JP2009066627A - Polishing method using laser beam machining, polishing device, and polished cutting tool - Google Patents

Polishing method using laser beam machining, polishing device, and polished cutting tool Download PDF

Info

Publication number
JP2009066627A
JP2009066627A JP2007238087A JP2007238087A JP2009066627A JP 2009066627 A JP2009066627 A JP 2009066627A JP 2007238087 A JP2007238087 A JP 2007238087A JP 2007238087 A JP2007238087 A JP 2007238087A JP 2009066627 A JP2009066627 A JP 2009066627A
Authority
JP
Japan
Prior art keywords
polishing
optical axis
condensing
sectional diameter
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007238087A
Other languages
Japanese (ja)
Inventor
Takafumi Atsumi
貴文 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2007238087A priority Critical patent/JP2009066627A/en
Publication of JP2009066627A publication Critical patent/JP2009066627A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a polishing depth invariable of a distance from a cutting edge ridgeline without causing microcracks and the graphitization of diamond particles by a polishing. <P>SOLUTION: The polishing method using a laser beam machining comprises: a cross-sectional diameter-fixing step where the cross-sectional diameter 2δ of a focusing beam machining energy region when a repeated ultrashort light pulse laser beam 3 is focused with a focusing lens 2 is made almost fixed in a prescribed range to the direction of the optical axis 21 of the focusing lens 2; an optical axis regulation step where the optical axis 21 of the focusing lens 2 is adjusted so as to be almost parallel to the polishing face 72 in a polishing object 7; a focusing beam west part adjustment step where the focusing beam west part 31 of an ultrashort light pulse laser beam 3 by the focusing lens 2 is regulated so as to be present at the polishing part 73; and a movement step where the focusing beam west part 31 by the focusing lens 2 is relatively moved at a prescribed moving velocity along the polishing part 73. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レーザ加工を用いたダイヤモンド切削工具等の研磨方法、研磨装置及び研磨された切削工具に関する。   The present invention relates to a polishing method such as a diamond cutting tool using laser processing, a polishing apparatus, and a polished cutting tool.

ダイヤモンドは硬度と熱伝導率が高いため、切削工具の素材として多用されている。特に、多結晶ダイヤモンド微粒子をコバルト系金属結合材で焼結した焼結ダイヤモンドを素材とし、すくい面と逃げ面が交差する稜線を切り刃とする切削工具は、Al合金の加工用工具として広く用いられている。   Diamond is frequently used as a material for cutting tools because of its high hardness and thermal conductivity. In particular, cutting tools that use sintered diamond obtained by sintering polycrystalline diamond fine particles with a cobalt-based metal binder as the raw material, and have a cutting edge at the ridge line where the rake face and flank face intersect, are widely used as Al alloy processing tools. It has been.

焼結ダイヤモンド切削工具は、単結晶ダイヤモンド切削工具に比べ比較的低価格であるが、チップ状の切削工具が多数のダイヤモンド粒から構成されているため、結晶界面の段差や結晶の脱落により切り刃凌、すくい面及び逃げ面に凸凹が存在し、被加工物を加工した場合、加工仕上げ面に切り刃凌や逃げ面の凸凹が転写されると共に、切削時にこの凸凹の多い切り刃凌に被削材が溶着し、ダイヤモンド粒の脱落を引き起こす。その結果、切削面を荒らして良好な加工面が得られなかった。   Sintered diamond cutting tools are relatively inexpensive compared to single crystal diamond cutting tools, but since the chip-shaped cutting tool is composed of a large number of diamond grains, the cutting edge is caused by steps at the crystal interface and dropout of crystals. If the workpiece is machined, the cutting edge surpassing or relief relief will be transferred to the finished surface, and the cutting edge surpassing will have a lot of unevenness during cutting. The work material welds, causing diamond grains to fall off. As a result, the cut surface was roughened and a good machined surface could not be obtained.

そこで、Al合金のような柔らかい被削材を鏡面に近い切削面に切削加工するためには、切り刃凌及び逃げ面を研磨する必要がある。   Therefore, in order to cut a soft work material such as an Al alloy into a cutting surface close to a mirror surface, it is necessary to grind the cutting edge and the flank.

これまでは、例えばYAGレーザの第3高調波(波長355nm)をレンズで集光して集光ビームの側面で逃げ面を研磨していた(例えば、特許文献1参照。)。
特開2003−25118号公報(第3−4頁、第3図)
Until now, for example, the third harmonic (wavelength 355 nm) of a YAG laser was collected by a lens and the flank face was polished on the side surface of the condensed beam (see, for example, Patent Document 1).
JP 2003-25118 A (page 3-4, FIG. 3)

波長が355nmのレーザを使用することで、ダイヤモンド結晶の分子結合を切るアブレーション加工を想定してるが、ダイヤモンド結晶は純粋の共有結合であり、炭素原子の結合力が強く、355nmの光子エネルギでは結合を切ることが難しい。またYAGレーザは、パルス発振でもパルス幅がナノ秒オーダであり、加工メカニズムが熱加工で、ダイヤモンド粒子と結合材の熱膨張率の違いによりマイクロクラックが発生したり、ダイヤモンド粒子の黒鉛化が生じ、硬度や強度が低下する問題があった。   Ablation processing that cuts the molecular bond of the diamond crystal is assumed by using a laser having a wavelength of 355 nm, but the diamond crystal is a pure covalent bond, and the bonding force of carbon atoms is strong, and the photon energy of 355 nm is bonded. It is difficult to cut The YAG laser also has a pulse width of nanosecond order even with pulse oscillation, the processing mechanism is thermal processing, micro cracks occur due to the difference in thermal expansion coefficient between the diamond particles and the binder, and graphitization of the diamond particles occurs. There was a problem that the hardness and strength decreased.

また、図12(特許文献1の第3図)に示すように、円錐状の集光ビーム40の側面で逃げ面10bを研磨するため、切り刃稜線10cからの距離と共に研磨深さが異なり、均一な研磨ができなかった。   Further, as shown in FIG. 12 (FIG. 3 of Patent Document 1), the polishing depth differs with the distance from the cutting edge ridge line 10c in order to polish the flank 10b on the side surface of the conical condensed beam 40, Uniform polishing was not possible.

本発明は、上記の問題に鑑みてなされたものであり、マイクロクラックやダイヤモンド粒子の黒鉛化が生じず且つ切り刃稜線からの距離に不変の研磨深さが得られる研磨方法、研磨装置及び前記研磨方法で研磨された焼結ダイヤモンド切削工具を提供することを課題としている。   The present invention has been made in view of the above-mentioned problems, and a polishing method, a polishing apparatus, and a polishing apparatus that do not cause graphitization of microcracks or diamond particles and that can obtain a polishing depth that is invariant to the distance from the cutting edge line. An object is to provide a sintered diamond cutting tool polished by a polishing method.

上記の課題を解決するためになされた請求項1に係る発明は、繰り返し超短光パルスレーザビームを集光レンズで集光した際の集光ビームの加工エネルギ領域断面径を前記集光レンズの光軸方向で所定の範囲略一定にする断面径一定ステップと、前記集光レンズの前記光軸を研磨対象の研磨面に略平行となるように調節する光軸調整ステップと、前記集光レンズによる前記超短光パルスレーザビームの集光ビームウエスト部位を前記研磨対象の研磨部位に存在するように調整する集光ビームウエスト部位調節ステップと、前記集光レンズによる集光ビームウエスト部位を前記研磨部位に沿って所定の移動速度で相対的に移動させる移動ステップと、を有することを特徴とするレーザ加工による研磨方法である。   The invention according to claim 1, which has been made to solve the above-mentioned problems, shows the processing energy region sectional diameter of the condensed beam when the ultrashort optical pulse laser beam is repeatedly condensed by the condenser lens. A cross-sectional diameter constant step for making the predetermined range substantially constant in the optical axis direction, an optical axis adjustment step for adjusting the optical axis of the condenser lens so as to be substantially parallel to a polishing surface to be polished, and the condenser lens A condensing beam waist region adjusting step for adjusting the condensing beam waist region of the ultrashort pulse laser beam by the laser beam so as to exist in the polishing region to be polished; and the condensing beam waist region by the condensing lens is polished. And a moving step of relatively moving along a part at a predetermined moving speed.

超短光パルスレーザビームを用いているので加工メカニズムが断熱加工であり、マイクロクラックが生じない。また、超短光パルスレーザビームを集光レンズで集光した際の集光ビームの加工エネルギ領域断面径を集光レンズの光軸方向で所定の範囲略一定にする断面径一定ステップを有するので、研磨面の研磨深さが一定になる。   Since an ultrashort optical pulse laser beam is used, the processing mechanism is adiabatic processing, and microcracks do not occur. In addition, since the processing energy region cross-sectional diameter of the condensed beam when the ultra-short pulse laser beam is condensed by the condensing lens, there is a cross-sectional diameter constant step that makes the predetermined range substantially constant in the optical axis direction of the condensing lens. The polishing depth of the polishing surface becomes constant.

また、請求項2に係る発明は、請求項1に記載のレーザ加工による研磨方法であって、前記研磨対象は、すくい面と逃げ面の交差する稜線を切り刃とする焼結ダイヤモンド切削工具を含み、前記光軸調整ステップは、前記集光レンズの前記光軸を前記すくい面に略直交し、前記逃げ面に略平行となるように調節するステップであり、前記研磨部位が前記稜線である。   The invention according to claim 2 is the polishing method by laser processing according to claim 1, wherein the object to be polished is a sintered diamond cutting tool having a ridge line intersecting a rake face and a flank face as a cutting edge. And the optical axis adjusting step is a step of adjusting the optical axis of the condenser lens so as to be substantially orthogonal to the rake face and substantially parallel to the flank face, and the polishing portion is the ridgeline. .

超短光パルスレーザビームを用いているので加工メカニズムが断熱加工であり、マイクロクラック及びダイヤモンド粒子の黒鉛化が生じない。また、超短光パルスレーザビームを集光レンズで集光した際の集光ビームの加工エネルギ領域断面径を集光レンズの光軸方向で所定の範囲略一定にする断面径一定ステップを有するので、切り刃稜線からの距離に不変の研磨深さが逃げ面に得られる。   Since an ultrashort optical pulse laser beam is used, the processing mechanism is adiabatic processing, and microcracks and diamond particles are not graphitized. In addition, since the processing energy region cross-sectional diameter of the condensed beam when the ultra-short pulse laser beam is condensed by the condensing lens, there is a cross-sectional diameter constant step that makes the predetermined range substantially constant in the optical axis direction of the condensing lens. A polishing depth that is invariant to the distance from the cutting edge is obtained on the flank.

また、請求項3に係る発明は、請求項1又は2に記載のレーザ加工による研磨方法であって、前記集光レンズの開口数が0.2以下である。   The invention according to claim 3 is the polishing method by laser processing according to claim 1 or 2, wherein the condensing lens has a numerical aperture of 0.2 or less.

開口数が0.2以下であると、集光レンズの所謂焦点深度が大きいために集光ビームウエスト付近の集光ビームが光軸方向で緩やかに変化する。その結果、集光ビームの加工エネルギ領域断面径を集光レンズの光軸方向で略一定にできる範囲を容易に確保することができる。   When the numerical aperture is 0.2 or less, the so-called depth of focus of the condensing lens is large, so that the condensing beam near the condensing beam waist changes gently in the optical axis direction. As a result, it is possible to easily ensure a range in which the processing energy region sectional diameter of the focused beam can be made substantially constant in the optical axis direction of the focusing lens.

また、請求項4に係る発明は、請求項1又は2に記載のレーザ加工による研磨方法であって、前記集光ビームの加工エネルギ領域断面径が6μm以上である。   The invention according to claim 4 is the polishing method by laser processing according to claim 1 or 2, wherein the processing energy region cross-sectional diameter of the focused beam is 6 μm or more.

集光ビームの加工エネルギ領域断面径が6μm以上であると、隣り合う集光ビームウエストの包絡線の脈動が小さくなり、逃げ面(研磨面)の面粗度を小さくすることができる。   When the cross section diameter of the processing energy region of the focused beam is 6 μm or more, the pulsation of the envelope of the adjacent focused beam waist becomes small, and the surface roughness of the flank (polished surface) can be reduced.

また、請求項5に係る発明は、請求項4に記載のレーザ加工による研磨方法であって、前記所定の移動速度は、隣り合う集光ビームウエストの間隔が10μm以下となる速度である。   The invention according to claim 5 is the polishing method by laser processing according to claim 4, wherein the predetermined moving speed is a speed at which an interval between adjacent focused beam waists is 10 μm or less.

移動速度が、隣り合う集光ビームウエストの間隔が10μm以下となる速度であると、隣り合う集光ビームウエストの包絡線の脈動がさらに小さくなり、逃げ面(研磨面)の面粗度をさらに小さくすることができる。   When the moving speed is a speed at which the interval between the adjacent focused beam waists is 10 μm or less, the pulsation of the envelope of the adjacent focused beam waists is further reduced, and the surface roughness of the flank (polished surface) is further increased. Can be small.

課題を解決するためになされた請求項6に係る発明は、請求項2〜4のいずれかに記載の研磨方法で研磨された焼結ダイヤモンド切削工具である。   The invention according to claim 6 made to solve the problem is a sintered diamond cutting tool polished by the polishing method according to any one of claims 2 to 4.

超短光パルスレーザビームを用いて研磨されるのでマイクロクラックやダイヤモンド粒子の黒鉛化が生じない。また、超短光パルスレーザビームを集光レンズで集光した際の集光ビームの加工エネルギ領域断面径を集光レンズの光軸方向で所定の範囲略一定にする断面径一定ステップを有する研磨方法で研磨されるので、切り刃稜線からの距離に不変の研磨深さが得られている。   Since polishing is performed using an ultrashort pulse laser beam, microcracks and diamond particles are not graphitized. Further, polishing having a constant cross-sectional diameter step for making the processing energy region cross-sectional diameter of the condensed beam when the ultrashort pulse laser beam is condensed by the condensing lens substantially constant within a predetermined range in the optical axis direction of the condensing lens. Since the polishing is performed by the method, a polishing depth that is invariant to the distance from the cutting edge line is obtained.

また、集光ビームの加工エネルギ領域断面径が6μm以上の研磨方法で研磨されるので、隣り合う集光ビームウエストの包絡線の脈動が小さくなり、逃げ面(研磨面)の面粗度が小さい。   Further, since the cross-sectional diameter of the processing energy region of the focused beam is polished by a polishing method of 6 μm or more, the pulsation of the envelope of the adjacent focused beam waist is reduced, and the surface roughness of the flank (polished surface) is small. .

また、集光ビームウエスト部位の移動速度が、隣り合う集光ビームウエストの間隔が10μm以下となる研磨方法で研磨されるので、逃げ面(研磨面)の面粗度が小さい。   Further, since the moving speed of the focused beam waist portion is polished by a polishing method in which the interval between adjacent focused beam waists is 10 μm or less, the surface roughness of the flank (polished surface) is small.

課題を解決するためになされた請求項7に係る発明は、繰り返し超短光パルスレーザビームを発生する超短光パルス光源と、前記超短光パルス光源から発生する前記超短光パルスレーザビームを集光して集光ビームの加工エネルギ領域断面径を光軸方向で所定の範囲略一定にする集光レンズと、前記集光レンズの光軸を研磨対象の研磨面に略平行となるように調整する角度調整手段と、前記集光レンズによる前記超短光パルスレーザビームの集光ビームウエスト部位を前記研磨対象の研磨部位に存在するように調整する集光ビームウエスト部位調整手段と、前記集光レンズによる集光ビームウエスト部位を前記研磨部位に沿って所定の移動速度で相対的に移動させる移動手段と、を有することを特徴とするレーザ加工による研磨装置である。   An invention according to claim 7 made to solve the problem includes an ultrashort optical pulse light source that repeatedly generates an ultrashort optical pulse laser beam, and the ultrashort optical pulse laser beam generated from the ultrashort optical pulse light source. A condensing lens that condenses the processing energy region cross-sectional diameter of the condensing beam in a predetermined range in the optical axis direction, and the optical axis of the condensing lens is substantially parallel to the polishing surface to be polished. Adjusting angle adjusting means for adjusting; condensing beam waist part adjusting means for adjusting the condensing beam waist part of the ultrashort optical pulse laser beam by the condensing lens so as to exist in the polishing part to be polished; A polishing apparatus by laser processing, comprising: a moving means for relatively moving a focused beam waist portion by an optical lens at a predetermined moving speed along the polishing portion.

超短光パルスレーザビームを用いているので加工メカニズムが断熱加工であり、マイクロクラックが生じない。また、超短光パルスレーザビームを集光して集光ビームの加工エネルギ領域断面径を光軸方向で所定の範囲略一定にする集光レンズを有するので、研磨面の研磨深さが一定になる。   Since an ultrashort optical pulse laser beam is used, the processing mechanism is adiabatic processing, and microcracks do not occur. In addition, since it has a condensing lens that condenses the ultrashort pulse laser beam and makes the processing energy region cross-sectional diameter of the condensing beam a predetermined range substantially constant in the optical axis direction, the polishing depth of the polishing surface is constant. Become.

また、請求項8に係る発明は、請求項7に記載のレーザ加工による研磨装置であって、前記研磨対象は、すくい面と逃げ面の交差する稜線を切り刃とする焼結ダイヤモンド切削工具を含み、前記角度調整手段は、前記焼結ダイヤモンド切削工具を前記集光レンズの光軸が前記すくい面に略直交し、前記逃げ面に略平行となるように調整する手段であり、前記研磨部位が前記稜線である。   The invention according to claim 8 is the polishing apparatus by laser processing according to claim 7, wherein the object to be polished is a sintered diamond cutting tool having a ridge line intersecting the rake face and the flank face as a cutting edge. The angle adjusting means is means for adjusting the sintered diamond cutting tool so that the optical axis of the condenser lens is substantially orthogonal to the rake face and substantially parallel to the flank face, Is the ridgeline.

超短光パルスレーザビームを用いているので加工メカニズムが断熱加工であり、マイクロクラック及びダイヤモンド粒子の黒鉛化が生じない。また、超短光パルスレーザビームを集光レンズで集光して集光ビームの加工エネルギ領域断面径を集光レンズの光軸方向で所定の範囲略一定にする集光レンズを有するので、切り刃稜線からの距離に不変の研磨深さが逃げ面に得られる。   Since an ultrashort optical pulse laser beam is used, the processing mechanism is adiabatic processing, and microcracks and diamond particles are not graphitized. In addition, it has a condensing lens that condenses the ultrashort optical pulse laser beam with a condensing lens and makes the processing energy region cross-sectional diameter of the condensing beam substantially constant within a predetermined range in the optical axis direction of the condensing lens. A polishing depth that is invariant to the distance from the edge of the edge is obtained on the flank.

また、請求項9に係る発明は、請求項7又は8に記載のレーザ加工による研磨装置であって、前記集光レンズの開口数が0.2以下である。   The invention according to claim 9 is the polishing apparatus according to claim 7 or 8, wherein the condensing lens has a numerical aperture of 0.2 or less.

開口数が0.2以下であると、集光レンズの所謂焦点深度が大きいために集光ビームウエスト付近の集光ビームが光軸方向で緩やかに変化する。その結果、集光ビームの加工エネルギ領域断面径を集光レンズの光軸方向で略一定にできる範囲を容易に確保することができる。   When the numerical aperture is 0.2 or less, the so-called depth of focus of the condensing lens is large, so that the condensing beam near the condensing beam waist changes gently in the optical axis direction. As a result, it is possible to easily ensure a range in which the processing energy region sectional diameter of the focused beam can be made substantially constant in the optical axis direction of the focusing lens.

また、請求項10に係る発明は、請求項7又は8に記載のレーザ加工による研磨装置であって、前記集光ビームの加工エネルギ領域断面径が6μm以上である。   The invention according to claim 10 is the polishing apparatus by laser processing according to claim 7 or 8, wherein a processing energy region sectional diameter of the focused beam is 6 μm or more.

集光ビームの加工エネルギ領域断面径が6μm以上であると、隣り合う集光ビームウエストの包絡線の脈動が小さくなり、逃げ面(研磨面)の面粗度を小さくすることができる。   When the cross section diameter of the processing energy region of the focused beam is 6 μm or more, the pulsation of the envelope of the adjacent focused beam waist becomes small, and the surface roughness of the flank (polished surface) can be reduced.

また、請求項11に係る発明は、請求項10に記載のレーザ加工による研磨装置であって、前記所定の移動速度は、隣り合う集光ビームウエストの間隔が10μm以下となる速度である。   The invention according to claim 11 is the polishing apparatus according to claim 10, wherein the predetermined moving speed is a speed at which an interval between adjacent focused beam waists is 10 μm or less.

移動速度が、隣り合う集光ビームウエストの間隔が10μm以下となる速度であると、隣り合う集光ビームウエストの包絡線の脈動がさらに小さくなり、逃げ面(研磨面)の面粗度をさらに小さくすることができる。   When the moving speed is a speed at which the interval between the adjacent focused beam waists is 10 μm or less, the pulsation of the envelope of the adjacent focused beam waists is further reduced, and the surface roughness of the flank (polished surface) is further increased. Can be small.

超短光パルスレーザビームを用いているので加工メカニズムが断熱加工であり、マイクロクラックやダイヤモンド粒子の黒鉛化が生じない。また、超短光パルスレーザビームを集光して集光ビームの加工エネルギ領域断面径を光軸方向で所定の範囲略一定にする集光レンズを有するので、切り刃稜線からの距離に不変の研磨深さが逃げ面に得られる。   Since an ultrashort pulse laser beam is used, the processing mechanism is adiabatic processing, and microcracks and graphitization of diamond particles do not occur. In addition, since it has a condensing lens that condenses the ultrashort optical pulse laser beam and makes the processing energy region cross-sectional diameter of the condensing beam constant within a predetermined range in the optical axis direction, the distance from the cutting edge ridge line remains unchanged Polishing depth is obtained on the flank.

本発明の研磨装置、研磨方法を図1〜8を用いて説明する。図1は、本発明の焼結ダイヤモンド切削工具の研磨装置の概略構成図、図2は、本発明の焼結ダイヤモンド切削工具の研磨方法を説明する模式図、図3は、図2のA−A線から見た一部切欠断面図、図4は、集光レンズによる集光ビームの加工エネルギ領域のシュミレーション結果、図5は、集光ビームの加工エネルギ領域断面径としてのバーンパターン実測結果、図6は、図2のC−C線から見た一部切欠線図で、集光ビームの加工エネルギ領域断面径とその包絡線の脈動の関係を説明する図、図7は、集光ビームウエスト部位の移動速度と脈動の関係をシミュレーションした結果、図8は、移動速度と研磨面粗さの関係を調べた結果である。   The polishing apparatus and polishing method of the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of a polishing apparatus for a sintered diamond cutting tool according to the present invention, FIG. 2 is a schematic diagram for explaining a polishing method for a sintered diamond cutting tool according to the present invention, and FIG. FIG. 4 shows a simulation result of the processing energy region of the condensed beam by the condensing lens, FIG. 5 shows a burn pattern measurement result as a processing energy region sectional diameter of the condensed beam, FIG. 6 is a partially cutaway diagram viewed from the line C-C in FIG. 2, and is a diagram for explaining the relationship between the machining energy region cross-sectional diameter of the focused beam and the pulsation of its envelope, and FIG. As a result of simulating the relationship between the moving speed and pulsation of the waist part, FIG. 8 shows the result of examining the relationship between the moving speed and the polished surface roughness.

まず、焼結ダイヤモンド切削工具の研磨装置を説明する。図1において、1は繰り返し超短光パルスレーザビーム3を発生する超短光パルス光源、2はレーザビーム3を集光して集光ビームの加工エネルギ領域断面径を光軸21方向で所定の範囲略一定にする集光レンズ、4はゴニオステージで、すくい面71と逃げ面72の交差する稜線73を切り刃とする焼結ダイヤモンド切削工具7を集光レンズ2の光軸21がすくい面71に略直交し、逃げ面72に略平行となるように調整する角度調整手段である。5はZ軸ステージで、集光レンズ2による超短光パルスレーザビーム3の集光ビームウエスト部位31を稜線73に存在するように調整する集光ビームウエスト部位調整手段である。6はXYステージで、集光ビームウエスト部位31を稜線73に沿って所定の移動速度で相対的に移動させる移動手段である。8は折り曲げミラーで、水平方向のレーザビームを垂直方向に折り曲げる。   First, a polishing apparatus for a sintered diamond cutting tool will be described. In FIG. 1, 1 is an ultrashort optical pulse light source that repeatedly generates an ultrashort optical pulse laser beam 3, 2 is a laser beam 3 that is focused and a processing energy region sectional diameter of the focused beam is predetermined in the direction of the optical axis 21. A condensing lens 4 having a substantially constant range, 4 is a gonio stage, and the optical axis 21 of the condensing lens 2 is a rake surface of a sintered diamond cutting tool 7 having a ridge line 73 intersecting the rake surface 71 and the flank 72 as a cutting edge. The angle adjusting means adjusts so as to be substantially perpendicular to 71 and substantially parallel to the flank 72. Reference numeral 5 denotes a Z-axis stage, which is a condensing beam waist portion adjusting means for adjusting the condensing beam waist portion 31 of the ultrashort optical pulse laser beam 3 by the condensing lens 2 so that it exists on the ridge line 73. Reference numeral 6 denotes an XY stage, which is a moving means that relatively moves the condensed beam waist portion 31 along the ridge line 73 at a predetermined moving speed. Reference numeral 8 denotes a bending mirror that bends the horizontal laser beam in the vertical direction.

超短光パルス光源1としては、パルス時間幅が10ピコ秒以下で、1発のパルスエネルギで決まる集光ビームの加工エネルギ領域のフルーエンスが焼結ダイヤモンドのアブレーション閾値以上であれば、何でもよい。例えばIMRA社製フェムト秒パルスレーザ(FCPA μJewel D−1000)を用いることができる。このレーザの最大平均出力は1W、パルス時間幅は700fs以下、繰り返し周波数は100kHz、1発のパルスエネルギは最大10μJである。したがって、焼結ダイヤモンドのアブレーション閾値が2J/cmであるので、集光ビームの加工エネルギ領域断面径を25μm以下にすればよい。 The ultrashort optical pulse light source 1 may be anything as long as the pulse time width is 10 picoseconds or less and the fluence in the processing energy region of the focused beam determined by one pulse energy is equal to or greater than the ablation threshold of sintered diamond. For example, a femtosecond pulse laser (FCPA μJewel D-1000) manufactured by IMRA can be used. This laser has a maximum average output of 1 W, a pulse time width of 700 fs or less, a repetition frequency of 100 kHz, and a maximum pulse energy of 10 μJ. Therefore, since the ablation threshold value of sintered diamond is 2 J / cm 2 , the processing energy region cross-sectional diameter of the focused beam may be set to 25 μm or less.

集光レンズ2として、例えば顕微鏡対物レンズを用いることができる。後述するように、集光レンズ2の開口数は0.2以下が望ましい。   As the condenser lens 2, for example, a microscope objective lens can be used. As will be described later, the numerical aperture of the condenser lens 2 is preferably 0.2 or less.

ゴニオステージ4は、紙面に直交するY軸の回りに回転でき、点線で示す研削工具7を回転させ実線で示す研削工具7とし、逃げ面72が光軸21と略平行になるようにする。   The gonio stage 4 can rotate around the Y axis orthogonal to the paper surface, and the grinding tool 7 indicated by the dotted line is rotated to become the grinding tool 7 indicated by the solid line so that the flank 72 is substantially parallel to the optical axis 21.

Z軸ステージ5は、研削工具7を光軸21の方向(Z軸方向)に移動させることができ、切り刃稜線73と集光ビームウエスト部位31をZ軸方向で一致させる。   The Z-axis stage 5 can move the grinding tool 7 in the direction of the optical axis 21 (Z-axis direction), and makes the cutting edge ridge line 73 and the focused beam waist part 31 coincide with each other in the Z-axis direction.

XY軸ステージ6は、研削工具7をZ軸と直交するX−Y面内で移動させることができ、切り刃稜線73と集光ビームウエスト部位31をXY方向で一致させる。したがって、XYステージ6は、切り刃稜線73を集光ビームウエスト部位31とXY方向で一致させた状態で、研削工具7をZ軸と直交するX−Y面内で移動させることができる。   The XY axis stage 6 can move the grinding tool 7 in an XY plane orthogonal to the Z axis, and makes the cutting edge ridge line 73 and the focused beam waist portion 31 coincide with each other in the XY direction. Therefore, the XY stage 6 can move the grinding tool 7 in the XY plane orthogonal to the Z axis in a state where the cutting edge ridge line 73 coincides with the condensed beam waist portion 31 in the XY direction.

上記したように、集光レンズによる超短光パルスレーザビームの集光ビームウエスト部位31を稜線73に存在するように調整する集光ビームウエスト部位調整手段は、Z軸ステージ5にXY軸ステージ6を加えたものになる。   As described above, the condensed beam waist part adjusting means for adjusting the condensed beam waist part 31 of the ultrashort optical pulse laser beam by the condenser lens so that it exists on the ridge line 73 includes the Z-axis stage 5 and the XY-axis stage 6. Will be added.

図1の焼結ダイヤモンド研削工具の研磨装置では、ゴニオステージ4を、すくい面71と逃げ面72の交差する稜線73を切り刃とする焼結ダイヤモンド切削工具7を集光レンズ2の光軸21がすくい面71に略直交し、逃げ面72に略平行となるように調整する角度調整手段としたが、折り曲げミラー8を矢印G方向に回転できるようにしてゴニオステージ4の代わりとすることもできる。   In the polishing apparatus for the sintered diamond grinding tool of FIG. 1, the sintered diamond cutting tool 7 having the gonio stage 4 as the cutting edge at the ridgeline 73 where the rake face 71 and the flank 72 intersect is used as the optical axis 21 of the condenser lens 2. Although the angle adjusting means is adjusted so as to be substantially perpendicular to the rake face 71 and substantially parallel to the flank face 72, the folding mirror 8 may be rotated in the direction of the arrow G to replace the gonio stage 4. it can.

次に図2〜図8を用いて本発明の焼結ダイヤモンド切削工具の研磨方法を説明する。   Next, a method for polishing a sintered diamond cutting tool of the present invention will be described with reference to FIGS.

図2に示すように、焼結ダイヤモンド切削工具7のすくい面71と逃げ面72が交差する切り刃稜線73に集光ビームウエスト部位31が位置している。すなわち、焦点距離Fの集光レンズ2の光軸21が切り刃稜線73と交わり、且つ逃げ面72に平行で、集光レンズ2が光軸21と切り刃稜線73との交点より光軸方向に焦点距離Fだけ上方に位置している。   As shown in FIG. 2, the condensed beam waist portion 31 is located at the cutting edge ridge line 73 where the rake face 71 and the flank face 72 of the sintered diamond cutting tool 7 intersect. That is, the optical axis 21 of the condensing lens 2 at the focal length F intersects the cutting edge ridge line 73 and is parallel to the flank 72, and the condensing lens 2 is in the optical axis direction from the intersection of the optical axis 21 and the cutting edge ridge line 73. Is located above the focal length F.

図3に示すように、集光ビームウエスト部位31から上にγ、下にγの範囲で集光ビームの加工エネルギ領域断面径(2δ)が略一定である領域32(斜線領域)が位置するようにする。そして、この領域のフルーエンスを焼結ダイヤモンドのアブレーション閾値以上にすることで、逃げ面72の方向にγ、逃げ面72と直交する方向にδの範囲をアブレーション加工することができる。さらに図2に示すように、集光ビームウエスト部位31を切り刃稜線73に沿って相対的に(矢印B方向に)移動させることで、稜線73から下方(逃げ面72に平行)にγ、逃げ面72に垂直方向にδの範囲(点線で示す範囲)をアブレーション加工により除去することができる。   As shown in FIG. 3, a region 32 (shaded region) where the processing energy region cross-sectional diameter (2δ) of the focused beam is substantially constant in the range of γ above and γ below the focused beam waist portion 31 is located. Like that. Then, by setting the fluence in this region to be equal to or greater than the ablation threshold value of the sintered diamond, γ can be ablated in the direction of the flank 72 and δ in the direction perpendicular to the flank 72. Further, as shown in FIG. 2, by moving the focused beam waist portion 31 relatively (in the direction of arrow B) along the cutting edge ridge line 73, γ, downward from the ridge line 73 (parallel to the flank 72), The range of δ (the range indicated by the dotted line) in the direction perpendicular to the flank 72 can be removed by ablation.

この集光ビームの加工エネルギ領域断面径(2δ)が略一定である領域32は、例えば、図4に示すようにシミュレーションすることで、予め知り設定することができる。図4は、レーザビームの波長λが1.56μmのときの集光レンズによるビームウエスト付近の加工エネルギ領域のシミュレーション結果である。等エネルギ楕円の長軸(Z方向)の長さが集光レンズ2の開口数NAによって変化することがわかる。Z=0を切り刃稜線73とし(切り刃稜線73に集光レンズ2の焦点を合わせ)、図4b、図4cでは最小楕円のフルーエンスをアブレーション閾値より少し高めに設定し、図4aでは点線の楕円(図では上下が欠け樽状である)のフルーエンスをアブレーション閾値より少し高めに設定することで、NA=0.47のときγ≒3μm、NA=0.31のときγ≒4μm、NA=0.13のときγ≒50μmとすることができる。すなわち、集光レンズ2の開口数を0.2以下にすることで、集光ビームウエスト部位31を切り刃稜線73に一致させた場合に、γ≒50μmに渡って、集光ビームウエスト部位31を切り刃稜線73より下方γに合わせた場合は、2γ≒100μmに渡って逃げ面72を研磨することができる。したがって、逃げ面の研磨しなければならない幅が決まれば、集光レンズの開口数を0.2以下にし、集光ビームウエスト部位の位置を調節することで、集光ビームの加工エネルギ領域断面径が略一定の範囲を研磨すべき幅に合わせることができる。   The region 32 where the processing energy region cross-sectional diameter (2δ) of the focused beam is substantially constant can be known and set in advance by simulation as shown in FIG. 4, for example. FIG. 4 is a simulation result of the processing energy region near the beam waist by the condenser lens when the wavelength λ of the laser beam is 1.56 μm. It can be seen that the length of the major axis (Z direction) of the equal energy ellipse varies depending on the numerical aperture NA of the condenser lens 2. Z = 0 is set as the cutting edge ridge line 73 (the focusing lens 2 is focused on the cutting edge ridge line 73). In FIGS. 4b and 4c, the fluence of the minimum ellipse is set slightly higher than the ablation threshold. In FIG. By setting the fluence of the ellipse (top and bottom in the shape of a barrel) to be slightly higher than the ablation threshold, γ≈3 μm when NA = 0.47, γ≈4 μm when NA = 0.31, NA = When 0.13, γ≈50 μm can be obtained. That is, by setting the numerical aperture of the condensing lens 2 to 0.2 or less, when the condensing beam waist portion 31 is made to coincide with the cutting edge ridge line 73, the condensing beam waist portion 31 extends over γ≈50 μm. Is set to γ below the cutting edge ridge line 73, the flank 72 can be polished over 2γ≈100 μm. Therefore, once the width of the flank to be polished is determined, the processing lens area of the focused beam is adjusted by adjusting the position of the focused beam waist portion by setting the numerical aperture of the focused lens to 0.2 or less. However, a substantially constant range can be adjusted to the width to be polished.

集光ビームの加工エネルギ領域断面径(2δ)が略一定である領域32は、上記のようなシミュレーションの他に、図5に示すように図1の研磨装置を使い予め実測することで知ることができる。図5aは、集光レンズ2として倍率5倍、NA=0.1の顕微鏡対物レンズを、図5bは倍率20倍、NA=0.4の顕微鏡対物レンズを、それぞれ用いて実測した集光ビームの加工エネルギ領域断面径である。これは、研削工具7の代わりに焼結ダイヤモンド板をゴニオステージ4にセットし、集光ビームウエスト部位31をZ軸方向で上下に漸次変化させ、レーザビームを集光照射してバーンパターン(加工痕)を観測し、Z軸(光軸)方向を縦軸、Z軸(光軸)に直交する方向を横軸にしてバーンパターンをプロットしたものである。倍率5倍の対物レンズの場合、40μm以上の範囲でバーンパターンの外径が一定であることがわかる。それに対して、倍率20倍の対物レンズの場合は、バーンパターンの外径が一定である範囲が約10μmしかないことがわかる。研削工具の逃げ面の切り刃稜線から下方の研磨幅は、通常50μm以上欲しいので、集光レンズ2として倍率5倍、NA=0.1の顕微鏡対物レンズを用い、集光ビームウエスト部位31を切り刃稜線73の下方約20μmに設定する必要がある。   The region 32 where the processing energy region cross-sectional diameter (2δ) of the focused beam is substantially constant is known by actually measuring in advance using the polishing apparatus of FIG. 1 as shown in FIG. 5 in addition to the above simulation. Can do. FIG. 5a shows a condensing beam actually measured using a microscope objective lens with a magnification of 5 times and NA = 0.1 as the condenser lens 2, and FIG. 5b shows a microscope objective lens with a magnification of 20 times and NA = 0.4. The processing energy region cross-sectional diameter. This is because a sintered diamond plate is set on the gonio stage 4 instead of the grinding tool 7, the focused beam waist part 31 is gradually changed up and down in the Z-axis direction, and the laser beam is focused and irradiated to form a burn pattern (processing) The burn pattern is plotted with the Z axis (optical axis) direction as the vertical axis and the direction perpendicular to the Z axis (optical axis) as the horizontal axis. In the case of an objective lens having a magnification of 5 times, it can be seen that the outer diameter of the burn pattern is constant in the range of 40 μm or more. On the other hand, in the case of an objective lens with a magnification of 20 times, it can be seen that the range in which the outer diameter of the burn pattern is constant is only about 10 μm. Since the polishing width below the cutting edge ridge line of the flank of the grinding tool is usually 50 μm or more, a microscope objective lens having a magnification of 5 times and NA = 0.1 is used as the condenser lens 2 and the condensed beam waist part 31 is formed. It is necessary to set to about 20 μm below the cutting edge ridge line 73.

図6は、図2のC−C線断面で見た部分拡大矢視図で、図6aは、集光ビームの加工エネルギ領域断面円が切り刃稜線73に沿って順次ピッチLで配列している様子を模式的に示した図である。例えば、加工エネルギ領域断面円のフルーエンスがアブレーション閾値以上であると、ビームウエスト部位にある焼結ダイヤモンドは除去され、逃げ面は図6bのように集光ビームの加工エネルギ領域断面円の包絡線となり、脈動する。   6 is a partially enlarged arrow view seen in the CC line section of FIG. 2, and FIG. 6 a is a diagram in which the processing energy region sectional circles of the focused beam are sequentially arranged at the pitch L along the cutting edge ridge line 73. It is the figure which showed a mode that it was. For example, if the fluence of the processing energy region cross-sectional circle is greater than or equal to the ablation threshold, the sintered diamond in the beam waist region is removed, and the flank becomes the envelope of the processing energy region cross-sectional circle of the focused beam as shown in FIG. Pulsates.

集光ビームの加工エネルギ領域断面径を2δ、集光ビームの加工エネルギ領域断面円の中心をO、隣り合う断面円との交点をP、Oを通り切り刃稜線73に直交する線と断面円の交点をQ、∠QOPをθとすると、脈動幅dは、
d=δ(1−cosθ) (1)
と表される。ここで、θ=sin−1(L/2δ)であり、ピッチLは、レーザビーム繰り返し周波数をf、集光ビームウエスト部位の相対移動速度をvとすると、L=v/fであるので、集光ビームの加工エネルギ領域断面径2δをパラメータとして、移動速度vと脈動幅dの関係をシミュレーションすることができる。
The processing energy region cross-sectional diameter of the focused beam is 2δ, the center of the processing energy region cross-sectional circle of the focused beam is O, the intersection with the adjacent cross-sectional circle is P, the line passing through O and perpendicular to the cutting edge ridge 73 If the intersection of Q is Q and ∠QOP is θ, the pulsation width d is
d = δ (1-cos θ) (1)
It is expressed. Here, θ = sin −1 (L / 2δ), and the pitch L is L = v / f, where f is the laser beam repetition frequency and v is the relative moving speed of the focused beam waist portion. The relationship between the moving speed v and the pulsation width d can be simulated using the processing energy region sectional diameter 2δ of the focused beam as a parameter.

図7がシュミレーション結果で、集光ビームの加工エネルギ領域断面径2δが大きいほど脈動幅dが小さいこと、すなわち面粗度が小さいことがわかる。2δが大きくなると、フルーエンスをアブレーション閾値以上にするためには、大出力の超短光パルスレーザが必要になり、現実的でない。2δ=6μmまでは、断面径と共に脈動幅dが大きく減少するが、2δが6μm以上では脈動幅dの減少が飽和する傾向がある。したがって、集光ビームの加工エネルギ領域断面径2δを少なくとも6μmとすることが望ましいことがわかる。   FIG. 7 shows the simulation result, and it can be seen that the larger the processing energy region cross-sectional diameter 2δ of the focused beam, the smaller the pulsation width d, that is, the smaller the surface roughness. When 2δ increases, a high-power ultrashort optical pulse laser is required to make the fluence equal to or greater than the ablation threshold, which is not practical. Up to 2δ = 6 μm, the pulsation width d greatly decreases with the cross-sectional diameter, but when 2δ is 6 μm or more, the decrease in the pulsation width d tends to be saturated. Therefore, it can be seen that the processing energy region sectional diameter 2δ of the focused beam is preferably at least 6 μm.

また、図7から移動速度が小さいほど脈動幅(面粗度)が小さいこと、移動速度が大きくなり、ある値を超えると急激に脈動幅が増大することがわかる。   Further, it can be seen from FIG. 7 that the smaller the moving speed, the smaller the pulsation width (surface roughness), the larger the moving speed, and when the value exceeds a certain value, the pulsation width increases rapidly.

図7のシミュレーション結果からは、移動速度の最適値が明確でないので、実験的に調べることにした。すなわち、図1の研磨装置を用い、焼結ダイヤモンド切削工具の逃げ面の切り刃稜線直下を研磨した。   From the simulation result of FIG. 7, since the optimum value of the moving speed is not clear, it was decided to investigate experimentally. That is, the polishing apparatus of FIG. 1 was used to polish the flank of the sintered diamond cutting tool directly under the cutting edge ridge line.

研磨条件
研磨対象:焼結ダイヤモンド製スローアウェイチップ
超短光パルス光源:IMRA社製フェムト秒パルスレーザ(FCPA μJ ewel D−1000)
波長:1.045μm
パルス時間幅:300fs
繰り返し周波数:100kHz
平均出力:0.6W
ビーム径:3mm
集光レンズ:倍率5倍、開口数0.1、焦点距離36mm
集光ビームの加工エネルギ領域断面径:18.9μm(計算値)
移動速度:0.1〜100mm/s
図8が実験結果で、これから移動速度が1mm/sを越えると面粗度が急激に増大することがわかる。すなわち、良好な研磨面粗度を達成するためには、移動速度を1mm/s以下にする必要がある。
Polishing condition Polishing target: Slow away tip made of sintered diamond Ultrashort light pulse light source: Femtosecond pulse laser (FCPA μJ ewel D-1000) manufactured by IMRA
Wavelength: 1.045 μm
Pulse time width: 300 fs
Repeat frequency: 100 kHz
Average output: 0.6W
Beam diameter: 3mm
Condenser lens: magnification 5 times, numerical aperture 0.1, focal length 36 mm
Processing energy region cross-sectional diameter of focused beam: 18.9 μm (calculated value)
Movement speed: 0.1-100mm / s
FIG. 8 shows the experimental results. From this, it can be seen that the surface roughness rapidly increases when the moving speed exceeds 1 mm / s. That is, in order to achieve good polished surface roughness, the moving speed needs to be 1 mm / s or less.

上記研磨条件での図6のL(隣り合う集光ビームウエストのピッチ)は、移動速度と繰り返し周波数から10μmであり、移動速度を1mm/s以下にするということは、移動速度を隣り合う集光ビームの間隔が10μm以下となる速度にすることに等しい。   L (pitch of adjacent focused beam waists) in FIG. 6 under the above polishing conditions is 10 μm from the moving speed and the repetition frequency, and that the moving speed is 1 mm / s or less means that the moving speed is the adjacent collecting speed. This is equivalent to a speed at which the interval between the light beams is 10 μm or less.

図1に示す研磨装置を使って、図9に示すスローアウェイチップを研磨した。本実施例の焼結ダイヤモンド切削工具7はスローアウェイチップであり、超硬合金台座74に切り刃部材75をろう付したものである。切り刃部材75は、タングステンカーバイト(WC)を主成分とする超硬合金の高硬度焼結体751と多結晶ダイヤモンドを主成分とする超高硬度焼結体752とを積層して形成されたものである。   The throw-away tip shown in FIG. 9 was polished using the polishing apparatus shown in FIG. The sintered diamond cutting tool 7 of this embodiment is a throw-away tip, and a cutting blade member 75 is brazed to a cemented carbide base 74. The cutting blade member 75 is formed by laminating a cemented carbide high-hardness sintered body 751 mainly composed of tungsten carbide (WC) and an ultrahigh-hardness sintered body 752 mainly composed of polycrystalline diamond. It is a thing.

研磨条件
・研磨対象:上記スローアウェイチップ
・超短光パルス光源:IMRA社製フェムト秒パルスレーザ(FCPA μJewe l D−1000)
波長:1.045μm
パルス時間幅:300fs
繰り返し周波数:100kHz
平均出力:0.6W
ビーム径:3mm
・集光レンズ:倍率5倍、開口数0.1、焦点距離36mm
・ビームウエスト径:18.9μm(計算値)
・集光ビームの加工エネルギ領域断面径(バーンパターン径、加工痕径)が光軸(Z 軸)方向で一定となる範囲:約100μm(図10参照)
・移動速度:1mm/s
図10は、加工痕径を実測する代わりにシミュレーションで求めた集光ビームの加工エネルギ領域である。このシミュレーションは以下のように行われた。
<1>:5×レンズを選択する
<2>:予め入力されているデータテーブルから<1>で選択したレンズの焦点距離、瞳径がそれぞれ36mm、7.2mmと参照される
<3>:ビーム径を3mm、Mを1.4、波長を1.045μm、アブレーション閾値を2J/cm、レーザエネルギーを6.1μJと入力する。
<4>:<2>、<3>を参照してビームウエスト径が18.9μm、レーリーレンジが268.2μm、ピークフルーエンスが4.352J/cm、1/eフルーエンスが0.589J/cmと算出される
<5>:<3>、<4>を参照してアブレーション閾値に等しい加工エネルギ領域(等エネルギ楕円E)が計算されグラフ化される
図10から光軸方向に約100μmに渡って加工エネルギ領域断面径が約12μmと一定になることがわかる。
Polishing conditions ・ Polishing object: the above-mentioned throw-away tip ・ Ultra short light pulse source: Femtosecond pulse laser (FCPA μJewel D-1000) manufactured by IMRA
Wavelength: 1.045 μm
Pulse time width: 300 fs
Repeat frequency: 100 kHz
Average output: 0.6W
Beam diameter: 3mm
・ Condenser lens: magnification 5 times, numerical aperture 0.1, focal length 36 mm
-Beam waist diameter: 18.9 μm (calculated value)
・ Processing energy area cross-sectional diameter (burn pattern diameter, machining trace diameter) of the focused beam is constant in the optical axis (Z-axis) direction: about 100 μm (see FIG. 10)
・ Movement speed: 1mm / s
FIG. 10 shows the processing energy region of the focused beam obtained by simulation instead of actually measuring the processing scar diameter. This simulation was performed as follows.
<1>: Select 5 × lens
<2>: The focal length and pupil diameter of the lens selected in <1> are referred to as 36 mm and 7.2 mm from the pre-input data table, respectively.
<3>: The beam diameter is 3 mm, M 2 is 1.4, the wavelength is 1.045 μm, the ablation threshold is 2 J / cm 2 , and the laser energy is 6.1 μJ.
<4>: Referring to <2> and <3>, the beam waist diameter is 18.9 μm, the Rayleigh range is 268.2 μm, the peak fluence is 4.352 J / cm 2 , and the 1 / e 2 fluence is 0.589 J /. Calculated as cm 2
<5>: Processing energy region equal to the ablation threshold value (equal energy ellipse E) is calculated with reference to <3> and <4> and graphed. Processing energy region over about 100 μm in the optical axis direction from FIG. It can be seen that the cross-sectional diameter is constant at about 12 μm.

図11は、切り刃稜線付近のSEMによる拡大観察像で、図11(a)は、研磨前、図11(b)は、研磨後の観察像である。図11(a)と図11(b)を比較すると、研磨後は、切り刃稜線及び稜線から下側に延びる逃げ面の凹凸が減り稜線が直線状に仕上がっていることがわかる。   FIG. 11 is an enlarged observation image by SEM near the cutting edge ridge line, FIG. 11A is an observation image before polishing, and FIG. 11B is an observation image after polishing. Comparing FIG. 11 (a) and FIG. 11 (b), it can be seen that after polishing, the cutting edge ridgeline and the relief of the flank extending downward from the ridgeline are reduced, and the ridgeline is finished in a straight line.

また、切り刃稜線直下の表面粗さRaは、研磨前が平均1.5μmであるのに対して、研磨後は平均0.26μmであった。本発明の研磨方法及び装置により研磨を行うことで切り刃稜線直下の表面粗さが改善されることが確認された。   Further, the surface roughness Ra immediately below the cutting edge ridge line was 1.5 μm on average before polishing, and 0.26 μm on average after polishing. It was confirmed that the surface roughness directly under the cutting edge ridge was improved by polishing with the polishing method and apparatus of the present invention.

本発明の焼結ダイヤモンド切削工具の研磨装置の概略構成図である。It is a schematic block diagram of the grinding | polishing apparatus of the sintered diamond cutting tool of this invention. 本発明の焼結ダイヤモンド切削工具の研磨方法を説明する模式図である。It is a schematic diagram explaining the grinding | polishing method of the sintered diamond cutting tool of this invention. 図3のC−C線断面の端面図である。FIG. 4 is an end view of a cross section taken along the line CC of FIG. 3. 集光レンズによる集光ビームの加工エネルギ領域のシミュレーション結果である。It is a simulation result of the processing energy area | region of the condensing beam by a condensing lens. 集光ビームの加工エネルギ領域断面径としてのバーンパターン実測結果である。It is a burn pattern actual measurement result as a process energy area | region cross-sectional diameter of a condensing beam. 図1のC−C線から見た一部切欠線図で、加工エネルギ領域断面円とその包絡線の脈動の関係を説明する図である。It is a partially cutaway diagram seen from the CC line | wire of FIG. 1, and is a figure explaining the relationship of the pulsation of a process energy area | region cross-sectional circle and its envelope. 集光ビームウエスト部位の移動速度と脈動の関係をシミュレーションした結果である。It is the result of simulating the relationship between the moving speed and pulsation of the focused beam waist part. 移動速度と研磨面粗さの関係を調べた結果である。It is the result of investigating the relationship between the moving speed and the polished surface roughness. 実施例で研磨加工に供したスローアウェイチップの模式図である。It is a schematic diagram of the throw-away tip used for polishing in the example. シミュレーションで求めた集光ビームの加工エネルギ領域である。This is the processing energy region of the focused beam obtained by simulation. 実施例のスローアウェイチップのSEM観察像である。It is a SEM observation image of the throw away tip of an Example. 従来技術の研磨加工を説明する図である。It is a figure explaining the grinding | polishing process of a prior art.

符号の説明Explanation of symbols

1・・・・・・超短光パルス光源
2・・・・・・集光レンズ
21・・・光軸
3・・・・・・繰り返し超短光パルスレーザビーム
31・・・集光ビームウエスト部位
4・・・・・・角度調整手段
5・・・・・・Z軸ステージ(集光ビームウエスト部位調整手段)
6・・・・・・XY軸ステージ(移動手段/集光ビームウエスト部位調整手段)
7・・・・・・焼結ダイヤモンド切削工具
71・・・すくい面
72・・・逃げ面(研磨面)
73・・・切り刃稜線(研磨部位)
2δ・・・・・集光ビームの加工エネルギ領域断面径
DESCRIPTION OF SYMBOLS 1 .... Ultra-short optical pulse light source 2 ... Condensing lens 21 ... Optical axis 3 ... Repeat ultra-short optical pulse laser beam 31 ... Condensed beam waist Part 4 ··· Angle adjustment means 5 ········ Z-axis stage (Condensed beam waist part adjustment means)
6. XY axis stage (moving means / focusing beam waist part adjusting means)
7 ··············· Sintered diamond cutting tool 71 ··· Rake face
73 ... Cutting edge ridge line (polished part)
2δ ... Processing energy region cross-sectional diameter of the focused beam

Claims (11)

繰り返し超短光パルスレーザビームを集光レンズで集光した際の集光ビームの加工エネルギ領域断面径を前記集光レンズの光軸方向で所定の範囲略一定にする断面径一定ステップと、
前記集光レンズの前記光軸を研磨対象の研磨面に略平行となるように調節する光軸調整ステップと、
前記集光レンズによる前記超短光パルスレーザビームの集光ビームウエスト部位を前記研磨対象の研磨部位に存在するように調整する集光ビームウエスト部位調節ステップと、
前記集光レンズによる集光ビームウエスト部位を前記研磨部位に沿って所定の移動速度で相対的に移動させる移動ステップと、を有することを特徴とするレーザ加工による研磨方法。
A cross-sectional diameter constant step for making the processing energy region cross-sectional diameter of the condensed beam when the ultra-short optical pulse laser beam is repeatedly condensed by the condensing lens substantially constant within a predetermined range in the optical axis direction of the condensing lens;
An optical axis adjustment step for adjusting the optical axis of the condenser lens so as to be substantially parallel to a polishing surface to be polished;
A condensing beam waist portion adjusting step for adjusting the condensing beam waist portion of the ultrashort optical pulse laser beam by the condensing lens so as to exist in the polishing portion to be polished; and
And a moving step of relatively moving a condensing beam waist portion by the condensing lens at a predetermined moving speed along the polishing portion.
前記研磨対象は、すくい面と逃げ面の交差する稜線を切り刃とする焼結ダイヤモンド切削工具を含み、
前記光軸調整ステップは、前記集光レンズの前記光軸を前記すくい面に略直交し、前記逃げ面に略平行となるように調節するステップであり、
前記研磨部位が前記稜線である請求項1に記載のレーザ加工による研磨方法。
The polishing object includes a sintered diamond cutting tool having a ridge line intersecting a rake face and a flank face as a cutting edge,
The optical axis adjustment step is a step of adjusting the optical axis of the condenser lens so as to be substantially perpendicular to the rake face and substantially parallel to the flank face,
The polishing method according to claim 1, wherein the polishing portion is the ridge line.
前記集光レンズの開口数が0.2以下である請求項1又は2に記載のレーザ加工による研磨方法。   The polishing method according to claim 1 or 2, wherein the condensing lens has a numerical aperture of 0.2 or less. 前記集光ビームの加工エネルギ領域断面径が少なくとも6μm以上である請求項1又は2に記載のレーザ加工による研磨方法。   The polishing method by laser processing according to claim 1 or 2, wherein a processing energy region sectional diameter of the focused beam is at least 6 µm or more. 前記所定の移動速度は、隣り合う集光ビームウエストの間隔が10μm以下となる速度である請求項4に記載のレーザ加工による研磨方法。   The polishing method by laser processing according to claim 4, wherein the predetermined moving speed is a speed at which an interval between adjacent focused beam waists is 10 μm or less. 請求項2〜4のいずれかに記載の研磨方法で研磨された焼結ダイヤモンド切削工具。   A sintered diamond cutting tool polished by the polishing method according to claim 2. 繰り返し超短光パルスレーザビームを発生する超短光パルス光源と、
前記超短光パルス光源から発生する前記超短光パルスレーザビームを集光して集光ビームの加工エネルギ領域断面径を光軸方向で所定の範囲略一定にする集光レンズと、
前記集光レンズの光軸を研磨対象の研磨面に略平行となるように調整する角度調整手段と、
前記集光レンズによる前記超短光パルスレーザビームの集光ビームウエスト部位を前記研磨対象の研磨部位に存在するように調整する集光ビームウエスト部位調整手段と、
前記集光レンズによる集光ビームウエスト部位を前記研磨部位に沿って所定の移動速度で相対的に移動させる移動手段と、を有することを特徴とするレーザ加工による研磨装置。
An ultrashort optical pulse light source that repeatedly generates an ultrashort optical pulse laser beam; and
A condensing lens that condenses the ultrashort optical pulse laser beam generated from the ultrashort optical pulse light source and makes the processing energy region cross-sectional diameter of the condensed beam a predetermined range substantially constant in the optical axis direction;
Angle adjusting means for adjusting the optical axis of the condenser lens so as to be substantially parallel to the polishing surface to be polished;
Condensed beam waist part adjusting means for adjusting the condensed beam waist part of the ultrashort optical pulse laser beam by the condenser lens so as to exist in the polishing part to be polished;
A polishing apparatus by laser processing, comprising: a moving means for relatively moving a condensing beam waist portion by the condensing lens at a predetermined moving speed along the polishing portion.
前記研磨対象は、すくい面と逃げ面の交差する稜線を切り刃とする焼結ダイヤモンド切削工具を含み、
前記角度調整手段は、前記焼結ダイヤモンド切削工具を前記集光レンズの光軸が前記すくい面に略直交し、前記逃げ面に略平行となるように調整する手段であり、
前記研磨部位が前記稜線である請求項7に記載のレーザ加工による研磨装置。
The polishing object includes a sintered diamond cutting tool having a ridge line intersecting a rake face and a flank face as a cutting edge,
The angle adjusting means is a means for adjusting the sintered diamond cutting tool so that the optical axis of the condenser lens is substantially perpendicular to the rake face and substantially parallel to the flank face,
The polishing apparatus according to claim 7, wherein the polishing portion is the ridgeline.
前記集光レンズの開口数が0.2以下である請求項7又は8に記載のレーザ加工による研磨装置。   The polishing apparatus according to claim 7 or 8, wherein the condensing lens has a numerical aperture of 0.2 or less. 前記集光ビームの加工エネルギ領域断面径が少なくとも6μm以上である請求項7又は8に記載のレーザ加工による研磨装置。   The polishing apparatus according to claim 7 or 8, wherein a processing energy region sectional diameter of the focused beam is at least 6 µm or more. 前記所定の移動速度は、隣り合う集光ビームウエストの間隔が10μm以下となる速度である請求項10に記載のレーザ加工による研磨装置。   The polishing apparatus according to claim 10, wherein the predetermined moving speed is a speed at which an interval between adjacent focused beam waists is 10 μm or less.
JP2007238087A 2007-09-13 2007-09-13 Polishing method using laser beam machining, polishing device, and polished cutting tool Pending JP2009066627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007238087A JP2009066627A (en) 2007-09-13 2007-09-13 Polishing method using laser beam machining, polishing device, and polished cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007238087A JP2009066627A (en) 2007-09-13 2007-09-13 Polishing method using laser beam machining, polishing device, and polished cutting tool

Publications (1)

Publication Number Publication Date
JP2009066627A true JP2009066627A (en) 2009-04-02

Family

ID=40603443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007238087A Pending JP2009066627A (en) 2007-09-13 2007-09-13 Polishing method using laser beam machining, polishing device, and polished cutting tool

Country Status (1)

Country Link
JP (1) JP2009066627A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814590A (en) * 2012-07-21 2012-12-12 北京工业大学 Method for removing adhesive on bottom plate of orthodontic bracket by laser
EP2868421A1 (en) * 2013-11-04 2015-05-06 Rofin-Sinar Technologies, Inc. Method and apparatus for machining diamonds and gemstones using filamentation by burst ultrafast laser pulses
US9517929B2 (en) 2013-11-19 2016-12-13 Rofin-Sinar Technologies Inc. Method of fabricating electromechanical microchips with a burst ultrafast laser pulses
US9757815B2 (en) 2014-07-21 2017-09-12 Rofin-Sinar Technologies Inc. Method and apparatus for performing laser curved filamentation within transparent materials
CN107199401A (en) * 2017-04-24 2017-09-26 和品(香港)公司 A kind of laser polishing machine and the polishing method using the laser polishing machine
US10005152B2 (en) 2013-11-19 2018-06-26 Rofin-Sinar Technologies Llc Method and apparatus for spiral cutting a glass tube using filamentation by burst ultrafast laser pulses
WO2018147959A1 (en) 2017-02-09 2018-08-16 Us Synthetic Corporation Energy machined polycrystalline diamond compacts and related methods
US10144088B2 (en) 2013-12-03 2018-12-04 Rofin-Sinar Technologies Llc Method and apparatus for laser processing of silicon by filamentation of burst ultrafast laser pulses
US10252507B2 (en) 2013-11-19 2019-04-09 Rofin-Sinar Technologies Llc Method and apparatus for forward deposition of material onto a substrate using burst ultrafast laser pulse energy
US10391588B2 (en) 2015-01-13 2019-08-27 Rofin-Sinar Technologies Llc Method and system for scribing brittle material followed by chemical etching
JPWO2018179666A1 (en) * 2017-03-28 2019-11-07 住友電工ハードメタル株式会社 Cutting tool manufacturing method
US11053156B2 (en) 2013-11-19 2021-07-06 Rofin-Sinar Technologies Llc Method of closed form release for brittle materials using burst ultrafast laser pulses
WO2021199220A1 (en) * 2020-03-30 2021-10-07 国立大学法人東海国立大学機構 Blade edge processing device and cutting device
CN113814882A (en) * 2021-08-30 2021-12-21 浙江工业大学 Laser-assisted polishing method and device
CN114206537A (en) * 2019-08-01 2022-03-18 住友电工硬质合金株式会社 Method for manufacturing cutting tool and cutting tool
JP2022128523A (en) * 2020-03-30 2022-09-01 国立大学法人東海国立大学機構 Cutting device
WO2022180774A1 (en) * 2021-02-26 2022-09-01 国立大学法人名古屋工業大学 Laser machining method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025118A (en) * 2001-07-13 2003-01-29 Allied Material Corp Diamond tool for cutting
JP2006297458A (en) * 2005-04-22 2006-11-02 Hikari Physics Kenkyusho:Kk Method for machining cutting tool and working apparatus using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025118A (en) * 2001-07-13 2003-01-29 Allied Material Corp Diamond tool for cutting
JP2006297458A (en) * 2005-04-22 2006-11-02 Hikari Physics Kenkyusho:Kk Method for machining cutting tool and working apparatus using the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814590A (en) * 2012-07-21 2012-12-12 北京工业大学 Method for removing adhesive on bottom plate of orthodontic bracket by laser
EP2868421A1 (en) * 2013-11-04 2015-05-06 Rofin-Sinar Technologies, Inc. Method and apparatus for machining diamonds and gemstones using filamentation by burst ultrafast laser pulses
US9517929B2 (en) 2013-11-19 2016-12-13 Rofin-Sinar Technologies Inc. Method of fabricating electromechanical microchips with a burst ultrafast laser pulses
US11053156B2 (en) 2013-11-19 2021-07-06 Rofin-Sinar Technologies Llc Method of closed form release for brittle materials using burst ultrafast laser pulses
US10005152B2 (en) 2013-11-19 2018-06-26 Rofin-Sinar Technologies Llc Method and apparatus for spiral cutting a glass tube using filamentation by burst ultrafast laser pulses
US10252507B2 (en) 2013-11-19 2019-04-09 Rofin-Sinar Technologies Llc Method and apparatus for forward deposition of material onto a substrate using burst ultrafast laser pulse energy
US10144088B2 (en) 2013-12-03 2018-12-04 Rofin-Sinar Technologies Llc Method and apparatus for laser processing of silicon by filamentation of burst ultrafast laser pulses
US9757815B2 (en) 2014-07-21 2017-09-12 Rofin-Sinar Technologies Inc. Method and apparatus for performing laser curved filamentation within transparent materials
US10391588B2 (en) 2015-01-13 2019-08-27 Rofin-Sinar Technologies Llc Method and system for scribing brittle material followed by chemical etching
US10010971B1 (en) 2015-06-17 2018-07-03 Rofin Sinar Technologies Llc Method and apparatus for performing laser curved filamentation within transparent materials
EP3580013A4 (en) * 2017-02-09 2020-12-16 US Synthetic Corporation Energy machined polycrystalline diamond compacts and related methods
WO2018147959A1 (en) 2017-02-09 2018-08-16 Us Synthetic Corporation Energy machined polycrystalline diamond compacts and related methods
US11541464B2 (en) 2017-03-28 2023-01-03 Sumitomo Electric Hardmetal Corp. Method for manufacturing diamond single crystal cutting tool using laser pulses
EP3603858A4 (en) * 2017-03-28 2021-02-17 Sumitomo Electric Hardmetal Corp. Method for manufacturing cutting tool
JPWO2018179666A1 (en) * 2017-03-28 2019-11-07 住友電工ハードメタル株式会社 Cutting tool manufacturing method
CN107199401A (en) * 2017-04-24 2017-09-26 和品(香港)公司 A kind of laser polishing machine and the polishing method using the laser polishing machine
CN114206537A (en) * 2019-08-01 2022-03-18 住友电工硬质合金株式会社 Method for manufacturing cutting tool and cutting tool
WO2021199220A1 (en) * 2020-03-30 2021-10-07 国立大学法人東海国立大学機構 Blade edge processing device and cutting device
CN113747997A (en) * 2020-03-30 2021-12-03 国立大学法人东海国立大学机构 Cutting edge processing device and cutting device
JP7303587B2 (en) 2020-03-30 2023-07-05 国立大学法人東海国立大学機構 cutting equipment
JP2022128523A (en) * 2020-03-30 2022-09-01 国立大学法人東海国立大学機構 Cutting device
WO2022180774A1 (en) * 2021-02-26 2022-09-01 国立大学法人名古屋工業大学 Laser machining method
JPWO2022180774A1 (en) * 2021-02-26 2022-09-01
CN113814882B (en) * 2021-08-30 2023-01-10 浙江工业大学 Laser-assisted polishing method and device
CN113814882A (en) * 2021-08-30 2021-12-21 浙江工业大学 Laser-assisted polishing method and device

Similar Documents

Publication Publication Date Title
JP2009066627A (en) Polishing method using laser beam machining, polishing device, and polished cutting tool
JP6392909B2 (en) Method for forming cutting edge of rotary cutting tool
JP2007216327A (en) Forming method of chip breaker
EP3083126B1 (en) Transparent material cutting with ultrafast laser and beam optics
TWI584906B (en) Method and apparatus for non-abaltive, photoaccoustic compression machining in transparent materials using filamentation by burst ultrafast laser pulses
JP2012110963A (en) Cutting tool, manufacturing method for the same, and manufacturing device
Eberle et al. Laser fabrication of diamond micro-cutting tool-related geometries using a high-numerical aperture micro-scanning system
JP2008515643A (en) Hard material processing apparatus and processing method using laser having irradiance in the range of 106 to 109 Wcm-2 and repetition rate in the range of 10 to 50 kHz
Williams et al. Nanosecond Yb fibre laser milling of aluminium: effect of process parameters on the achievable surface finish and machining efficiency
JP5201424B2 (en) Carbon film coated cutting tool and method for manufacturing the same
Büttner et al. Innovative micro-tool manufacturing using ultra-short pulse laser ablation
JP5899904B2 (en) Carbon film coated end mill and method for producing the same
Shin et al. Morphologies of cemented tungsten carbides irradiated by femtosecond laser with high pulse energy for machining enhanced cutting tools
Auerswald et al. Taper angle correction in cutting of complex micro-mechanical contours with ultra-short pulse laser
JP7033867B2 (en) Methods and systems for treating synthetic diamond coating areas
JP2005021964A (en) Laser beam ablation processing method and device therefor
Hajri et al. Fabrication of a ball end nose micro milling tool by tangential laser ablation
JP5890739B2 (en) Cutting tool and manufacturing method thereof
JP5899905B2 (en) Carbon film-coated drill and manufacturing method thereof
Konda et al. Improvement of sintered tungsten-carbide surface integrity using femtosecond pulse lasers
JP4203310B2 (en) Method for producing antiglare antireflection film
Pfaff et al. Laser manufacturing of carbide micro milling tools
JP6980216B2 (en) Cutting tool manufacturing method
TW201446378A (en) Laser processing using an astigmatic elongated beam spot and using ultrashort pulses and/or longer wavelengths
JP4724062B2 (en) Dress gear manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130627