JP2009067029A - Copper foil with resin, copper clad laminated sheet using copper foil with resin, and both face copper clad laminated sheet - Google Patents

Copper foil with resin, copper clad laminated sheet using copper foil with resin, and both face copper clad laminated sheet Download PDF

Info

Publication number
JP2009067029A
JP2009067029A JP2007240969A JP2007240969A JP2009067029A JP 2009067029 A JP2009067029 A JP 2009067029A JP 2007240969 A JP2007240969 A JP 2007240969A JP 2007240969 A JP2007240969 A JP 2007240969A JP 2009067029 A JP2009067029 A JP 2009067029A
Authority
JP
Japan
Prior art keywords
resin
copper foil
component
weight
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007240969A
Other languages
Japanese (ja)
Inventor
Yoshinori Kaneo
義則 金尾
Tetsuro Sato
哲朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2007240969A priority Critical patent/JP2009067029A/en
Publication of JP2009067029A publication Critical patent/JP2009067029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide copper foil with resin causing no transfer of an organic solvent from a resin layer to a copper foil layer even when the copper foil with resin is stored in a rolled state, and having superior characteristics such as heat resistance, adhesiveness with copper foil, or the like, and a copper clad laminated sheet using the copper foil with resin, and a both face copper clad laminated sheet. <P>SOLUTION: In the copper foil with resin, a semi-hardened resin layer having adhesiveness is formed on at least one face of copper foil for a printed board. The resin layer adopts copper foil with resin characterized by that it is formed by a resin composition including a component A (polyamide-imide resin with tensile strength of 200 MPa or more at 25°C), a component B (polyamide-imide resin with tensile strength of 100 MPa or more at 25°C), a component C (epoxy resin), and a component D (an epoxy resin hardener). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本件発明は、樹脂付銅箔及びその樹脂付銅箔を用いた両面銅張積層板に関するものである。より詳しくは、耐熱性、接着性の各特性に優れる樹脂層を備える樹脂付銅箔、その樹脂付銅箔を用いて得られる優れた耐熱性及び機械的強度を備える銅張積層板及び両面銅張積層板に関する。   The present invention relates to a resin-coated copper foil and a double-sided copper-clad laminate using the resin-coated copper foil. More specifically, a copper foil with resin provided with a resin layer having excellent heat resistance and adhesive properties, a copper-clad laminate and double-sided copper with excellent heat resistance and mechanical strength obtained by using the copper foil with resin The present invention relates to a tension laminate.

樹脂付銅箔は、プリント基板用銅箔の片面にエポキシ樹脂を主成分とする樹脂を塗布して、銅箔表面に半硬化樹脂層を形成したものである。この樹脂付銅箔の樹脂層は、その高い接着性と良好な絶縁性等の電気的特性とを有することから多層プリント配線板等に使用されている。   The resin-coated copper foil is obtained by applying a resin mainly composed of an epoxy resin to one surface of a copper foil for a printed circuit board and forming a semi-cured resin layer on the surface of the copper foil. The resin layer of this resin-coated copper foil is used for multilayer printed wiring boards and the like because of its high adhesion and electrical properties such as good insulation.

近年、電子機器において、電気信号の高速伝送が要求される傾向があり、電気信号の高速化に伴い、電気信号にノイズが生じることが問題となっている。この問題を解決するため、従来はプリント配線板上に実装されていたコンデンサー、コイル、抵抗といった受動素子を、プリント配線板内に埋め込んで、これら受動素子と信号回路との配線距離を短くすることで、電気的ノイズを低減する技術が採用されてきた。   In recent years, there has been a tendency for electronic devices to require high-speed transmission of electrical signals, and there has been a problem that noise is generated in electrical signals as the speed of electrical signals increases. In order to solve this problem, passive elements such as capacitors, coils, and resistors that were previously mounted on the printed wiring board are embedded in the printed wiring board, and the wiring distance between these passive elements and the signal circuit is shortened. Therefore, techniques for reducing electrical noise have been adopted.

例えば、プリント配線板にコンデンサーを埋め込む方法としては、プリント配線板の内層に配置する誘電体層を熱硬化性樹脂あるいは熱可塑性樹脂を使って形成することが、コスト等の点から一般的に採用されてきた。そして、更に高誘電率の誘電体層を形成しようとする場合には、上記樹脂中に誘電体フィラーを充填したものが使用されてきた。一方では、誘電体層の誘電率が低くても良い場合には、樹脂付銅箔の樹脂層そのものを誘電体層として使用することも試みられてきた。   For example, as a method of embedding a capacitor in a printed wiring board, it is generally adopted from the viewpoint of cost etc. to form a dielectric layer to be placed on the inner layer of the printed wiring board using a thermosetting resin or a thermoplastic resin. It has been. In order to form a dielectric layer having a higher dielectric constant, a resin filled with a dielectric filler has been used. On the other hand, when the dielectric constant of the dielectric layer may be low, it has been attempted to use the resin layer itself of the resin-coated copper foil as the dielectric layer.

また、誘電体となる樹脂層の両面に銅箔を備えた両面銅張積層板を用いて、この両面銅張積層板の銅箔層を加工する等して、多層プリント配線板の内層部に設置するキャパシタ層の形成部材として用いる場合もある。このときの両面銅張積層板の製造法は、いかなる樹脂層を採用するかにより、いくつかの製造法が採用できる。   In addition, by using a double-sided copper-clad laminate with copper foil on both sides of the resin layer that becomes the dielectric, the copper foil layer of this double-sided copper-clad laminate is processed, for example, on the inner layer part of the multilayer printed wiring board It may be used as a member for forming a capacitor layer to be installed. Several manufacturing methods can be adopted as the manufacturing method of the double-sided copper-clad laminate at this time depending on what resin layer is used.

例えば、第1の製造方法は、ポリイミドフィルムなどの耐熱性フィルムと銅箔とを、特許文献1に開示されている如き接着剤を用いて接着剤層を形成し、これを介して加熱、加圧して張り合わせる方法がある。第2の製造方法は、特許文献2にあるような、絶縁性樹脂層が二つの低線膨張性ポリイミド樹脂層の間に熱可塑性ポリイミド樹脂層を介在させてなることを特徴とする両面基板のように、熱可塑性ポリイミド等の耐熱性熱可塑性樹脂と銅箔とを加熱、加圧下で張り合わせる方法がある。そして、第3の方法は、樹脂付銅箔を用いる方法である。例えば、特許文献3には、金属箔の一方の面上に、ポリアミドイミド樹脂に固形分換算で1重量%〜30重量%のエポキシ樹脂が配合された樹脂層を備えた積層体同士が、樹脂層を内側にして積層されてなる金属箔積層体が開示されている。更に、当該金属箔の一方の面上にポリアミドイミド及び/又はポリイミド樹脂に、固形分換算で1重量%〜30重量%のエポキシ樹脂が配合された樹脂層を備えた2つの積層体が、それらの樹脂層の間に耐熱性フィルムを介して組み合わされてなる金属箔積層体も開示されている。   For example, in the first production method, a heat-resistant film such as a polyimide film and a copper foil are formed using an adhesive as disclosed in Patent Document 1 and heated and heated through this. There is a method of pressing together. A second manufacturing method is a double-sided substrate characterized in that an insulating resin layer is formed by interposing a thermoplastic polyimide resin layer between two low linear expansion polyimide resin layers as in Patent Document 2. As described above, there is a method in which a heat-resistant thermoplastic resin such as thermoplastic polyimide and a copper foil are bonded together under heat and pressure. And the 3rd method is a method of using copper foil with resin. For example, in Patent Document 3, a laminate including a resin layer in which 1 wt% to 30 wt% of an epoxy resin in a solid content conversion is mixed with a polyamide-imide resin on one surface of a metal foil is a resin. The metal foil laminated body laminated | stacked by making a layer into an inner side is disclosed. Furthermore, two laminated bodies provided with a resin layer in which 1 wt% to 30 wt% of an epoxy resin is blended with polyamideimide and / or polyimide resin on one surface of the metal foil in terms of solid content, A metal foil laminate is also disclosed in which a resin layer is combined with a heat-resistant film interposed therebetween.

特開平5−206215号公報JP-A-5-206215 特開平5−152699号公報JP-A-5-152699 特許第3223894号公報Japanese Patent No. 3223894

しかしながら、上述の第1の製造方法で両面銅張積層板を製造した場合には、その両面銅張積層板の利用範囲には、耐熱性フィルムと銅箔との張り合わせに使用する接着剤に起因した耐熱温度の制約が課せられるため、耐熱性フィルムが本来耐えられる温度領域での使用が不可能という問題がある。   However, when a double-sided copper-clad laminate is produced by the first production method described above, the range of use of the double-sided copper-clad laminate is due to the adhesive used for laminating the heat-resistant film and the copper foil. Therefore, there is a problem that it cannot be used in a temperature range where the heat resistant film can naturally withstand.

また、上述の第2の製造方法で両面銅張積層板を製造する場合には、使用する耐熱性熱可塑性樹脂の軟化点が高く、高温での貼り合わせを必要とするため、製造条件の制約が大きく、他の製造方法と比べて、製造コストが相対的に高くなるという問題がある。   Moreover, when producing a double-sided copper-clad laminate by the above-mentioned second production method, the heat-resistant thermoplastic resin used has a high softening point and requires bonding at a high temperature. There is a problem that the manufacturing cost is relatively high compared to other manufacturing methods.

更に、第3の製造方法で両面銅張積層板を製造する場合には、特許文献3に開示されているように、比較的低温で樹脂の張り合わせが可能で、且つ、接着剤を介さないため、両面銅張積層板として高い耐熱性が得られる。ところが、この第3の製造方法で用いる樹脂組成物は、耐熱性樹脂層を形成する樹脂組成物に有機溶剤を含有させることによって可塑化し、融点及びガラス転移点以下の温度で熱接着可能なものとしている。従って、ロール状の長尺の銅箔等の金属箔の表面に、この樹脂組成物を連続的に塗布し、半硬化状態に乾燥させ樹脂層とし、その後ロール状に巻き取ったときに、ロール状態において樹脂と接する銅箔面に、樹脂から染み出した有機溶剤が転写して、金属箔表面の外観を劣化させたり、金属箔表面へのレジストの密着性低下、半田濡れ性の劣化等を引き起こす場合がある。   Furthermore, when a double-sided copper-clad laminate is manufactured by the third manufacturing method, as disclosed in Patent Document 3, it is possible to bond the resin at a relatively low temperature and not to use an adhesive. High heat resistance is obtained as a double-sided copper-clad laminate. However, the resin composition used in the third production method is plasticized by adding an organic solvent to the resin composition forming the heat-resistant resin layer, and can be thermally bonded at a temperature below the melting point and glass transition point. It is said. Therefore, when the resin composition is continuously applied to the surface of a metal foil such as a long copper foil in a roll shape, dried to a semi-cured state to form a resin layer, and then rolled into a roll shape, The organic solvent that exudes from the resin is transferred to the copper foil surface that is in contact with the resin in the state, and the appearance of the metal foil surface is deteriorated, the adhesion of the resist to the metal foil surface is reduced, the solder wettability is deteriorated, etc. May cause.

また、半硬化状態の当該樹脂層は、そこに残留する有機溶剤が極性溶剤であるため、保管雰囲気中の水分を吸収し吸湿しやすいため、銅張積層板及び銅張積層板を加工して得られるプリント配線板に求められる耐熱性、電気的特性及び機械的特性が得られない可能性がある。そこで、ロール状に巻き取った樹脂付銅箔の樹脂層から銅箔層への有機溶剤の転写を防ぐため、ロール状に巻き取る際に、樹脂付銅箔の樹脂層と銅箔層とが直接接触しないように、スペーサーフィルムを使用してきた。このような巻き取り方法を採用する限り、スペーサーフィルムを同時に使用するという余分な手間が発生し、製造コストの上昇、廃棄物の増加にも繋がる。   In addition, since the organic solvent remaining in the resin layer in the semi-cured state is a polar solvent, it absorbs moisture in the storage atmosphere and easily absorbs moisture. Therefore, the copper-clad laminate and the copper-clad laminate are processed. There is a possibility that the heat resistance, electrical characteristics and mechanical characteristics required for the obtained printed wiring board cannot be obtained. Therefore, in order to prevent the transfer of the organic solvent from the resin layer of the resin-coated copper foil wound in a roll shape to the copper foil layer, the resin layer and the copper foil layer of the resin-coated copper foil are Spacer films have been used to avoid direct contact. As long as such a winding method is employed, an extra effort of using the spacer film at the same time occurs, leading to an increase in manufacturing cost and an increase in waste.

以上のことから、樹脂付銅箔をロール状で保管又は輸送しても、樹脂付銅箔の樹脂層から銅箔層への有機溶剤の転写が無く、しかも、耐熱性、銅箔との接着性の各特性に優れる樹脂層を備える樹脂付銅箔の提供が求められてきた。   From the above, even if the copper foil with resin is stored or transported in roll form, there is no transfer of the organic solvent from the resin layer of the copper foil with resin to the copper foil layer, and furthermore, heat resistance, adhesion to the copper foil It has been desired to provide a copper foil with a resin provided with a resin layer having excellent properties.

そこで、本件発明者等は、鋭意研究を行った結果、以下の樹脂付銅箔及びこの樹脂付銅箔を用いた両面銅張積層板を採用することで上記課題を達成するに到った。   Thus, as a result of intensive studies, the present inventors have achieved the above-mentioned problem by employing the following resin-coated copper foil and a double-sided copper-clad laminate using this resin-coated copper foil.

本件発明に係る樹脂付銅箔: 本件発明に係る樹脂付銅箔は、プリント基板用銅箔の少なくとも片面に接着性を有する半硬化樹脂層が形成された樹脂付銅箔において、
前記半硬化樹脂層は、以下に示す成分A〜成分Dを、下記含有量(但し、エポキシ樹脂硬化剤を除き、樹脂組成物を100重量部としたときの重量部として記載)の範囲で含む樹脂組成物で形成したことを特徴とする。なお、本明細書における「重量部」の記載は固形分換算量である。
Resin-coated copper foil according to the present invention: The resin-coated copper foil according to the present invention is a resin-coated copper foil in which a semi-cured resin layer having adhesiveness is formed on at least one surface of a printed circuit board copper foil.
The semi-cured resin layer includes the following components A to D in the following content (however, excluding an epoxy resin curing agent, described as parts by weight when the resin composition is 100 parts by weight). It is formed by a resin composition. In addition, the description of “parts by weight” in the present specification is a solid content conversion amount.

成分A: 25℃における引張強度200MPa以上のポリアミドイミド樹脂 10重量部〜20重量部
成分B: 25℃における引張強度100MPa以下のポリアミドイミド樹脂 20重量部〜40重量部
成分C: エポキシ樹脂
成分D: エポキシ樹脂硬化剤
Component A: Polyamideimide resin having a tensile strength of 200 MPa or more at 25 ° C. 10 to 20 parts by weight Component B: Polyamideimide resin having a tensile strength of 100 MPa or less at 25 ° C. 20 to 40 parts by weight Component C: Epoxy resin component D: Epoxy resin curing agent

本件発明に係る樹脂付銅箔の樹脂層を構成する樹脂組成物において、前記成分C(エポキシ樹脂)は、樹脂組成物を100重量部としたとき、40重量部〜70重量部の範囲で
含有することが好ましい。
In the resin composition constituting the resin layer of the resin-coated copper foil according to the present invention, the component C (epoxy resin) is contained in the range of 40 to 70 parts by weight when the resin composition is 100 parts by weight. It is preferable to do.

本件発明に係る樹脂付銅箔の樹脂層を構成する樹脂組成物において、前記成分D(エポキシ樹脂硬化剤)は、樹脂組成物に対して、エポキシ樹脂の硬化可能な程度のイミダゾール化合物を含有させることが好ましい。   In the resin composition constituting the resin layer of the resin-coated copper foil according to the present invention, the component D (epoxy resin curing agent) contains an imidazole compound to the extent that the epoxy resin can be cured with respect to the resin composition. It is preferable.

本件発明に係る樹脂付銅箔の樹脂層は、前記樹脂組成物で形成した揮発分が1wt%未満の半硬化状態の樹脂層であることが好ましい。   The resin layer of the resin-coated copper foil according to the present invention is preferably a semi-cured resin layer having a volatile content of less than 1 wt% formed from the resin composition.

本件発明に係る銅張積層板: 本件発明に係る銅張積層板は、上述のいずれかの樹脂付銅箔を用いて得られることを特徴とする。 Copper-clad laminate according to the present invention: The copper-clad laminate according to the present invention is obtained using any one of the above-mentioned resin-coated copper foils.

本件発明に係る両面銅張積層板: 本件発明に係る両面銅張積層板は、上述の樹脂付銅箔の2枚を用いて、当該樹脂付銅箔の樹脂層同士を当接して重ね合わせ、加熱プレスして張り合わせて得られるものである。 Double-sided copper-clad laminate according to the present invention: The double-sided copper-clad laminate according to the present invention uses two of the above-mentioned resin-coated copper foils, and abuts and overlaps the resin layers of the resin-coated copper foil, It is obtained by heating and pasting.

本件発明に係る樹脂付銅箔では、引張強度が高い高強度のポリアミドイミド樹脂と、引張強度が低く流動性が高いポリアミドイミド樹脂及び接着性の高いエポキシ樹脂を組み合わせることによって、樹脂層に溶剤を残さなくても比較的低い温度での貼り合わせで高い接着性を示す樹脂層を形成するものである。この樹脂層は、接着性だけでなく耐熱性に優れ、また残留溶剤もほとんど無いことから、ロール状の樹脂付銅箔の製造歩留まりを高め、且つ、コスト低減を図ることができる。   In the resin-coated copper foil according to the present invention, a solvent is added to the resin layer by combining a high-strength polyamideimide resin with high tensile strength, a polyamideimide resin with low tensile strength and high fluidity, and an epoxy resin with high adhesiveness. Even if it does not remain, a resin layer showing high adhesiveness is formed by bonding at a relatively low temperature. Since this resin layer is excellent not only in adhesiveness but also in heat resistance and has almost no residual solvent, the production yield of roll-shaped resin-coated copper foil can be increased and the cost can be reduced.

本件発明の両面銅張積層板は、引張強度が高い高強度のポリアミドイミド樹脂と引張強度が低く流動性が高いポリアミドイミド樹脂及び接着性の高いエポキシ樹脂を組み合わせることで比較的低い温度での貼り合わせで形成することができる。加えて、配合樹脂のそれぞれの特徴から耐熱性を備え、更にエポキシ樹脂硬化剤としてのイミダゾール化合物が、適当量配合されていることで機械的強度に優れた両面銅張積層板を形成できる。これは、従来の熱可塑性耐熱樹脂を高温で張り合わせる方法や、有機溶剤を含有させることで熱可塑化し張り合わせる方法に比べ、製造をより簡便にする効果がある。このため、本件発明の両面銅張積層板はフレキシブル配線板やキャパシタ用途に広く利用され得るものである。   The double-sided copper-clad laminate of the present invention is bonded at a relatively low temperature by combining a high-strength polyamideimide resin with high tensile strength, a polyamideimide resin with low tensile strength and high fluidity, and an epoxy resin with high adhesiveness. They can be formed together. In addition, a double-sided copper-clad laminate having excellent mechanical strength can be formed by having heat resistance from the respective characteristics of the blended resin and further blending an appropriate amount of an imidazole compound as an epoxy resin curing agent. This has the effect of making the manufacturing easier than the conventional method of pasting thermoplastic heat-resistant resins at a high temperature or the method of thermoplasticizing and pasting them together by containing an organic solvent. For this reason, the double-sided copper-clad laminate of the present invention can be widely used for flexible wiring boards and capacitor applications.

以下、本件発明に係る樹脂付銅箔並びにこの樹脂付銅箔を用いた銅張積層板及び両面銅張積層板の最良の実施の形態に関して説明する。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best embodiments of a resin-coated copper foil and a copper-clad laminate and a double-sided copper-clad laminate using the resin-coated copper foil according to the present invention will be described.

本件発明に係る樹脂付銅箔の形態: 本件発明に係る樹脂付銅箔は、プリント基板用銅箔の少なくとも片面に接着性を有する半硬化樹脂層を形成したものである。そして、この半硬化樹脂層を、以下に示す成分A〜成分Dを、下記含有量(但し、エポキシ樹脂硬化剤を除き、樹脂組成物を100重量部としたときの重量部として記載)の範囲で含む樹脂組成物で形成したことに特徴を有する。以下、成分ごとに説明する。 Form of resin-coated copper foil according to the present invention: The resin-coated copper foil according to the present invention is obtained by forming a semi-cured resin layer having adhesiveness on at least one surface of a copper foil for printed circuit boards. And the range of the following content (however, excluding an epoxy resin hardening | curing agent is described as a weight part when a resin composition is 100 weight part) about this semi-hardened resin layer. It is characterized by being formed of a resin composition containing Hereinafter, each component will be described.

成分Aは、25℃における引張強度200MPa以上のポリアミドイミド樹脂である。ここで言う「引張強度200MPa以上のポリアミドイミド樹脂」とは、例えば、トリメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物及びビトリレンジイソシアネートをN−メチル−2−ピロリドン又は/及びN,N−ジメチルアセトアミド等の溶剤中で加熱することで得られる樹脂等である。ここで、上限値を記載していないがポリイミドアミド樹脂の引張強度を考慮すると、このポリアミドイミド樹脂の引張強度の上限は、500MPa程度である。   Component A is a polyamideimide resin having a tensile strength of 200 MPa or more at 25 ° C. Here, “polyamideimide resin having a tensile strength of 200 MPa or more” means, for example, trimellitic acid anhydride, benzophenone tetracarboxylic acid anhydride and vitorylene diisocyanate as N-methyl-2-pyrrolidone or / and N, N— A resin obtained by heating in a solvent such as dimethylacetamide. Here, although the upper limit is not described, the upper limit of the tensile strength of the polyamide-imide resin is about 500 MPa in consideration of the tensile strength of the polyimide amide resin.

本件発明における成分A及び成分Bに係るポリアミドイミド樹脂の引張強度は、ポリアミドイミド樹脂溶液から、JIS K7113に定めるフィルム状の2号試験片(全長115mm、チャック間距離80±5mm、平行部長さ33±2mm、平行部幅6±0.4mm、フィルム厚1〜3mm)を用いて、引張試験機で測定した値である。   The tensile strength of the polyamide-imide resin according to Component A and Component B in the present invention is determined from the polyamide-imide resin solution and the film-like No. 2 test piece defined by JIS K7113 (total length 115 mm, distance between chucks 80 ± 5 mm, parallel portion length 33 It is a value measured with a tensile tester using ± 2 mm, parallel part width 6 ± 0.4 mm, film thickness 1 to 3 mm).

そして、本件発明に係る樹脂付銅箔の樹脂層を構成する樹脂組成物において、前記25℃における引張強度200MPa以上のポリアミドイミド樹脂は、樹脂組成物を100重量部としたとき、10重量部〜20重量部の範囲で含有することが好ましい。ここで、引張強度200MPa以上のポリアミドイミド樹脂が10重量部未満の場合には、硬化後の樹脂フィルムとしての引張強度が低くなり、樹脂フィルムの適正な強度を維持しにくい。一方、引張強度200MPa以上のポリアミドイミド樹脂が20重量部を超える場合には、樹脂付銅箔の樹脂層同士を張り合わせる際の接着性が低下し、両面銅張積層板としての要求特性を満足させることが難しくなる。   And in the resin composition constituting the resin layer of the resin-coated copper foil according to the present invention, the polyamideimide resin having a tensile strength of 200 MPa or more at 25 ° C. is 10 parts by weight to 100 parts by weight of the resin composition. It is preferable to contain in 20 weight part. Here, when the polyamideimide resin having a tensile strength of 200 MPa or more is less than 10 parts by weight, the tensile strength of the cured resin film is low, and it is difficult to maintain an appropriate strength of the resin film. On the other hand, when the polyamideimide resin having a tensile strength of 200 MPa or more exceeds 20 parts by weight, the adhesiveness when the resin layers of the resin-coated copper foil are bonded to each other is lowered, and the required characteristics as a double-sided copper-clad laminate are satisfied. It becomes difficult to let you.

次に、成分Bは、25℃における引張強度100MPa以下のポリアミドイミド樹脂である。ここで言う「引張強度100MPa以下のポリアミドイミド樹脂」とは、例えば、トリメリット酸無水物、ジフェニルメタンジイソシアネート及びカルボキシル基末端アクリロニトリル−ブタジエンゴムをN−メチル−2−ピロリドン又は/及びN,N−ジメチルアセトアミド等の溶剤中で加熱することで得られるものである。   Next, Component B is a polyamideimide resin having a tensile strength of 100 MPa or less at 25 ° C. Here, “polyamideimide resin having a tensile strength of 100 MPa or less” means, for example, trimellitic anhydride, diphenylmethane diisocyanate and carboxyl group-terminated acrylonitrile-butadiene rubber with N-methyl-2-pyrrolidone and / or N, N-dimethyl. It is obtained by heating in a solvent such as acetamide.

そして、本件発明に係る樹脂付銅箔の樹脂層を構成する樹脂組成物において、前記25℃における引張強度100MPa以下のポリアミドイミド樹脂は、樹脂組成物を100重量部としたとき、20重量部〜40重量部の範囲で含有することが好ましい。ここで、引張強度100MPa以下のポリアミドイミド樹脂が20重量部未満の場合には、樹脂付銅箔の樹脂層同士を張り合わせる際の接着性が低下し、両面銅張積層板としての要求特性を満足させることが難しくなる。一方、引張強度100MPa以下のポリアミドイミド樹脂が40重量部を超える場合には、硬化後の樹脂フィルムとしての引張強度が低くなり、樹脂フィルムの適正な強度を維持しにくい。なお、樹脂フィルムの適正強度を考慮すると、ポリアミドイミド樹脂は、少なくとも30MPa以上の引張強度を備えるものを採用することが好ましい。   And in the resin composition constituting the resin layer of the resin-coated copper foil according to the present invention, the polyamideimide resin having a tensile strength of 100 MPa or less at 25 ° C. is 20 parts by weight when the resin composition is 100 parts by weight. It is preferable to contain in 40 weight part. Here, when the polyamideimide resin having a tensile strength of 100 MPa or less is less than 20 parts by weight, the adhesiveness when the resin layers of the resin-coated copper foil are bonded to each other is lowered, and the required characteristics as a double-sided copper-clad laminate are obtained. It becomes difficult to satisfy. On the other hand, when the polyamideimide resin having a tensile strength of 100 MPa or less exceeds 40 parts by weight, the tensile strength as a cured resin film is low, and it is difficult to maintain an appropriate strength of the resin film. In consideration of the appropriate strength of the resin film, it is preferable to employ a polyamideimide resin having a tensile strength of at least 30 MPa or more.

成分Cは、エポキシ樹脂である。ここで言うエポキシ樹脂とは、種々の公知のエポキシ樹脂を用いることができる。例えば、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、o−クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、又はこれらの水素添加体やハロゲン化体等の使用が可能で、これらを単独若しくは混合して用いることができる。   Component C is an epoxy resin. Various known epoxy resins can be used as the epoxy resin here. For example, bisphenol F type epoxy resin, bisphenol A type epoxy resin, phenol novolac type epoxy resin, o-cresol novolac type epoxy resin, biphenyl type epoxy resin, biphenyl novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylethane Type epoxy resins, hydrogenated products or halogenated products thereof can be used, and these can be used alone or in combination.

そして、本件発明に係る樹脂付銅箔の樹脂層を構成する樹脂組成物において、前記エポキシ樹脂は、樹脂組成物を100重量部としたとき(但し、エポキシ樹脂硬化剤を除き、樹脂組成物を100重量部としたときの重量部として記載)、40重量部〜70重量部の範囲で含有することが好ましい。ここで、エポキシ樹脂が40重量部未満の場合には、樹脂付銅箔の樹脂層同士を張り合わせる際の接着性が低下し、両面銅張積層板としての要求特性を満足させることが難しくなる。一方、エポキシ樹脂が70重量部を超える場合には、硬化後樹脂フィルムとしての引張強度が低く脆くなり、樹脂フィルムの適正な強度を維持しにくい。   And in the resin composition which comprises the resin layer of the resin-coated copper foil which concerns on this invention, when the said epoxy resin makes a resin composition 100 weight part (however, except an epoxy resin hardening | curing agent, a resin composition is used. It is preferably contained in the range of 40 parts by weight to 70 parts by weight. Here, when the epoxy resin is less than 40 parts by weight, the adhesiveness when the resin layers of the resin-coated copper foil are bonded to each other is lowered, and it is difficult to satisfy the required characteristics as a double-sided copper-clad laminate. . On the other hand, when an epoxy resin exceeds 70 weight part, the tensile strength as a resin film after hardening becomes low and becomes brittle, and it is difficult to maintain the appropriate strength of the resin film.

以上に述べてきたように、本件発明に係る樹脂付銅箔は、樹脂層を構成する樹脂組成物に特徴を有している。そして、その樹脂組成物は、引張強度が異なる2種類のポリアミドイミド樹脂及びエポキシ樹脂を上記割合の範囲で用いる。その結果、樹脂付銅箔の硬化後の樹脂フィルムの強度と、樹脂付銅箔の樹脂層同士を張り合わせる際の接着強度、それぞれの特性を良好なバランスで保つ樹脂付銅箔とできる。従って、それぞれの樹脂の配合バランスが極めて重要となる。   As described above, the resin-coated copper foil according to the present invention is characterized by the resin composition constituting the resin layer. The resin composition uses two types of polyamideimide resins and epoxy resins having different tensile strengths within the above range. As a result, it is possible to obtain a resin-coated copper foil that maintains a good balance between the strength of the resin film after curing of the resin-coated copper foil, the adhesive strength when the resin layers of the resin-coated copper foil are bonded together. Therefore, the blending balance of each resin is extremely important.

即ち、本件発明に係る樹脂付銅箔は、その樹脂層を「引張強度200MPa以上のポリアミドイミド樹脂10重量部〜20重量部」、「引張強度100MPa以下のポリアミドイミド樹脂20重量部〜40重量部」及び「エポキシ樹脂40重量部〜70重量部」を含む樹脂組成物で形成することが好ましい。この範囲の配合であれば、当該樹脂組成物を、銅箔表面に塗布するための樹脂ワニスとする際にも、有機溶剤の使用量が少量で済み、ロール状に巻き取った樹脂付銅箔の樹脂層から銅箔層への有機溶剤の転写を効果的に防止でき、耐吸湿特性に優れた半硬化樹脂層の形成が可能で、トータル品質に優れた樹脂付銅箔の提供を可能にする。これらの特徴を、より安定して得るためには、以下の配合の樹脂組成物を用いることが好ましい。   That is, the resin-coated copper foil according to the present invention has a resin layer of “10 to 20 parts by weight of polyamideimide resin having a tensile strength of 200 MPa or more” and 20 to 40 parts by weight of polyamideimide resin having a tensile strength of 100 MPa or less. And a resin composition containing “40 parts by weight to 70 parts by weight of epoxy resin”. If it is the blend of this range, when using the resin composition as a resin varnish for coating on the surface of the copper foil, a small amount of the organic solvent may be used, and the copper foil with resin wound up in a roll shape. Transfer of organic solvent from the resin layer to the copper foil layer can be effectively prevented, and a semi-cured resin layer with excellent moisture absorption resistance can be formed, making it possible to provide copper foil with resin with excellent total quality To do. In order to obtain these characteristics more stably, it is preferable to use a resin composition having the following composition.

より好ましくは、引張強度200MPa以上のポリアミドイミド樹脂12重量部〜20重量部、引張強度100MPa以下のポリアミドイミド樹脂20重量部〜30重量部及びエポキシ樹脂50重量部〜70重量部からなる樹脂層が形成されている樹脂付銅箔である。   More preferably, a resin layer comprising 12 to 20 parts by weight of a polyamideimide resin having a tensile strength of 200 MPa or more, 20 to 30 parts by weight of a polyamideimide resin having a tensile strength of 100 MPa or less, and 50 to 70 parts by weight of an epoxy resin. It is the copper foil with resin currently formed.

更に好ましくは、引張強度200MPa以上のポリアミドイミド樹脂12重量部〜18重量部、引張強度100MPa以下のポリアミドイミド樹脂20重量部〜26重量部及びエポキシ樹脂55重量部〜70重量部からなる樹脂層が形成されている樹脂付銅箔である。   More preferably, a resin layer comprising 12 to 18 parts by weight of a polyamideimide resin having a tensile strength of 200 MPa or more, 20 to 26 parts by weight of a polyamideimide resin having a tensile strength of 100 MPa or less, and 55 to 70 parts by weight of an epoxy resin. It is the copper foil with resin currently formed.

更に、本件発明に係る樹脂付銅箔の樹脂層を構成する樹脂組成物において、前記成分Dとして、樹脂組成物に対して、エポキシ樹脂の硬化可能な程度のイミダゾール化合物を含有させることが好ましい。エポキシ樹脂硬化剤として、イミダゾール化合物を用いることで、半硬化状態の樹脂層の耐吸湿特性を大幅に改善できる。ここで言うイミダゾール化合物は、公知のものを用いることができ、例えば、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾールなどが挙げられ、これらを単独若しくは混合して用いることができる。   Furthermore, in the resin composition which comprises the resin layer of the resin-coated copper foil which concerns on this invention, it is preferable to contain the imidazole compound of the grade which can harden | cure an epoxy resin as the said component D with respect to the resin composition. By using an imidazole compound as the epoxy resin curing agent, the moisture absorption resistance of the semi-cured resin layer can be greatly improved. As the imidazole compound referred to here, known compounds can be used. For example, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1- Cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl- 5-hydroxymethylimidazole etc. are mentioned, These can be used individually or in mixture.

なお、添加すべき硬化剤の量は、エポキシ樹脂の量、工程で要求する硬化速度等に応じて必然的に定まるものである。敢えて硬化剤としてのイミダゾール化合物の添加量を記載すると、樹脂組成物100重量部としたとき(但し、この場合は、成分A〜成分D全ての樹脂組成物を100重量部としたときの重量部として記載)、当該樹脂組成物中に0.01重量部〜2重量部の範囲で配合して用いる。そして、イミダゾール化合物の配合量は、0.02重量部〜1.5重量部がより好ましく、更に好ましくは、0.03重量部〜1.0重量部である。このイミダゾール化合物の配合量が0.01重量部未満の場合には、上記エポキシ樹脂の含有量を考慮すると硬化が不十分となり、樹脂付銅箔の樹脂層同士を張り合わせる際の接着強度が低下する。一方、イミダゾール化合物の配合量が2重量部を超える場合には、エポキシ樹脂の硬化反応が速くなり、硬化後の樹脂層が脆くなり、硬化樹脂フィルムの強度、樹脂付銅箔の樹脂層同士を張り合わせる際の接着性が低下する。   The amount of the curing agent to be added is inevitably determined according to the amount of epoxy resin, the curing rate required in the process, and the like. When the addition amount of the imidazole compound as a curing agent is described, when the resin composition is 100 parts by weight (however, in this case, all parts A to D are 100 parts by weight of the resin composition). In the range of 0.01 to 2 parts by weight in the resin composition. And the compounding quantity of an imidazole compound has more preferable 0.02 weight part-1.5 weight part, More preferably, it is 0.03 weight part-1.0 weight part. When the blending amount of the imidazole compound is less than 0.01 parts by weight, the curing becomes insufficient in consideration of the content of the epoxy resin, and the adhesive strength when the resin layers of the resin-coated copper foil are bonded to each other is lowered. To do. On the other hand, when the compounding amount of the imidazole compound exceeds 2 parts by weight, the curing reaction of the epoxy resin is accelerated, the resin layer after curing becomes brittle, the strength of the cured resin film, the resin layers of the copper foil with resin, Adhesiveness at the time of bonding decreases.

本件発明に係る樹脂付銅箔の樹脂層は、前記樹脂組成物で形成した揮発分が1wt%未満の半硬化状態の樹脂層であることが好ましい。この半硬化状態の樹脂層の揮発分が1wt%以上となると、銅箔に樹脂を塗布して乾燥した後、ロール状に巻き取ったときに、樹脂と接している銅箔面に、樹脂に含まれた有機溶剤が転写する可能性が高くなる。あるいは、使用される有機溶剤が極性溶剤であることから、雰囲気中の水分を吸湿し、樹脂層の物性の劣化原因となる可能性もある。なお、樹脂層の揮発分は、乾燥に伴う樹脂層の重量の減少量を測定し、その比率を算出して得られる値である。   The resin layer of the resin-coated copper foil according to the present invention is preferably a semi-cured resin layer having a volatile content of less than 1 wt% formed from the resin composition. When the volatile content of the semi-cured resin layer is 1 wt% or more, the resin is applied to the copper foil, dried, and then wound into a roll shape, the copper foil surface in contact with the resin is applied to the resin. The possibility that the contained organic solvent will transfer increases. Alternatively, since the organic solvent used is a polar solvent, it may absorb moisture in the atmosphere and cause deterioration of physical properties of the resin layer. The volatile content of the resin layer is a value obtained by measuring the amount of decrease in the weight of the resin layer accompanying drying and calculating the ratio.

本件発明に係る両面銅張積層板の形態: 本件発明に係る両面銅張積層板は、例えば、以下の製造方法を経て製造されるものである。 Form of double-sided copper-clad laminate according to the present invention: The double-sided copper-clad laminate according to the present invention is manufactured, for example, through the following manufacturing method.

まず、上述の樹脂組成物を銅箔の表面に塗布するための樹脂ワニスを調整する。この樹脂ワニスは、上述の樹脂組成物を有機溶剤と併せて混合することにより得られる。このときに用いる有機溶剤は、上記樹脂成分の溶剤への溶解性を考慮すると、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等の極性溶剤を用いることが望ましい。特に、引張強度200MPa以上のポリアミドイミド樹脂は、一般の溶剤として用いられる2−ブタノン等のケトン溶剤やトルエン等の芳香族炭化水素溶剤、1−メトキシ−2−プロパノール等のグリコールエーテル系溶剤への溶解性は非常に低いため、これらを用いるのは難しく、上述の極性溶剤の使用が好ましい。   First, the resin varnish for apply | coating the above-mentioned resin composition to the surface of copper foil is adjusted. This resin varnish is obtained by mixing the above-mentioned resin composition together with an organic solvent. The organic solvent used at this time may be a polar solvent such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, or N, N-dimethylformamide, considering the solubility of the resin component in the solvent. desirable. In particular, polyamideimide resins having a tensile strength of 200 MPa or more are used as ketone solvents such as 2-butanone, aromatic hydrocarbon solvents such as toluene, and glycol ether solvents such as 1-methoxy-2-propanol. Since solubility is very low, it is difficult to use these, and use of the above-mentioned polar solvent is preferable.

そして、この溶剤を用いて樹脂ワニスとする場合の樹脂固形分量は、5wt%〜50wt%の範囲であることが好ましい。樹脂固形分量が5wt%未満の場合には、銅箔表面に塗布して、乾燥させたときに、揮発分が1wt%未満の半硬化状態の樹脂層が得られなくなる。一方、樹脂固形分量が50wt%を超える場合には、樹脂ワニスとしての流動性が損なわれ、銅箔表面に塗布しても、膜厚の均一性に優れた良好な樹脂膜を得にくくなる。   And when it is set as resin varnish using this solvent, it is preferable that the resin solid content amount is the range of 5 wt%-50 wt%. When the resin solid content is less than 5 wt%, a semi-cured resin layer with a volatile content of less than 1 wt% cannot be obtained when applied to the copper foil surface and dried. On the other hand, when the resin solid content exceeds 50 wt%, the fluidity as a resin varnish is impaired, and even when applied to the copper foil surface, it is difficult to obtain a good resin film with excellent film thickness uniformity.

そして、ここで使用する銅箔は、厚さ2μm〜50μmの電解銅箔又は圧延銅箔を用いることが出来る。そして、その銅箔の接着面には、半硬化樹脂層との密着性を向上させるための、粗化処理、防錆処理、シランカップリング剤処理等の接着に適するような表面処理を施すことも好ましい。なお、厚さ5μm以下の銅箔を用いる場合には、キャリア箔と電解銅箔とが一時的に張り合わされたキャリア箔付電解銅箔を用いることが好ましい。このキャリア箔付電解銅箔を使用する場合には、2枚の電解銅箔層の表面に半硬化樹脂層を形成したキャリア箔付電解銅箔準備し、これらの樹脂面同士を当接させ、張り合わせた後に、キャリア箔を除去することで、両面銅張積層板が得られる。   The copper foil used here can be an electrolytic copper foil or a rolled copper foil having a thickness of 2 μm to 50 μm. Then, the adhesive surface of the copper foil is subjected to a surface treatment suitable for adhesion such as roughening treatment, rust prevention treatment, silane coupling agent treatment, etc., in order to improve adhesion with the semi-cured resin layer. Is also preferable. When a copper foil having a thickness of 5 μm or less is used, it is preferable to use an electrolytic copper foil with a carrier foil in which a carrier foil and an electrolytic copper foil are temporarily pasted together. When using this electrolytic copper foil with a carrier foil, prepare an electrolytic copper foil with a carrier foil in which a semi-cured resin layer is formed on the surface of two electrolytic copper foil layers, bringing these resin surfaces into contact with each other, After the lamination, the double-sided copper-clad laminate is obtained by removing the carrier foil.

そして、当該樹脂ワニスを銅箔表面に塗布する方法としては、公知の手法を広く採用することができる。ロール状の銅箔上に連続して樹脂ワニスを塗布するには、コンマコーター、リップコーター、ナイフコーター、グラビアコーター等の装置の使用が可能である。そして、前記樹脂ワニスの塗布厚さは、3μm〜300μmの範囲が好ましく、より好ましくは5μm〜100μmである。また、樹脂ワニスの塗布及び乾燥という一連の操作を、複数回繰り返して重ね塗りすることで、樹脂層厚さを調節することも可能である。係る場合は、異なる組成の樹脂組成物で調製した複数の樹脂ワニスを用いて塗布することも可能である。そして、銅箔に塗布した樹脂ワニスの乾燥は、公知の方法を採用して行うことができる。例えば、熱風循環乾燥炉を用いて、その炉内温度を100℃〜200℃の温度を採用する等である。   And as a method of apply | coating the said resin varnish to copper foil surface, a well-known method is employable widely. In order to apply the resin varnish continuously on the roll-shaped copper foil, it is possible to use an apparatus such as a comma coater, a lip coater, a knife coater, or a gravure coater. And the application | coating thickness of the said resin varnish has the preferable range of 3 micrometers-300 micrometers, More preferably, they are 5 micrometers-100 micrometers. Moreover, it is also possible to adjust the resin layer thickness by repeatedly applying a series of operations of applying and drying the resin varnish a plurality of times. In such a case, it is also possible to apply using a plurality of resin varnishes prepared with resin compositions having different compositions. And drying of the resin varnish apply | coated to copper foil can be performed by employ | adopting a well-known method. For example, using a hot air circulation drying furnace, the temperature in the furnace is 100 ° C. to 200 ° C.

以上のようにして得た本件発明に係る樹脂付銅箔の半硬化状態の樹脂層は、そこに含有する揮発分が1wt%未満となる。従って、上述したと同様に、銅箔に樹脂を塗布して乾燥した後、これをロール状に巻き取ったときに、樹脂層と接する銅箔面に、樹脂に含まれた有機溶剤の付着を防ぐことができる。   The semi-cured resin layer of the resin-coated copper foil according to the present invention obtained as described above has a volatile content of less than 1 wt%. Therefore, in the same manner as described above, after the resin is applied to the copper foil and dried, when the roll is wound up, the organic solvent contained in the resin adheres to the copper foil surface in contact with the resin layer. Can be prevented.

そして、本件発明に係る樹脂付銅箔を用いて銅張積層板を得る。即ち、絶縁性の基材や、予め回路が形成された内層材等と組み合わせて、プレス成形、ロールラミネート等の公知の方法により加熱、加圧することにより、樹脂層を硬化させて銅張積層板を得る。   And a copper clad laminated board is obtained using the copper foil with resin which concerns on this invention. That is, in combination with an insulating base material or an inner layer material on which a circuit has been formed in advance, the resin layer is cured by heating and pressurizing by a known method such as press molding or roll laminating to cure the copper clad laminate. Get.

また、本件発明に係る樹脂付銅箔を用いて、両面銅張積層板を製造する。この両面銅張積層板の好ましい実施態様における製造方法の特徴は、プリプレグ、樹脂フィルム等の他の材料を用いること無く、2枚の前記樹脂付銅箔を用いて両面銅張積層板とする点にある。即ち、2枚の樹脂付銅箔の樹脂層同士を当接して重ね合わせ、加熱プレスして張り合わせて両面銅張積層板を得るのである。   Moreover, a double-sided copper-clad laminate is manufactured using the resin-coated copper foil according to the present invention. The feature of the manufacturing method in a preferred embodiment of this double-sided copper-clad laminate is that it is a double-sided copper-clad laminate using the two resin-coated copper foils without using other materials such as prepreg and resin film. It is in. That is, the resin layers of the two resin-coated copper foils are brought into contact with each other, overlapped by heating, and bonded to obtain a double-sided copper-clad laminate.

2枚の樹脂付銅箔の樹脂層同士を当接して重ね合わせるためには、いくつかの手法を採用することが出来る。例えば、樹脂付銅箔をカッティングしてワークサイズのシートにしたものを2枚用意して、これをプレス板の間に挟持して、樹脂付銅箔の樹脂層同士を当接して重ね合わせる方法がある。この場合には、プレス板を150℃〜200℃に加熱して、2枚の樹脂付銅箔を張り合わせて、両面銅張積層板が得られる。また、2枚の樹脂付銅箔の樹脂面同士を重ね合わせた状態で、これを接触対向配置した一対の加熱ロール間に挟んで通過させることで、両面銅張積層板が得られる。この方法は、2本の樹脂付銅箔ロールを用い、連続ラミネート法としての実用化が容易である。   In order to abut and overlap the resin layers of the two resin-coated copper foils, several methods can be employed. For example, there is a method in which two sheets of work-sized sheets are prepared by cutting a resin-coated copper foil, sandwiched between press plates, and the resin layers of the resin-coated copper foil are brought into contact with each other and superimposed. . In this case, the press plate is heated to 150 ° C. to 200 ° C., and the two resin-coated copper foils are bonded together to obtain a double-sided copper-clad laminate. Moreover, a double-sided copper-clad laminate is obtained by passing the resin surfaces of the two resin-attached copper foils while sandwiching them between a pair of heating rolls arranged in contact with each other. This method uses two resin-coated copper foil rolls and is easy to put into practical use as a continuous laminating method.

以下、実施例及び比較例を示して本件発明を具体的に説明する。なお、本件発明は以下の実施例に限定して解釈されるものではない。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In addition, this invention is limited to a following example and is not interpreted.

最初に、成分A及び成分Bに該当するポリアミドイミド樹脂の調製に関して述べる。   First, preparation of polyamideimide resin corresponding to component A and component B will be described.

ポリアミドイミド樹脂(成分A)の調製: 成分Aは、トリメット酸無水物17.29g(0.09mol)、ベンゾフェノンテトラカルボン酸無水物3.22g(0.01mol)及びビトリレンジイソシアネート26.43g(0.1mol)を溶媒であるN,N−ジメチルアセトアミド200gに加え、撹拌しながら約1時間かけて160℃に昇温し、その後、160℃で約5時間撹拌して反応させて調製した。この成分Aの引張強度は225MPaであった。 Preparation of polyamideimide resin (component A): Component A was composed of 17.29 g (0.09 mol) of trimet acid anhydride, 3.22 g (0.01 mol) of benzophenone tetracarboxylic acid anhydride and 26.43 g of vitrylene diisocyanate ( 0.1 mol) was added to 200 g of N, N-dimethylacetamide as a solvent, the temperature was raised to 160 ° C. over about 1 hour with stirring, and then the mixture was stirred and reacted at 160 ° C. for about 5 hours. The tensile strength of this component A was 225 MPa.

ポリアミドイミド樹脂B(成分B)の調製: 成分Bは、反応容器中のN,N−ジメチルアセドアミド溶剤中に、トリメリット酸無水物(TMA)と、ジフェニルメタンジイソシアネート(MDI)と、カルボキシル基末端アクリロニトリル−ブタジエンゴム(宇部興産株式会社製 HYCAR−CTBN1300×13:アクリロニトリル27%、分子量3500)とを加えて、120℃で約1時間反応させた後、160℃に昇温して5時間反応させて調製した。この成分Bの引張強度は49MPaであった。 Preparation of polyamideimide resin B (component B): Component B contains trimellitic anhydride (TMA), diphenylmethane diisocyanate (MDI), and carboxyl group in N, N-dimethylacedamide solvent in the reaction vessel. Terminal acrylonitrile-butadiene rubber (HYCAR-CTBN 1300 × 13: Acrylonitrile 27%, molecular weight 3500, manufactured by Ube Industries, Ltd.) was added and reacted at 120 ° C. for about 1 hour, then heated to 160 ° C. and reacted for 5 hours. Prepared. The tensile strength of this component B was 49 MPa.

樹脂組成物及び樹脂ワニスの調製: 成分Aを20重量部、成分Bを40重量部、成分CとしてのビスフェノールA型のエポキシ樹脂(東都化成株式会社製 YD128)を40重量部、成分Dとしての2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾールを0.5重量部の各成分を配合した樹脂組成物を調製した。そして、当該樹脂組成物に有機溶剤であるN,N−ジメチルアセトアミドを加えて、樹脂固形分20wt%の樹脂ワニスを調製した。 Preparation of resin composition and resin varnish: 20 parts by weight of component A, 40 parts by weight of component B, 40 parts by weight of bisphenol A type epoxy resin (YD128, manufactured by Tohto Kasei Co., Ltd.) as component D A resin composition was prepared by blending 0.5 parts by weight of each component of 2-phenyl-4-methyl-5-hydroxymethylimidazole. Then, N, N-dimethylacetamide as an organic solvent was added to the resin composition to prepare a resin varnish having a resin solid content of 20 wt%.

樹脂付銅箔の製造: そして、この樹脂ワニスを厚さ18μmの電解銅箔(三井金属株式会社製 3EC−III箔)の粗化処理及び防錆処理を施した張り合わせ面に、バーコーターを用いて、前記樹脂ワニスを塗布した。次に、160℃に設定した熱風乾燥機中で2分間乾燥させ、半硬化の樹脂層を備える樹脂付銅箔を得た。このときの樹脂層の揮発分は、0.3wt%であり、樹脂厚さは15μmであった。 Manufacture of copper foil with resin: Then, a bar coater was used for the laminating surface of this resin varnish subjected to roughening treatment and rust prevention treatment of electrolytic copper foil (3EC-III foil manufactured by Mitsui Kinzoku Co., Ltd.) having a thickness of 18 μm. Then, the resin varnish was applied. Next, it was dried in a hot air dryer set at 160 ° C. for 2 minutes to obtain a resin-coated copper foil provided with a semi-cured resin layer. At this time, the volatile content of the resin layer was 0.3 wt%, and the resin thickness was 15 μm.

両面銅張積層板の製造: 以上のようにして得られた2枚の樹脂付銅箔の樹脂面同士を互いに対向させて重ね合わせ、ホットプレスを用いて180℃、30kgf/mmのプレス条件で、1時間加熱加圧することにより前記樹脂層を硬化させ、樹脂付銅箔の樹脂層同士を張り合わせて、両面銅張積層板を作製した。 Production of a double-sided copper-clad laminate: The resin surfaces of the two resin-coated copper foils obtained as described above are overlapped with each other and pressed using a hot press at 180 ° C. and 30 kgf / mm 2 . Then, the resin layer was cured by heating and pressurizing for 1 hour, and the resin layers of the resin-coated copper foil were bonded together to prepare a double-sided copper-clad laminate.

両面銅張積層板の性能評価: 以下、ここで得られた両面銅張積層板を用いて、剥離強度、半田耐熱性を評価した。また、両面の銅箔をエッチング除去して得られる樹脂フィルムについて引張強度と破断伸びを測定した。この結果に関しては、他の実施例及び比較例の結果と共に表1に示す。 Performance evaluation of double-sided copper-clad laminate: The peel strength and solder heat resistance were evaluated using the double-sided copper-clad laminate obtained here. In addition, the tensile strength and elongation at break of the resin film obtained by etching away the copper foils on both sides were measured. Regarding this result, it shows in Table 1 with the result of another Example and a comparative example.

実施例1では、両面銅張積層板の銅箔と樹脂層との接着性若しくは樹脂層間の接着性を対比するために、剥離強度を測定した。剥離強度は、両面銅張積層板を、幅10mmに切断し、引張速度50mm/分で90度剥離を行い、剥離強度を測定した。この結果、銅箔面と樹脂層(樹脂フィルム)との間で剥離が生じたので、実施例1の剥離強度は、銅箔面と樹脂層(樹脂フィルム)との間の剥離強度を示す。なお、本実施例は両面銅張積層板の例であるが、本発明に係る樹脂付銅箔の場合も同様の方法で測定できる。   In Example 1, peel strength was measured in order to compare the adhesiveness between the copper foil and the resin layer of the double-sided copper-clad laminate or the adhesiveness between the resin layers. For the peel strength, the double-sided copper-clad laminate was cut into a width of 10 mm, peeled at 90 ° at a tensile speed of 50 mm / min, and the peel strength was measured. As a result, since peeling occurred between the copper foil surface and the resin layer (resin film), the peel strength of Example 1 shows the peel strength between the copper foil surface and the resin layer (resin film). In addition, although a present Example is an example of a double-sided copper clad laminated board, also in the case of the resin-coated copper foil which concerns on this invention, it can measure by the same method.

半田耐熱性は、両面銅張積層板の小片(2.5cm×2.5cm)を、260℃の半田浴に浮かべ、ブリスターが発生するまでの所要時間を測定した。   For solder heat resistance, a small piece (2.5 cm × 2.5 cm) of a double-sided copper-clad laminate was floated in a solder bath at 260 ° C., and the time required until blisters were generated was measured.

引張強度は、樹脂フィルムを幅10mm、長さ100mmの短冊に切断した試験片を、25℃下で、10mm/分の速度で引張り、試験片が破断したときの強度を測定した。破断伸びは、前記引張強度の測定において、試験片が破断したときの試験片の伸びを測定し、伸び率を算出した。   For the tensile strength, a test piece obtained by cutting a resin film into a strip having a width of 10 mm and a length of 100 mm was pulled at a rate of 10 mm / min at 25 ° C., and the strength when the test piece was broken was measured. The elongation at break was calculated by measuring the elongation of the test piece when the test piece was broken in the measurement of the tensile strength.

樹脂組成物及び樹脂ワニスの調製: 実施例2では、成分Aとして、市販のポリアミドイミド(東洋紡績株式会社製 バイロマックスHR16NN、引張強度420MPa)を20重量部、実施例1で用いた成分Bを20重量部、成分Cとしてエポキシ樹脂(東都化成株式会社製 YDPN638、フェノールノボラック型)を60重量部、成分Dとして2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾールを0.2重量部の各成分を配合した樹脂組成物を調製した。そして、この樹脂組成物にN,N−ジメチルアセトアミドを加えて、樹脂固形分20wt%の樹脂ワニスを調製した。 Preparation of Resin Composition and Resin Varnish: In Example 2, as component A, 20 parts by weight of commercially available polyamideimide (Toyobo Co., Ltd., Viromax HR16NN, tensile strength 420 MPa), component B used in Example 1 20 parts by weight, 60 parts by weight of epoxy resin (YDPN638, phenol novolac type manufactured by Toto Kasei Co., Ltd.) as component C, and 0.2 parts by weight of 2-phenyl-4-methyl-5-hydroxymethylimidazole as component D A resin composition containing the components was prepared. Then, N, N-dimethylacetamide was added to the resin composition to prepare a resin varnish having a resin solid content of 20 wt%.

樹脂付銅箔の製造: 実施例1と同様の電解銅箔の張り合わせ面側に、バーコーターを用いて、前記樹脂ワニスを塗布した。次に、160℃に設定した熱風乾燥機中で10分間乾燥させ、樹脂付銅箔を得た。このときの樹脂層の揮発分は、0.9wt%であり、樹脂厚さは15μmであった。 Production of Resin Copper Foil: The resin varnish was applied to the laminated surface side of the same electrolytic copper foil as in Example 1 using a bar coater. Next, it was dried for 10 minutes in a hot air dryer set to 160 ° C. to obtain a resin-coated copper foil. At this time, the volatile content of the resin layer was 0.9 wt%, and the resin thickness was 15 μm.

以下、実施例1と同様に、2枚の樹脂付銅箔の樹脂層同士を張り合わせて、両面銅張積層板を製造し、両面銅張積層板の性能評価を行った。この結果に関しては、他の実施例及び比較例の結果と共に表1に示す。なお、剥離強度の結果は、銅箔面と樹脂層(樹脂フィルム)との間で剥離が生じたので、実施例2の剥離強度は、銅箔面と樹脂層(樹脂フィルム)との間の剥離強度を示す。   Hereinafter, in the same manner as in Example 1, two resin-coated copper foils were bonded together to produce a double-sided copper-clad laminate, and performance evaluation of the double-sided copper-clad laminate was performed. Regarding this result, it shows in Table 1 with the result of another Example and a comparative example. In addition, as a result of peeling strength, since peeling occurred between the copper foil surface and the resin layer (resin film), the peeling strength of Example 2 is between the copper foil surface and the resin layer (resin film). Indicates peel strength.

樹脂組成物及び樹脂ワニスの調製: 実施例3では、成分Aとして市販のポリアミドイミド(東洋紡績株式会社製 バイロマックスHR16NN、引張強度420MPa)を10重量部、実施例1で用いた成分Bを30重量部、成分Cとしてエポキシ樹脂(東都化成株式会社製 YDPN638、フェノールノボラック型)を60重量部、成分Dとして2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾールを0.2重量部の各成分を配合した樹脂組成物を調製した。そして、この樹脂組成物に有機溶剤としてN,N−ジメチルアセトアミドを加えて、樹脂固形分20wt%の樹脂ワニスを調製した。 Preparation of Resin Composition and Resin Varnish: In Example 3, 10 parts by weight of commercially available polyamideimide (Toyobo Co., Ltd., Viromax HR16NN, tensile strength 420 MPa) as Component A, and Component B used in Example 1 were 30. 60 parts by weight of epoxy resin (YDPN638 manufactured by Toto Kasei Co., Ltd., phenol novolac type) as component C, and 0.2 parts by weight of 2-phenyl-4-methyl-5-hydroxymethylimidazole as component D A resin composition was prepared. Then, N, N-dimethylacetamide was added as an organic solvent to the resin composition to prepare a resin varnish having a resin solid content of 20 wt%.

樹脂付銅箔の製造: そして、実施例1と同様の電解銅箔の張り合わせ面側に、バーコーターを用いて、前記樹脂ワニスを塗布した。次に、160℃に設定した熱風乾燥機中で10分間乾燥させ、樹脂付銅箔を得た。このときの樹脂層の揮発分は0.7wt%であり、樹脂厚さは15μmであった。 Manufacture of copper foil with resin: And the said resin varnish was apply | coated to the bonding surface side of the electrolytic copper foil similar to Example 1 using the bar coater. Next, it was dried for 10 minutes in a hot air dryer set to 160 ° C. to obtain a resin-coated copper foil. At this time, the volatile content of the resin layer was 0.7 wt%, and the resin thickness was 15 μm.

以下、実施例1と同様に、2枚の樹脂付銅箔の樹脂層同士を張り合わせて両面銅張積層板を製造し、両面銅張積層板の性能評価を行った。この結果に関しては、他の実施例及び比較例の結果と共に表1に示す。なお、剥離強度の結果は、銅箔面と樹脂層(樹脂フィルム)との間で剥離が生じたので、実施例3の剥離強度は、銅箔面と樹脂層(樹脂フィルム)との間の剥離強度を示す。   Hereinafter, in the same manner as in Example 1, two resin-coated copper foils were bonded together to produce a double-sided copper-clad laminate, and performance evaluation of the double-sided copper-clad laminate was performed. Regarding this result, it shows in Table 1 with the result of another Example and a comparative example. In addition, since peeling occurred as a result of the peeling strength between the copper foil surface and the resin layer (resin film), the peeling strength of Example 3 is between the copper foil surface and the resin layer (resin film). Indicates peel strength.

比較例Comparative example

[比較例1]
比較例1は、引張強度が高いポリアミドイミド樹脂と低いポリアミドイミド樹脂の配合割合が、本件発明で規定した範囲を外れるようにした例である。成分Aを24部、成分Bを36部、成分Cのエポキシ樹脂(東都化成株式会社製 YD128、ビスフェノールA型)を40部、成分Dとして2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾールを0.5部の各成分を配合した樹脂組成物を調製した。そして、この樹脂組成物に有機溶剤としてN,N−ジメチルアセトアミドを加えて、樹脂固形分20%の樹脂ワニスを調製した。
[Comparative Example 1]
Comparative Example 1 is an example in which the blending ratio of the polyamideimide resin having a high tensile strength and the polyamideimide resin having a low tensile strength is out of the range defined in the present invention. Component A is 24 parts, Component B is 36 parts, Component C epoxy resin (YD128, bisphenol A type manufactured by Toto Kasei Co., Ltd.), Component D is 2-phenyl-4-methyl-5-hydroxymethylimidazole A resin composition containing 0.5 part of each component was prepared. Then, N, N-dimethylacetamide was added as an organic solvent to the resin composition to prepare a resin varnish having a resin solid content of 20%.

樹脂付銅箔の製造: そして、実施例1と同様の電解銅箔の張り合わせ面側に、樹脂膜としての厚さが100μmになるように、バーコーターを用いて塗布した。次に、160℃に設定した熱風乾燥機中で2分間乾燥させ、樹脂付銅箔を得た。このときの樹脂層の揮発分は、0.2wt%であった。 Manufacture of copper foil with resin: And it apply | coated to the bonding surface side of the electrolytic copper foil similar to Example 1 using the bar coater so that the thickness as a resin film might be set to 100 micrometers. Next, it was dried in a hot air dryer set at 160 ° C. for 2 minutes to obtain a resin-coated copper foil. At this time, the volatile content of the resin layer was 0.2 wt%.

以下、実施例1と同様に、2枚の樹脂付銅箔の樹脂層同士を張り合わせて両面銅張積層板を製造し、両面銅張積層板の性能評価を行った。この結果に関しては、他の実施例及び比較例の結果と共に表1に示す。なお、剥離強度の結果については、比較例1の両面銅張積層板は、2枚の樹脂付銅箔の樹脂層間で剥離が生じたので、比較例1の剥離強度は、樹脂層間の剥離強度を示す。   Hereinafter, in the same manner as in Example 1, two resin-coated copper foils were bonded together to produce a double-sided copper-clad laminate, and performance evaluation of the double-sided copper-clad laminate was performed. Regarding this result, it shows in Table 1 with the result of another Example and a comparative example. As for the peel strength results, since the double-sided copper-clad laminate of Comparative Example 1 was peeled between the resin layers of the two resin-coated copper foils, the peel strength of Comparative Example 1 was the peel strength between the resin layers. Indicates.

[比較例2]
比較例2は、引張強度が高いポリアミドイミド樹脂と低いポリアミドイミド樹脂との組み合わせを行わず、本件発明で規定した範囲を外れるようにした例である。成分Aとして市販のポリアミドイミド(東洋紡績株式会社製 バイロマックスHR11NN、引張強度150MPa)を60重量部、成分Cとしてエポキシ樹脂(東都化成株式会社製 YD128、ビスフェノールA型)を40重量部、成分Dとして2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾールを0.3重量部の各成分を配合した樹脂組成物(成分Bを除外した組成)を調製した。そして、この樹脂組成物に有機溶剤としてN,N−ジメチルアセトアミドを加えて、樹脂固形分20wt%の樹脂ワニスを調製した。
[Comparative Example 2]
Comparative Example 2 is an example in which a combination of a polyamideimide resin having a high tensile strength and a polyamideimide resin having a low tensile strength is not performed and the range defined in the present invention is not used. 60 parts by weight of a commercially available polyamideimide (Toyobo Co., Ltd. Viromax HR11NN, tensile strength 150 MPa) as component A, 40 parts by weight of epoxy resin (YD128, bisphenol A type from Toto Kasei Co., Ltd.) A resin composition (composition excluding component B) containing 0.3 part by weight of each component of 2-phenyl-4-methyl-5-hydroxymethylimidazole was prepared. Then, N, N-dimethylacetamide was added as an organic solvent to the resin composition to prepare a resin varnish having a resin solid content of 20 wt%.

樹脂付銅箔の製造: そして、実施例1と同様の電解銅箔の張り合わせ面側に、バーコーターを用いて、前記樹脂ワニスを塗布した。次に、160℃に設定した熱風乾燥機中で10分間乾燥させ、樹脂付銅箔を得た。このときの樹脂層の揮発分は0.2wt%であり、樹脂厚さは15μmであった。 Manufacture of copper foil with resin: And the said resin varnish was apply | coated to the bonding surface side of the electrolytic copper foil similar to Example 1 using the bar coater. Next, it was dried for 10 minutes in a hot air dryer set to 160 ° C. to obtain a resin-coated copper foil. At this time, the volatile content of the resin layer was 0.2 wt%, and the resin thickness was 15 μm.

以下、実施例1と同様に、2枚の樹脂付銅箔の樹脂層同士を張り合わせて両面銅張積層板を製造し、両面銅張積層板の性能評価を行った。この結果に関しては、他の実施例及び比較例の結果と共に表1に示す。なお、剥離強度の結果については、比較例2の両面銅張積層板は、2枚の樹脂付銅箔の樹脂層間で剥離が生じたので、比較例2の剥離強度は、樹脂層間の剥離強度を示す。   Hereinafter, in the same manner as in Example 1, two resin-coated copper foils were bonded together to produce a double-sided copper-clad laminate, and performance evaluation of the double-sided copper-clad laminate was performed. Regarding this result, it shows in Table 1 with the result of another Example and a comparative example. Regarding the peel strength results, since the double-sided copper-clad laminate of Comparative Example 2 was peeled between the resin layers of the two resin-coated copper foils, the peel strength of Comparative Example 2 was the peel strength between the resin layers. Indicates.

[比較例3]
比較例3は、引張強度が、本件発明で規定した範囲を外れるようにした例である。実施例1で用いた成分Aを20重量部、成分Bとして市販のポリアミドイミド(東洋紡績株式会社製 バイロマックスHR11NN、引張強度150MPa)を40重量部、成分Cとしてエポキシ樹脂(東都化成株式会社製 YD128、ビスフェノールA型)を40重量部、成分Dとして2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾールを0.3重量部の各成分を配合した樹脂組成物を調製した。そして、この樹脂組成物に有機溶剤としてN,N−ジメチルアセトアミドを加えて、樹脂固形分20wt%の樹脂ワニスを調製した。
[Comparative Example 3]
Comparative Example 3 is an example in which the tensile strength is out of the range defined in the present invention. 20 parts by weight of component A used in Example 1, 40 parts by weight of commercially available polyamideimide (Toyobo Co., Ltd., Viromax HR11NN, tensile strength 150 MPa) as component B, and epoxy resin (manufactured by Toto Kasei Co., Ltd.) A resin composition was prepared by blending 40 parts by weight of YD128, bisphenol A type) and 0.3 parts by weight of 2-phenyl-4-methyl-5-hydroxymethylimidazole as Component D. Then, N, N-dimethylacetamide was added as an organic solvent to the resin composition to prepare a resin varnish having a resin solid content of 20 wt%.

樹脂付銅箔の製造: そして、実施例1と同様の電解銅箔の張り合わせ面側に、バーコーターを用いて、前記樹脂ワニスを塗布した。次に、160℃に設定した熱風乾燥機中で10分間乾燥させ、樹脂付銅箔を得た。このときの樹脂層の揮発分は0.9wt%であり、樹脂厚さは15μmであった。 Manufacture of copper foil with resin: And the said resin varnish was apply | coated to the bonding surface side of the electrolytic copper foil similar to Example 1 using the bar coater. Next, it was dried for 10 minutes in a hot air dryer set to 160 ° C. to obtain a resin-coated copper foil. At this time, the volatile content of the resin layer was 0.9 wt%, and the resin thickness was 15 μm.

以下、実施例1と同様に、2枚の樹脂付銅箔の樹脂層同士を張り合わせて両面銅張積層板を製造し、両面銅張積層板の性能評価を行った。この結果に関しては、他の実施例及び比較例の結果と共に表1に示す。なお、剥離強度の結果については、比較例3の両面銅張積層板は、2枚の樹脂付銅箔の樹脂層間で剥離が生じたので、比較例3の剥離強度は、樹脂層間の剥離強度を示す。   Hereinafter, in the same manner as in Example 1, two resin-coated copper foils were bonded together to produce a double-sided copper-clad laminate, and performance evaluation of the double-sided copper-clad laminate was performed. Regarding this result, it shows in Table 1 with the result of another Example and a comparative example. Regarding the peel strength results, since the double-sided copper-clad laminate of Comparative Example 3 was peeled between the resin layers of the two resin-coated copper foils, the peel strength of Comparative Example 3 was the peel strength between the resin layers. Indicates.

[比較例4]
比較例4は、エポキシ樹脂硬化剤を含まない樹脂を用いる例である。実施例1で用いた成分Aを20重量部、実施例1で用いた成分Bを20重量部、成分Cとしてエポキシ樹脂(東都化成株式会社製 YDPN638、フェノールノボラック型)を60重量部の各成分を配合した樹脂組成物を調製した。そして、この樹脂組成物に有機溶剤としてN,N−ジメチルアセトアミドを加えて、樹脂固形分20wt%の樹脂ワニスを調製した。
[Comparative Example 4]
Comparative Example 4 is an example using a resin that does not contain an epoxy resin curing agent. 20 parts by weight of component A used in Example 1, 20 parts by weight of Component B used in Example 1, and 60 parts by weight of epoxy resin (YDPN638, phenol novolak type manufactured by Tohto Kasei Co., Ltd.) as Component C A resin composition was prepared. Then, N, N-dimethylacetamide was added as an organic solvent to the resin composition to prepare a resin varnish having a resin solid content of 20 wt%.

樹脂付銅箔の製造: そして、実施例1と同様の電解銅箔の張り合わせ面側に、バーコーターを用いて、前記樹脂ワニスを塗布した。次に、160℃に設定した熱風乾燥機中で2分間乾燥させ、樹脂付銅箔を得た。このときの樹脂層の揮発分は、0.1wt%であり、樹脂厚さは15μmであった。 Manufacture of copper foil with resin: And the said resin varnish was apply | coated to the bonding surface side of the electrolytic copper foil similar to Example 1 using the bar coater. Next, it was dried in a hot air dryer set at 160 ° C. for 2 minutes to obtain a resin-coated copper foil. At this time, the volatile content of the resin layer was 0.1 wt%, and the resin thickness was 15 μm.

以下、実施例1と同様に、2枚の樹脂付銅箔の樹脂層同士を張り合わせて両面銅張積層板を製造し、両面銅張積層板の性能評価を行った。この結果に関しては、他の実施例及び比較例の結果と共に表1に示す。なお、剥離強度の結果については、比較例4の両面銅張積層板は、2枚の樹脂付銅箔の樹脂層間で剥離が生じたので、比較例4の剥離強度は、樹脂層間の剥離強度を示す。   Hereinafter, in the same manner as in Example 1, two resin-coated copper foils were bonded together to produce a double-sided copper-clad laminate, and performance evaluation of the double-sided copper-clad laminate was performed. Regarding this result, it shows in Table 1 with the result of another Example and a comparative example. In addition, about the result of peeling strength, since the double-sided copper clad laminated board of the comparative example 4 peeled between the resin layers of two copper foils with resin, the peeling strength of the comparative example 4 is peeling strength between resin layers. Indicates.

Figure 2009067029
Figure 2009067029

[実施例と比較例の対比]
表1から明らかなように、実施例1〜実施例3の両面銅張積層板の評価結果からみると、樹脂付銅箔の樹脂層中の溶剤の揮発分が低くても、剥離強度及び半田耐熱性ともに良好である。また、実施例の半田耐熱性はいずれも300秒以上と良好である。そして、実施例と比較例とを対比すると、実施例の方が、樹脂フィルムとして評価した機械強度の指標である破断伸びが良好である。ここで、比較例1の評価結果をみると、剥離強度が低く、半田耐熱性も実施例と比べると劣る結果が得られている。そして、剥離強度については、実施例1〜実施例3は、銅箔と樹脂面との間で剥離したのに対し、比較例1〜比較例4は、両面銅張積層板の樹脂フィルム部分で剥離が生じた。しかも、比較例2及び比較例3の評価結果をみると、実施例と比べて剥離強度が低いという結果が得られている。更に、比較例4では、実施例と比べて、剥離強度が低く、破断伸びも劣る結果であった。この結果から、実施例1〜実施例3の両面銅張積層板は、樹脂フィルム部分の接着性が強固なものであると言える。また、実施例1〜実施例3の樹脂層の揮発分は、いずれも1wt%以下であり、良好な値を示した。特に、実施例1の樹脂層の揮発分は、0.3wt%と優れた値を示した。従って、実施例1〜実施例3で得られた耐熱性、接着性が、比較例1〜比較例4と比べて優れ、樹脂層の揮発分も低く抑えた両面銅張積層板が得られていると判断できる。
[Contrast between Example and Comparative Example]
As can be seen from Table 1, the evaluation results of the double-sided copper-clad laminates of Examples 1 to 3 show that the peel strength and solder are low even if the volatile content of the solvent in the resin layer of the resin-coated copper foil is low. Good heat resistance. Also, the solder heat resistance of the examples is as good as 300 seconds or more. And when an Example and a comparative example are contrasted, the direction of an Example has the favorable break elongation which is the parameter | index of the mechanical strength evaluated as a resin film. Here, when the evaluation result of the comparative example 1 is seen, the peel strength is low and the solder heat resistance is inferior to that of the example. And about peeling strength, although Example 1- Example 3 peeled between copper foil and the resin surface, Comparative Example 1- Comparative Example 4 is a resin film part of a double-sided copper clad laminated board. Peeling occurred. And when the evaluation result of the comparative example 2 and the comparative example 3 is seen, the result that peeling strength is low compared with an Example is obtained. Furthermore, in Comparative Example 4, the peel strength was low and the elongation at break was inferior compared to the Examples. From this result, it can be said that the double-sided copper-clad laminates of Examples 1 to 3 have strong adhesion at the resin film portion. Moreover, the volatile matter of the resin layer of Example 1- Example 3 was all 1 wt% or less, and showed the favorable value. In particular, the volatile content of the resin layer of Example 1 showed an excellent value of 0.3 wt%. Therefore, the heat resistance and adhesiveness obtained in Examples 1 to 3 are superior to those of Comparative Examples 1 to 4, and a double-sided copper clad laminate having a low volatile content of the resin layer is obtained. Can be judged.

本件発明に係る樹脂付銅箔は、これを巻き取ったロール状で保管又は輸送しても、樹脂付銅箔の樹脂層から銅箔層への有機溶剤の転写が無く、しかも、耐熱性、耐吸湿特性、銅箔との接着性の各特性に優れる。従って、この樹脂付銅箔を用いて製造した両面銅張積層板も、耐熱性に優れ、樹脂層と銅箔層との高い接着性を得ることができる。そして、同時に銅張積層板として良好な基板強度を備える両面銅張積層板の製造が可能になる。また、本件発明に係る銅張積層版及び両面銅張積層板は、硬化後の絶縁樹脂層にガラスクロス等の骨格材を含まないため、内層マイグレーションの発生の可能性も無く、当該積層板の表面形状は極めて平坦である。従って、銅箔層をエッチング加工して回路を形成しようとする場合の、レジスト層が極めて均一に形成でき、回路形状の安定性が高くなり、高周波信号を伝送するための回路形成に優れている。   Even if the copper foil with resin according to the present invention is stored or transported in the form of a roll obtained by winding it, there is no transfer of the organic solvent from the resin layer of the copper foil with resin to the copper foil layer, and the heat resistance, Excellent moisture absorption and adhesive properties with copper foil. Therefore, the double-sided copper-clad laminate produced using this resin-coated copper foil is also excellent in heat resistance, and high adhesion between the resin layer and the copper foil layer can be obtained. At the same time, it becomes possible to manufacture a double-sided copper-clad laminate having good substrate strength as a copper-clad laminate. Further, the copper-clad laminate and the double-sided copper-clad laminate according to the present invention do not contain a skeletal material such as glass cloth in the cured insulating resin layer, so there is no possibility of occurrence of inner layer migration. The surface shape is extremely flat. Therefore, when the circuit is formed by etching the copper foil layer, the resist layer can be formed extremely uniformly, the stability of the circuit shape is improved, and the circuit formation for transmitting a high-frequency signal is excellent. .

Claims (6)

プリント基板用銅箔の少なくとも片面に接着性を有する半硬化樹脂層が形成された樹脂付銅箔において、
前記半硬化樹脂層は、以下に示す成分A〜成分Dを、下記含有量(但し、エポキシ樹脂硬化剤を除き、樹脂組成物を100重量部としたときの重量部として記載)の範囲で含む樹脂組成物で形成したことを特徴とする樹脂付銅箔。
成分A: 25℃における引張強度200MPa以上のポリアミドイミド樹脂 10重量部〜20重量部
成分B: 25℃における引張強度100MPa以下のポリアミドイミド樹脂 20重量部〜40重量部
成分C: エポキシ樹脂
成分D: エポキシ樹脂硬化剤
In the resin-coated copper foil in which a semi-cured resin layer having adhesiveness is formed on at least one side of the copper foil for printed circuit boards,
The semi-cured resin layer includes the following components A to D in the following content (however, excluding an epoxy resin curing agent, described as parts by weight when the resin composition is 100 parts by weight). A copper foil with resin, which is formed of a resin composition.
Component A: Polyamideimide resin having a tensile strength of 200 MPa or more at 25 ° C. 10 to 20 parts by weight Component B: Polyamideimide resin having a tensile strength of 100 MPa or less at 25 ° C. 20 to 40 parts by weight Component C: Epoxy resin component D: Epoxy resin curing agent
前記成分C(エポキシ樹脂)は、樹脂組成物を100重量部としたとき、40重量部〜70重量部の範囲で含有する請求項1に記載の樹脂付銅箔。 The said component C (epoxy resin) is a copper foil with a resin of Claim 1 contained in the range of 40 weight part-70 weight part, when a resin composition is 100 weight part. 前記成分D(エポキシ樹脂硬化剤)は、樹脂組成物に対して、エポキシ樹脂の硬化可能な程度のイミダゾール化合物を含有させるものである請求項1または請求項2に記載の樹脂付銅箔。 The said component D (epoxy resin hardening | curing agent) contains the imidazole compound of the grade which can harden | cure an epoxy resin with respect to a resin composition, The copper foil with resin of Claim 1 or Claim 2. 前記半硬化樹脂層は、前記樹脂組成物で形成した揮発分が1wt%未満の半硬化状態の樹脂層である請求項1〜請求項3のいずれかに記載の樹脂付銅箔。 The resin-coated copper foil according to any one of claims 1 to 3, wherein the semi-cured resin layer is a semi-cured resin layer having a volatile content of less than 1 wt% formed from the resin composition. 請求項1〜請求項4のいずれかに記載の樹脂付銅箔を用いて得られることを特徴とする銅張積層板。 A copper-clad laminate obtained by using the resin-coated copper foil according to any one of claims 1 to 4. 請求項1〜請求項4のいずれかに記載の樹脂付銅箔の2枚を用いて、当該樹脂付銅箔の樹脂層同士を当接して重ね合わせ、加熱プレスして張り合わせて得られる両面銅張積層板。 Double-sided copper obtained by using two sheets of the resin-coated copper foil according to any one of claims 1 to 4 and abutting and overlapping the resin layers of the resin-coated copper foil, followed by heating and pressing. Tension laminate.
JP2007240969A 2007-09-18 2007-09-18 Copper foil with resin, copper clad laminated sheet using copper foil with resin, and both face copper clad laminated sheet Pending JP2009067029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007240969A JP2009067029A (en) 2007-09-18 2007-09-18 Copper foil with resin, copper clad laminated sheet using copper foil with resin, and both face copper clad laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007240969A JP2009067029A (en) 2007-09-18 2007-09-18 Copper foil with resin, copper clad laminated sheet using copper foil with resin, and both face copper clad laminated sheet

Publications (1)

Publication Number Publication Date
JP2009067029A true JP2009067029A (en) 2009-04-02

Family

ID=40603795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007240969A Pending JP2009067029A (en) 2007-09-18 2007-09-18 Copper foil with resin, copper clad laminated sheet using copper foil with resin, and both face copper clad laminated sheet

Country Status (1)

Country Link
JP (1) JP2009067029A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012327A1 (en) 2013-07-23 2015-01-29 Jx日鉱日石金属株式会社 Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method
WO2015012376A1 (en) 2013-07-24 2015-01-29 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board
EP3046400A2 (en) 2015-01-16 2016-07-20 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device, and method for fabricating printed wiring board
EP3048864A2 (en) 2015-01-21 2016-07-27 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, and method for fabricating printed wiring board
EP3054751A2 (en) 2015-02-06 2016-08-10 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board
EP3232747A1 (en) 2016-04-15 2017-10-18 JX Nippon Mining & Metals Corp. Copper foil, copper foil for high-frequency circuit, carrier-attached copper foil, carrier-attached copper foil for high-frequency circuit, laminate, method of manufacturing printed wiring board, and method of manufacturing electronic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012327A1 (en) 2013-07-23 2015-01-29 Jx日鉱日石金属株式会社 Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method
WO2015012376A1 (en) 2013-07-24 2015-01-29 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board
EP3046400A2 (en) 2015-01-16 2016-07-20 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device, and method for fabricating printed wiring board
EP3048864A2 (en) 2015-01-21 2016-07-27 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, and method for fabricating printed wiring board
EP3054751A2 (en) 2015-02-06 2016-08-10 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board
US9839124B2 (en) 2015-02-06 2017-12-05 Jx Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board
EP3232747A1 (en) 2016-04-15 2017-10-18 JX Nippon Mining & Metals Corp. Copper foil, copper foil for high-frequency circuit, carrier-attached copper foil, carrier-attached copper foil for high-frequency circuit, laminate, method of manufacturing printed wiring board, and method of manufacturing electronic device

Similar Documents

Publication Publication Date Title
TWI570200B (en) Thermosetting adhesive composition, thermosetting adhesive film, and composite film
JP5019874B2 (en) Thermosetting resin composition, laminated body using the same, and circuit board
JP5291553B2 (en) Copper foil with composite resin layer, method for producing copper foil with composite resin layer, flexible double-sided copper-clad laminate and method for producing three-dimensional molded printed wiring board
TWI500501B (en) Second layer double sided flexible metal laminated board and manufacturing method thereof
TWI706003B (en) Resin composition and multilayer substrate
KR20120123389A (en) Multilayer polyimide film and flexible metal laminated board
JP2009067029A (en) Copper foil with resin, copper clad laminated sheet using copper foil with resin, and both face copper clad laminated sheet
JP2019182932A (en) Curable resin composition and laminate
JP2008244091A (en) Interlayer connection bonding sheet for multilayer wiring circuit board
WO2009084533A1 (en) Copper foil with resin and process for producing copper foil with resin
KR20090071774A (en) Resine composition for adhesive and use thereof
WO2016121392A1 (en) Double-sided metal-clad laminate board and method for manufacturing same
US6485833B1 (en) Resin-coated metal foil
JP2005314562A (en) Thermosetting resin composition and its application
KR101377356B1 (en) Epoxy resin composition having an excellent adhesive property and copper foil with resin
JP5293654B2 (en) Circuit board resin composition, prepreg, laminate, printed wiring board, and semiconductor device
JP6816566B2 (en) Resin compositions, adhesive films, prepregs, multilayer printed wiring boards and semiconductor devices
JP7087963B2 (en) Epoxy resin compositions, multilayer printed wiring boards, and semiconductor devices
KR102041665B1 (en) Adhesive composition for cupper clad laminate
JPH1154922A (en) Manufacturing inner layer circuit-contg. laminate board
JP4871500B2 (en) Resin modifier for improving fluidity of resin composition
JP4481734B2 (en) Conductive paste composition for multilayer wiring board
JP4481733B2 (en) Conductive paste composition for multilayer wiring board
JP4370926B2 (en) Thin-leaf wiring board material and manufacturing method thereof
JP2014009356A (en) Epoxy resin composition, insulating film made of the same, and multilayer printed board comprising the same