JP2009064880A - Method for forming in-plane type josefson junction on high-temperature superconductivity single crystal - Google Patents

Method for forming in-plane type josefson junction on high-temperature superconductivity single crystal Download PDF

Info

Publication number
JP2009064880A
JP2009064880A JP2007230126A JP2007230126A JP2009064880A JP 2009064880 A JP2009064880 A JP 2009064880A JP 2007230126 A JP2007230126 A JP 2007230126A JP 2007230126 A JP2007230126 A JP 2007230126A JP 2009064880 A JP2009064880 A JP 2009064880A
Authority
JP
Japan
Prior art keywords
layer
single crystal
superconductor
insulator
superconductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007230126A
Other languages
Japanese (ja)
Other versions
JP5207271B2 (en
Inventor
Hiromi Tanaka
博美 田中
Hideki Yoshikawa
英樹 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007230126A priority Critical patent/JP5207271B2/en
Publication of JP2009064880A publication Critical patent/JP2009064880A/en
Application granted granted Critical
Publication of JP5207271B2 publication Critical patent/JP5207271B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the problem of the non-uniformity of the characteristic of a Josefson junction constituting an element, in the creating method of a HTS-SQUID two-dimensional array. <P>SOLUTION: The method for forming an in-plane type Josefson junction includes a step (1) of so cleaving a Bi-based high-temperature superconductivity single crystal as to taking out its clean surface, a step (2) of converting by a reduction the whole of the single crystal into an insulator, an ordinary conductor or a weak superconductor, a step (3) of so reactivating a superconductivity only in the surface of the insulator, the ordinary conductor or the weak superconductor by its oxidation as to convert it into a superconductor layer, a step (4) of so shaving at a right angle by a photographic working the 40-60% portion of the whole area of an ab-plane of a superconductivity layer 1A created in the step (3) as to leave the 20-40 nm portion of the superconductivity layer 1A in a c-axis direction and as to form an exposure surface, a step (5) of so converting by an isotropic reduction only the exposure surface of the superconductivity layer created in the step (4) into an insulator as to form an insulator layer, and a step (6) of converting by a directional oxidation only the insulator layer created in the step (5) into a superconductor layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高温超伝導単結晶上での面内型ジョセフソン接合形成法に関する。 The present invention relates to a method for forming an in-plane Josephson junction on a high-temperature superconducting single crystal.

超高感度磁気センサーとして利用できる超伝導量子干渉素子(Superconducting Quantum I
nterference Device : SQUID)は、ジョセフソン接合と呼ばれる超伝導結合の弱い箇所を
含む超伝導リング内での量子干渉効果を巧みに利用したものである。
Superconducting quantum interference device (Superconducting Quantum I)
nterference Device (SQUID) is a clever use of the quantum interference effect in a superconducting ring including a weak part of superconducting coupling called a Josephson junction.

これまでにNb系低温超伝導SQUID(Low Temperature Superconductor SQUID: LTS-SQUID)が
実用化され、磁気共鳴画像診断装置(Magnetic Resonance Imaging System : MRI)などの
生体磁気計測装置や物理計測装置に応用されるようになった。
So far, Nb-based low temperature superconductor SQUID (LTS-SQUID) has been put into practical use and applied to biomagnetic measurement equipment and physical measurement equipment such as magnetic resonance imaging system (MRI). It became so.

一方、高温超伝導SQUID(High Temperature Superconductor SQUID: HTS-SQUID)において
も薄膜作製技術や素子設計技術の進展により、77Kにおける磁場分解能がNb系LTS-SQUIDの
2〜3倍レベルにまで改善されてきている。そして、最近では、高温超伝導体の特長であ
る冷却の容易さを生かしたコンパクトな心臓磁場計測装置や各種検査装置(免疫診断装置
など)の開発も盛んに進められている。
On the other hand, with high temperature superconductor SQUID (HTS-SQUID), the magnetic field resolution at 77K has been improved to 2 to 3 times that of Nb-based LTS-SQUID due to the progress of thin film fabrication technology and device design technology. ing. Recently, the development of compact cardiac magnetic field measuring devices and various testing devices (such as immunodiagnostic devices) that take advantage of the ease of cooling, which is a feature of high-temperature superconductors, has been actively promoted.

しかしながら、HTS-SQUIDではLTS-SQUIDに比べて素子(:超伝導リング内に形成されたジ
ョセフソン接合)間の特性のばらつきが大きく、また積層化も困難であるため、そのマル
チチャンネル化を妨げる要因となっている。
However, HTS-SQUID has a large variation in characteristics between elements (: Josephson junction formed in a superconducting ring) compared to LTS-SQUID, and it is difficult to stack, thus hindering multi-channeling. It is a factor.

例えば、高温超伝導体をリソグラフィー及びイオンビームエッチングで加工し、高温超伝
導体固有ジョセフソン接合を利用してHTS-SQUIDを作製する技術 (特許文献1,2) が知
られている。又、基板に加工された段差上に堆積した薄膜に人工的に作り出される結晶粒
界を利用したランプエッジ型接合により、薄膜のab面内にジョセフソン接合を作製する技
術(特許文献3)も知られている。
For example, a technique (Patent Documents 1 and 2) is known in which a high-temperature superconductor is processed by lithography and ion beam etching, and an HTS-SQUID is manufactured using a Josephson junction inherent to the high-temperature superconductor. In addition, there is also a technique (Patent Document 3) for producing a Josephson junction in the ab plane of a thin film by a ramp edge type bonding using a crystal grain boundary artificially created in a thin film deposited on a step processed on a substrate. Are known.

特開2004-247702号公報JP 2004-247702 A 特開平11-74574号公報JP 11-74574 A 特開2003-224311号公報Japanese Patent Laid-Open No. 2003-224311

従来のLTS-SQUID作製は低温超伝導体の薄膜をリング状に成膜し、一部接合を切断すると
いう方法によりSQUIDを作製している。しかしながら、この方法では2つの問題点がある
。問題点の一つは材料系についてであり、作製は容易だが、(直流)抵抗が零になる温度[=
超伝導転移温度(:Tc)]の低い低温超伝導体(Tc= 9K[Nb], 9.3K[NbTi], 18.3K[Nb3Sn
]・・・など)を用いているという点である。そして、問題点のもう一つは、超伝導リン
グを作製するのに高度なリソグラフィー技術による複雑なプロセスを要するという点であ
る。
In conventional LTS-SQUID fabrication, a thin film of low-temperature superconductor is formed into a ring shape, and the SQUID is fabricated by partially cutting the junction. However, this method has two problems. One of the problems is the material system, which is easy to fabricate, but the temperature at which the (DC) resistance becomes zero [=
Low-temperature superconductors with low superconducting transition temperature (: T c )] (T c = 9K [Nb], 9.3K [NbTi], 18.3K [Nb 3 Sn
] ... etc.). Another problem is that a complicated process using advanced lithography techniques is required to produce a superconducting ring.

一方、HTS-SQUIDの作製には、バイクリスタル基板を用いて作製される人工粒界接合が主
に用いられ、その他、一部において、基板に加工された段差上に堆積した薄膜に人工的に
作り出される結晶粒界を利用したランプエッジ型接合などが使用されている。
On the other hand, HTS-SQUID is mainly produced by artificial grain boundary bonding produced using a bicrystal substrate, and in some other cases, artificially applied to a thin film deposited on a step processed on the substrate. Ramp edge type joining using the grain boundaries created is used.

しかしながら、人工粒界接合では、平坦な界面が得られ難く、「多数の微小SQUID素子を
同一基板上に配列した2次元アレーを作製する場合、素子特性(超伝導臨界電流[:Ic]値)
のばらつきの非常に少ないものを作製するのが困難であり、歩留が非常に悪い」などの問
題点を抱えている。
However, with artificial grain boundary bonding, it is difficult to obtain a flat interface. “When fabricating a two-dimensional array in which a large number of micro SQUID devices are arranged on the same substrate, device characteristics (superconducting critical current [: I c ] value )
It is difficult to produce a product with very little variation, and the yield is very bad.

一方、ランプエッジ型接合ではIc値の標準偏差が5〜8%(@接合数= 100個程度)と比較的
小さいが、ランプエッジの平坦化技術及びその平坦面と再成長超伝導体の界面制御など高
度な作製技術・装置を必要とするため、生産性の点で問題が生じる。これらの理由により
、より高度なマルチチャンネルHTS-SQUIDの実現が大きく妨げられている。
On the other hand, the standard deviation of the I c value is relatively small at 5 to 8% (@ number of junctions = about 100) in the ramp edge type junction, but the ramp edge planarization technology and its flat surface and the regrowth superconductor Since advanced manufacturing techniques and equipment such as interface control are required, problems arise in terms of productivity. For these reasons, the realization of more advanced multi-channel HTS-SQUID is greatly hindered.

そこで、本発明者らは、高温超伝導単結晶の酸化処理、還元処理と、寸法制御性に優れ簡
便であるフォトリソグラフィー加工からなる単純なプロセスのみを用いてジョセフソン接
合を作製できる方法を考案した。この方法は同一単結晶基板上に作製した複数の素子間の
特性の均一性及びプロセスの簡便性から、HTS-SQUIDのマルチチャンネル化を容易にする

すなわち、本発明は下記の工程からなる高温超伝導単結晶上での面内型ジョセフソン接合
形成法である。
(1)Bi系高温超伝導単結晶を劈開し、清浄面を出す工程、
(2)還元処理により、該単結晶全体を絶縁体、常伝導体もしくは弱超伝導体にする工程

(3)酸化処理により、該絶縁体、常伝導体もしくは弱超伝導体の表面のみ超伝導を復活
させ超伝導体層にする工程、
(4)フォトリソグラフィー加工で、前記(3)で作製した超伝導体層の単結晶のab面に
おける全面積の40〜60%を、該単結晶のc軸方向に超伝導層が2〜40nm程度残るように直角
に削り取り露出面を形成する工程、
(5)等方的な還元処理により、前記(4)で作製した超伝導体層の露出面のみを絶縁体
にし、絶縁体層を形成する工程、
(6)方向性のある酸化処理により、前記(5)で作製した絶縁体層の一部のみを超伝導
体層にする工程。
Therefore, the present inventors have devised a method capable of producing a Josephson junction using only a simple process consisting of oxidation treatment and reduction treatment of a high-temperature superconducting single crystal and photolithography processing which is excellent in dimensional control and simple. did. This method facilitates multi-channeling of HTS-SQUID from the uniformity of characteristics between multiple devices fabricated on the same single crystal substrate and the simplicity of the process.
That is, the present invention is an in-plane Josephson junction forming method on a high-temperature superconducting single crystal comprising the following steps.
(1) cleaving a Bi-based high-temperature superconducting single crystal to bring out a clean surface;
(2) a step of reducing the entire single crystal to an insulator, a normal conductor, or a weak superconductor by reduction treatment;
(3) a step of reviving superconductivity only on the surface of the insulator, normal conductor or weak superconductor by oxidation treatment to form a superconductor layer;
(4) 40-60% of the total area on the ab plane of the single crystal of the superconductor layer produced in (3) above by photolithography, and the superconductor layer is 2-40 nm in the c-axis direction of the single crystal. A process of scraping at a right angle to form an exposed surface so as to remain,
(5) A process of forming an insulator layer by making only the exposed surface of the superconductor layer produced in (4) an insulator by an isotropic reduction treatment,
(6) A step of converting only a part of the insulator layer produced in (5) above into a superconductor layer by directional oxidation treatment.

この方法は、素子を作製する基板である単結晶の全体に渡ってTc及びIcが均一であること
及びプロセスの簡便性から、容易にジョセフソン接合及びその接合を用いたHTS-SQUID2
次元アレーを実現できる。したがって、本発明によりHTS-SQUIDにおける一層のマルチチ
ャンネル化を推し進められ、HTS-SQUIDの更なる高感度化・高信頼化を実現できる。
This method facilitates Josephson junctions and HTS-SQUID2 using the junctions because of the uniformity of T c and I c throughout the single crystal, which is the substrate on which the device is fabricated, and the simplicity of the process.
A dimensional array can be realized. Therefore, further multi-channelization in the HTS-SQUID can be promoted by the present invention, and further enhancement of sensitivity and reliability of the HTS-SQUID can be realized.

なお、本発明では、プロセスを適用する対象として結晶性を示すX線回折ピークの半値幅
が0.05°以下であり、さらにTcが約90Kと高品質であり、且つab面に5mm×5mm以上のサイ
ズを有するBi系高温超伝導単結晶(特に、Bi2Sr2CaCu2Oy[Bi-2212]単結晶)を採用したが
、その理由は以下の通りである。高温超伝導体でジョセフソン接合を作製する際、一般に
はエピタキシャル成長薄膜(主に、Y系超伝導薄膜)が用いられている。しかし、実際には
超伝導薄膜中には結晶粒界や凸凹などが多く存在し、粒界における段差やピンホールがエ
ピタキシャル成長薄膜上に作製したジョセフソン接合のIc値の不均一性に大きく影響を及
ぼしている。
In the present invention, the half-value width of the X-ray diffraction peak showing crystallinity as an object to which the process is applied is 0.05 ° or less, Tc is about 90K, and the high quality is 5 mm × 5 mm or more on the ab surface. Bi-type high-temperature superconducting single crystal (especially, Bi 2 Sr 2 CaCu 2 O y [Bi-2212] single crystal) having a size of 1 mm was employed for the following reason. When fabricating a Josephson junction with a high-temperature superconductor, an epitaxially grown thin film (mainly Y-based superconducting thin film) is generally used. In reality, however, there are many crystal grain boundaries and irregularities in the superconducting thin film, and steps and pinholes at the grain boundary greatly affect the nonuniformity of the I c value of Josephson junctions fabricated on the epitaxially grown thin film. Is exerting.

そこで、この不確定性を除くために、ab面において数mm角以上の広い面積に渡って平坦で
、且つX線回折ピークの半値幅が0.05°以下と結晶性が高く、さらにはTcが約90Kと超伝導
特性も優れた単結晶を用いる。又、高温超伝導体の材料系としては、Bi系高温超伝導体
を選ぶことが好ましい。これは、Bi系高温超伝導体の単結晶は高い劈開性を有しておりTc
、Ic及び結晶性が面全体に渡って均一な劈開面を容易に得ることができるためである。さ
らに劈開面は平坦性にも優れる。また、単結晶の合成に必要な原材料は資源が豊富であり
、且つ単結晶の合成も容易であるというメリットもある。
Therefore, in order to remove this uncertainty, the ab plane is flat over a wide area of several mm square or more, and the half-value width of the X-ray diffraction peak is 0.05 ° or less and the crystallinity is high, and further, T c is Use a single crystal with excellent superconducting properties of about 90K. Further, it is preferable to select a Bi-based high-temperature superconductor as the material system of the high-temperature superconductor. This is a single crystal of Bi-based high temperature superconductor has high cleavability T c
Is because it is possible to I c and crystallinity obtained easily even cleavage plane throughout the surface. Furthermore, the cleaved surface is also excellent in flatness. In addition, the raw materials necessary for the synthesis of the single crystal are abundant in resources, and there is an advantage that the synthesis of the single crystal is easy.

したがって、本発明のプロセスを用いれば、酸化雰囲気中及び還元雰囲気中での熱処理と
フォトリソグラフィー加工による単純な加工のみで、SQUID、ひいてはジョセフソン接合
作製に必要な超伝導層/絶縁層(又は常伝導層)/超伝導層構造を容易に形成できる。
Therefore, when the process of the present invention is used, the superconducting layer / insulating layer (or ordinary layer) necessary for SQUID and Josephson junction fabrication can be obtained only by simple processing by heat treatment and photolithography in an oxidizing atmosphere and a reducing atmosphere. (Conductive layer) / superconductive layer structure can be easily formed.

本発明では、HTS-SQUID素子作製で必要となるジョセフソン接合の形成をTc、Ic及び結晶
性の揃った均質なBi系高温超伝導単結晶上における酸化処理、還元処理プロセスのみで
達成するため、「高度な作製技術を必要としないこと」、「Tc、Ic及び結晶性の揃った均
質な単結晶を用いているためHTS-SQUID2次元アレーを作製した際にHTS-SQUID素子間の特
性のばらつきを原理的に低減することができる」という効果が得られる。
In the present invention, the oxidation process in the HTS-SQUID element T c in the formation of Josephson junctions required in producing, I c and crystallinity uniform homogeneous Bi-based high temperature superconducting single crystal, only achieved in the reduction treatment process Therefore, “No need for advanced fabrication technology”, “HTS-SQUID device when HTS-SQUID 2D array is fabricated because it uses homogeneous single crystal with uniform T c , I c and crystallinity. It is possible to reduce the variation in characteristics between the two in principle.

本発明の方法においては、図1に示すようなプロセスでジョセフソン接合を作製する。図
1に示すプロセス(1)〜(6)は高温超伝導単結晶上で面内型ジョセフソン接合を作製
する工程を模式的に示している。本プロセスは、酸化処理及び還元処理とフォトリソグラ
フィー加工のみで完結できるため、非常に低コストかつ簡便である。
In the method of the present invention, a Josephson junction is formed by a process as shown in FIG. Processes (1) to (6) shown in FIG. 1 schematically show the steps of producing an in-plane type Josephson junction on a high-temperature superconducting single crystal. Since this process can be completed only by oxidation treatment, reduction treatment and photolithography processing, it is very low cost and simple.

具体的な作成手順を以下に示す。
(1)Bi系高温超伝導体1を劈開し、劈開面2からなる清浄面を出す。Bi系高温超伝
導体としては、好ましくは、Bi2Sr2CaCu2Oy(Bi-2212)又はBi2Sr2Ca2Cu3Oy(Bi-2223)単結
晶を用いる。ちなみに育成したままのBi系高温超伝導単結晶において劈開していない場
合の表面は水酸基や炭酸塩が付着することによりTc、Ic及び結晶性が劣化しており、超伝
導を示さない場合も多々ある。一方、劈開した面は劈開していない場合の表面に存在する
劣化層が無く、Tc、Ic及び結晶性が面全体に渡って均一である。また、平坦性にも優れる
。なお、本発明に用いるBi系高温超伝導単結晶はもともと平板状をしているが、c軸方
向の厚みが0.1mm程度以上であれば本発明のプロセスを適用できる。
The specific creation procedure is shown below.
(1) Cleave the Bi-based high-temperature superconductor 1 to expose a clean surface composed of the cleaved surface 2. As the Bi-based high temperature superconductor, Bi 2 Sr 2 CaCu 2 O y (Bi-2212) or Bi 2 Sr 2 Ca 2 Cu 3 O y (Bi-2223) single crystal is preferably used. By the way, when the Bi-based high-temperature superconducting single crystal as grown is not cleaved, T c , I c, and crystallinity are deteriorated due to adhesion of hydroxyl groups and carbonates, and the surface does not show superconductivity. There are many. On the other hand, the cleaved surface has no deteriorated layer present on the surface when not cleaved, and T c , I c and crystallinity are uniform over the entire surface. Moreover, it is excellent in flatness. Although the Bi-based high-temperature superconducting single crystal used in the present invention is originally flat, the process of the present invention can be applied if the thickness in the c-axis direction is about 0.1 mm or more.

(2)還元処理により、超伝導体1全体を絶縁体、常伝導体もしくは弱超伝導体にする。
なお、図1では絶縁体1の場合を代表して示す。還元処理は超伝導単結晶1を真空中加熱
処理又は希ガス中熱処理することにより行なうことができる。例えば、10-5Paオーダーの
高真空中において、530℃で12h熱処理して還元処理を施す。
(2) The entire superconductor 1 is converted into an insulator, normal conductor or weak superconductor by reduction treatment.
Note that FIG. 1 shows the case of the insulator 1 as a representative. The reduction treatment can be performed by subjecting the superconducting single crystal 1 to heat treatment in a vacuum or heat treatment in a rare gas. For example, reduction treatment is performed by heat treatment at 530 ° C. for 12 hours in a high vacuum of the order of 10 −5 Pa.

還元処理を施す際、超伝導体1の表面から内部に向かって還元が順次進んでいくのである
が、処理時間が十分であれば超伝導体1の内部全て、すなわち単結晶全体を還元処理する
ことが可能である。ここでの還元は、Bi系高温超伝導体の超伝導キャリア密度を決める
過剰酸素が消失していく現象を指す。
When the reduction treatment is performed, the reduction proceeds sequentially from the surface of the superconductor 1 to the inside. However, if the treatment time is sufficient, all the inside of the superconductor 1, that is, the entire single crystal is reduced. It is possible. The reduction here refers to a phenomenon in which excess oxygen that determines the superconducting carrier density of the Bi-based high-temperature superconductor disappears.

又、ここで言う絶縁体、常伝導体もしくは弱超伝導体とは、Tcが、例えばBi-2212の超伝
導体状態では90K程度であったものが、それより数十K低い温度までTcが現われない状態(
:弱超伝導体)、もしくはどんなに低温まで冷却してもTcが現われない状態(:絶縁体もし
くは常伝導体)のことを言う。
In addition, the insulator, normal conductor or weak superconductor referred to here has a Tc of about 90K in the superconductor state of, for example, Bi-2212, but T c does not appear (
: Weak superconductor), or the state where Tc does not appear no matter how low the temperature is cooled (: insulator or normal conductor).

また、この絶縁体、常伝導体もしくは弱超伝導体が形成されていることは、Cu2p内殻光電
子スペクトルで確認される。具体的には、図2に示すようにCu2p光電子スペクトルにおい
て、サテライトピーク(2p53d9)[:図中の記号sが示すピーク]の強度が超伝導を示す場合
のそれに比べて著しく低下することで判別できる。
The formation of this insulator, normal conductor, or weak superconductor is confirmed by the Cu2p inner-shell photoelectron spectrum. Specifically, as shown in FIG. 2, in the Cu2p photoelectron spectrum, the intensity of the satellite peak (2p 5 3d 9 ) [: the peak indicated by the symbol s in the figure] is significantly lower than that in the case of superconductivity. Can be determined.

(3)酸化処理により、絶縁体3の表面のみ超伝導を復活させ超伝導体層1Aにする。こ
のとき、この超伝導体層1Aの好ましい厚みは数百nm〜数μm程度である。酸化処理は工
程(2)で全体を絶縁化した超伝導単結晶を酸素中加熱することにより行なうことができる
。例えば、21kPa の100%酸素中において、500℃で1h熱処理して酸化処理を施す。
(3) The superconductivity is restored only on the surface of the insulator 3 by the oxidation treatment to form the superconductor layer 1A. At this time, the preferred thickness of the superconductor layer 1A is about several hundred nm to several μm. The oxidation treatment can be performed by heating the superconducting single crystal, which has been completely insulated in step (2), in oxygen. For example, in 100% oxygen at 21 kPa, oxidation treatment is performed by heat treatment at 500 ° C. for 1 h.

(4)(3)で作製した超伝導体層1Aの単結晶のab面における全面積の40〜60%を該単
結晶のc軸方向に超伝導層が2〜40nm程度残るようにフォトリソグラフィーで直角に削り取
り、超伝導体層1Aの露出面4、5を形成させる。単結晶のab面において削り取る面積は
大き過ぎても小さ過ぎても駄目である。これは、SQUID作製時における穴加工の位置出し
が難しくなるためであり、本工程(4)で削り取るab面の面積は単結晶ab面における全面積
の40〜60%が適当である。また、削り取った後に残す超伝導体層のc軸方向の厚さは2〜40n
mが適当であるとしたが、これは、次の工程(5)で行う等方的な還元処理後に、超伝導体
層が絶縁体層3Bの箇所に残らないようにするためである。絶縁体層3Bの箇所に超伝導
体層が残存してしまうと、本プロセスで作製するジョセフソン接合とは別に超伝導のパス
が存在してしまい、ジョセフソン接合の特性が得られなくなってしまう。フォトリソグラ
フィー法は一般的な方法を採用することができる。
(4) Photolithography is performed so that 40 to 60% of the total area of the ab surface of the single crystal of the superconductor layer 1A prepared in (3) remains in the c-axis direction of the single crystal about 2 to 40 nm. Then, the exposed surfaces 4 and 5 of the superconductor layer 1A are formed. The area to be scraped on the ab plane of the single crystal is too large or too small. This is because it is difficult to position the hole during SQUID fabrication, and the area of the ab plane to be scraped in this step (4) is appropriately 40 to 60% of the total area of the single crystal ab plane. Also, the thickness of the c-axis direction of the superconductor layer left after scraping is 2 to 40 n
m is appropriate, but this is to prevent the superconductor layer from remaining in the insulator layer 3B after the isotropic reduction process performed in the next step (5). If the superconductor layer remains in the insulating layer 3B, a superconducting path exists separately from the Josephson junction fabricated in this process, and the characteristics of the Josephson junction cannot be obtained. . A general method can be adopted as the photolithography method.

(5)等方的な還元処理により、(4)で形成した超伝導体層1Aの露出面4、5を絶縁
体にして絶縁体層3A,3Bを形成する。このとき、絶縁体層3A,3Bの好ましい厚み
は、2〜40nm程度である。等方的な還元処理は(4)までのプロセスで形成した絶縁体3
と超伝導体層1Aからなる加工物を真空中加熱処理又は 希ガス中加熱処理することによ
り行なうことができる。例えば、10-5Paオーダーの高真空中で、530℃で2min熱処理する
。ここで言う「等方的な還元処理」とは、単純に還元性雰囲気中で加熱処理をして、雰囲
気と接する全ての面を還元させる手法のことである。
(5) By the isotropic reduction treatment, the insulating layers 3A and 3B are formed using the exposed surfaces 4 and 5 of the superconductor layer 1A formed in (4) as an insulator. At this time, the preferable thickness of the insulator layers 3A and 3B is about 2 to 40 nm. The insulator 3 formed by the process up to (4) isotropic reduction treatment.
And a superconductor layer 1A can be heat-treated in a vacuum or a rare gas. For example, heat treatment is performed at 530 ° C. for 2 minutes in a high vacuum of the order of 10 −5 Pa. The term “isotropic reduction treatment” as used herein refers to a technique in which heat treatment is simply performed in a reducing atmosphere to reduce all surfaces in contact with the atmosphere.

(6)方向性のある酸化処理により、(5)で作製した絶縁体層3A,3Bのうち絶縁体
層3Bの表面のみを超伝導体にし、超伝導体層1Bを形成する。方向性のある酸化処理は
(5)までのプロセスで形成した絶縁体3、超伝導体層1A、絶縁体層3A,3Bからな
る加工物の劈開面2と平行な面を持つ絶縁体層3Bのみをイオンビーム照射することによ
り行なうことができる。ここで言う「方向性のある酸化処理」とは、指向性のある酸素イ
オンビームを用いて、イオンビームの照射された面のみを酸化する手法のことである。こ
こではイオンビームの加速電圧は10V程度が好ましい。イオンビーム照射によるスパッタ
リングが生じない条件内で、プラズマが発生するギリギリの加速電圧を選ぶことが好まし
い。
(6) By the directional oxidation treatment, only the surface of the insulator layer 3B of the insulator layers 3A and 3B produced in (5) is made a superconductor to form the superconductor layer 1B. The directional oxidation treatment is an insulator layer 3B having a plane parallel to the cleavage plane 2 of the workpiece formed of the insulator 3, the superconductor layer 1A, and the insulator layers 3A and 3B formed by the processes up to (5). Can be performed by ion beam irradiation only. The “directional oxidation treatment” referred to here is a method of oxidizing only the surface irradiated with the ion beam using a directional oxygen ion beam. Here, the acceleration voltage of the ion beam is preferably about 10V. It is preferable to select a last-minute accelerating voltage at which plasma is generated within the condition that sputtering by ion beam irradiation does not occur.

図3は、図1に示す(1)〜(6)のプロセスにより完成したジョセフソン接合の拡大図
とジョセフソン電流の流れる方向を矢印で示す模式図である。超伝導体層1B、絶縁体層
3A、超伝導体層1Aがジョセフソン接合の超伝導層/絶縁層(又は常伝導層)/超伝導層
構造になる。超伝導のコヒーレンス長が長い単結晶のab面内にジョセフソン電流が流せる
ため、作製に要するプロセス技術の困難度を下げられるというメリットもある。
FIG. 3 is an enlarged view of the Josephson junction completed by the processes (1) to (6) shown in FIG. 1 and a schematic diagram showing the flow direction of the Josephson current with arrows. The superconductor layer 1B, the insulator layer 3A, and the superconductor layer 1A have a Josephson junction superconducting layer / insulating layer (or normal conducting layer) / superconducting layer structure. Since the Josephson current can flow in the ab plane of a single crystal with a long superconducting coherence length, there is also an advantage that the difficulty of the process technology required for fabrication can be reduced.

(1)10mm×5mm×0.3mm程度のサイズを有するBi-2212超伝導単結晶をスコッチ(スリー
エム社登録商標)テープを用いて劈開し、清浄面を出した。
(1) A Bi-2212 superconducting single crystal having a size of about 10 mm × 5 mm × 0.3 mm was cleaved with a Scotch (registered trademark of 3M) tape to reveal a clean surface.

(2)(1)で用意した劈開面を3×10-5Paの高真空中において、530℃で12h熱処理して還
元処理を施した。この処理により、深さ方向に0.1〜0.3mm程度還元がなされ、絶縁体にな
った。絶縁化は光電子分光による測定で観測されたCu2p内殻光電子スペクトルで確認され
た。具体的には、Cu2p光電子スペクトルにおけるサテライトピーク(2p53d9)の強度が超伝
導を示す場合のそれに比べて著しく低下していることから判別した。
(2) The cleavage surface prepared in (1) was subjected to reduction treatment by heat treatment at 530 ° C. for 12 hours in a high vacuum of 3 × 10 −5 Pa. By this treatment, reduction was performed by about 0.1 to 0.3 mm in the depth direction, and an insulator was obtained. Insulation was confirmed by the Cu2p core photoelectron spectrum observed by photoelectron spectroscopy. Specifically, it was determined from the fact that the intensity of the satellite peak (2p 5 3d 9 ) in the Cu2p photoelectron spectrum is significantly lower than that in the case of superconductivity.

(3)21kPa の100%酸素中において、500℃で1h熱処理して単結晶の表面層のみに酸化処
理を施した。この酸化処理により300nm程度の表面層が超伝導体になった。
(3) Only the single crystal surface layer was oxidized by heat treatment at 500 ° C. for 1 h in 100% oxygen at 21 kPa. By this oxidation treatment, a surface layer of about 300 nm became a superconductor.

(4)フォトリソグラフィーで(3)で作製した超伝導体層1Aの単結晶のab面における全
面積の40〜60%(:4〜6mm×5mm)を該単結晶のc軸方向に超伝導層が2〜4nm程度残るよう
に直角に削り取った。
(4) Superconductivity in the c-axis direction of the single crystal of 40 to 60% (: 4 to 6 mm x 5 mm) of the total area on the ab plane of the single crystal of the superconductor layer 1A produced in (3) by photolithography The layer was scraped at a right angle so that about 2 to 4 nm remained.

(5)3×10-5Paの高真空中において、530℃で2min熱処理し、(4)で形成した超伝導体
層の露出面のみを絶縁体にして絶縁体層を形成した。絶縁体層の厚みは2〜4nm程度であっ
た。
(5) Heat treatment was performed at 530 ° C. for 2 minutes in a high vacuum of 3 × 10 −5 Pa, and an insulating layer was formed using only the exposed surface of the superconductor layer formed in (4) as an insulator. The thickness of the insulator layer was about 2 to 4 nm.

(6)酸素イオンビーム照射により、(5)で作製した絶縁体層の表面のみを超伝導体層
にした。この時、加速電圧は試料へのダメージを抑えるために、(プラズマが発生する最
低電圧である)10Vとした。
(6) Only the surface of the insulator layer produced in (5) was changed to a superconductor layer by oxygen ion beam irradiation. At this time, the acceleration voltage was set to 10 V (which is the lowest voltage at which plasma is generated) in order to suppress damage to the sample.

このプロセスにより高温超伝導体の単結晶のab面内に超伝導層/絶縁層(又は常伝導層)/
超伝導層構造が形成された。
This process allows the superconducting layer / insulating layer (or normal layer) /
A superconducting layer structure was formed.

従来のHTS-SQUID2次元アレー作製方法では素子を構成するジョセフソン接合における特
性の不均一性に問題があった。また、作製において成膜装置等を必要としたが、本発明に
より非常に安価に安定した素子を作製することが可能になった。本プロセスで作製したジ
ョセフソン接合を用いたHTS-SQUIDは低コスト及びメンテナンスフリーであるため、各種
検査装置(食品・薬品内異物検査装置や半導体デバイス検査装置などの非破壊検査)に応用
することが可能である。したがって、産業分野への貢献も大きく、経済的効果をもたらす
In the conventional HTS-SQUID two-dimensional array fabrication method, there is a problem in the non-uniformity of characteristics in the Josephson junction constituting the element. Further, although a film forming apparatus or the like is required for the production, the present invention makes it possible to produce a stable element at a very low cost. HTS-SQUID using Josephson junction fabricated by this process is low-cost and maintenance-free, so it should be applied to various inspection equipment (non-destructive inspection such as food / chemical foreign substance inspection equipment and semiconductor device inspection equipment). Is possible. Therefore, it contributes greatly to the industrial field and brings economic effects.

ジョセフソン接合作製の手順を示す工程図である。It is process drawing which shows the procedure of Josephson junction preparation. 超伝導・非超伝導それぞれの状態を、内殻光電子分光で観測した時のCu2pスペクトル形状である。This is the Cu2p spectral shape when superconducting and non-superconducting states are observed by inner-shell photoelectron spectroscopy. 図1のプロセスを経て完成したジョセフソン接合の拡大図である。FIG. 2 is an enlarged view of a Josephson junction completed through the process of FIG. 1.

Claims (2)

(1)Bi系高温超伝導単結晶を劈開し、清浄面を出す工程、
(2)還元処理により、該単結晶全体を絶縁体、常伝導体もしくは弱超伝導体にする工程

(3)酸化処理により、該絶縁体、常伝導体もしくは弱超伝導体の表面のみ超伝導を復活
させ超伝導体層にする工程、
(4)フォトリソグラフィー加工で、前記(3)で作製した超伝導体層の単結晶のab面に
おける全面積の40〜60%を、該単結晶のc軸方向に超伝導層が2〜40nm残るように直角に削
り取り露出面を形成する工程、
(5)等方的な還元処理により、前記(4)で作製した超伝導体層の露出面のみを絶縁体
にし、絶縁体層を形成する工程、
(6)方向性のある酸化処理により、前記(5)で作製した絶縁体層の一部のみを超伝導
体層にする工程、
からなることを特徴とする高温超伝導単結晶上での面内型ジョセフソン接合形成法。
(1) cleaving a Bi-based high-temperature superconducting single crystal to bring out a clean surface;
(2) a step of reducing the entire single crystal to an insulator, a normal conductor, or a weak superconductor by reduction treatment;
(3) a step of reviving superconductivity only on the surface of the insulator, normal conductor or weak superconductor by oxidation treatment to form a superconductor layer;
(4) 40-60% of the total area on the ab plane of the single crystal of the superconductor layer produced in (3) above by photolithography, and the superconductor layer is 2-40 nm in the c-axis direction of the single crystal. Scraping at a right angle to form an exposed surface,
(5) A process of forming an insulator layer by making only the exposed surface of the superconductor layer produced in (4) an insulator by an isotropic reduction treatment,
(6) A step of converting only a part of the insulator layer prepared in (5) into a superconductor layer by directional oxidation treatment,
A method for forming an in-plane Josephson junction on a high-temperature superconducting single crystal.
超伝導量子干渉素子において、請求項1に記載の形成法で形成したジョセフソン接合を用
いたことを特徴とする超伝導量子干渉素子2次元アレー。
A superconducting quantum interference device, wherein a Josephson junction formed by the formation method according to claim 1 is used.
JP2007230126A 2007-09-05 2007-09-05 In-plane Josephson junction formation on high-temperature superconducting single crystals. Expired - Fee Related JP5207271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007230126A JP5207271B2 (en) 2007-09-05 2007-09-05 In-plane Josephson junction formation on high-temperature superconducting single crystals.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230126A JP5207271B2 (en) 2007-09-05 2007-09-05 In-plane Josephson junction formation on high-temperature superconducting single crystals.

Publications (2)

Publication Number Publication Date
JP2009064880A true JP2009064880A (en) 2009-03-26
JP5207271B2 JP5207271B2 (en) 2013-06-12

Family

ID=40559229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230126A Expired - Fee Related JP5207271B2 (en) 2007-09-05 2007-09-05 In-plane Josephson junction formation on high-temperature superconducting single crystals.

Country Status (1)

Country Link
JP (1) JP5207271B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232500A (en) * 2009-03-27 2010-10-14 National Institute For Materials Science Simple method for producing intrinsic josephson tunnel device
CN108254622A (en) * 2017-12-06 2018-07-06 上海超导科技股份有限公司 High-temperature superconductor band test device and test method
WO2023199419A1 (en) * 2022-04-13 2023-10-19 富士通株式会社 Josephson junction element, quantum device, and production method for josephson junction element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04186781A (en) * 1990-11-20 1992-07-03 Seiko Epson Corp Manufacture of superconducting element
JPH0548159A (en) * 1991-08-15 1993-02-26 Fujitsu Ltd Oxide superconductor device and manufacture thereof
JPH06120576A (en) * 1992-10-07 1994-04-28 Fujitsu Ltd Manufacture of superconductive element
JPH07187614A (en) * 1987-04-08 1995-07-25 Hitachi Ltd Production of superconducting oxide and superconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187614A (en) * 1987-04-08 1995-07-25 Hitachi Ltd Production of superconducting oxide and superconductor device
JPH04186781A (en) * 1990-11-20 1992-07-03 Seiko Epson Corp Manufacture of superconducting element
JPH0548159A (en) * 1991-08-15 1993-02-26 Fujitsu Ltd Oxide superconductor device and manufacture thereof
JPH06120576A (en) * 1992-10-07 1994-04-28 Fujitsu Ltd Manufacture of superconductive element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232500A (en) * 2009-03-27 2010-10-14 National Institute For Materials Science Simple method for producing intrinsic josephson tunnel device
CN108254622A (en) * 2017-12-06 2018-07-06 上海超导科技股份有限公司 High-temperature superconductor band test device and test method
WO2023199419A1 (en) * 2022-04-13 2023-10-19 富士通株式会社 Josephson junction element, quantum device, and production method for josephson junction element

Also Published As

Publication number Publication date
JP5207271B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
Eckstein et al. High-temperature superconducting multilayers and heterostructures grown by atomic layer-by-layer molecular beam epitaxy
CN1007480B (en) Superconductive device
JP3330969B2 (en) High Tc microbridge superconductor device using SNS junction between stepped edges
JP2008047852A (en) Josephson junction and josephson device
JP3278638B2 (en) High-temperature superconducting Josephson junction and method of manufacturing the same
Groves et al. High critical current density YBa2Cu3O7δ thick films using ion beam assisted deposition MgO bi-axially oriented template layers on nickel-based superalloy substrates
JP4398582B2 (en) Oxide superconducting wire and method for producing the same
JP2006117505A (en) Bismuth-based oxide superconductor thin film and method of manufacturing the same
JP5207271B2 (en) In-plane Josephson junction formation on high-temperature superconducting single crystals.
Yu et al. Fabrication of niobium titanium nitride thin films with high superconducting transition temperatures and short penetration lengths
JP2003206134A (en) High temperature superconducting thick film member and method for producing the same
US20020074544A1 (en) Ramp-edge josephson junction devices and methods for fabricating the same
Shiohara et al. Present status & future prospects of coated conductor development in Japan
Wang et al. YBa $ _2 $ Cu $ _3 $ O $ _ {7-\delta} $-CeO $ _2 $-YBa $ _2 $ Cu $ _3 $ O $ _ {7-\delta} $ Multilayers Grown by Reactive Co-Evaporation on Sapphire Wafers
JPH104223A (en) Oxide superconducting josephson element
JPH11346010A (en) Photodetector
Miura et al. Magnetic Field Dependence of Critical Current Density and Microstructure in ${\rm Sm} _ {1+ x}{\rm Ba} _ {2-x}{\rm Cu} _ {3}{\rm O} _ {y} $ Films on Metallic Substrates
Braginski Thin film structures
Shimizu et al. Preparation of YBa2Cu3O7-δ and La1. 85Sr0. 15 CuO4 Bilayer Structure for Superconducting Connection
JP7445238B2 (en) Superconducting wire and method for manufacturing superconducting wire
Lee et al. Superconducting transition properties of grain boundaries in MgB 2 films
Ohmatsu et al. High-Ic HoBCO coated conductors by PLD method
Liu et al. Preparation of Bi 2 Sr 2 CaCu 2 O 8+ δ-YBa 2 Cu 3 O 7− δ Bilayer Films by Acetate Based Photosensitive Sol-Gel Method
US7618923B2 (en) Method for making a superconductor with improved microstructure
JPH1126823A (en) Superconductor constant current interval voltage-step element and superconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees