JP2009064782A - Manufacturing method of semiconductor for photoelectric conversion material - Google Patents

Manufacturing method of semiconductor for photoelectric conversion material Download PDF

Info

Publication number
JP2009064782A
JP2009064782A JP2008257491A JP2008257491A JP2009064782A JP 2009064782 A JP2009064782 A JP 2009064782A JP 2008257491 A JP2008257491 A JP 2008257491A JP 2008257491 A JP2008257491 A JP 2008257491A JP 2009064782 A JP2009064782 A JP 2009064782A
Authority
JP
Japan
Prior art keywords
semiconductor
dye
photoelectric conversion
conversion material
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008257491A
Other languages
Japanese (ja)
Inventor
Yuko Takeda
祐子 竹田
Takatsugu Obata
孝嗣 小幡
Reigen Kan
礼元 韓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008257491A priority Critical patent/JP2009064782A/en
Publication of JP2009064782A publication Critical patent/JP2009064782A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and inexpensively provide a semiconductor for a photoelectric conversion material having an excellent photoelectric conversion efficiency. <P>SOLUTION: The manufacturing method of a semiconductor for a photoelectric conversion material includes: fabricating one or more than two hydrophobic solutions or aprotic and hydrophobic solutions in which a dye functioning as a photosensitizer is dissolved; and immersing a semiconductor having surface active points without being subjected to a pretreatment, to make the dye absorbed on the semiconductor. The dye functioning as a photosensitizer comprises at least one bonding group and at least one alkyl group in the molecule. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光電変換材料用半導体の製造方法に関する。 The present invention relates to a method for producing a semiconductor for a photoelectric conversion material.

光電変換材料とは、光が照射されると、その材料内の原子に束縛されていた電子が光エネルギーにより自由に動けるようになり、これにより自由電子と自由電子の抜け孔(正孔)が発生し、これら自由電子と正孔とが効率よく分離するために、連続的に電気エネルギーが取り出すことができる材料、すなわち、光エネルギーを電気エネルギーに変換することができる材料である。このような光電変換材料は、例えば太陽電池などに利用されている。   When a light is irradiated with a photoelectric conversion material, electrons bound to the atoms in the material can move freely by light energy, and free electrons and free electron holes (holes) are created. In order to generate these free electrons and holes efficiently, it is a material from which electric energy can be taken out continuously, that is, a material that can convert light energy into electric energy. Such a photoelectric conversion material is used for a solar cell, for example.

太陽電池のうち、色素増感型太陽電池は高変換効率を示すため、広く注目されている。色素増感型太陽電池は、例えば、半導体電極及び対電極と、これら電極間に挟持された電解質層とから主に構成されており、半導体電極に光が照射されると、この電極側で電子が発生し、この電子が電気回路を通って対電極に移動し、対電極に移動した電子が電解質中をイオンとして移動して半導体電極にもどり、これが繰り返されて電気エネルギーを取り出すことができるものである。   Among solar cells, dye-sensitized solar cells have attracted wide attention because they exhibit high conversion efficiency. A dye-sensitized solar cell is mainly composed of, for example, a semiconductor electrode and a counter electrode, and an electrolyte layer sandwiched between these electrodes. When light is irradiated on the semiconductor electrode, electrons are formed on this electrode side. The electrons move to the counter electrode through the electric circuit, and the electrons moved to the counter electrode move as ions in the electrolyte and return to the semiconductor electrode, and this can be repeated to extract electric energy. It is.

この色素増感型太陽電池で用いられている光電変換材料である半導体電極は、半導体表面に可視光領域に吸収を持つ分光増感色素を吸着させたものが用いられている。
例えば、特開平1−220380号公報(特許文献1)には、金属酸化物半導体を、遷移金属錯体などの分光増感色素を含有する水溶液に、室温下で浸漬することにより、表面に分光増感色素を吸着させた層が形成された半導体を用いた太陽電池が記載されている。
As the semiconductor electrode, which is a photoelectric conversion material used in the dye-sensitized solar cell, a semiconductor electrode in which a spectral sensitizing dye having absorption in the visible light region is adsorbed is used.
For example, Japanese Patent Laid-Open No. 1-220380 (Patent Document 1) discloses that a metal oxide semiconductor is spectrally sensitized on a surface by immersing it in an aqueous solution containing a spectral sensitizing dye such as a transition metal complex at room temperature. A solar cell using a semiconductor in which a layer having adsorbed dye is formed is described.

また、特表平5−504023号公報(特許文献2)には、金属イオンでドープした酸化チタン半導体の表面に遷移金属錯体などの分光増感色層を有する太陽電池が記載されている。
さらに、特開平7−249790号公報(特許文献3)には、半導体表面に分光増感色のエタノール溶液を加熱還流して得られた光電変換材料用半導体を用いた太陽電池が記載されている。
特開平1−220380号公報 特表平5−504023号公報 特開平7−249790号公報
Japanese Patent Application Laid-Open No. 5-504023 (Patent Document 2) describes a solar cell having a spectrally sensitized color layer such as a transition metal complex on the surface of a titanium oxide semiconductor doped with metal ions.
Furthermore, Japanese Patent Application Laid-Open No. 7-249790 (Patent Document 3) describes a solar cell using a semiconductor for a photoelectric conversion material obtained by heating and refluxing a spectrally sensitized ethanol solution on a semiconductor surface. .
Japanese Patent Laid-Open No. 1-220380 Japanese National Patent Publication No. 5-504023 JP 7-249790 A

しかし、上記の方法では、色素を溶解している溶媒の水酸基が半導体表面の活性点と反応して色素吸着を妨げるので、必要な量の色素を吸着し難く、また、強固に吸着させることができない。
さらに、色素を溶解している溶媒に含まれている水が、製造工程中に色素の表面に吸着されるため、半導体の寿命が短くなる原因にもなっている。しかも、これらの色素の多くは溶解度が低く、半導体に十分な色素濃度を与えることができず、変換効率が低下する原因となっている。
However, in the above method, since the hydroxyl group of the solvent dissolving the dye reacts with the active sites on the semiconductor surface and hinders the dye adsorption, it is difficult to adsorb the necessary amount of the dye, and it can be adsorbed firmly. Can not.
Furthermore, since water contained in the solvent dissolving the dye is adsorbed on the surface of the dye during the manufacturing process, it is a cause of shortening the lifetime of the semiconductor. In addition, many of these dyes have low solubility and cannot give a sufficient dye concentration to the semiconductor, which causes a reduction in conversion efficiency.

本発明は、上記課題に鑑みなされたものであり、優れた光電変換効率を有する光電変換材料用半導体を容易かつ安価に得ることができる製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a manufacturing how that can be obtained a photoelectric conversion material for a semiconductor which has excellent photoelectric conversion efficiency easily and inexpensively.

本発明によれば、光増感剤として機能する色素を、1種又は2種以上の疎水性溶媒に溶解して、疎水性溶液を作製し、この疎水性溶液に、表面に活性点を有する半導体を前処理せずに浸漬して、半導体上に色素を吸着させる光電変換材料用半導体の製造方法が提供される。
また、光増感剤として機能する色素を、1種又は2種以上の非プロトン性かつ疎水性溶媒に溶解して、非プロトン性かつ疎水性溶液を作製し、この非プロトン性かつ疎水性溶液に、表面に活性点を有する半導体を前処理せずに浸漬して、半導体上に色素を吸着させる光電変換材料用半導体の製造方法が提供される。
According to the present invention, a dye functioning as a photosensitizer is dissolved in one or more hydrophobic solvents to prepare a hydrophobic solution, and this hydrophobic solution has active sites on the surface. A method for producing a semiconductor for a photoelectric conversion material is provided in which a semiconductor is immersed without pretreatment to adsorb a dye on the semiconductor.
In addition, a dye that functions as a photosensitizer is dissolved in one or more aprotic and hydrophobic solvents to prepare an aprotic and hydrophobic solution. This aprotic and hydrophobic solution Furthermore, a method for producing a semiconductor for a photoelectric conversion material is provided in which a semiconductor having an active site on the surface is immersed without pretreatment, and a dye is adsorbed on the semiconductor.

本発明によれば、疎水性溶媒に色素を溶解した溶液を用いて半導体表面に色素を吸着させるため、溶液中に含有される水に起因する色素吸着の阻害を防止することができ、十分な量の色素を半導体表面に吸着させることができる。
さらに、非プロトン性かつ疎水性溶媒に色素を溶解した溶液を用いて半導体表面に色素を吸着させるため、溶液自身に起因する色素吸着の阻害と溶液中に含有される水に起因する色素吸着の阻害の双方を防止することができる。
よって、十分な量の色素を半導体表面に吸着させることができ、容易かつ安価に、光電変換効率が向上した光電変換材料用半導体を得ることが可能となる。
According to the present invention, sparse since an aqueous solvent using a solution obtained by dissolving a dye to adsorb the dye on the semiconductor surface, can be prevented the inhibition of dye adsorption due to water contained in the solution, sufficient A quantity of dye can be adsorbed on the semiconductor surface.
Furthermore, since the dye is adsorbed on the semiconductor surface using a solution in which the dye is dissolved in an aprotic and hydrophobic solvent, inhibition of dye adsorption caused by the solution itself and dye adsorption caused by water contained in the solution are prevented. Both inhibitions can be prevented.
Therefore, a sufficient amount of the dye can be adsorbed on the semiconductor surface, and a semiconductor for a photoelectric conversion material with improved photoelectric conversion efficiency can be obtained easily and inexpensively.

本発明の光電変換材料用半導体の製造方法においては、半導体上に、光増感剤として機能する色素(以下、単に「色素」と記す)を吸着させる。ここで用いられる半導体としては、一般に光電変換材料用に使用されるものであれば特に限定されるものではなく、例えば、酸化チタン、酸化亜鉛、酸化タングステン、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウムなどの公知の半導体の1種または2種以上を用いることができる。なかでも、安定性、安全性の点から酸化チタンが好ましい。なお、本発明で使用される酸化チタンは、アナタース型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸、オルソチタン酸などの種々の酸化チタン、あるいは水酸化チタン、含酸化チタン等のすべてが包含される。   In the method for producing a semiconductor for a photoelectric conversion material of the present invention, a dye functioning as a photosensitizer (hereinafter simply referred to as “dye”) is adsorbed on the semiconductor. The semiconductor used here is not particularly limited as long as it is generally used for a photoelectric conversion material. For example, titanium oxide, zinc oxide, tungsten oxide, barium titanate, strontium titanate, cadmium sulfide. 1 type, or 2 or more types of well-known semiconductors, such as these, can be used. Of these, titanium oxide is preferable from the viewpoint of stability and safety. The titanium oxide used in the present invention includes various titanium oxides such as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid and orthotitanic acid, or titanium hydroxide and titanium oxide containing Everything is included.

上述の半導体は、粒子状、膜状等種々の形態の半導体を用いることができるが、基板上に形成された膜状の半導体が好ましい。
膜状の半導体を基板上に形成する場合の基板としては、例えば、ガラス基板、プラスチック基板等を使用することができ、なかでも透明の基板が好ましい。
膜状の半導体を基板上に形成する方法としては、公知の種々の方法を使用することができる。具体的には、基板上に半導体粒子を含有する懸濁液を塗布し、乾燥/焼成する方法、基板上に所望の原料ガスを用いたCVD法又はMOCVD法等により半導体膜を成膜する方法、あるいは原料固体を用いたPVD法、蒸着法、スパッタリング法又はゾル−ゲル法等により半導体膜を形成する方法等が挙げられる。なお、この際の半導体の膜厚は、特に限定されるものではないが、0.1〜50μm程度が好ましい。
As the above-described semiconductor, various types of semiconductors such as a particulate form and a film form can be used, but a film-form semiconductor formed on a substrate is preferable.
As a substrate in the case where a film-like semiconductor is formed on a substrate, for example, a glass substrate, a plastic substrate or the like can be used, and among them, a transparent substrate is preferable.
Various known methods can be used as a method of forming a film-like semiconductor on a substrate. Specifically, a method of applying a suspension containing semiconductor particles on a substrate and drying / baking, a method of forming a semiconductor film on the substrate by a CVD method or a MOCVD method using a desired source gas Or a method of forming a semiconductor film by a PVD method using a raw material solid, a vapor deposition method, a sputtering method, a sol-gel method, or the like. In addition, the film thickness of the semiconductor at this time is not particularly limited, but is preferably about 0.1 to 50 μm.

上述の半導体粒子としては、市販されているもののうち適当な平均粒径、例えば1nm〜2000nm程度の平均粒径を有する単一又は化合物半導体の粒子等が挙げられる。また、この半導体粒子を懸濁するために使用される溶媒は、エチレングリコールモノメチルエーテル等のグライム系溶媒、イソプロピルアルコール等のアルコール系溶媒、イソプロピルアルコール/トルエン等のアルコール系混合溶媒、水等が挙げられる。   As the above-mentioned semiconductor particles, single or compound semiconductor particles having an appropriate average particle diameter among commercially available particles, for example, an average particle diameter of about 1 nm to 2000 nm may be mentioned. Examples of the solvent used for suspending the semiconductor particles include glyme solvents such as ethylene glycol monomethyl ether, alcohol solvents such as isopropyl alcohol, alcohol mixed solvents such as isopropyl alcohol / toluene, water, and the like. It is done.

上述の乾燥/焼成は、使用する基板や半導体粒子の種類により、温度、時間、雰囲気等を適宜調整することができる。例えば、大気下又は不活性ガス雰囲気下、50〜800℃程度の範囲内で、10秒〜12時間程度行うことができる。この乾燥/焼成は、単一の温度で1回又は温度を変化させて2回以上行うことができる。   In the drying / firing described above, the temperature, time, atmosphere, and the like can be appropriately adjusted depending on the type of substrate and semiconductor particles used. For example, it can be performed for about 10 seconds to 12 hours in the range of about 50 to 800 ° C. in the air or in an inert gas atmosphere. This drying / firing can be performed once at a single temperature or twice or more at different temperatures.

CVD法等により使用される原料ガスとしては、半導体を構成する元素が含有されている単一のガスを用いてもよいし、2種以上の混合ガスを用いてもよい。PVD法等により使用される原料固体としては、半導体を構成する元素が含有されている単一の固体を用いてもよいし、単一の固体を組み合わせて用いてもよいし、化合物固体を用いてもよい。   As a source gas used by the CVD method or the like, a single gas containing an element constituting a semiconductor may be used, or two or more mixed gases may be used. As a raw material solid used by the PVD method or the like, a single solid containing elements constituting a semiconductor may be used, a single solid may be used in combination, or a compound solid may be used. May be.

さらに、半導体表面を活性化するために、膜形成後に活性化処理を行ってもよい。
半導体上に色素を吸着させる方法としては、例えば基板上に形成された半導体膜を、色素を溶解した1種又は2種以上の非プロトン性溶液、疎水性溶液又は非プロトン性かつ疎水性溶液に浸漬する方法が挙げられる。
Furthermore, in order to activate the semiconductor surface, an activation treatment may be performed after the film formation.
As a method of adsorbing a dye on a semiconductor, for example, a semiconductor film formed on a substrate is changed into one or more aprotic solutions, hydrophobic solutions or aprotic and hydrophobic solutions in which a dye is dissolved. The method of immersing is mentioned.

ここで使用することができる色素は、光増感剤として機能する色素であり、特に可視光領域及び/又は赤外光領域に吸収を持ち、分子中に少なくとも1個の結合基と少なくとも1個のアルキル基とを有する色素であることが好ましい。
結合基としては、例えば、カルボキシル基、ヒドロキシアルキル基、ヒドロキシル基、スルホン基、カルボキシアルキル基、メルカプト基又はホスホニル基等が挙げられる。なお、これら結合基は、分子中に1種又は2種以上を、1つ又は2つ以上有していてもよい。
The dye that can be used here is a dye that functions as a photosensitizer, particularly has absorption in the visible light region and / or infrared light region, and has at least one bonding group and at least one in the molecule. It is preferable that the dye has an alkyl group.
Examples of the linking group include a carboxyl group, a hydroxyalkyl group, a hydroxyl group, a sulfone group, a carboxyalkyl group, a mercapto group, and a phosphonyl group. In addition, these bonding groups may have one or two or more in the molecule.

また、アルキル基としては、炭素数1〜30、好ましくは炭素数1〜20の直鎖又は分枝のアルキル基を意味し、例えば、メチル基、エチル基、オクチル基、ドデシル基、ヘキサデシル基等が挙げられる。なお、これらアルキル基は、分子中に1つ又は2つ以上有していてもよい。このような構成を有することにより、太陽光のうち可視光及び/又は赤外光を吸収し、励起して電子を発生させることができるとともに、かかる結合基により半導体に強固に吸着することができるからである。   The alkyl group means a linear or branched alkyl group having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms. For example, a methyl group, an ethyl group, an octyl group, a dodecyl group, a hexadecyl group, etc. Is mentioned. In addition, you may have 1 or 2 or more of these alkyl groups in a molecule | numerator. By having such a structure, visible light and / or infrared light in sunlight can be absorbed and excited to generate electrons, and the bonding group can be firmly adsorbed to the semiconductor. Because.

具体的には、メタルフリーフタロシアニン系色素;NK1194、NK3422(日本感光色素研究所製)等のシアニン系色素;NK2426、NK2501(日本感光色素研究所製)等のメロシアニン系色素;ローズベンガル、ローダミンB等のキサンテン系色素;マラカイトグリーン、クリスタルバイオレット等のトリフェニルメタン色素;銅フタロシアニン及びチタニルフタロシアニン等の金属フタロシアニン、クロロフィル、ヘミン、又はルテニウム、オスミウム、鉄、亜鉛を1以上含有する錯体(特開平1−220380号、特表平5−504023号に記載)等の金属錯塩等が挙げられる。なかでも分光増感の効果や耐久性に優れているため金属錯体が好ましい。なお、これらの色素は、半導体上に均一に吸着させるため、溶液状態で半導体上に吸着させるものであるから、非プロトン性溶液、疎水性溶液又は非プロトン性かつ疎水性溶液に完全に溶解するものであることが必要である。   Specifically, metal-free phthalocyanine dyes; cyanine dyes such as NK1194 and NK3422 (manufactured by Nippon Photosensitivity Laboratories); merocyanine dyes such as NK2426 and NK2501 (manufactured by Nippon Photosensitivity Laboratories); Rose Bengal and Rhodamine B Xanthene dyes such as triphenylmethane dyes such as malachite green and crystal violet; complexes containing at least one metal phthalocyanine such as copper phthalocyanine and titanyl phthalocyanine, chlorophyll, hemin, ruthenium, osmium, iron and zinc Metal complex salts such as those described in No. 220380 and JP-T-5-504023). Of these, metal complexes are preferred because they are excellent in spectral sensitization and durability. In addition, since these dyes are adsorbed on a semiconductor in a solution state in order to be adsorbed uniformly on a semiconductor, they are completely dissolved in an aprotic solution, a hydrophobic solution, or an aprotic and hydrophobic solution. It must be a thing.

本発明において用いられる色素を溶解するために用いる溶媒は、疎水性溶媒であることが必要であり、非プロトン性かつ疎水性溶媒であることが好ましい。
疎水性溶媒としては、例えばクロロホルム、塩化メチレン、四塩化炭素等のハロゲン化脂肪族炭化水素;ヘキサン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;酢酸エチル、酢酸ブチル、安息香酸エチル等のエステル類等の公知のものを単独又は2種以上の混合物が挙げられる。
The solvent used to dissolve the dyes used in the present invention is required to be sparse aqueous solvent, it is not preferable is an aprotic and hydrophobic solvent.
Examples of the hydrophobic solvent include halogenated aliphatic hydrocarbons such as chloroform, methylene chloride, and carbon tetrachloride; aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, and xylene; ethyl acetate, butyl acetate, Known ones such as esters such as ethyl benzoate may be used singly or as a mixture of two or more.

さらに、非プロトン性かつ疎水性溶媒としては、例えばクロロホルム、塩化メチレン、四塩化炭素等のハロゲン化脂肪族炭化水素;ヘキサン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;酢酸エチル、酢酸ブチル、安息香酸エチル等のエステル類等の公知のものを単独又は2種以上の混合物が挙げられる。   Furthermore, examples of the aprotic and hydrophobic solvent include halogenated aliphatic hydrocarbons such as chloroform, methylene chloride, and carbon tetrachloride; aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, and xylene; Well-known things, such as esters, such as ethyl acetate, butyl acetate, and ethyl benzoate, are mentioned individually or in mixture of 2 or more types.

本発明においては、溶液中の色素濃度は、使用する色素及び溶媒の種類、後述する浸漬又は塗布の条件、浸漬又は塗布の回数等により適宜調整することができるが、例えば1×10-5モル/リットル以上、さらに5×10-5〜1×10-2モル/リットル程度が好ましい。
色素を溶解した溶液を半導体に浸漬する方法としては、半導体を沈めることができる容器内に溶液を満たし、その溶液中に半導体を完全に沈めて所定の時間保持する方法、半導体の所望の部分のみを漬ける方法等が挙げられる。その際の溶液及び雰囲気の温度及び圧力は特に限定されるものではなく、例えば室温程度、かつ大気圧下が挙げられ、浸漬時間は、使用する色素、溶媒の種類、溶液の濃度等により適宜調整することができるが、例えば5分〜96時間程度が好ましい。これにより、半導体上に色素を吸着させることができる。なお、色素を溶解した溶液に浸漬した後、適宜乾燥又は焼成等してもよい。
In the present invention, the concentration of the dye in the solution can be appropriately adjusted depending on the kind of the dye and solvent to be used, the conditions of immersion or coating described later, the number of times of immersion or coating, and the like, for example, 1 × 10 −5 mol / L or more, more preferably about 5 × 10 −5 to 1 × 10 −2 mol / liter.
As a method of immersing the dye-dissolved solution in the semiconductor, the solution can be filled in a container capable of sinking the semiconductor, the semiconductor is completely immersed in the solution and kept for a predetermined time, or only a desired portion of the semiconductor. And so on. The temperature and pressure of the solution and the atmosphere at that time are not particularly limited, and examples include room temperature and atmospheric pressure, and the immersion time is appropriately adjusted depending on the dye used, the type of solvent, the concentration of the solution, and the like. For example, about 5 minutes to 96 hours is preferable. Thereby, a pigment | dye can be made to adsorb | suck on a semiconductor. In addition, after immersing in the solution which melt | dissolved the pigment | dye, you may dry or bake suitably.

上述のようにして得られた光電変換材料用半導体は、太陽電池、光スイッチング装置、センサ等の光電変換装置に好適に使用することができる。例えば、太陽電池に使用する場合、図1のように導電膜でコートされたガラス基板等の支持体1上に、上述の光電変換材料用半導体2を形成して一方の電極とし、さらに対電極4として別のガラス基板等の支持体上に導電膜による電極を形成し、これら電極間に電解質3を封入することにより、太陽電池を構成することができる。   The semiconductor for photoelectric conversion materials obtained as described above can be suitably used for photoelectric conversion devices such as solar cells, optical switching devices, and sensors. For example, when used in a solar cell, the above-described semiconductor 2 for photoelectric conversion material is formed on one support 1 such as a glass substrate coated with a conductive film as shown in FIG. A solar cell can be configured by forming an electrode made of a conductive film on a support such as another glass substrate 4 and encapsulating the electrolyte 3 between these electrodes.

ここで電極として使用することができる導電膜は、特に限定されるものではないが、例えばITO、SnO2 等の透明導電膜が好ましい。これら電極の製造方法及び膜厚等は、適宜選択することができる。
また、電解質としては、一般に電池や太陽電池等において使用することができる電解質であれば特に限定されない。
Here it can be used as an electrode conductive film, it is not particularly limited, for example ITO, a transparent conductive film of SnO 2 or the like. The manufacturing method and film thickness of these electrodes can be selected as appropriate.
Further, the electrolyte is not particularly limited as long as it is an electrolyte that can generally be used in a battery, a solar battery, or the like.

このように、光電変換材料用半導体に吸着した色素に太陽光を照射すると、色素は可視領域の光を吸収して励起する。この励起によって発生した電子は半導体さらに対電極に移動する。対電極に移動した電子は電解質中の酸化還元系を還元する。一方、半導体に電子を移動させた色素は酸化体の状態になっているが、この酸化体は電解質中の酸化還元系によって還元され元の状態に戻る。このようにして電子が流れ、本発明の光電変換材料用半導体を用いた太陽電池を構成することができる。   As described above, when the dye adsorbed on the semiconductor for photoelectric conversion material is irradiated with sunlight, the dye absorbs light in the visible region and is excited. Electrons generated by this excitation move to the semiconductor and further to the counter electrode. The electrons transferred to the counter electrode reduce the redox system in the electrolyte. On the other hand, the dye that has moved electrons to the semiconductor is in an oxidant state, but this oxidant is reduced by the redox system in the electrolyte and returns to its original state. In this way, electrons flow, and a solar cell using the semiconductor for a photoelectric conversion material of the present invention can be configured.

以下に本発明の光電変換材料用半導体の製造方法、及びこの製造方法によって得られた光電変換材料用半導体を用いた太陽電池の実施例を説明するが、本発明はこれに限定されるものではない。
<実施例1(参考例1)>
市販の酸化チタン粒子(テイカ株式会社社製、商品名AMT−600、アナターゼ型結晶、平均粒径30nm、比表面積50m2/g)4.0gとジエチレングリコールモノメチルエーテル20mlとを、ガラスビーズを使用し、ペイントシェイカーで6時間分散させ、酸化チタン懸濁液を調製した。
Although the Example of the manufacturing method of the semiconductor for photoelectric conversion materials of this invention and the solar cell using the semiconductor for photoelectric conversion materials obtained by this manufacturing method is demonstrated below, this invention is not limited to this. Absent.
<Example 1 (Reference Example 1)>
Commercially available titanium oxide particles (manufactured by Teika Co., Ltd., trade name AMT-600, anatase type crystal, average particle size 30 nm, specific surface area 50 m 2 / g) 4.0 g and diethylene glycol monomethyl ether 20 ml were used with glass beads. Then, the mixture was dispersed with a paint shaker for 6 hours to prepare a titanium oxide suspension.

次いで、この酸化チタン懸濁液をドクターブレードを用いて、10μm程度の膜厚でガラス板に塗布し、100℃で30分間予備乾燥した後、500℃で40分間焼成し、膜厚8μm程度の酸化チタン膜を得た。
さらに、式(I):
Next, this titanium oxide suspension was applied to a glass plate with a film thickness of about 10 μm using a doctor blade, preliminarily dried at 100 ° C. for 30 minutes, and then baked at 500 ° C. for 40 minutes to obtain a film thickness of about 8 μm. A titanium oxide film was obtained.
Furthermore, the formula (I):

で表された色素をアセトニトリルに溶解した。この色素の濃度は2×10-4モル/リットルであった。
続いて、上述で得られた酸化チタン膜を具備したガラス基板を、上記色素溶液に30分間浸漬し、光電変換材料用半導体(試料A)を得た。
次いで、試料Aを一方の電極とし、対電極として白金を担持した透明導電性ガラス板を用いた。これら2つの電極の間に電解質を入れ、この側面を樹脂で封入した後、リード線を取付けて、本発明の光電変換材料(試料B)を作製した。なお、電解質は、体積比が1:4であるアセトニトリル/炭酸エチレンの混合溶媒に、テトラプロピルアンモニウムアイオダイドとヨウ素とを、それぞれの濃度が0.46モル/リットル、0.06モル/リットルとなるように溶解したものを用いた。
The dye represented by was dissolved in acetonitrile. The concentration of this dye was 2 × 10 −4 mol / liter.
Subsequently, the glass substrate provided with the titanium oxide film obtained above was immersed in the dye solution for 30 minutes to obtain a semiconductor for a photoelectric conversion material (sample A).
Next, Sample A was used as one electrode, and a transparent conductive glass plate carrying platinum as a counter electrode was used. An electrolyte was placed between these two electrodes, and this side surface was sealed with resin, and then a lead wire was attached to produce the photoelectric conversion material (sample B) of the present invention. The electrolyte was a mixed solvent of acetonitrile / ethylene carbonate having a volume ratio of 1: 4, tetrapropylammonium iodide and iodine, with respective concentrations of 0.46 mol / liter and 0.06 mol / liter. What was melt | dissolved was used.

得られた試料Bの光電変換材料にソーラーシュミレーターで100W/m2の強度の光を照射したところ、η(変換効率)は2.2%であり、太陽電池として有用であることがわかった。 When the photoelectric conversion material of the obtained sample B was irradiated with light having an intensity of 100 W / m 2 with a solar simulator, η (conversion efficiency) was 2.2%, which proved useful as a solar cell.

<比較例1>
色素として式(II):
<Comparative Example 1>
Formula (II) as a dye:

で表されたものをエタノールに溶解した以外は実施例1と同様にして光電変換材料(試料C)を得た。
得られた試料Cの光電変換材料にソーラーシュミレーターで100W/m2の強度の光を照射したところ、ηは1.8%であった。
実施例1及び比較例1から明らかなように、非プロトン性溶媒に色素を溶解した溶液を用いて、半導体表面に色素を吸着させると、優れた光電変換効率を有する光電変換材料用半導体が得られることがわかった。
A photoelectric conversion material (sample C) was obtained in the same manner as in Example 1 except that the compound represented by (1) was dissolved in ethanol.
When the photoelectric conversion material of the obtained sample C was irradiated with light having an intensity of 100 W / m 2 with a solar simulator, η was 1.8%.
As is clear from Example 1 and Comparative Example 1, when a dye was adsorbed on the semiconductor surface using a solution in which the dye was dissolved in an aprotic solvent, a semiconductor for a photoelectric conversion material having excellent photoelectric conversion efficiency was obtained. I found out that

<実施例2>
色素として式(III):
<Example 2>
Formula (III) as a dye:

で表されたものを5×10-4モル/リットルとなるようにヘキサンに溶解した以外は実施例1と同様にして光電変換材料(試料D)を得た。
得られた試料Dの光電変換材料にソーラーシュミレーターで100W/m2の強度の光を照射したところ、ηは2.7%であった。
A photoelectric conversion material (sample D) was obtained in the same manner as in Example 1 except that the compound represented by the formula (1) was dissolved in hexane so as to be 5 × 10 −4 mol / liter.
When the photoelectric conversion material of the obtained sample D was irradiated with light having an intensity of 100 W / m 2 with a solar simulator, η was 2.7%.

<比較例2>
色素として上述の式(II) で表されたものをエタノールに溶解した以外は実施例1と同様にして光電変換材料(試料E)を得た。
<Comparative example 2>
A photoelectric conversion material (sample E) was obtained in the same manner as in Example 1 except that the dye represented by the above formula (II) was dissolved in ethanol.

得られた試料Eの光電変換材料にソーラーシュミレーターで100W/m2の強度の光を照射したところ、ηは1.8%であった。
実施例2及び比較例2から明らかなように、疎水性溶媒に色素を溶解した溶液を用いて、半導体表面に色素を吸着させると、優れた光電変換効率を有する光電変換材料用半導体が得られることがわかった。
When the photoelectric conversion material of the obtained sample E was irradiated with light having an intensity of 100 W / m 2 with a solar simulator, η was 1.8%.
As is clear from Example 2 and Comparative Example 2, when a dye is adsorbed on the semiconductor surface using a solution in which the dye is dissolved in a hydrophobic solvent, a semiconductor for a photoelectric conversion material having excellent photoelectric conversion efficiency is obtained. I understood it.

<実施例3>
色素として式(IV) :
<Example 3>
Formula (IV) as the dye:

で表されたものを5×10-4モル/リットルとなるように酢酸エチルに溶解した以外は実施例1と同様にして光電変換材料(試料F)を得た。
得られた試料Fの光電変換材料にソーラーシュミレーターで100W/m2の強度の光を照射したところ、ηは2.9%であった。
A photoelectric conversion material (sample F) was obtained in the same manner as in Example 1 except that the compound represented by the formula (1) was dissolved in ethyl acetate so as to be 5 × 10 −4 mol / liter.
When the photoelectric conversion material of Sample F obtained was irradiated with light having an intensity of 100 W / m 2 with a solar simulator, η was 2.9%.

<比較例3>
色素として上述の式(II) で表されたものをエタノールに溶解した以外は実施例1と同様にして光電変換材料(試料G)を得た。
得られた試料Gの光電変換材料にソーラーシュミレーターで100W/m2の強度の光を照射したところ、ηは1.8%であった。
実施例3及び比較例3から明らかなように、非プロトン性かつ疎水性溶媒に色素を溶解した溶液を用いて、半導体表面に色素を吸着させると、優れた光電変換効率を有する光電変換材料用半導体が得られることがわかった。
<Comparative Example 3>
A photoelectric conversion material (sample G) was obtained in the same manner as in Example 1 except that the dye represented by the above formula (II) was dissolved in ethanol.
When the photoelectric conversion material of the obtained sample G was irradiated with light having an intensity of 100 W / m 2 with a solar simulator, η was 1.8%.
As is clear from Example 3 and Comparative Example 3, when a dye is adsorbed on the semiconductor surface using a solution in which the dye is dissolved in an aprotic and hydrophobic solvent, the photoelectric conversion material has excellent photoelectric conversion efficiency. It was found that a semiconductor was obtained.

本発明における色素増感型太陽電池の層構成を示す要部の概略断面図である。It is a schematic sectional drawing of the principal part which shows the layer structure of the dye-sensitized solar cell in this invention.

符号の説明Explanation of symbols

1 支持体
2 光電変換材料用半導体
3 電解質
4 対電極
DESCRIPTION OF SYMBOLS 1 Support body 2 Semiconductor for photoelectric conversion materials 3 Electrolyte 4 Counter electrode

Claims (6)

光増感剤として機能する色素を、1種又は2種以上の疎水性溶媒に溶解して、疎水性溶液を作製し、この疎水性溶液に、表面に活性点を有する半導体を前処理せずに浸漬して、半導体上に色素を吸着させることを特徴とする光電変換材料用半導体の製造方法。 A dye functioning as a photosensitizer is dissolved in one or more hydrophobic solvents to prepare a hydrophobic solution, and a semiconductor having active sites on the surface is not pretreated in this hydrophobic solution. A method for producing a semiconductor for a photoelectric conversion material, wherein the dye is adsorbed on the semiconductor by dipping in a semiconductor. 光増感剤として機能する色素を、1種又は2種以上の非プロトン性かつ疎水性溶媒に溶解して、非プロトン性かつ疎水性溶液を作製し、この非プロトン性かつ疎水性溶液に、表面に活性点を有する半導体を前処理せずに浸漬して、半導体上に色素を吸着させることを特徴とする光電変換材料用半導体の製造方法。 A dye that functions as a photosensitizer is dissolved in one or more aprotic and hydrophobic solvents to produce an aprotic and hydrophobic solution . A method for producing a semiconductor for a photoelectric conversion material , comprising immersing a semiconductor having an active site on a surface without pretreatment to adsorb a dye on the semiconductor. 前記疎水性溶媒として、クロロホルム、塩化メチレン、四塩化炭素、ヘキサン、ベンゼン、キシレン、酢酸エチル、酢酸ブチル及び安息香酸エチルのうちの1種又は2種以上の混合物を用いる請求項に記載の光電変換材料用半導体の製造方法。 The photoelectric according to claim 1, wherein one or a mixture of two or more of chloroform, methylene chloride, carbon tetrachloride, hexane, benzene, xylene, ethyl acetate, butyl acetate and ethyl benzoate is used as the hydrophobic solvent. Manufacturing method of semiconductor for conversion material. 前記非プロトン性かつ疎水性溶媒として、クロロホルム、塩化メチレン、四塩化炭素、ヘキサン、ベンゼン、キシレン、酢酸エチル、酢酸ブチル及び安息香酸エチルのうちの1種又は2種以上の混合物を用いる請求項に記載の光電変換材料用半導体の製造方法。 The aprotic and hydrophobic solvent, chloroform, methylene chloride, carbon tetrachloride, hexane, benzene, xylene, ethyl acetate, claim 2 to use one or a mixture of two or more of butyl acetate and ethyl benzoate The manufacturing method of the semiconductor for photoelectric conversion materials of description. 光増感剤として機能する色素が、分子中に少なくとも1個の結合基と少なくとも1個のアルキル基とを有する色素である請求項1〜のいずれか1つに記載の光電変換材料用半導体の製造方法。 The semiconductor for a photoelectric conversion material according to any one of claims 1 to 4 , wherein the dye functioning as a photosensitizer is a dye having at least one bonding group and at least one alkyl group in a molecule. Manufacturing method. 半導体が酸化チタンである請求項1〜のいずれか1つに記載の光電変換材料用半導体の製造方法。 The method for producing a semiconductor for a photoelectric conversion material according to any one of claims 1 to 5 , wherein the semiconductor is titanium oxide.
JP2008257491A 2008-10-02 2008-10-02 Manufacturing method of semiconductor for photoelectric conversion material Pending JP2009064782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008257491A JP2009064782A (en) 2008-10-02 2008-10-02 Manufacturing method of semiconductor for photoelectric conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008257491A JP2009064782A (en) 2008-10-02 2008-10-02 Manufacturing method of semiconductor for photoelectric conversion material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26394997A Division JP4236715B2 (en) 1997-09-29 1997-09-29 Manufacturing method of semiconductor for photoelectric conversion material

Publications (1)

Publication Number Publication Date
JP2009064782A true JP2009064782A (en) 2009-03-26

Family

ID=40559159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008257491A Pending JP2009064782A (en) 2008-10-02 2008-10-02 Manufacturing method of semiconductor for photoelectric conversion material

Country Status (1)

Country Link
JP (1) JP2009064782A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881222A (en) * 1994-07-15 1996-03-26 Ishihara Sangyo Kaisha Ltd Titanium oxide film having modified surface, its production and photoelectron transfer element using the same film
JP4236715B2 (en) * 1997-09-29 2009-03-11 シャープ株式会社 Manufacturing method of semiconductor for photoelectric conversion material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881222A (en) * 1994-07-15 1996-03-26 Ishihara Sangyo Kaisha Ltd Titanium oxide film having modified surface, its production and photoelectron transfer element using the same film
JP4236715B2 (en) * 1997-09-29 2009-03-11 シャープ株式会社 Manufacturing method of semiconductor for photoelectric conversion material

Similar Documents

Publication Publication Date Title
Grünwald et al. Mechanisms of instability in Ru-based dye sensitization solar cells
Bedja et al. Photosensitization of Nanocrystalline ZnO Films by Bis (2, 2 ‘-bipyridine)(2, 2 ‘-bipyridine-4, 4 ‘-dicarboxylic acid) ruthenium (II)
Shalom et al. Quantum dot− dye bilayer-sensitized solar cells: breaking the limits imposed by the low absorbance of dye monolayers
Liu et al. Dye capped semiconductor nanoclusters. Role of back electron transfer in the photosensitization of SnO2 nanocrystallites with cresyl violet aggregates
JP5572029B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
US20100012166A1 (en) Dye sensitized solar cell and dye-sensitized solar cell module
JP4863662B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP2003217688A (en) Dye-sensitized photoelectric converter
JP2008186752A (en) Photoelectric conversion element and solar cell
JP2004152613A (en) Dye-sensitized solar cell
JP5609800B2 (en) Dye-sensitized solar cell
JP2004342319A (en) Method for sintering semiconductor particulate dispersion solution on polymer film surface, and photocell
Mohan et al. Efficient way of enhancing the efficiency of a quasi-solid-state dye-sensitized solar cell by harvesting the unused higher energy visible light using carbon dots
JP4236715B2 (en) Manufacturing method of semiconductor for photoelectric conversion material
JP4631000B2 (en) Semiconductor film-forming coating agent, and semiconductor film, photoelectric conversion element, and solar cell manufacturing method
JP2003282162A (en) Composition of metal oxide semiconductor dispersed liquid and dye-sensitized optical semiconductor electrode using the same
JP2007179822A (en) Electrode and dye-sensitized solar cell using it for counter electrode
JP2009064782A (en) Manufacturing method of semiconductor for photoelectric conversion material
JP2004253333A (en) Dye-sensitized solar cell
JP4455868B2 (en) Dye-sensitized solar cell
JP5332739B2 (en) Photoelectric conversion element and solar cell
JP2010282780A (en) Photoelectric conversion element and solar cell
JP4537693B2 (en) Dye-sensitized solar cell
JP5332114B2 (en) Photoelectric conversion element and solar cell
JP2003123852A (en) Organic dye sensitized metal oxide semiconductor electrode and manufacturing method of the same, and solar cell having the semiconductor electrode

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626