18NCHCHN{(PO)18(EO)、{(PO)19(EO)16NCHCHN{(EO)16(PO)19等が挙げられる。また、本発明においては、上記のスターダイブロックコポリマーのうちの1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Furthermore, in the present invention, a star diblock copolymer in which two polyethylene oxide chains-polypropylene oxide chains are bonded to two nitrogen atoms of ethylenediamine can be used as a template. As such a star diblock copolymer, specifically, {(EO) 113 (PO) 22 } 2 NCH 2 CH 2 N {(PO) 22 (EO) 113 } 2 , {(EO) 3 (PO ) 18} 2 NCH 2 CH 2 N {(PO) 18 (EO) 3} 2, {(PO) 19 (EO) 16} 2 NCH 2 CH 2 N {(EO) 16 (PO) 19} 2 etc. Can be mentioned. In the present invention, one of the above star diblock copolymers may be used alone, or two or more may be used in combination.

上記の界面活性剤を用いて上記の骨格成分を縮重合させる場合、溶媒として水、有機溶媒、水と有機溶媒との混合物等を使用する事ができる。また、反応に用いる骨格成分と界面活性剤とのモル比(骨格成分/界面活性剤比)は好ましくは60以上であり、より好ましくは90以上であり、さらに好ましくは120以上である。骨格成分/界面活性剤比を前記の範囲内とすると、得られる多孔体細孔径が小さくなるとともに、細孔壁厚が厚くなり、また細孔容積が小さくなる傾向にある。   When the above skeleton component is subjected to polycondensation using the above surfactant, water, an organic solvent, a mixture of water and an organic solvent, or the like can be used as a solvent. Further, the molar ratio of the skeleton component to the surfactant used in the reaction (skeleton component / surfactant ratio) is preferably 60 or more, more preferably 90 or more, and further preferably 120 or more. When the skeletal component / surfactant ratio is within the above range, the pore diameter of the obtained porous body tends to be small, the pore wall thickness is thickened, and the pore volume tends to be small.

本発明においては、上記の各成分を混合する方法について特に制限はないが、界面活性剤を溶媒と混合し、同時に、又は引き続いて酸を添加して好ましい酸性とした後、骨格成分を添加する事が好ましい。ここで、界面活性剤及び酸を混合する際の温度は特に制限されないが、0〜100℃である事が好ましく、30〜100℃である事がより好ましい。また、骨格成分を添加する際の温度は特に制限されないが、35〜80℃である事が好ましく、40℃〜45℃である事がより好ましい。さらに、骨格成分を添加する際には、骨格成分全量を一度に添加してもよく、混合液を攪拌しながら少量ずつ添加してもよいが、攪拌しながら1分以上にわたって少量ずつ添加する事が好ましい。   In the present invention, the method of mixing the above components is not particularly limited, but the surfactant is mixed with a solvent, and simultaneously or subsequently, an acid is added to obtain a preferable acidity, and then the skeleton component is added. Things are preferable. Here, the temperature at the time of mixing the surfactant and the acid is not particularly limited, but is preferably 0 to 100 ° C, more preferably 30 to 100 ° C. The temperature at which the skeletal component is added is not particularly limited, but is preferably 35 to 80 ° C, and more preferably 40 to 45 ° C. Furthermore, when adding the skeletal component, the entire skeletal component may be added all at once, or the mixed solution may be added in small portions while stirring, but it may be added in small portions over 1 minute while stirring. Is preferred.

上記の手順により各成分を混合した後、反応混合物を所定の温度に保持して縮重合反応を行う事により、多孔体前駆体(界面活性剤が細孔内に充填されたままのもの)を得る事ができる。ここで、本発明においては、縮重合反応の反応温度は使用する界面活性剤や骨格成分の種類や濃度によって異なるが、通常0〜100℃であり、好ましくは35〜80℃である。特に、界面活性剤として上記のトリブロックコポリマーを使用する場合、反応温度は40〜45℃である事が好ましい。縮重合反応の反応温度が前記範囲内であると、得られる多孔体の構造の規則性が高くなるとともに、細孔径が小さく、細孔壁厚が厚くなる傾向にある。なお、上記の縮重合反応においては、反応の進行状況に応じて反応温度を適宜変更する事もできる。   After mixing each component according to the above procedure, by carrying out the condensation polymerization reaction while maintaining the reaction mixture at a predetermined temperature, the porous body precursor (with the surfactant filled in the pores) is obtained. I can get it. Here, in the present invention, the reaction temperature of the polycondensation reaction varies depending on the surfactant used and the type and concentration of the skeletal component, but is usually 0 to 100 ° C., preferably 35 to 80 ° C. In particular, when using the above triblock copolymer as a surfactant, the reaction temperature is preferably 40 to 45 ° C. When the reaction temperature of the polycondensation reaction is within the above range, the regularity of the structure of the resulting porous body tends to be high, the pore diameter is small, and the pore wall thickness tends to be thick. In the above condensation polymerization reaction, the reaction temperature can be appropriately changed according to the progress of the reaction.

また、上記の縮重合反応の反応時間は使用する界面活性剤や骨格成分の種類や濃度によって異なるが、通常、8〜24時間である。また、上記の縮重合反応は、静置状態、攪拌状態のいずれで行ってもよく、またそれらを組み合わせて行ってもよい。さらに、上記の縮重合反応においては、界面活性剤に加えてトリメチルベンゼンやトリイソプロピルベンゼン等の疎水性を有する化合物を添加する事によって、得られる多孔体の細孔径を制御する事ができる。   Moreover, although the reaction time of said polycondensation reaction changes with kinds and density | concentrations of surfactant and frame | skeleton component to be used, it is 8 to 24 hours normally. In addition, the above condensation polymerization reaction may be performed either in a stationary state or in a stirring state, or may be performed in combination. Furthermore, in the above condensation polymerization reaction, the pore diameter of the resulting porous body can be controlled by adding a hydrophobic compound such as trimethylbenzene or triisopropylbenzene in addition to the surfactant.

本発明においては、上記の縮重合反応の後、得られた多孔体前駆体に対して水熱処理を行う事が好ましい。水熱処理を行うと、界面活性剤除去後の多孔体の強度及び構造規則性が向上し、細孔安定性及び細孔径分布の均一性に優れた多孔体が得られる傾向にある。   In the present invention, it is preferable to perform a hydrothermal treatment on the obtained porous precursor after the above condensation polymerization reaction. When the hydrothermal treatment is performed, the strength and structural regularity of the porous body after removal of the surfactant are improved, and a porous body excellent in pore stability and uniformity in pore diameter distribution tends to be obtained.

本発明における水熱処理は以下の手順で行う事ができる。すなわち、縮重合反応に使用したものと同様の界面活性剤を含む水溶液(好ましくは縮重合反応時と同等以下の界面活性剤濃度である)中に多孔体前駆体を分散させて得られる反応液をそのまま、又は必要に応じてさらに希釈して加熱し、所定の時間経過後、反応液を濾過し、得られた多孔体前駆体を乾燥させる。ここで、本発明における水熱処理温度は、通常50〜200℃であり、好ましくは60〜100℃であり、より好ましくは70〜80℃である。また、本発明における水熱処理は弱アルカリ条件下で行う事が好ましく、pH8〜8.5で行う事がより好ましい。反応液のpHは塩酸又は水酸化ナトリウムを用いて調整する事ができる。さらに、本発明における水熱処理時間は特に制限されないが、好ましくは1時間以上であり、より好ましくは3〜8時間である。水熱処理時間が1時間未満であると処理が不十分となる傾向にあり、他方、8時間を超えても処理時間に見合う効果が得られない傾向にある。さらにまた、本発明における水熱処理は攪拌しながら行う事が好ましい。なお、上記の水熱処理を行う際には、反応液を加熱する前に予め室温で数時間攪拌処理を行うと、水熱処理によって得られる上記の効果がより高められる傾向にあるので好ましい。   The hydrothermal treatment in the present invention can be performed by the following procedure. That is, a reaction liquid obtained by dispersing a porous precursor in an aqueous solution containing a surfactant similar to that used in the condensation polymerization reaction (preferably a surfactant concentration equal to or lower than that during the condensation polymerization reaction). As is or after further dilution as necessary, the mixture is heated, and after a predetermined time has elapsed, the reaction solution is filtered and the resulting porous precursor is dried. Here, the hydrothermal treatment temperature in this invention is 50-200 degreeC normally, Preferably it is 60-100 degreeC, More preferably, it is 70-80 degreeC. In addition, the hydrothermal treatment in the present invention is preferably performed under weak alkaline conditions, and more preferably at pH 8 to 8.5. The pH of the reaction solution can be adjusted using hydrochloric acid or sodium hydroxide. Furthermore, the hydrothermal treatment time in the present invention is not particularly limited, but is preferably 1 hour or more, and more preferably 3 to 8 hours. If the hydrothermal treatment time is less than 1 hour, the treatment tends to be insufficient. On the other hand, if the hydrothermal treatment time exceeds 8 hours, the effect corresponding to the treatment time tends not to be obtained. Furthermore, the hydrothermal treatment in the present invention is preferably performed with stirring. In addition, when performing said hydrothermal treatment, it is preferable to stir at room temperature for several hours in advance before heating the reaction solution because the above-mentioned effect obtained by hydrothermal treatment tends to be further enhanced.

上記の縮重合反応後又は水熱処理後に得られる多孔体前駆体から界面活性剤を除去する事によって、目的の多孔体を得る事ができる。ここで、多孔体前駆体からの界面活性剤の除去は、焼成による方法、水やアルコール等の溶媒で処理する方法等により行う事ができる。   The target porous material can be obtained by removing the surfactant from the porous material precursor obtained after the above polycondensation reaction or after the hydrothermal treatment. Here, the removal of the surfactant from the porous body precursor can be performed by a method by firing, a method of treating with a solvent such as water or alcohol, and the like.

焼成による方法を用いる場合、多孔体前駆体を通常300〜1000℃、好ましくは400〜700℃に加熱し、通常30分以上、好ましくは1時間以上保持する事によって界面活性剤を除去する事ができる。なお、上記の焼成は空気を流通させた雰囲気で行う事もできるが、多量の燃焼ガスが発生するため、焼成初期は窒素等の不活性ガスを流通させた雰囲気で行う事が好ましい。   When using the method by firing, the surface-active agent may be removed by heating the porous body precursor to usually 300 to 1000 ° C., preferably 400 to 700 ° C., and usually holding for 30 minutes or more, preferably 1 hour or more. it can. In addition, although said baking can also be performed in the atmosphere which distribute | circulated air, since a lot of combustion gases generate | occur | produce, it is preferable to carry out in the atmosphere which distribute | circulated inert gas, such as nitrogen, at the initial stage of baking.

また、溶媒で処理する方法を用いる場合、多孔体前駆体に含まれる界面活性剤に対して溶解度の大きい溶媒に多孔体前駆体を分散させ、攪拌した後に固形分を回収する事によって、目的の多孔体を得る事ができる。ここで、本発明において界面活性剤の除去に使用される溶媒としては特に制限はないが、好ましくはメタノール、エタノール、アセトン等が親水性有機溶媒が挙げられる。界面活性剤の抽出効率を十分に得るため、塩酸、硝酸等を少量(好ましくは0.1〜10mol/L)添加する事が好ましい。有機溶媒には、水を添加しても用いられる。また、多孔体前駆体の分散量は溶媒100mlに対して0.5〜50gである事が好ましい。なお、本発明においては、粉砕、ふるい分け、成形等の各工程は、界面活性剤を除去する前の多孔体前駆体に対して行ってもよく、界面活性剤除去後に得られる多孔体に対して行ってもよい。   In addition, when using a method of treating with a solvent, the porous body precursor is dispersed in a solvent having a high solubility with respect to the surfactant contained in the porous body precursor, and after stirring, the solid content is recovered. A porous body can be obtained. Here, although there is no restriction | limiting in particular as a solvent used for removal of surfactant in this invention, Preferably a hydrophilic organic solvent is mentioned, such as methanol, ethanol, acetone, etc. In order to sufficiently obtain the extraction efficiency of the surfactant, it is preferable to add a small amount (preferably 0.1 to 10 mol / L) of hydrochloric acid, nitric acid or the like. The organic solvent can be used even when water is added. Moreover, it is preferable that the dispersion amount of a porous body precursor is 0.5-50 g with respect to 100 ml of solvents. In the present invention, each step such as pulverization, sieving and molding may be performed on the porous body precursor before removing the surfactant, and on the porous body obtained after removing the surfactant. You may go.

(金属細線)本発明において金属細線とは、多孔体の細孔を鋳型として形成される原子集団(クラスター)のうち、細孔に沿って線状に形成されたものをいう。金属細線の平均直径は抗酸化力の観点から1nm以上50nm以下が好ましく、1nm以上30nm以下がより好ましく、1nm以上10nm以下がさらに好ましい。金属細線の平均直径が1nm未満である場合には、抗酸化力が不十分となる。他方、金属細線の平均直径が50nmを超える場合には、金属細線における表面原子の割合が減少して金属細線表面の特異性がマクロな物性として発現しにくくなる。   (Metallic fine wire) In the present invention, the fine metallic wire refers to an atomic group (cluster) formed using the pores of a porous body as a template and formed linearly along the pores. The average diameter of the fine metal wires is preferably 1 nm or more and 50 nm or less, more preferably 1 nm or more and 30 nm or less, and further preferably 1 nm or more and 10 nm or less from the viewpoint of antioxidant power. When the average diameter of the fine metal wires is less than 1 nm, the antioxidant power is insufficient. On the other hand, when the average diameter of the fine metal wire exceeds 50 nm, the ratio of surface atoms in the fine metal wire is reduced, and the specificity of the fine metal wire surface is hardly expressed as a macroscopic property.

(金属粒子)本発明において金属粒子とは、多孔体の細孔を鋳型として形成される原子集団(クラスター)のうち、細孔に沿って一定の間隔で球状に形成されたものをいい、その平均直径は抗酸化力の観点から好ましくは1nm以上50nm以下である。   (Metal particle) In the present invention, the metal particle is a group of atoms (cluster) formed using the pores of a porous body as a template, and is formed in a spherical shape at regular intervals along the pore. The average diameter is preferably 1 nm or more and 50 nm or less from the viewpoint of antioxidant power.

本発明における金属細線又は金属粒子の材料は目的に応じて適宜選択されるが、具体的には、白金(Pt)、金(Au)、銀(Ag)等の貴金属を用いると、触媒活性がより高水準で両立される傾向にあるので好ましく、その中でも白金が最も好ましい。   The material of the fine metal wire or metal particle in the present invention is appropriately selected according to the purpose. Specifically, when a noble metal such as platinum (Pt), gold (Au), silver (Ag) is used, the catalytic activity is increased. Since it tends to be compatible at a higher level, it is preferable, and platinum is most preferable among them.

本発明において、多孔体の細孔内に金属細線又は金属粒子を形成する際に用いる原料化合物としては特に制限されないが、例えば、上記の貴金属の塩又は錯塩を用いる事ができる。より具体的には、白金のクラスターの原料化合物として、HPtCl、Pt(NO(NH、[Pt(NH]Cl、HPt(OH)、PtCl(NH、Pt(NHCl、Pt(NH(OH)、Pt(NH(OH)、KPtCl、PtCl、PtCl等が挙げられる。 In the present invention, the raw material compound used when forming fine metal wires or metal particles in the pores of the porous body is not particularly limited, and for example, the above-mentioned noble metal salts or complex salts can be used. More specifically, as a raw material compound of a platinum cluster, H 2 PtCl 6 , Pt (NO 2 ) 2 (NH 3 ) 2 , [Pt (NH 3 ) 6 ] Cl 4 , H 2 Pt (OH) 6 , PtCl 2 (NH 3 ) 2 , Pt (NH 3 ) 4 Cl 2 , Pt (NH 3 ) 4 (OH) 2 , Pt (NH 3 ) 4 (OH) 4 , K 2 PtCl 4 , PtCl 4 , PtCl 2, etc. Is mentioned.

上記の金属細線又は金属粒子の原料化合物を多孔体の細孔内に導入する方法としては、液相法、固相法、気相法等が挙げられる。気相法においては、クラスターの原料化合物を水、エタノール、ベンゼン等の溶媒に溶解させ、その溶液中に多孔体を加えて攪拌混合する事により;固相法では、固体状の金属細線の原料化合物と多孔体(通常、粉末状である)とを固相で混合し、密閉容器中で加熱した後、過剰の原料化合物を洗浄等により除去する事により;気相法では、金属アルコキシド等の蒸気を発生するものや昇華しやすいものを原料に用い、それらの蒸気を多孔体と接触させる事により、それぞれ原料化合物が多孔体の細孔内に導入される。ここで、金属の塩又は錯塩を水蒸気の存在下で水素等の還元剤で接触させると金属細線が生じ、水蒸気を除去した状態で水素等の還元剤で接触させると金属粒子が生じる。   Examples of the method for introducing the metal fine wire or the raw material compound of the metal particles into the pores of the porous body include a liquid phase method, a solid phase method, and a gas phase method. In the gas phase method, the raw material compound of the cluster is dissolved in a solvent such as water, ethanol, benzene, and a porous material is added to the solution, followed by stirring and mixing; Compound and porous body (usually in powder form) are mixed in a solid phase, heated in a closed container, and then excess raw material compound is removed by washing or the like; A material that generates steam or a material that easily sublimes is used as a raw material, and the raw material compound is introduced into the pores of the porous body by bringing the vapor into contact with the porous body. Here, when a metal salt or complex salt is brought into contact with a reducing agent such as hydrogen in the presence of water vapor, a fine metal wire is produced, and when contacted with a reducing agent such as hydrogen in a state where water vapor is removed, metal particles are produced.

本発明において化粧料とは特に限定するものでないが、例えば、化粧水、エモリエントローション、エモリエントクリーム、モイスチャージェル、パウダリーファンデーション等が挙げられる。   Although it does not specifically limit with cosmetics in this invention, For example, a lotion, an emollient lotion, an emollient cream, a moisture gel, a powdery foundation etc. are mentioned.

本発明の化粧料用金属触媒に担持されている白金、金、銀等の貴金属量は特に限定されるものではないが、0.1重量%〜5重量%が好ましく、0.3重量%〜3重量%がより好ましい。   The amount of noble metals such as platinum, gold, and silver supported on the metal catalyst for cosmetics of the present invention is not particularly limited, but is preferably 0.1 wt% to 5 wt%, 0.3 wt% to 3% by weight is more preferred.

得られた金属細線又は金属粒子触媒に添加剤を加えて、金属触媒含有化粧料を調製する事ができる。添加剤を配合する方法は特に限定されず、金属触媒含有化粧料の抗酸化力を損なわない範囲で、一般的な方法に従って行う事ができる。また添加剤の配合量も、抗酸化力を損なわない範囲で決定する事ができる。   Additives can be added to the obtained fine metal wire or metal particle catalyst to prepare a metal catalyst-containing cosmetic. The method of blending the additive is not particularly limited, and can be performed according to a general method as long as the antioxidant power of the metal catalyst-containing cosmetic is not impaired. Moreover, the compounding quantity of an additive can also be determined in the range which does not impair antioxidant power.

本発明の化粧料に含まれる化粧料用金属触媒量は特に限定されるものではないが、0.00001重量%〜100重量%が好ましく、0.00005重量%〜100重量%がより好ましく、0.0001重量%〜100重量%がさらに好ましい。   The amount of the metal catalyst for cosmetics contained in the cosmetic of the present invention is not particularly limited, but is preferably 0.00001 to 100% by weight, more preferably 0.00005 to 100% by weight, and 0 More preferably, it is 0.0001 to 100% by weight.

本発明の抗酸化力は特に限定するものではないが、一般的な抗酸化力評価法のひとつであるDPPH法を用いて評価する事ができる。   Although the antioxidant power of the present invention is not particularly limited, it can be evaluated using the DPPH method which is one of the general antioxidant power evaluation methods.

抗酸化力は、安定なラジカルをもつ1, 1−diphenyl−2−picrylhydrazyl(DPPH)の520nmにおける極大吸収が試料添加後に減少する割合によりラジカル消去率を算出し評価した。   Antioxidant power was evaluated by calculating the radical scavenging rate according to the rate at which the maximum absorption at 520 nm of 1,1-diphenyl-2-picrylhydrazyl (DPPH) having a stable radical decreased after addition of the sample.

すなわち、DPPH0.0016g、メタノール50mlを30分間攪拌し、DPPHを溶解させた。この溶液を5mMピロリン酸緩衝液49.5mlに各濃度の試料0.5mlを添加し、室温で20分間反応させた後に520nmの吸光度を測定した(Abs(S))。DPPH0.0016g、メタノール50ml、5mMピロリン酸緩衝液50mlを対照として同様に吸光度を測定し、(Abs(C))、式1によりラジカル消去率を算出した。   That is, DPPH 0.0016 g and methanol 50 ml were stirred for 30 minutes to dissolve DPPH. This solution was added to 49.5 ml of 5 mM pyrophosphate buffer, 0.5 ml of each sample concentration was allowed to react at room temperature for 20 minutes, and then the absorbance at 520 nm was measured (Abs (S)). Absorbance was measured in the same manner using DPPH 0.0016 g, methanol 50 ml, and 5 mM pyrophosphate buffer 50 ml as controls, and the radical scavenging rate was calculated by (Abs (C)) and Equation 1.

式1
ラジカル消去率=[Abs(C)−Abs(S)]/Abs(C)×100
Formula 1
Radical scavenging rate = [Abs (C) −Abs (S)] / Abs (C) × 100

本発明の化粧料用金属触媒の抗酸化力はDPPH法によるラジカル消去率において、40%以上が好ましく、50%以上がより好ましく、60%以上がさらに好ましく、70%以上が最も好ましい。   The antioxidant power of the metal catalyst for cosmetics of the present invention is preferably 40% or more, more preferably 50% or more, further preferably 60% or more, and most preferably 70% or more in terms of radical scavenging rate by the DPPH method.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に何ら制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not restrict | limited to a following example at all.

製造例1
(多孔体の合成)
粉末ケイ酸ソーダ(SiO/NaO=2.00)を700℃で6時間、空気中で焼成してジケイ酸ソーダ(δ−NaSi)の結晶とし、この結晶50gを水500ml中に分散させて3時間攪拌した後、濾過により固形分を回収してカネマイト結晶を得た。このカネマイト結晶の乾燥重量換算で50g相当を、乾燥させずに0.1Mヘキサデシルトリメチルアンモニウムブロマイド水溶液1000mlに加えて分散させ、70℃で3時間加熱攪拌した。その後、2規定の塩酸を用いて分散液のpHを8.5とし、さらに70℃で3時間加熱攪拌した。分散液を室温まで放冷した後、分散液中の固形分を濾取し、1000mlのイオン交換水に分散させて攪拌した。この濾過と分散・攪拌とを5回繰り返した後、固形分を60℃で24時間乾燥し、窒素ガス中、450℃で3時間加熱し、さらに空気中、550℃で6時間焼成する事により目的の多孔体(平均細孔直径:2.7nm)を得た。この多孔体はX線回折パターンにおいて、d間隔が3.8nmの位置に1つのピークを有していた。
Production Example 1
(Synthesis of porous material)
Powdered sodium silicate (SiO 2 / Na 2 O = 2.00) was fired in air at 700 ° C. for 6 hours to form crystals of sodium disilicate (δ-Na 2 Si 2 O 5 ). After dispersing in 500 ml of water and stirring for 3 hours, solid content was recovered by filtration to obtain kanemite crystals. An amount equivalent to 50 g in terms of dry weight of this kanemite crystal was added to 1000 ml of 0.1 M hexadecyltrimethylammonium bromide aqueous solution without being dried, and the mixture was heated and stirred at 70 ° C. for 3 hours. Thereafter, the pH of the dispersion was adjusted to 8.5 using 2N hydrochloric acid, and further heated and stirred at 70 ° C. for 3 hours. After allowing the dispersion to cool to room temperature, the solid content in the dispersion was collected by filtration, dispersed in 1000 ml of ion-exchanged water, and stirred. After repeating this filtration and dispersion / stirring five times, the solid content is dried at 60 ° C. for 24 hours, heated in nitrogen gas at 450 ° C. for 3 hours, and further calcined in air at 550 ° C. for 6 hours. The target porous material (average pore diameter: 2.7 nm) was obtained. This porous body had one peak at a position where the d interval was 3.8 nm in the X-ray diffraction pattern.

製造例2
上記の多孔体3gをシュレンク管に入れて100℃に加熱し、1×10−4mmHgで2時間真空脱気を行った。その後、多孔体を200mlナス型フラスコに移し、水100mlを加えて分散液を調製した。
Production Example 2
3 g of the above porous body was put into a Schlenk tube and heated to 100 ° C., and vacuum deaeration was performed at 1 × 10 −4 mmHg for 2 hours. Thereafter, the porous body was transferred to a 200 ml eggplant type flask, and 100 ml of water was added to prepare a dispersion.

一方、50mlナス型フラスコに塩化白金酸六水和物(HPtCl・6HO)80mgと水100mlとを入れて混合し、塩化白金酸水溶液を調製した。 On the other hand, it is mixed and put a 50ml eggplant type flask chloroplatinic acid hexahydrate (H 2 PtCl 6 · 6H 2 O) 80mg and water 100 ml, to prepare a chloroplatinic acid aqueous solution.

このようにして得られた分散液と塩化白金酸水溶液とを混合して24時間攪拌した(Pt担持量:1重量%)。その後、40℃に加熱しながらエバポレータを用いて水を留去し、さらに25℃、1×10−4mmHgの条件下で24時間真空脱気して水を完全に除去した。 The dispersion thus obtained and the chloroplatinic acid aqueous solution were mixed and stirred for 24 hours (Pt loading: 1% by weight). Then, water was distilled off using an evaporator while heating to 40 ° C., and further, the water was completely removed by vacuum degassing under the conditions of 25 ° C. and 1 × 10 −4 mmHg for 24 hours.

(金属粒子触媒の形成)
次に、得られた残留物を乾燥水素で還元する事により本発明の化粧料用金属触媒Aを1.9g得た。透過電子顕微鏡観察により平均直径3nmの白金金属粒子が細孔内に細孔に沿って一定の間隔で並んでいる様子が観察された。
(Formation of metal particle catalyst)
Next, 1.9 g of the metal catalyst A for cosmetics of the present invention was obtained by reducing the obtained residue with dry hydrogen. By observation with a transmission electron microscope, it was observed that platinum metal particles having an average diameter of 3 nm were arranged in the pores at regular intervals along the pores.

製造例3(金属細線触媒の形成)
乾燥水素で還元する代わりに水蒸気で飽和した水素で還元する以外は製造例2と同様にして本発明の化粧料用金属触媒Bを1.9g得た。透過電子顕微鏡観察により平均直径2.5nmの白金金属細線が細孔内に形成されている事が確認された。
Production Example 3 (Formation of fine metal wire catalyst)
1.9 g of the metal catalyst B for cosmetics of the present invention was obtained in the same manner as in Production Example 2 except that the reduction was performed with hydrogen saturated with water vapor instead of reduction with dry hydrogen. It was confirmed by observation with a transmission electron microscope that platinum metal fine wires having an average diameter of 2.5 nm were formed in the pores.

製造例4(金属粒子触媒の形成)
添加する塩化白金酸六水和物の量を8mgとした以外は製造例2と同様の方法で、粒子状の白金が0.1重量%担持された化粧料用金属触媒Cを得た。透過電子顕微鏡観察により平均直径2.5nmの白金金属粒子が細孔内に沿って一定の間隔で並んでいる様子が観察された。
Production Example 4 (Formation of metal particle catalyst)
A cosmetic metal catalyst C carrying 0.1% by weight of particulate platinum was obtained in the same manner as in Production Example 2, except that the amount of chloroplatinic acid hexahydrate added was 8 mg. Observation of the transmission electron microscope showed that platinum metal particles having an average diameter of 2.5 nm were arranged at regular intervals along the pores.

製造例5(金属粒子触媒の形成)
添加する塩化白金酸六水和物の量を400mgとした以外は製造例2と同様の方法で、粒子状の白金が5重量%担持された化粧料用金属触媒Dを得た。透過電子顕微鏡観察により平均直径2.5nmの白金金属粒子が細孔内に細孔に沿って一定の間隔で並んでいる様子が観察された。
Production Example 5 (Formation of metal particle catalyst)
A cosmetic metal catalyst D carrying 5% by weight of particulate platinum was obtained in the same manner as in Production Example 2, except that the amount of chloroplatinic acid hexahydrate added was 400 mg. It was observed by transmission electron microscope observation that platinum metal particles having an average diameter of 2.5 nm were arranged in the pores at regular intervals along the pores.

(多孔体の合成)
製造例6
ベヘニルトリメチルアンモニウムクロリドを使用する以外は製造例1と同様な方法にて多孔体(平均細孔直径:4.0nmを)得た。この多孔体はX線回折パターンにおいて、d間隔が5.0nmの位置に1つのピークを有していた。
(Synthesis of porous material)
Production Example 6
A porous material (average pore diameter: 4.0 nm) was obtained in the same manner as in Production Example 1 except that behenyltrimethylammonium chloride was used. This porous body had one peak at a position where the d interval was 5.0 nm in the X-ray diffraction pattern.

(金属粒子触媒の合成)
製造例7
製造例6で得られた多孔体を使用する以外は製造例2と同様な方法にて、本発明の化粧料用金属触媒Eを1.8g得た。透過電子顕微鏡観察により平均直径3nmの白金金属粒子が細孔内に沿って一定の間隔で並んでいる様子が観察された。
(Synthesis of metal particle catalyst)
Production Example 7
1.8 g of the metal catalyst E for cosmetics of the present invention was obtained in the same manner as in Production Example 2 except that the porous material obtained in Production Example 6 was used. It was observed by transmission electron microscope observation that platinum metal particles having an average diameter of 3 nm were arranged at regular intervals along the pores.

比較品の製造例1
多孔体の代わりにシリカゲルA型を使用した以外は製造例2と同様にして触媒aを得た。得られた触媒aは細孔内に金属細線又は金属粒子は形成されていない事を透過電子顕微鏡観察により確認した。また、シリカゲルA型はX線回折パターンにおいてd間隔が2nmより大きい位置にピークを有さなかった。
Comparative product production example 1
Catalyst a was obtained in the same manner as in Production Example 2, except that silica gel A type was used instead of the porous material. It was confirmed by observation with a transmission electron microscope that the obtained catalyst a had no fine metal wires or metal particles formed in the pores. Silica gel type A did not have a peak at a position where the d interval was larger than 2 nm in the X-ray diffraction pattern.

比較品の製造例2
アリーン冷却管と三方コックを接続した200mL二口ナス型フラスコにポリ(1−ビニル−2−ピロリドン)(和光純薬工業株式会社製)3gを入れ、蒸留水200mLで溶解した。この溶液を10分間撹拌した後、塩化白金酸(HPtCl・6HO、和光純薬工業株式会社製)80mgを加えてさらに30分間撹拌した。反応系内を窒素置換し、特級エタノール25mLを加えて窒素雰囲気下を保ちながら100℃で2時間還流した。反応液のUVを測定し、白金イオンピークの消失と、金属固体特有の散乱によるピークの飽和から還元反応の終了を確認した。有機溶媒を減圧留去して、白金ナノコロイド金属触媒bを作製した。
Comparative product production example 2
3 g of poly (1-vinyl-2-pyrrolidone) (manufactured by Wako Pure Chemical Industries, Ltd.) was placed in a 200 mL two-necked eggplant type flask connected with an Allen cooling pipe and a three-way cock, and dissolved in 200 mL of distilled water. The solution was stirred for 10 minutes, chloroplatinic acid (H 2 PtCl 6 · 6H 2 O, Wako Pure Chemical Industries, Ltd.) was stirred for another 30 min by addition of 80 mg. The reaction system was purged with nitrogen, 25 mL of special grade ethanol was added, and the mixture was refluxed at 100 ° C. for 2 hours while maintaining a nitrogen atmosphere. The UV of the reaction solution was measured, and the completion of the reduction reaction was confirmed from the disappearance of the platinum ion peak and the saturation of the peak due to the scattering characteristic of the metal solid. The organic solvent was distilled off under reduced pressure to produce a platinum nanocolloidal metal catalyst b.

実施例1
製造例2で得られた化粧料用金属触媒A0.5mgに水1000mlを加えて金属触媒含有化粧料A(白金濃度1mmol/L)を調製した。
Example 1
1000 ml of water was added to 0.5 mg of the metal catalyst A for cosmetics obtained in Production Example 2 to prepare a metal catalyst-containing cosmetic A (platinum concentration 1 mmol / L).

実施例2
製造例3で得られた化粧料用金属触媒B0.5mgに水1000mlを加えて金属触媒含有化粧料B(白金濃度1mmol/L)を調製した。
Example 2
1000 ml of water was added to 0.5 mg of the metal catalyst B for cosmetics obtained in Production Example 3 to prepare a metal catalyst-containing cosmetic B (platinum concentration 1 mmol / L).

実施例3
製造例4で得られた化粧料用金属触媒C5mgに水1000mlを加えて金属触媒含有化粧料C(白金濃度1mmol/L)を調製した。
Example 3
1000 ml of water was added to 5 mg of the metal catalyst C for cosmetics obtained in Production Example 4 to prepare a metal catalyst-containing cosmetic C (platinum concentration 1 mmol / L).

実施例4
製造例5で得られた化粧料用金属触媒D0.1mgに水1000mlを加えて金属触媒含有化粧料D(白金濃度1mmol/L)を調製した。
Example 4
1000 ml of water was added to 0.1 mg of the metal catalyst D for cosmetics obtained in Production Example 5 to prepare a metal catalyst-containing cosmetic D (platinum concentration 1 mmol / L).

実施例5
製造例7で得られた化粧料用金属触媒E0.1mgに水1000mlを加えて金属触媒含有化粧料E(白金濃度1mmol/L)を調製した。
Example 5
1000 ml of water was added to 0.1 mg of the metal catalyst E for cosmetics obtained in Production Example 7 to prepare a metal catalyst-containing cosmetic E (platinum concentration 1 mmol / L).

比較例1
化粧料用金属触媒の代わりに比較品の製造例1の触媒aを使用した以外は実施例1と同様にして化粧料を得た。(白金濃度1mmol/L)
Comparative Example 1
A cosmetic was obtained in the same manner as in Example 1 except that the catalyst a of Comparative Example 1 was used instead of the cosmetic metal catalyst. (Platinum concentration 1mmol / L)

比較例2
化粧料用金属触媒の代わりに比較品の製造例2の白金ナノコロイド金属触媒bを使用した以外は実施例1と同様にして化粧料を得た。(白金濃度1mmol/L)
Comparative Example 2
A cosmetic was obtained in the same manner as in Example 1 except that instead of the metal catalyst for cosmetics, the platinum nanocolloidal metal catalyst b of Comparative Example 2 was used. (Platinum concentration 1mmol / L)

比較例3
化粧料用金属触媒の代わりに比較品の製造例1の触媒aを使用した以外は実施例1と同様にして化粧料を得た。(白金濃度1mmol/L)
Comparative Example 3
A cosmetic was obtained in the same manner as in Example 1 except that the catalyst a of Comparative Example 1 was used instead of the cosmetic metal catalyst. (Platinum concentration 1mmol / L)

比較例4
金属触媒の代わりに比較品の製造例1の触媒aを使用した以外は実施例1と同様にして化粧料を得た。(白金濃度1mmol/L)
Comparative Example 4
A cosmetic was obtained in the same manner as in Example 1, except that the catalyst a of Comparative Production Example 1 was used instead of the metal catalyst. (Platinum concentration 1mmol / L)

試験例1
実施例1〜5及び比較例1〜4で得られた化粧料について、以下のように、DPPH法により抗酸化力を評価した。結果を表1に示す。
Test example 1
About the cosmetics obtained in Examples 1-5 and Comparative Examples 1-4, the antioxidant power was evaluated by DPPH method as follows. The results are shown in Table 1.

DPPH0.0016g、メタノール50mlを30分間攪拌し、DPPHを溶解させた。一方、実施例1〜4で得られた金属触媒含有化粧料A〜D及び比較例1〜4で得られた化粧料0.5mlにそれぞれ5mMピロリン酸緩衝液49.5mlを加え白金濃度1×10−2mmol、50mlとした。ここに前記DPPHメタノール溶液を添加し、室温で20分間反応させた後に520nmの吸光度を測定した(Abs(S))。DPPH0.0016g、メタノール50ml、5mMピロリン酸緩衝液50mlを対照として同様に吸光度を測定し(Abs(C))、式1:ラジカル消去率=[Abs(C)−Abs(S)]/Abs(C)×100によりラジカル消去率を算出した。 DPPH (0.0016 g) and methanol (50 ml) were stirred for 30 minutes to dissolve DPPH. Meanwhile, 49.5 ml of 5 mM pyrophosphate buffer was added to 0.5 ml of the metal catalyst-containing cosmetics A to D obtained in Examples 1 to 4 and the cosmetics obtained in Comparative Examples 1 to 4, respectively. 10 −2 mmol, 50 ml. The DPPH methanol solution was added thereto and reacted at room temperature for 20 minutes, and then the absorbance at 520 nm was measured (Abs (S)). Absorbance was similarly measured using 0.0016 g of DPPH, 50 ml of methanol, and 50 ml of 5 mM pyrophosphate buffer (Abs (C)). Formula 1: Radical scavenging rate = [Abs (C) −Abs (S)] / Abs ( C) Radical scavenging rate was calculated by x100.

Figure 2009067756
Figure 2009067756

表1より実施例1、2、3、4、5で得られた金属触媒含有化粧料はラジカル消去率50%以上であった。一方比較例1、2、3、4で得られたものはラジカル消去率15%以下であった。   From Table 1, the metal catalyst-containing cosmetics obtained in Examples 1, 2, 3, 4, and 5 had a radical scavenging rate of 50% or more. On the other hand, those obtained in Comparative Examples 1, 2, 3, and 4 had a radical scavenging rate of 15% or less.

実施例6
下記成分(1)〜(5)を混合し、フェイスパック剤100gを得た。
(1) 尿素 2g
(2) グリセリン 0.4g
(3) 金属触媒含有化粧料A(白金濃度1mmol/L)0.5g
(4) パセリエキス 0.5g
(5) 精製水 96.6g
Example 6
The following components (1) to (5) were mixed to obtain 100 g of a face pack agent.
(1) Urea 2g
(2) Glycerin 0.4g
(3) Metal catalyst-containing cosmetic A (platinum concentration 1 mmol / L) 0.5 g
(4) Parsley extract 0.5g
(5) Purified water 96.6g

実施例7
下記成分(1)〜(5)を混合し、フェイスパック剤100gを得た。
(1) 尿素 2g
(2) グリセリン 0.4g
(3) 金属触媒含有化粧料B(白金濃度1mmol/L)0.5g
(4) パセリエキス 0.5g
(5) 精製水 96.6g
Example 7
The following components (1) to (5) were mixed to obtain 100 g of a face pack agent.
(1) Urea 2g
(2) Glycerin 0.4g
(3) Metal catalyst-containing cosmetic B (platinum concentration 1 mmol / L) 0.5 g
(4) Parsley extract 0.5g
(5) Purified water 96.6g

実施例8
下記成分(3)、(4)、及び(8)〜(10)を混合した溶液と、下記成分(1)、(2)(5)〜(7)及び(11)を混合溶解した溶液とを混合して化粧水100gを得た。
(1) グリセリン 5g
(2) 1,3−ブチレングリコール 6.5g
(3) ポリオキシエチレンソルビタンモノラウリン酸エステル 1.2g
(4) エチルアルコール 8.0g
(5) 金属触媒含有化粧料A(白金濃度1mmol/L) 0.5g
(6) 乳酸 0.05g
(7) 乳酸ナトリウム 0.1g
(8) パラメトキシケイ皮酸−2−エチルヘキシル 3.0g
(9) 防腐剤 適量
(10)香料 適量
(11)精製水 75.5g
Example 8
A solution in which the following components (3), (4), and (8) to (10) are mixed; and a solution in which the following components (1), (2), (5) to (7), and (11) are mixed and dissolved: Was added to obtain 100 g of lotion.
(1) Glycerin 5g
(2) 1,3-butylene glycol 6.5 g
(3) 1.2 g of polyoxyethylene sorbitan monolaurate
(4) 8.0 g of ethyl alcohol
(5) Metal catalyst-containing cosmetic A (platinum concentration 1 mmol / L) 0.5 g
(6) Lactic acid 0.05g
(7) Sodium lactate 0.1g
(8) Paramethoxycinnamic acid-2-ethylhexyl 3.0 g
(9) Preservative appropriate amount (10) perfume appropriate amount (11) 75.5 g of purified water

実施例9
下記成分(13)に(7)〜(10)を混合し70℃とした水相に、下記成分(1)〜(6)及び(11)、(12)を70℃に混合溶解した油相とをホモミキサーで均一に乳化混合してエモリエントローション100gを得た。
(1) ステアリン酸 2.0g
(2) セチルアルコール 1.5g
(3) ワセリン 4.0g
(4) スクワラン 5.0g
(5) MCT 2.0g
(6) ソルビタンモノオレイン酸エステル 2.0g
(7) ジプロピレングリコール 5.0g
(8) PEG1500 3.0g
(9) トリエタノールアミン 1.0g
(10) 金属触媒含有化粧料A(白金濃度1mmol/L)0.5g
(11) 防腐剤 適量
(12) 香料 適量
(13) 精製水 73.9g
Example 9
An oil phase in which the following components (1) to (6), (11) and (12) are mixed and dissolved at 70 ° C. in an aqueous phase obtained by mixing (7) to (10) with the following component (13) to 70 ° C. Were emulsified and mixed uniformly with a homomixer to obtain 100 g of emollient lotion.
(1) Stearic acid 2.0g
(2) Cetyl alcohol 1.5g
(3) Vaseline 4.0 g
(4) Squalane 5.0g
(5) MCT 2.0g
(6) Sorbitan monooleate 2.0 g
(7) Dipropylene glycol 5.0 g
(8) PEG1500 3.0g
(9) 1.0g of triethanolamine
(10) Metal catalyst-containing cosmetic A (platinum concentration 1 mmol / L) 0.5 g
(11) Preservative appropriate amount (12) Fragrance appropriate amount (13) 73.9 g of purified water

実施例10
下記成分(13)に(11)、(12)を混合し70℃とした水相に、下記成分(1)〜(10)を70℃に混合溶解した油相とをホモミキサーで均一に乳化混合して、脱気、ろ過、冷却を行いエモリエントクリーム100gを得た。
(1) ステアリン酸 2.0g
(2) ステアリルアルコール 7.0g
(3) 還元ラノリン 2.0g
(4) スクワラン 5.0g
(5) オクチルドデカノール 6.0g
(6) POE(20)セチルアルコールエーテル 2.0g
(7) プロピレングリコールモノステアリン酸エステル 3.0g
(8) 防腐剤 適量
(9) 香料 適量
(10)酸化防止剤、防腐剤 適量
(11)プロピレングリコール 5.0g
(12)金属触媒化粧料A(白金濃度1mmol/L)0.5g
(13)精製水 67.4g
Example 10
The following component (13) is mixed with (11) and (12) in an aqueous phase of 70 ° C., and the oil phase obtained by mixing and dissolving the following components (1) to (10) at 70 ° C. is uniformly emulsified with a homomixer. The mixture was degassed, filtered and cooled to obtain 100 g of emollient cream.
(1) Stearic acid 2.0g
(2) Stearyl alcohol 7.0g
(3) Reduced lanolin 2.0 g
(4) Squalane 5.0g
(5) Octyldodecanol 6.0g
(6) POE (20) cetyl alcohol ether 2.0 g
(7) Propylene glycol monostearate 3.0g
(8) Preservative appropriate amount (9) Fragrance appropriate amount (10) Antioxidant, preservative appropriate amount (11) Propylene glycol 5.0 g
(12) Metal catalyst cosmetic A (platinum concentration 1 mmol / L) 0.5 g
(13) 67.4 g of purified water

実施例11
下記成分(13)に(3)、(4)を均一に溶解させた後、(2)、(8)〜(10)及び(12)を添加し水相を得る。一方、(1)に(5)を加え、55℃で溶解し、これに(7)及び(11)を加えた。先に調製した水相を攪拌しながら、徐々にこれを加えた。最後に(6)を加えて十分に攪拌し、モイスチャージェル100gを得た。
Example 11
After (3) and (4) are uniformly dissolved in the following component (13), (2), (8) to (10) and (12) are added to obtain an aqueous phase. On the other hand, (5) was added to (1) and dissolved at 55 ° C., and (7) and (11) were added thereto. The aqueous phase prepared above was gradually added while stirring. Finally, (6) was added and stirred sufficiently to obtain 100 g of a moisture gel.

(1) ジプロピレングリコール 7.0g
(2) PEG1500 8.0g
(3) カルボキシビニルポリマー 0.4g
(4) メチルセルロース 0.2g
(5) POE(15)オレイルアルコールエーテル 1.0g
(6) 水酸化カリウム 0.1g
(7) 防腐剤 適量
(8) 褐色防止剤 適量
(9) 色剤 適量
(10)キレート剤 適量
(11)香料 適量
(12)金属触媒含有化粧料A(白金濃度1mmol/L)0.5g
(13)精製水 82.7g
(1) Dipropylene glycol 7.0 g
(2) PEG 1500 8.0 g
(3) Carboxyvinyl polymer 0.4g
(4) Methylcellulose 0.2g
(5) POE (15) oleyl alcohol ether 1.0 g
(6) Potassium hydroxide 0.1g
(7) Antiseptic agent appropriate amount (8) Browning agent appropriate amount (9) Colorant appropriate amount (10) Chelating agent appropriate amount (11) Fragrance appropriate amount (12) Metal catalyst-containing cosmetic A (platinum concentration 1 mmol / L) 0.5 g
(13) 82.7 g of purified water

実施例12
下記成分(1)〜(10)及び(16)をブレンダーで均一に混合した。次に(11)〜(15)及び(17)を添加した後(18)を噴霧し均一に混ぜた。これを粉砕機で粉砕した後、ふるいを通し、圧縮成形する事でパウダリーファンデーション100gを得た。
(1) タルク 20.3g
(2) マイカ 35.0g
(3) カオリン 5.0g
(4) 二酸化チタン 10.0g
(5) 雲母チタン 3.0g
(6) ステアリン酸亜鉛 1.0g
(7) ベンガラ 1.0g
(8) 黄酸化鉄 3.0g
(9) 黒酸化鉄 0.2g
(10)ナイロンパウダー 9.4g
(11)スクワラン 6.0g
(12)酢酸ラノリン 1.0g
(13)ミリスチン酸オクチルドデシル 2.0g
(14)ジイソオクタン酸ネオペンチルグリコール 2.0g
(15)モノオレイン酸ソルビタン 0.5g
(16)金属触媒含有化粧料A 0.5g
(17)防腐剤、酸化防止剤 適量
(18)香料 適量
Example 12
The following components (1) to (10) and (16) were uniformly mixed with a blender. Next, after (11) to (15) and (17) were added, (18) was sprayed and mixed uniformly. This was pulverized with a pulverizer, then passed through a sieve and compression molded to obtain 100 g of powdery foundation.
(1) Talc 20.3g
(2) Mica 35.0g
(3) Kaolin 5.0g
(4) Titanium dioxide 10.0g
(5) Mica titanium 3.0g
(6) Zinc stearate 1.0g
(7) Bengala 1.0g
(8) Yellow iron oxide 3.0g
(9) Black iron oxide 0.2g
(10) Nylon powder 9.4g
(11) Squalane 6.0g
(12) Lanolin acetate 1.0 g
(13) Octyl decyl myristate 2.0 g
(14) Diisooctanoic acid neopentyl glycol 2.0 g
(15) 0.5 g sorbitan monooleate
(16) Metal catalyst-containing cosmetic A 0.5 g
(17) Preservatives, antioxidants proper amount (18) perfume proper amount

比較例5
金属触媒含有化粧料の代わりに比較品の製造例1で得られた触媒aを使用した以外は実施例9と同様な方法でエモリエントローションを得た。
Comparative Example 5
An emollient lotion was obtained in the same manner as in Example 9, except that the catalyst a obtained in Comparative Production Example 1 was used instead of the metal catalyst-containing cosmetic.

試験例2
実施例9、比較例5で得られたエモリエントローションを10人のパネラー(20代女性10名)にて1ヶ月間使用し、使用後の肌のはり・顔色のくすみの改善効果を5段階評価し、10人の平均を算出した。結果を表2に示す。(5:著しく高い改善効果が体感された、4:高い改善効果が体感された、3:改善効果が体感された、2:僅かながら改善効果が体感された、1:改善効果が体感されなかった
Test example 2
The emollient lotion obtained in Example 9 and Comparative Example 5 was used by 10 panelists (10 females in their 20s) for 1 month, and the improvement effect of skin tone and darkening of skin color after use was evaluated in 5 levels. And the average of 10 people was calculated. The results are shown in Table 2. (5: An extremely high improvement effect was experienced, 4: A high improvement effect was experienced, 3: An improvement effect was experienced, 2: A slight improvement effect was experienced, 1: An improvement effect was not experienced The

Figure 2009067756
Figure 2009067756

表2に示すように実施例9で得られたエモリエントローションは比較例5で得られたエモリエントローションより、高い改善効果が体感された。   As shown in Table 2, the emollient lotion obtained in Example 9 had a higher improvement effect than the emollient lotion obtained in Comparative Example 5.

Claims (5)

平均細孔直径が1nm以上50nm以下であり無機骨格を有する多孔体と、該多孔体の細孔内に形成された、平均直径が1nm以上50nm以下である金属細線又は金属粒子を備えた化粧料用金属触媒 Cosmetics comprising a porous body having an average pore diameter of 1 nm to 50 nm and an inorganic skeleton, and a fine metal wire or metal particle having an average diameter of 1 nm to 50 nm formed in the pores of the porous body Metal catalyst 請求項1に記載の多孔体がX線回折パターンにおいて、d間隔が2nmより大きい位置に少なくとも1つのピークを持ち、該多孔体の細孔内に形成された、平均直径が1nm以上50nm以下である金属細線又は金属粒子を備えた請求項1記載の化粧料用金属触媒 The porous body according to claim 1 has an average diameter of 1 nm or more and 50 nm or less formed in the pores of the porous body having at least one peak at a position where the d interval is larger than 2 nm in the X-ray diffraction pattern. The metal catalyst for cosmetics according to claim 1, comprising a fine metal wire or metal particles. 無機骨格を有する多孔体がシリケートからなる請求項1又は2記載の化粧料用金属触媒 The metal catalyst for cosmetics according to claim 1 or 2, wherein the porous body having an inorganic skeleton is composed of silicate. 抗酸化力を有する事を特徴とした請求項1〜3いずれか記載の化粧料用金属触媒 The metal catalyst for cosmetics according to any one of claims 1 to 3, wherein the metal catalyst has cosmetic properties. 請求項1〜4いずれか記載の化粧料用金属触媒を含有する化粧料 Cosmetics containing the metal catalyst for cosmetics according to any one of claims 1 to 4.
JP2007240481A 2007-09-18 2007-09-18 Metal wire or metal particle catalyst-containing cosmetics Expired - Fee Related JP5497260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007240481A JP5497260B2 (en) 2007-09-18 2007-09-18 Metal wire or metal particle catalyst-containing cosmetics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007240481A JP5497260B2 (en) 2007-09-18 2007-09-18 Metal wire or metal particle catalyst-containing cosmetics

Publications (2)

Publication Number Publication Date
JP2009067756A true JP2009067756A (en) 2009-04-02
JP5497260B2 JP5497260B2 (en) 2014-05-21

Family

ID=40604398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007240481A Expired - Fee Related JP5497260B2 (en) 2007-09-18 2007-09-18 Metal wire or metal particle catalyst-containing cosmetics

Country Status (1)

Country Link
JP (1) JP5497260B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136897A (en) * 2009-12-01 2011-07-14 Toyota Central R&D Labs Inc Tantalum oxide mesoporous fine particle and method for producing the same
JP2015067556A (en) * 2013-09-27 2015-04-13 株式会社セラフト Cosmetic containing nano platinum particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238328A (en) * 2003-02-06 2004-08-26 Kanebo Ltd Noble metal/metal oxide-coated pigment and cosmetic
JP2004238326A (en) * 2003-02-06 2004-08-26 Kanebo Ltd Noble metal-coated pigment and cosmetic
JP2004238327A (en) * 2003-02-06 2004-08-26 Kanebo Ltd Noble metal/metal oxide-coated pigment and cosmetic
WO2005026048A1 (en) * 2003-09-11 2005-03-24 Taiyo Kagaku Co., Ltd. Porous silica having substance carried thereon
JP2006248832A (en) * 2005-03-10 2006-09-21 Taiyo Kagaku Co Ltd Substance-supporting porous silica
JP2008255067A (en) * 2007-04-06 2008-10-23 Noevir Co Ltd Antioxidant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238328A (en) * 2003-02-06 2004-08-26 Kanebo Ltd Noble metal/metal oxide-coated pigment and cosmetic
JP2004238326A (en) * 2003-02-06 2004-08-26 Kanebo Ltd Noble metal-coated pigment and cosmetic
JP2004238327A (en) * 2003-02-06 2004-08-26 Kanebo Ltd Noble metal/metal oxide-coated pigment and cosmetic
WO2005026048A1 (en) * 2003-09-11 2005-03-24 Taiyo Kagaku Co., Ltd. Porous silica having substance carried thereon
JP2006248832A (en) * 2005-03-10 2006-09-21 Taiyo Kagaku Co Ltd Substance-supporting porous silica
JP2008255067A (en) * 2007-04-06 2008-10-23 Noevir Co Ltd Antioxidant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136897A (en) * 2009-12-01 2011-07-14 Toyota Central R&D Labs Inc Tantalum oxide mesoporous fine particle and method for producing the same
JP2015067556A (en) * 2013-09-27 2015-04-13 株式会社セラフト Cosmetic containing nano platinum particles

Also Published As

Publication number Publication date
JP5497260B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP4763460B2 (en) Singlet oxygen scavenger and composition using the same
JPH11506155A (en) Titanium dioxide particles
JP2010275271A (en) Dentifrice composition
JP2021505561A (en) Oral care composition containing a phosphonate and an anionic group-containing polymer
CN112263686A (en) Nano enzyme diagnosis and treatment agent for acute kidney injury and preparation method and application thereof
EP1383470B1 (en) Hair treatment compositions
JP2015098487A (en) Tooth whitening composition containing platinum nanocolloid
JP2010052974A (en) Spherical silica-based particle, its manufacturing method and cosmetic material containing the silica-based particle
JP3971877B2 (en) Oral composition
JP5497260B2 (en) Metal wire or metal particle catalyst-containing cosmetics
JP2007308399A (en) Gel-like cosmetic
JP2012148984A (en) Gommage cosmetic material
TW201427705A (en) Treated silicas and metal silicates for improved cleaning in dentifrice
EP1383469B1 (en) Hair treatment compositions
JP7436595B2 (en) Composite powder and its manufacturing method
JP2006282654A (en) Antioxidant
KR101634790B1 (en) Ultraviolet block particle, cosmetic composition for ultraviolet block contain the same and menufacturing method thereof
JP5444855B2 (en) Dentifrice composition
JP5592644B2 (en) Composite silica particles
JP6070719B2 (en) Manufacturing method of cosmetics
JP2006016392A (en) Oral cavity composition
JP2006193491A (en) WHITENING AGENT, PIGMENTATION CONTROL AGENT, alpha-MSH INHIBITOR AND EXTERNAL APPLICATION DRUG FOR SKIN
US8815267B2 (en) Hybrid powder of halloysite nanotube and light-scattering nanoparticle, method for preparing the same, and UV-screening cosmetic composition containing the same as active ingredient
JP2022141826A (en) Composite powder and method for producing the same
JP6386709B2 (en) Cosmetics containing nano platinum particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140306

R150 Certificate of patent or registration of utility model

Ref document number: 5497260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees