JP2009065060A - Solid electrolytic capacitor, and connection structure of the solid electrolytic capacitor to mounting substrate - Google Patents

Solid electrolytic capacitor, and connection structure of the solid electrolytic capacitor to mounting substrate Download PDF

Info

Publication number
JP2009065060A
JP2009065060A JP2007233357A JP2007233357A JP2009065060A JP 2009065060 A JP2009065060 A JP 2009065060A JP 2007233357 A JP2007233357 A JP 2007233357A JP 2007233357 A JP2007233357 A JP 2007233357A JP 2009065060 A JP2009065060 A JP 2009065060A
Authority
JP
Japan
Prior art keywords
anode terminal
cathode
electrolytic capacitor
solid electrolytic
mounting substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007233357A
Other languages
Japanese (ja)
Other versions
JP4952456B2 (en
Inventor
Shigeki Shirase
茂樹 白勢
Atsushi Kawamura
淳 川村
Kazuhiko Kajiyama
和彦 梶山
Toshiyuki Murakami
敏行 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2007233357A priority Critical patent/JP4952456B2/en
Publication of JP2009065060A publication Critical patent/JP2009065060A/en
Application granted granted Critical
Publication of JP4952456B2 publication Critical patent/JP4952456B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor which is superior in transient response and maintains a low impedance, up to a high-frequency region. <P>SOLUTION: First anode terminal parts a1 and a2 are formed in both end parts of a valve metal substrate 1. A dielectric oxide coating film 4 is formed, in a region other than regions where the first anode terminal parts a1 and a2 are formed, on a connecting surface to a mounting substrate, of the valve metal substrate 1, and a cathode electrode layer constituted of a solid electrolyte 5 and a conductive member 6 is successively provided on the surface of the film 4 to form cathode parts d1 and d2. A second anode terminal part b1, which is integrally formed with the valve metal substrate 1 and has a surface exposed to a position level with the cathode electrode layer is formed, in a part of the regions forming cathode parts d1 and d2 in the valve metal substrate 1. A dielectric oxide coating film 14 is formed on a surface opposite to the connection surface to the mounting substrate, of the valve metal substrate 1, and a cathode electrode layer, constituting a solid electrolyte 15 and a conductive member 16 is sequentially provided on the surface of the dielectric oxide coating film 14 and a cathode part 20 for transmission line formation is formed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、過渡応答性に優れ、高周波領域までインピーダンスが低い固体電解コンデンサおよび固体電解コンデンサの実装基板への接続構造に関する。   The present invention relates to a solid electrolytic capacitor having excellent transient response and low impedance up to a high frequency region, and a connection structure of a solid electrolytic capacitor to a mounting substrate.

電子回路のデジタル化が進み、大電流・低電圧で動作するLSIなどの電源電圧安定化に対応するため、電荷供給が充分な速さでできる、過渡応答性の良いコンデンサが望まれている。   In order to cope with the stabilization of power supply voltage of LSIs and the like that operate with a large current and low voltage as electronic circuits become more digitized, a capacitor with a high transient response capable of supplying charges at a sufficiently high speed is desired.

一方で高周波化が進んだLSIからの高周波電流を電源系から遮断するための、高周波低インピーダンス素子が望まれているが、従来の2端子コンデンサでは、回路への接続に金属リード端子等を介在するために配線回路長が長くなるため、ESR・ESLが大きく、過渡応答性が悪く、また、2端子コンデンサを組み合わせてノイズフィルタ回路を構成しても高周波領域までの充分な低インピーダンス化が図れない。   On the other hand, a high-frequency low-impedance element is desired to cut off high-frequency current from LSIs with higher frequencies from the power supply system, but conventional 2-terminal capacitors interpose metal lead terminals and the like for connection to the circuit. For this reason, the wiring circuit length becomes longer, the ESR / ESL is large, the transient response is poor, and even if a noise filter circuit is configured by combining two-terminal capacitors, the impedance can be sufficiently lowered to the high frequency range. Absent.

このような問題点を解決するために、特許文献1または特許文献2に示すように、陰極端子部と陽極端子部を、同一面上に陰極と陽極を交互に配置することで、ESRが低くなると共に、ESLが打ち消しあって低減されることで、過渡応答性を低減した固体電解コンデンサが開示されている。しかし、この特許文献1または特許文献2の技術では、従来に比べて高周波領域までの低インピーダンス化が図られるが、一定周波数以上の高周波領域ではインピーダンスが上昇する問題があった。   In order to solve such a problem, as shown in Patent Document 1 or Patent Document 2, by disposing the cathode terminal portion and the anode terminal portion alternately on the same surface, the cathode and the anode are alternately arranged to reduce the ESR. In addition, there is disclosed a solid electrolytic capacitor in which transient response is reduced by canceling and reducing ESL. However, although the technique of Patent Document 1 or Patent Document 2 can lower the impedance up to the high frequency region as compared with the conventional technology, there is a problem that the impedance increases in the high frequency region above a certain frequency.

また、特許文献3に開示されている、分布定数型のノイズフィルタでは、伝送線路構造を用いることで、広帯域で高周波領域までの高周波電流の遮断を可能とすると共に、電極端子を実装面となる下面に配置し、陽陰極端子間を近づけることで、低ESR、低ESLを図って過渡応答性を向上している。   Further, in the distributed constant type noise filter disclosed in Patent Document 3, by using a transmission line structure, it is possible to block a high-frequency current in a wide band up to a high-frequency region, and an electrode terminal serves as a mounting surface. By arranging them on the lower surface and bringing the cathode and cathode terminals closer together, transient response is improved by achieving low ESR and low ESL.

この過渡応答性の向上に関しては、電子回路のさらなる大電流・低電圧化が年々進むことから、特許文献3のノイズフィルタに限らず、コンデンサに対しても更なる過渡応答性の改善が求められているが、従来では、このような要求を満足するコンデンサは提案されていなかった。   Regarding the improvement of the transient response, since further increase in current and voltage of electronic circuits is progressing year by year, further improvement of transient response is required not only for the noise filter of Patent Document 3, but also for capacitors. However, no capacitor has been proposed so far that satisfies such requirements.

特開2002-237431号公報Japanese Patent Laid-Open No. 2002-237431 特開2005-142437号公報JP 2005-142437 A 特開2002-164760号公報JP 2002-164760 A

本発明は、以上のような従来の技術的課題を背景になされたものであり、その目的は、低ESR、低ESL化による過渡応答性の改善と、高周波領域までの低インピーダンス化による高周波電流の遮断を可能とした固体電解コンデンサおよび固体電解コンデンサの実装基板への接続構造を提供することにある。   The present invention has been made against the background of the conventional technical problems as described above. The purpose of the present invention is to improve the transient response by lowering the ESR and ESL, and to increase the high-frequency current by lowering the impedance up to the high-frequency region. It is an object of the present invention to provide a solid electrolytic capacitor and a connection structure of a solid electrolytic capacitor to a mounting substrate that can block the above.

前記の目的を達成するために、請求項1の発明は、平板状の弁作用金属基体の端部に第1の陽極端子部が形成され、前記弁作用金属基体における前記第1の陽極端子部が形成された領域の残余領域に、誘電体酸化被膜、および、固体電解質と導電性部材からなる陰極電極層が順次設けられて陰極部が形成され、この陰極部をなす領域の一部に、前記弁作用金属基体と接続された第2の陽極端子部が形成されていることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is characterized in that a first anode terminal portion is formed at an end portion of a flat valve-acting metal base, and the first anode terminal portion in the valve-acting metal base is formed. A dielectric oxide film and a cathode electrode layer composed of a solid electrolyte and a conductive member are sequentially provided in the remaining area of the area where the cathode is formed, and a cathode part is formed.In a part of the area forming the cathode part, A second anode terminal portion connected to the valve action metal base is formed.
.

請求項2の発明は、平板状の弁作用金属基体に第1の陽極端子部が形成され、前記弁作用金属基体における実装基板への接続面には、誘電体酸化被膜、固体電解質および導電性部材からなる陰極電極層が順次設けられて陰極部が形成され、この陰極部をなす領域の一部に、前記弁作用金属基体と接続された第2の陽極端子部が形成され、前記弁作用金属基体における実装基板への接続面と反対側の面に、誘電体酸化被膜、固体電解質および導電性部材からなる陰極電極層を順次設けて伝送線路形成用の陰極部が設けられ、これら弁作用金属基体の両面に形成された各部材から複数の伝送線路を有するコンデンサ素子が形成されていることを特徴とする。   According to a second aspect of the present invention, a first anode terminal portion is formed on a flat valve-acting metal base, and a dielectric oxide film, a solid electrolyte, and a conductive material are provided on a connection surface of the valve-acting metal base to a mounting substrate. A cathode electrode layer made of a member is sequentially provided to form a cathode portion, and a second anode terminal portion connected to the valve action metal base is formed in a part of a region forming the cathode portion, and the valve action A cathode part for forming a transmission line is provided by sequentially providing a cathode electrode layer made of a dielectric oxide film, a solid electrolyte and a conductive member on the surface of the metal base opposite to the connection surface to the mounting substrate. A capacitor element having a plurality of transmission lines is formed from each member formed on both surfaces of the metal substrate.

請求項3の発明は、平板状の弁作用金属基体に陽極端子部が形成され、前記弁作用金属基体の両面に誘電体酸化被膜、および、固体電解質と導電性部材からなる陰極電極層が順次設けられて陰極部とした伝送線路形成用コンデンサ素子が形成され、この伝送線路形成用コンデンサ素子に対して、前記請求項1または請求項2に記載のコンデンサ素子が積層され、これらのコンデンサ素子が電気的に並列に接続されていることを特徴とする。   According to a third aspect of the present invention, an anode terminal portion is formed on a flat valve metal substrate, a dielectric oxide film, and a cathode electrode layer made of a solid electrolyte and a conductive member are sequentially formed on both surfaces of the valve metal substrate. A transmission line forming capacitor element provided as a cathode portion is formed, and the capacitor element according to claim 1 or 2 is laminated on the transmission line forming capacitor element. It is electrically connected in parallel.

請求項4の発明は、前記請求項1〜請求項3のいずれかに記載の固体電解コンデンサの実装基板への接続構造において、前記固体電解コンデンサの陽極端子部の少なくとも1つが、電源に接続可能な実装基板の電源ライン導体層に電気的に接続され、前記固体電解コンデンサの電源ライン導体層に接続されていない陽極端子部の少なくとも1つが、負荷回路に接続可能な実装基板の出力電源導体層に電気的に接続され、前記固体電解コンデンサの陰極電極層が、実装基板のグランド導体層に電気的に接続されていることを特徴とする。   According to a fourth aspect of the present invention, in the connection structure for mounting a solid electrolytic capacitor according to any one of the first to third aspects, at least one of the anode terminal portions of the solid electrolytic capacitor can be connected to a power source. An output power supply conductor layer of the mounting substrate that is electrically connected to the power supply line conductor layer of the mounting board and at least one of the anode terminal portions not connected to the power supply line conductor layer of the solid electrolytic capacitor can be connected to the load circuit The cathode electrode layer of the solid electrolytic capacitor is electrically connected to the ground conductor layer of the mounting substrate.

請求項5の発明は、前記請求項4に記載の固体電解コンデンサの実装基板の接続構造において、一対の第1の陽極端子部を備え、第1の陽極端子部の一方が実装基板の電源ライン導体層に接続され、他方の第1の陽極端子部および第2の陽極端子部が出力電源ラインに接続されていることを特徴とする。   According to a fifth aspect of the present invention, in the connection structure of the mounting board for the solid electrolytic capacitor according to the fourth aspect, the power supply line of the mounting board is provided with a pair of first anode terminal parts. It is connected to the conductor layer, and the other first anode terminal portion and second anode terminal portion are connected to the output power supply line.

本発明によれば、陰極部領域に第2の陽極端子部を設けることで、配置回路長を短くすることが可能となりESRが低減すると共に、ESLが互いに打ち消しあって低減される。また、複数の陽極端子部により電荷供給経路が増えることから、過渡応答性が改善され、一方では、伝送線路構造のコンデンサが電源導体層パターンの一部となることで、広帯域で高周波領域までの高周波電流の遮断を可能としている。また、複数のコンデンサ素子を積層構造とした場合には、並列効果に伴う低インピーダンス化が可能となり、大容量化を図れる利点もある。   According to the present invention, by providing the second anode terminal portion in the cathode portion region, it is possible to shorten the arrangement circuit length, and ESR is reduced and ESL cancels each other and is reduced. In addition, since the charge supply path is increased by a plurality of anode terminal portions, the transient response is improved. On the other hand, the capacitor of the transmission line structure becomes a part of the power supply conductor layer pattern, so that it can be used in a wide band up to the high frequency region. High frequency current can be cut off. Further, when a plurality of capacitor elements are formed in a laminated structure, the impedance can be reduced due to the parallel effect, and there is an advantage that the capacity can be increased.

更に、本発明の固体電解コンデンサの実装基板への接続構造においては、電源ライン導体層と出力電源導体層は、前記固体電解コンデンサの伝送線路構造領域を通して接続されており、高周波ノイズ電流は電源系から遮断される。また、電荷供給経路数を多くした接続構造となるため、過渡応答性が良好である。   Further, in the connection structure of the solid electrolytic capacitor to the mounting substrate of the present invention, the power line conductor layer and the output power conductor layer are connected through the transmission line structure region of the solid electrolytic capacitor, and the high frequency noise current is generated in the power supply system. Is cut off from. In addition, since the connection structure has a larger number of charge supply paths, the transient response is good.

(1)第1実施形態
以下、本発明の第1実施形態を図1および図2を参照して具体的に説明する。
図1は、本発明の固体電解コンデンサの第1実施形態を示す断面図、図2はその実装基板への接続面側から見た平面図である。
(1) First Embodiment Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIG. 1 and FIG.
FIG. 1 is a cross-sectional view showing a first embodiment of the solid electrolytic capacitor of the present invention, and FIG. 2 is a plan view seen from the connection surface side to the mounting substrate.

図中、符号1は、平板状の弁作用金属基体であって、その両端部には第1の陽極端子部a1,a2が形成されている。この弁作用金属基体1の下面(実装基板への接続面)における第1の陽極端子部a1,a2が形成された領域の残余領域には、誘電体酸化被膜4を形成すると共に、この誘電体酸化被膜4の表面に固体電解質5および導電性部材6からなる陰極電極層を順次設けて、陰極部d1,d2が形成されている。   In the figure, reference numeral 1 is a flat valve metal base, and first anode terminal portions a1 and a2 are formed at both ends thereof. A dielectric oxide film 4 is formed on the remaining area of the area where the first anode terminal portions a1 and a2 are formed on the lower surface (connection surface to the mounting substrate) of the valve metal base 1, and the dielectric A cathode electrode layer composed of the solid electrolyte 5 and the conductive member 6 is sequentially provided on the surface of the oxide film 4 to form cathode portions d1 and d2.

前記弁作用金属基体1における陰極部d1,d2をなす領域の一部には、弁作用金属基体1と一体に形成され、その表面が陰極電極層と面位置に露出した第2の陽極端子部b1が形成されている。また、陰極部d1,d2の外周部(第2の陽極端子部b1との境界面)には、絶縁部材8が設けられている。この場合、第2の陽極端子部は、弁作用金属基体1本体と電気的に接続されていれば、弁作用金属基体1の一部を突出させて形成しても、別部材を接合して形成しても良い。   A second anode terminal portion that is formed integrally with the valve action metal substrate 1 in a part of the region forming the cathode portions d1 and d2 in the valve action metal substrate 1 and whose surface is exposed to the surface position of the cathode electrode layer. b1 is formed. In addition, an insulating member 8 is provided on the outer peripheral portion of the cathode portions d1 and d2 (boundary surface with the second anode terminal portion b1). In this case, if the second anode terminal portion is electrically connected to the main body of the valve action metal base 1, even if it is formed by protruding a part of the valve action metal base 1, another member is joined. It may be formed.

一方、前記弁作用金属基体1の上面(実装基板への接続面と反対側の面)における第1の陽極端子部a1,a2が形成された領域の残余領域には、誘電体酸化被膜14を形成すると共に、この誘電体酸化被膜14の表面に固体電解質15および導電性部材16からなる陰極電極層を順次設けて、伝送線路形成用の陰極部20が形成されている。この伝送線路形成用陰極部20の周囲は、絶縁部材18によって絶縁されている。   On the other hand, a dielectric oxide film 14 is formed on the remaining region of the upper surface of the valve action metal substrate 1 (the surface opposite to the connection surface to the mounting substrate) where the first anode terminal portions a1 and a2 are formed. At the same time, a cathode electrode layer made of a solid electrolyte 15 and a conductive member 16 is sequentially provided on the surface of the dielectric oxide film 14 to form a cathode portion 20 for forming a transmission line. The periphery of the transmission line forming cathode portion 20 is insulated by an insulating member 18.

なお、図1および図2の実施の形態は、第1の陽極端子部a1,a2、陰極部d1,d2および第2の陽極端子部b1を、矩形状をした弁作用金属基体1の長手方向に沿って交互に形成したが、これらの形状や数、配置箇所は、図1および図2に記載のものに限定されるものではない。特に、図1および図2では、その構造を分かり易くするために、陰極部d1,d2を2箇所設けているが、陰極部の数はこれに限るものではなく、多数個設けることも可能である。   1 and 2, the first anode terminal portions a1 and a2, the cathode portions d1 and d2, and the second anode terminal portion b1 are arranged in the longitudinal direction of the valve action metal substrate 1 having a rectangular shape. However, the shape, the number, and the arrangement location are not limited to those shown in FIGS. 1 and 2. In particular, in FIGS. 1 and 2, two cathode portions d1 and d2 are provided in order to make the structure easy to understand. However, the number of cathode portions is not limited to this, and many cathode portions can be provided. is there.

例えば、図3および図4に示すように、弁作用金属基体1の実装基板への接続面における第1の陽極端子部a1,a2が形成された領域の残余領域に誘電体酸化被膜4と陰極電極層を設けて、この残余領域内に、複数個の円形をした第2の陽極端子部b1〜bn(図4の例ではn=4)と、これに対応して近接配置された複数の陰極部d1〜dn(図4の例ではn=4)を形成することもできる。   For example, as shown in FIGS. 3 and 4, a dielectric oxide film 4 and a cathode are formed in the remaining area of the area where the first anode terminal portions a1 and a2 are formed on the connection surface of the valve metal base 1 to the mounting substrate. An electrode layer is provided, and a plurality of circular second anode terminal portions b1 to bn (n = 4 in the example of FIG. 4) and a plurality of adjacently disposed plural regions are provided in the remaining region. Cathode portions d1 to dn (n = 4 in the example of FIG. 4) can also be formed.

更に、図5に示すように、第2の陽極端子部b1〜bn(図の例ではn=3)の形状を四角形として、第1の陽極端子部a1,a2が形成された領域の残余領域に形成されている誘電体酸化被膜4と陰極電極層部分の一方の縁に、一定の間隔で複数個配置することもできる。   Furthermore, as shown in FIG. 5, the shape of the second anode terminal portions b1 to bn (n = 3 in the example in the figure) is a quadrangle, and the remaining region of the region where the first anode terminal portions a1 and a2 are formed. A plurality of dielectric oxide films 4 and cathode electrode layer portions may be arranged at regular intervals on one edge.

次に、前記のような構成を有する第1実施形態の固体電解コンデンサを実装基板に接続する構成について、図6を参照して説明する。すなわち、図6において、符号51は実装基板であって、その片面に第1実施形態の固体電解コンデンサ52が実装され、反対側の面にICなどの負荷回路部品53が実装されている。   Next, a configuration for connecting the solid electrolytic capacitor of the first embodiment having the above-described configuration to a mounting substrate will be described with reference to FIG. That is, in FIG. 6, reference numeral 51 denotes a mounting substrate, on which one side of the solid electrolytic capacitor 52 of the first embodiment is mounted, and on the opposite side, a load circuit component 53 such as an IC is mounted.

実装基板51には、電源54に接続された電源ライン導体層54a、この電源ライン導体層54aに接続された出力電源導体層54b、およびこれら電源ライン導体層54aと出力電源導体層54bに形成されたコンデンサ陽極端子接続部54cと負荷回路部品接続部54dが設けられている。   On the mounting board 51, a power line conductor layer 54a connected to the power source 54, an output power conductor layer 54b connected to the power line conductor layer 54a, and the power line conductor layer 54a and the output power conductor layer 54b are formed. A capacitor anode terminal connecting portion 54c and a load circuit component connecting portion 54d are provided.

このコンデンサ陽極端子接続部54cは、第1実施形態の固体電解コンデンサの実装基板接続面に露出している第1の陽極端子部a1,a2と第2の陽極端子部b1〜bnの位置に合わせて設けられた複数の端子を備えている。また、負荷回路部品接続部54dは、負荷回路部品53に設けられた複数の陽極接続端子の位置に合わせて設けられた複数の端子を備えている。   The capacitor anode terminal connection portion 54c is aligned with the positions of the first anode terminal portions a1 and a2 and the second anode terminal portions b1 to bn exposed on the mounting substrate connection surface of the solid electrolytic capacitor of the first embodiment. A plurality of terminals provided. The load circuit component connecting portion 54d includes a plurality of terminals provided in accordance with the positions of the plurality of anode connection terminals provided in the load circuit component 53.

同様に、実装基板51には、グランド(接地側)導体層55aが設けられ、このグランド導体層55aにもコンデンサ陰極部接続部55cと負荷回路部品接続部55dが設けられている。   Similarly, the mounting substrate 51 is provided with a ground (ground side) conductor layer 55a. The ground conductor layer 55a is also provided with a capacitor cathode portion connecting portion 55c and a load circuit component connecting portion 55d.

このコンデンサ陰極端子接続部55cは、第1実施形態の固体電解コンデンサの実装基板接続面に露出している複数の陰極部d1〜dnの位置に合わせて設けられた複数の端子を備えている。また、負荷回路部品接続部55dは、負荷回路部品53に設けられた1つの陰極接続端子の位置に合わせて設けられた1つの端子を備えている。   The capacitor cathode terminal connection portion 55c includes a plurality of terminals provided in accordance with the positions of the plurality of cathode portions d1 to dn exposed on the mounting substrate connection surface of the solid electrolytic capacitor of the first embodiment. The load circuit component connecting portion 55d includes one terminal provided in accordance with the position of one cathode connection terminal provided on the load circuit component 53.

次に、前記のような構成を有する第1実施形態の作用を前記図1,図6〜図9を参照して説明する。   Next, the operation of the first embodiment having the above-described configuration will be described with reference to FIGS. 1 and 6 to 9.

前記図1の断面図に示すように、第1実施形態の固体電解コンデンサ52は、中心部に配置された弁作用金属基体1の両側にそれぞれ誘電体酸化被膜4と陰極電極層とが形成され、しかも、実装基板への接続面側には、複数組の第2の陽極端子部b1〜bnとこれに対応する陰極部d1〜dnが形成されている。   As shown in the cross-sectional view of FIG. 1, the solid electrolytic capacitor 52 of the first embodiment has a dielectric oxide film 4 and a cathode electrode layer formed on both sides of a valve action metal substrate 1 disposed at the center. Moreover, a plurality of sets of second anode terminal portions b1 to bn and corresponding cathode portions d1 to dn are formed on the connection surface side to the mounting substrate.

ここで、図1の丸で囲んだ部分を切り出すと、この部分は陽極端子部が形成されていない領域であり、弁作用金属基体1の両面(2つの主面とも呼ばれる)に対して、両面ともに誘電体酸化被膜4と陰極電極層が形成された構成となっている。この構成を伝送線路と呼び、ここを高周波電流が通るときのインピーダンスは特性インピーダンスと呼ばれる、周波数が変化しても一定値を取る特性を示す。   Here, when the portion surrounded by a circle in FIG. 1 is cut out, this portion is a region where the anode terminal portion is not formed, and both sides of the valve action metal substrate 1 (also referred to as two main surfaces) are formed on both sides. Both have a structure in which a dielectric oxide film 4 and a cathode electrode layer are formed. This configuration is called a transmission line, and the impedance when a high-frequency current passes through this structure is called characteristic impedance, and shows a characteristic that takes a constant value even when the frequency changes.

そのため、この固体電解コンデンサ52を、図6に示すような構成を有する電源ライン並びにグランド導体層を形成した実装基板51を介して負荷回路部品53に接続すると、その電気的な配線は、図7の配線図に示すように、負荷回路部品53に対して、複数個の伝送線路が並列に接続された状態となる。   Therefore, when the solid electrolytic capacitor 52 is connected to the load circuit component 53 through the power supply line having the configuration shown in FIG. 6 and the mounting substrate 51 on which the ground conductor layer is formed, the electrical wiring is as shown in FIG. As shown in the wiring diagram, a plurality of transmission lines are connected in parallel to the load circuit component 53.

ここで、伝送線路は、図8に示す等価回路で示され、そのインピーダンスは、低周波数領域では集中定数回路となるのに対して、これが高周波領域では、分布定数回路(伝送線路)となり、Z=(L/C)1/2と一定値を示す(図9参照)。このため、高周波領域でのインピーダンス上昇も無く、非常に良い高周波電流遮断特性を示す。 Here, the transmission line is shown by the equivalent circuit shown in FIG. 8, and the impedance thereof is a lumped constant circuit in the low frequency region, whereas this is a distributed constant circuit (transmission line) in the high frequency region, and Z = (L / C) 1/2 and a constant value (see FIG. 9). For this reason, there is no increase in impedance in the high frequency region, and very good high frequency current cutoff characteristics are exhibited.

なお、図8の等価回路は、個々の伝送線路ごとの等価回路を示すものであり、回路を多数組み併設しているのは、a)低周波で流れる場合を、1組の等価回路とみて、b)高周波になったときには、波長が短くなるので相対的に線路が長く見え、多数組の等価回路をいくつも連ねたように見える分布定数回路(特性インピーダンス一定)となるためである。そのため、高周波領域で使われる本実施形態においては、図8の等価回路が各伝送線路ごとに存在することになる。   Note that the equivalent circuit in FIG. 8 shows an equivalent circuit for each transmission line. The reason why a large number of circuits are arranged together is that a) a case of flowing at a low frequency is regarded as one set of equivalent circuits. B) When the frequency becomes high, the wavelength is shortened so that the line looks relatively long, and a distributed constant circuit (constant characteristic impedance) that seems to have a number of sets of equivalent circuits connected together is obtained. Therefore, in the present embodiment used in the high frequency region, the equivalent circuit of FIG. 8 exists for each transmission line.

一方、電荷供給を充分な速さで行うための、過渡応答性の改善には、等価直列インダクタンス(ESL)の低減が重要である。ESL低減のポイントは次のようなことである。
(1) 電流経路(配線長)を短くすること。
(2) 電流経路を流れる電流により形成される磁場を、別の電流経路を流れる電流により形成される磁場で相殺すること。
(3) 電流経路をn個に分割して、実質的にESLを1/nとする。
On the other hand, reduction of equivalent series inductance (ESL) is important for improving transient response in order to supply charges at a sufficient speed. The points of ESL reduction are as follows.
(1) Shorten the current path (wiring length).
(2) To cancel the magnetic field formed by the current flowing through the current path with the magnetic field formed by the current flowing through another current path.
(3) The current path is divided into n and the ESL is substantially 1 / n.

これに対して、第1実施形態においては、次のような理由から、過渡応答性としては非常に良好な特性が得られる。
(a) 陽極端子部と陰極部が同一面から取り出され(下面:実装基板への接続面)ており、配線経路は短くなし得る。
(b) 陽極と陰極が近傍に交互配置されており、ESLが相殺される構造である。
(c) 電流経路が、任意に増やせる構成であり、ESL低減ができる。
On the other hand, in the first embodiment, very good characteristics can be obtained as transient response for the following reason.
(a) The anode terminal portion and the cathode portion are taken out from the same surface (lower surface: connection surface to the mounting substrate), and the wiring path can be shortened.
(b) The anode and the cathode are alternately arranged in the vicinity so that the ESL is offset.
(c) The current path can be arbitrarily increased, and ESL can be reduced.

(2)第2実施形態
次に、本発明の第2実施形態を、その断面図である図10を参照して説明する。この第2実施形態は、前記第1実施形態に示した固体電解コンデンサ素子と並列に、別の伝送線路を構成する他の固体電解コンデンサ素子を設けたものである。なお、前記図1と同一の部分については、同一の符号を付し、説明は省略する。
(2) Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, another solid electrolytic capacitor element constituting another transmission line is provided in parallel with the solid electrolytic capacitor element shown in the first embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.

図10においては、第1実施形態の固体電解コンデンサを第1のコンデンサ素子61とし、この第1のコンデンサ素子61に、第2のコンデンサ素子62が積層され、電気的には並列に接続されている。   In FIG. 10, the solid electrolytic capacitor of the first embodiment is a first capacitor element 61, and a second capacitor element 62 is laminated on the first capacitor element 61 and electrically connected in parallel. Yes.

この第2のコンデンサ素子62は、中心部の弁作用金属基体63の両端部に外部に露出した陽極端子部63a,63bが設けられていると共に、弁作用金属基体63の両面にそれぞれ誘電体酸化被膜64が形成され、この誘電体酸化被膜64の表面に固体電解質65および導電性部材66からなる陰極電極層が順次設けられている。また、この誘電体酸化被膜64や陰極電極層の周囲は、絶縁部材68によって絶縁されている。   The second capacitor element 62 is provided with anode terminal portions 63a and 63b exposed to the outside at both ends of the valve action metal base 63 at the center, and dielectric oxide on both surfaces of the valve action metal base 63, respectively. A coating 64 is formed, and a cathode electrode layer comprising a solid electrolyte 65 and a conductive member 66 is sequentially provided on the surface of the dielectric oxide coating 64. The periphery of the dielectric oxide film 64 and the cathode electrode layer is insulated by an insulating member 68.

第1と第2のコンデンサ素子61,62の陽極端子は、陽極リード69によって接続されている。また、第1と第2のコンデンサ素子61,62の陰極部は、個別にグランドに落としても良いが、本実施形態では2つの素子の導電性部材16,66間が導電性の接着剤67などで接続されている。   The anode terminals of the first and second capacitor elements 61 and 62 are connected by an anode lead 69. Further, the cathode portions of the first and second capacitor elements 61 and 62 may be individually dropped to the ground, but in this embodiment, a conductive adhesive 67 is provided between the conductive members 16 and 66 of the two elements. Etc. are connected.

このような構成を有する第2実施形態においては、前記第1実施形態の作用効果に加えて、第1と第2のコンデンサ素子61,62を積層したことにより、並列効果による低インピーダンス化が可能となり、また、大容量化を図れる利点がある。すなわち、第2実施形態では、図7の電気配線図においては、第1の陽極端子部a1と第2の陽極端子部b1の間に表される伝送線路回路と並列に、もう1つ伝送線路が入ることになり、インピーダンスの低い回路が並列に接続されて実質のインピーダンス値が更に下がることから、高周波電流の遮断性が向上する。   In the second embodiment having such a configuration, in addition to the effects of the first embodiment, the first and second capacitor elements 61 and 62 are stacked, so that the impedance can be reduced by the parallel effect. In addition, there is an advantage that the capacity can be increased. That is, in the second embodiment, in the electrical wiring diagram of FIG. 7, another transmission line is provided in parallel with the transmission line circuit represented between the first anode terminal portion a1 and the second anode terminal portion b1. Since a low impedance circuit is connected in parallel and the substantial impedance value is further reduced, the high frequency current cutoff is improved.

(3)他の実施形態
本発明は前記のような実施形態に限定されるものではなく、次のような他の実施形態を包含するものである。
(3) Other Embodiments The present invention is not limited to the embodiment as described above, and includes the following other embodiments.

(1) 第1実施形態では、固体電解コンデンサの両端に、それぞれ第1の陽極端子部を形成したが、第1の陽極端子部を必ずしも一対設ける必要はなく、例えば、図11(A)に示すように、第1の陽極端子部a1を固体電解コンデンサの一端のみに設けて、他の陽極端子部はいずれも陰極部に取り囲まれた第2の陽極端子部b1〜bn(図の例ではn=3)としたり、図11(B)に示すように一対の第1の陽極端子部a1,a2の少なくとも一方を弁作用金属基体1の中央部分に形成することも可能である。また、弁作用金属基体1の両端部を陰極部d1〜dnから露出させることなく、陰極部の領域に形成した複数個の第2の陽極端子部b1〜bnの1つまたは2つを第1の陽極端子部として使用し、そこに電源ライン導体層および出力電源導体層を接続することも可能である。 (1) In the first embodiment, the first anode terminal portions are formed at both ends of the solid electrolytic capacitor, respectively. However, it is not always necessary to provide a pair of the first anode terminal portions. For example, as shown in FIG. As shown, the first anode terminal portion a1 is provided only at one end of the solid electrolytic capacitor, and the other anode terminal portions are all second anode terminal portions b1 to bn surrounded by the cathode portion (in the example shown in the figure). n = 3) or at least one of the pair of first anode terminal portions a1 and a2 can be formed in the central portion of the valve metal base 1 as shown in FIG. In addition, one or two of the plurality of second anode terminal portions b1 to bn formed in the region of the cathode portion are exposed to the first without exposing both end portions of the valve metal base 1 from the cathode portions d1 to dn. It is also possible to connect the power line conductor layer and the output power conductor layer to the anode terminal portion.

(2) 図12に示すように、実装基板51と、固体電解コンデンサ52および負荷回路部品53との接続構造について、前記図6に示すような出力電源導体層54bを設けないことも可能である。すなわち、出力電源導体が不要である場合や負荷回路部品側や電源側から出力電源導体を引き出す場合には、基板自体に出力電源導体層54bを設ける必要はない。 (2) As shown in FIG. 12, the output power supply conductor layer 54b as shown in FIG. 6 may not be provided for the connection structure of the mounting substrate 51, the solid electrolytic capacitor 52, and the load circuit component 53. . That is, when the output power supply conductor is unnecessary or when the output power supply conductor is drawn out from the load circuit component side or the power supply side, it is not necessary to provide the output power supply conductor layer 54b on the substrate itself.

(3) 図13に示すように、図6の第1実施形態と図12の配線構成を組み合わせたように、一部のコンデンサについてのみ出力電源導体層54bを設けることもできる。 (3) As shown in FIG. 13, the output power supply conductor layer 54b can be provided for only a part of the capacitors, as in the first embodiment of FIG. 6 and the wiring configuration of FIG.

この(2) (3) に記載した変形例の場合、過渡応答性に関しては、コンデンサの電荷供給経路が同等数あることから、いずれも第1実施形態と同等の性能を示す。また、高周波電流の遮断性については、負荷側であるICの電源系が1つの場合は伝送線路部にて遮断されるので、いずれの配線でも第1実施形態と同等の性能が得られる。また、IC電源系が2つ以上(あるいは、IC自体が2つ以上)の場合でも、(2) のように各IC電源系が直接コンデンサと接続している(出力電源導体層で接続されていない)場合には、それぞれに対応するコンデンサの伝送線路部を高周波電流が通るため、より遮断性が向上すると考えられる。   In the modified examples described in (2) and (3), the transient response is equivalent to the first embodiment because there are an equal number of capacitor charge supply paths. As for the high-frequency current blocking performance, if there is one power supply system of the IC on the load side, the transmission line section cuts off, so that the performance equivalent to that of the first embodiment can be obtained with any wiring. Also, even when there are two or more IC power supply systems (or two or more ICs themselves), each IC power supply system is directly connected to the capacitor as shown in (2) (connected by the output power supply conductor layer). In such a case, it is considered that since the high-frequency current passes through the transmission line portions of the corresponding capacitors, the blocking performance is further improved.

本発明の固体電解コンデンサの第1実施形態の構成を示す断面図。Sectional drawing which shows the structure of 1st Embodiment of the solid electrolytic capacitor of this invention. 図1の固体電解コンデンサにおける実装基板接続面側の平面図。The top view by the side of the mounting board connection surface in the solid electrolytic capacitor of FIG. 本発明の第1実施形態の変形例を示す断面図。Sectional drawing which shows the modification of 1st Embodiment of this invention. 図3の固体電解コンデンサにおける実装基板接続面側の平面図。FIG. 4 is a plan view of a mounting board connection surface side in the solid electrolytic capacitor of FIG. 3. 本発明の第1実施形態の他の変形例を示す実装基板接続面側の平面図。The top view by the side of the mounting board connection surface which shows the other modification of 1st Embodiment of this invention. 本発明の第1実施形態の固体電解コンデンサの実装基板への接続構造を示す断面図。Sectional drawing which shows the connection structure to the mounting board | substrate of the solid electrolytic capacitor of 1st Embodiment of this invention. 図6の実装基板への接続構造における電気配線図。The electrical wiring diagram in the connection structure to the mounting board of FIG. 本発明における伝送線路の等価回路を示す回路図。The circuit diagram which shows the equivalent circuit of the transmission line in this invention. 伝送線路のインピーダンス特性を示すグラフ。The graph which shows the impedance characteristic of a transmission line. 本発明の固体電解コンデンサの第2実施形態を示す断面図。Sectional drawing which shows 2nd Embodiment of the solid electrolytic capacitor of this invention. 本発明の固体電解コンデンサにおける陽極端子部の配置を示す平面図で、(A)は第1の陽極端子部が1つのもの、(B)は第1の陽極端子部の一方が弁作用金属基体の中央部分に設けられているものを示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a top view which shows arrangement | positioning of the anode terminal part in the solid electrolytic capacitor of this invention, (A) has one 1st anode terminal part, (B) has one of the 1st anode terminal parts valve action metal base | substrates. The thing provided in the center part of is shown. 第1実施形態における配線構造の変形例を示す断面図。Sectional drawing which shows the modification of the wiring structure in 1st Embodiment. 第1実施形態における配線構造の他の変形例を示す断面図。Sectional drawing which shows the other modification of the wiring structure in 1st Embodiment.

符号の説明Explanation of symbols

1…弁作用金属基体
a1,a2…第1の陽極端子部
b1〜bn…第2の陽極端子部
d1〜dn…陰極部
4,14,64…誘電体酸化被膜
5,15,65…固体電解質
6,16,66…導電性部材
8,18,68…絶縁部材
20…陰極部
51…実装基板
52…固体電解コンデンサ
53…負荷回路部品
54…電源
54a電源ライン導体層
54b…出力電源層
54c…コンデンサ陽極端子接続部
54d…負荷回路部品接続部
55a…グランド(接地側)導体層
55c…コンデンサ陰極端子接続部
55d…負荷回路部品接続部
61…第1のコンデンサ素子
62…第2のコンデンサ素子
DESCRIPTION OF SYMBOLS 1 ... Valve action metal base | substrate a1, a2 ... 1st anode terminal part b1-bn ... 2nd anode terminal part d1-dn ... Cathode part 4,14,64 ... Dielectric oxide film 5,15,65 ... Solid electrolyte 6, 16, 66 ... conductive members 8, 18, 68 ... insulating member 20 ... cathode portion 51 ... mounting substrate 52 ... solid electrolytic capacitor 53 ... load circuit component 54 ... power source 54a power line conductor layer 54b ... output power source layer 54c ... Capacitor anode terminal connecting portion 54d ... Load circuit component connecting portion 55a ... Ground (ground side) conductor layer 55c ... Capacitor cathode terminal connecting portion 55d ... Load circuit component connecting portion 61 ... First capacitor element 62 ... Second capacitor element

Claims (5)

平板状の弁作用金属基体の端部に第1の陽極端子部が形成され、
前記弁作用金属基体における前記第1の陽極端子部が形成された領域の残余領域に、誘電体酸化被膜、および、固体電解質と導電性部材からなる陰極電極層が順次設けられて陰極部が形成され、
この陰極部をなす領域の一部に、前記弁作用金属基体と接続された第2の陽極端子部が形成されていることを特徴とする固体電解コンデンサ。
A first anode terminal portion is formed at the end of the flat valve-acting metal base;
A dielectric oxide film and a cathode electrode layer composed of a solid electrolyte and a conductive member are sequentially provided in the remaining region of the valve-acting metal base where the first anode terminal portion is formed to form a cathode portion. And
A solid electrolytic capacitor characterized in that a second anode terminal portion connected to the valve metal substrate is formed in a part of a region forming the cathode portion.
平板状の弁作用金属基体に第1の陽極端子部が形成され、
前記弁作用金属基体における実装基板への接続面には、誘電体酸化被膜、固体電解質および導電性部材からなる陰極電極層が順次設けられて陰極部が形成され、
この陰極部をなす領域の一部に、前記弁作用金属基体と接続された第2の陽極端子部が形成され、
前記弁作用金属基体における実装基板への接続面と反対側の面に、誘電体酸化被膜、固体電解質および導電性部材からなる陰極電極層を順次設けて伝送線路形成用の陰極部が設けられ、
これら弁作用金属基体の両面に形成された各部材から複数の伝送線路を有するコンデンサ素子が形成されていることを特徴とする固体電解コンデンサ。
A first anode terminal portion is formed on a flat valve-acting metal base;
On the connection surface to the mounting substrate in the valve action metal substrate, a cathode electrode layer comprising a dielectric oxide film, a solid electrolyte and a conductive member is sequentially provided to form a cathode portion,
A second anode terminal portion connected to the valve metal substrate is formed in a part of the region forming the cathode portion,
A cathode part for forming a transmission line is provided by sequentially providing a cathode electrode layer made of a dielectric oxide film, a solid electrolyte and a conductive member on the surface opposite to the connection surface to the mounting substrate in the valve action metal base,
A solid electrolytic capacitor characterized in that a capacitor element having a plurality of transmission lines is formed from each member formed on both surfaces of these valve action metal substrates.
平板状の弁作用金属基体に陽極端子部が形成され、前記弁作用金属基体の両面に誘電体酸化被膜、および、固体電解質と導電性部材からなる陰極電極層が順次設けられて陰極部とした伝送線路形成用コンデンサ素子が形成され、
この伝送線路形成用コンデンサ素子に対して、前記請求項1または請求項2に記載のコンデンサ素子が積層され、
これらのコンデンサ素子が電気的に並列に接続されていることを特徴とする固体電解コンデンサ。
An anode terminal portion is formed on the flat valve metal substrate, and a dielectric oxide film and a cathode electrode layer made of a solid electrolyte and a conductive member are sequentially provided on both surfaces of the valve metal substrate to form a cathode portion. A transmission line forming capacitor element is formed,
The capacitor element according to claim 1 or 2 is stacked on the transmission line forming capacitor element,
A solid electrolytic capacitor characterized in that these capacitor elements are electrically connected in parallel.
前記固体電解コンデンサの陽極端子部の少なくとも1つが、電源に接続可能な実装基板の電源ライン導体層に電気的に接続され、前記固体電解コンデンサの電源ライン導体層に接続されていない陽極端子部の少なくとも1つが、負荷回路に接続可能な実装基板の出力電源導体層に電気的に接続され、前記固体電解コンデンサの陰極電極層が、実装基板のグランド導体層に電気的に接続されていることを特徴とする請求項1〜請求項3のいずれかに記載の固体電解コンデンサの実装基板への接続構造。   At least one of the anode terminal portions of the solid electrolytic capacitor is electrically connected to the power line conductor layer of the mounting substrate connectable to a power source, and the anode terminal portion not connected to the power line conductor layer of the solid electrolytic capacitor. That at least one is electrically connected to the output power conductor layer of the mounting substrate connectable to the load circuit, and the cathode electrode layer of the solid electrolytic capacitor is electrically connected to the ground conductor layer of the mounting substrate. The connection structure to the mounting board | substrate of the solid electrolytic capacitor in any one of Claims 1-3 characterized by the above-mentioned. 一対の第1の陽極端子部を備え、
第1の陽極端子部の一方が実装基板の電源ライン導体層に接続され、他方の第1の陽極端子部および第2の陽極端子部が出力電源ラインに接続されていることを特徴とする請求項4に記載の固体電解コンデンサの実装基板への接続構造。
A pair of first anode terminal portions;
One of the first anode terminal portions is connected to the power supply line conductor layer of the mounting substrate, and the other first anode terminal portion and second anode terminal portion are connected to the output power supply line. Item 5. A structure for connecting a solid electrolytic capacitor according to Item 4 to a mounting board.
JP2007233357A 2007-09-07 2007-09-07 Connection structure of solid electrolytic capacitor to mounting board Expired - Fee Related JP4952456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007233357A JP4952456B2 (en) 2007-09-07 2007-09-07 Connection structure of solid electrolytic capacitor to mounting board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007233357A JP4952456B2 (en) 2007-09-07 2007-09-07 Connection structure of solid electrolytic capacitor to mounting board

Publications (2)

Publication Number Publication Date
JP2009065060A true JP2009065060A (en) 2009-03-26
JP4952456B2 JP4952456B2 (en) 2012-06-13

Family

ID=40559356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007233357A Expired - Fee Related JP4952456B2 (en) 2007-09-07 2007-09-07 Connection structure of solid electrolytic capacitor to mounting board

Country Status (1)

Country Link
JP (1) JP4952456B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070972A (en) * 2007-09-12 2009-04-02 Nippon Chemicon Corp Structure for connecting capacitor to mounting board
JPWO2011021255A1 (en) * 2009-08-21 2013-01-17 日本ケミコン株式会社 Solid electrolytic capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164760A (en) * 2000-08-30 2002-06-07 Nec Corp Distributed constant noise filter
JP2002237431A (en) * 2001-02-08 2002-08-23 Matsushita Electric Ind Co Ltd Solid-state electrolytic capacitor and method of manufacturing the same
JP2002353073A (en) * 2001-05-28 2002-12-06 Matsushita Electric Ind Co Ltd Circuit module
WO2004023597A1 (en) * 2002-09-04 2004-03-18 Nec Corporation Strip line device, member to be mounted on printed wiring board, circuit board, semiconductor package, and its fabricating method
JP2005142437A (en) * 2003-11-07 2005-06-02 Tdk Corp Solid-state electrolytic capacitor and solid-state electrolytic capacitor device
WO2008126181A1 (en) * 2007-03-15 2008-10-23 Fujitsu Limited Solid electrolytic capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164760A (en) * 2000-08-30 2002-06-07 Nec Corp Distributed constant noise filter
JP2002237431A (en) * 2001-02-08 2002-08-23 Matsushita Electric Ind Co Ltd Solid-state electrolytic capacitor and method of manufacturing the same
JP2002353073A (en) * 2001-05-28 2002-12-06 Matsushita Electric Ind Co Ltd Circuit module
WO2004023597A1 (en) * 2002-09-04 2004-03-18 Nec Corporation Strip line device, member to be mounted on printed wiring board, circuit board, semiconductor package, and its fabricating method
JP2005142437A (en) * 2003-11-07 2005-06-02 Tdk Corp Solid-state electrolytic capacitor and solid-state electrolytic capacitor device
WO2008126181A1 (en) * 2007-03-15 2008-10-23 Fujitsu Limited Solid electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070972A (en) * 2007-09-12 2009-04-02 Nippon Chemicon Corp Structure for connecting capacitor to mounting board
JPWO2011021255A1 (en) * 2009-08-21 2013-01-17 日本ケミコン株式会社 Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP4952456B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
KR100702642B1 (en) Stacked capacitor
US7251115B2 (en) Multilayer capacitor
US7436648B2 (en) Multilayer capacitor and mounted structure thereof
JP4354475B2 (en) Multilayer capacitor
US7145429B1 (en) Multilayer capacitor
US7164184B2 (en) Multilayer capacitor
US7663862B2 (en) Multilayer capacitor
WO2007084658A1 (en) Low inductance capacitor
JP2008091520A (en) Stacked capacitor
JP4911036B2 (en) Multilayer capacitor and its mounting structure
JPWO2008044483A1 (en) Composite electrical element
JP2005223113A (en) Solid electrolytic capacitor
US8031460B2 (en) Multilayer capacitor
US8395881B2 (en) Multilayer feedthrough capacitor and mounted structure of multilayer feedthrough capacitor
JP2008021861A (en) Feed-through multilayer capacitor
JP4924698B2 (en) Electronic component mounting structure
JP2011023696A (en) Laminated chip capacitor
US8310806B2 (en) Multilayer capacitor having high ESR
JP2009147338A (en) Low inductance capacitor, and method of manufacturing the same
JP4952456B2 (en) Connection structure of solid electrolytic capacitor to mounting board
JP2006339337A (en) Multilayer capacitor and its packaging structure
JP6128924B2 (en) High frequency noise countermeasure power supply circuit
JP2009070972A (en) Structure for connecting capacitor to mounting board
JP2009065059A (en) Solid electrolytic capacitor and connection structure for solid electrolytic capacitor to mounting substrate
JPH11251180A (en) Multilayer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Ref document number: 4952456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees