JP2009062227A - Reaction device, fuel cell device and electronic equipment - Google Patents

Reaction device, fuel cell device and electronic equipment Download PDF

Info

Publication number
JP2009062227A
JP2009062227A JP2007231481A JP2007231481A JP2009062227A JP 2009062227 A JP2009062227 A JP 2009062227A JP 2007231481 A JP2007231481 A JP 2007231481A JP 2007231481 A JP2007231481 A JP 2007231481A JP 2009062227 A JP2009062227 A JP 2009062227A
Authority
JP
Japan
Prior art keywords
reaction
temperature reaction
main body
heat insulating
fixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007231481A
Other languages
Japanese (ja)
Other versions
JP5239263B2 (en
Inventor
Tadao Yamamoto
忠夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2007231481A priority Critical patent/JP5239263B2/en
Publication of JP2009062227A publication Critical patent/JP2009062227A/en
Application granted granted Critical
Publication of JP5239263B2 publication Critical patent/JP5239263B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make temperature distribution uniform in a low temperature reaction part connected to a high temperature reaction part. <P>SOLUTION: A reaction device 10 is equipped with: a reaction device main body 12 having a high temperature reaction part 16 inducing a reaction of a reactant and a low temperature reaction part 14 inducing a reaction of the reactant at a temperature lower than in the high temperature reaction part 16, both connected with a connecting part 15; a heat insulating container 11 storing the reaction device main body 12; and a fixing part 13 connected to the reaction device main body 12 and the heat insulating container 11 and fixing the reaction device main body 12 inside the heat insulating container 11, wherein a part of the fixing part 13 forms a part of a wall of the low temperature reaction part 14 opposing to the high temperature reaction part 16. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、反応装置、燃料電池装置及び電子機器に関する。   The present invention relates to a reaction device, a fuel cell device, and an electronic device.

燃料電池は燃料の電気化学反応により電力を取り出すものであり、燃料電池の研究・開発が広く行われている。このような燃料電池において、発電に用いる燃料は水素ガスであり、改質型の燃料電池においては、メタノール等の原燃料及び水を改質することでその水素ガスを生成する改質器と、改質器の副生成物として発生する一酸化炭素を選択的に酸化して除去する一酸化炭素除去器とを備える反応装置が用いられる。   A fuel cell takes out electric power by the electrochemical reaction of a fuel, and research and development of a fuel cell are widely performed. In such a fuel cell, the fuel used for power generation is hydrogen gas, and in the reforming fuel cell, a reformer that generates the hydrogen gas by reforming raw fuel such as methanol and water; and A reaction apparatus including a carbon monoxide remover that selectively oxidizes and removes carbon monoxide generated as a by-product of the reformer is used.

改質器では約300〜400℃で水蒸気改質反応が行われ、一酸化炭素除去器では約110〜160℃で一酸化炭素の選択酸化反応が行われる。この温度を維持するとともに熱効率を向上させるために、反応装置において、改質器や一酸化炭素除去器は断熱容器内に収容される。
このように常温よりも反応温度が高く、かつ、異なる反応温度の複数の反応器を有する化学反応装置には、より高温の反応器からより低温の反応器への熱伝導、または断熱容器への熱伝導により、各反応器の温度を制御する構造のものがある(例えば、特許文献1参照)。
特開2004−171892号公報
In the reformer, the steam reforming reaction is performed at about 300 to 400 ° C., and in the carbon monoxide remover, the selective oxidation reaction of carbon monoxide is performed at about 110 to 160 ° C. In order to maintain this temperature and improve the thermal efficiency, in the reactor, the reformer and the carbon monoxide remover are accommodated in a heat insulating container.
Thus, in a chemical reaction apparatus having a plurality of reactors having a reaction temperature higher than normal temperature and different reaction temperatures, heat conduction from a higher temperature reactor to a lower temperature reactor, or to a heat insulating container There is a structure in which the temperature of each reactor is controlled by heat conduction (see, for example, Patent Document 1).
JP 2004-171892 A

各反応器の温度を制御するために、例えば図19に示すように、改質器を有する高温反応部516と一酸化炭素除去器を有する低温反応部514とを連結部515により連結し、低温反応部514や高温反応部516に原燃料や水、空気を供給する固定部513を低温反応部514の高温反応部516と反対側の端面に接続し、これらを断熱容器511内に収納した構造の反応装置510が提案されている。また、例えば図20に示すように、低温反応部614の高温反応部616寄りの位置に固定部613を設ける構造の反応装置610も提案されている。   In order to control the temperature of each reactor, for example, as shown in FIG. 19, a high temperature reaction unit 516 having a reformer and a low temperature reaction unit 514 having a carbon monoxide remover are connected by a connection unit 515, A structure in which a fixed portion 513 for supplying raw fuel, water, and air to the reaction portion 514 and the high temperature reaction portion 516 is connected to the end surface of the low temperature reaction portion 514 opposite to the high temperature reaction portion 516 and these are housed in a heat insulating container 511. A reactor 510 is proposed. For example, as shown in FIG. 20, a reaction apparatus 610 having a structure in which a fixing part 613 is provided at a position near the high temperature reaction part 616 of the low temperature reaction part 614 has been proposed.

しかし、上記のような構造では、一酸化炭素除去器内の温度分布にムラが生じ、最高温度部と最低温度部との間の温度差により一酸化炭素除去器における一酸化炭素の選択酸化反応が安定しにくいという問題がある。
本発明の課題は、高温反応部と連結される低温反応部の温度分布を均一にすることである。
However, in the structure as described above, the temperature distribution in the carbon monoxide remover becomes uneven, and the selective oxidation reaction of carbon monoxide in the carbon monoxide remover due to the temperature difference between the highest temperature part and the lowest temperature part. There is a problem that is difficult to stabilize.
The subject of this invention is making uniform the temperature distribution of the low temperature reaction part connected with a high temperature reaction part.

以上の課題を解決するため、請求項1に記載の発明は、反応物の反応を起こす高温反応部及び前記高温反応部よりも低温で反応物の反応を起こす低温反応部を連結部で連結してなる反応装置本体と、前記反応装置本体を収納する断熱容器と、前記反応装置本体及び前記断熱容器に連結され、前記反応装置本体を前記断熱容器の内部に固定する固定部とを備え、前記固定部の一部が前記低温反応部の前記高温反応部と対向する壁の一部を形成していることを特徴とする反応装置である。   In order to solve the above-mentioned problems, the invention according to claim 1 includes a high-temperature reaction part that causes a reaction of a reactant and a low-temperature reaction part that causes a reaction of a reactant at a lower temperature than the high-temperature reaction part. A reaction vessel main body, a heat insulating container that houses the reaction device main body, and a fixing part that is connected to the reaction device main body and the heat insulation container and fixes the reaction device main body inside the heat insulation container, A part of the fixing part forms a part of the wall of the low temperature reaction part facing the high temperature reaction part.

請求項2に記載の発明は、反応物の反応を起こす高温反応部及び前記高温反応部よりも低温で反応物の反応を起こす低温反応部を連結部で連結してなる反応装置本体と、前記反応装置本体を収納する断熱容器と、前記反応装置本体及び前記断熱容器に連結され、前記反応装置本体を前記断熱容器の内部に固定する固定部とを備え、前記固定部は前記連結部に連結されていることを特徴とする反応装置である。   The invention according to claim 2 is a reaction apparatus main body formed by connecting a high-temperature reaction part that causes a reaction of a reactant and a low-temperature reaction part that causes a reaction of a reactant at a lower temperature than the high-temperature reaction part at a connection part, A heat insulating container for storing the reaction apparatus main body; and a fixing portion connected to the reaction apparatus main body and the heat insulating container, and fixing the reaction apparatus main body to the inside of the heat insulating container. The fixing portion is connected to the connection portion. It is the reaction apparatus characterized by the above-mentioned.

請求項3に記載の発明は、反応物の反応を起こす高温反応部及び前記高温反応部よりも低温で反応物の反応を起こす低温反応部を連結部で連結してなる反応装置本体と、前記反応装置本体を収納する断熱容器と、前記反応装置本体及び前記断熱容器に連結され、前記反応装置本体を前記断熱容器の内部に複数箇所で固定する複数の固定部とを備え、前記固定部の一部が前記低温反応部の前記高温反応部と対向する壁の一部を形成していることを特徴とする反応装置である。   The invention according to claim 3 is a reaction apparatus main body formed by connecting a high-temperature reaction part that causes a reaction of a reactant and a low-temperature reaction part that causes a reaction of a reactant at a lower temperature than the high-temperature reaction part at a connection part, A heat insulating container that houses the reaction apparatus main body, and a plurality of fixing portions that are connected to the reaction apparatus main body and the heat insulation container, and fix the reaction apparatus main body to the inside of the heat insulation container at a plurality of locations. It is a reaction apparatus characterized in that a part forms a part of the wall of the low temperature reaction part facing the high temperature reaction part.

請求項4に記載の発明は、請求項3に記載の反応装置であって、前記連結部及び前記固定部の壁面の一部が前記低温反応部の前記高温反応部と対向する壁面に交差するいずれかの壁面と面一に形成されていることを特徴とする。   Invention of Claim 4 is a reaction apparatus of Claim 3, Comprising: A part of wall surface of the said connection part and the said fixing | fixed part cross | intersects the wall surface facing the said high temperature reaction part of the said low temperature reaction part. It is characterized by being formed flush with any wall surface.

請求項5に記載の発明は、請求項1〜4のいずれか一項に記載の反応装置であって、前記固定部には前記反応装置本体の内外に反応物または生成物を入出させる流路が設けられていることを特徴とする。   Invention of Claim 5 is a reaction apparatus as described in any one of Claims 1-4, Comprising: The flow path which makes the said fixing | fixed part enter / exit a reaction material or a product into the inside / outside of the said reaction apparatus main body Is provided.

請求項6に記載の発明は、請求項1〜5のいずれか一項に記載の反応装置であって、前記固定部には液体を気化させる気化器が設けられていることを特徴とする。   A sixth aspect of the present invention is the reaction apparatus according to any one of the first to fifth aspects, wherein the fixing portion is provided with a vaporizer that vaporizes a liquid.

請求項7に記載の発明は、反応物の反応を起こす高温反応部及び前記高温反応部よりも低温で反応物の反応を起こす低温反応部を連結部で連結してなる反応装置本体と、前記反応装置本体を収納する断熱容器と、前記反応装置本体及び前記断熱容器に連結され、前記反応装置本体を前記断熱容器の内部に固定する固定部とを備え、前記低温反応部は、気化用導入路部と、空気用導入路部と、混合流路部と、反応流路部と、を有し、前記固定部は、前記低温反応部の、気化用導入路部、空気用導入路部、混合流路部の、いずれかに連結されていることを特徴とする反応装置である。   The invention according to claim 7 is a reaction apparatus main body formed by connecting a high-temperature reaction part that causes a reaction of a reactant and a low-temperature reaction part that causes a reaction of a reactant at a lower temperature than the high-temperature reaction part at a connection part, A heat insulating container for housing the reaction apparatus main body, and a fixing unit connected to the reaction apparatus main body and the heat insulation container, and fixing the reaction apparatus main body to the inside of the heat insulation container. A passage portion, an air introduction passage portion, a mixing passage portion, and a reaction passage portion, and the fixing portion is a vaporization introduction passage portion, an air introduction passage portion of the low temperature reaction portion, The reaction apparatus is connected to any one of the mixing flow path portions.

請求項8に記載の発明は、請求項1〜7のいずれか一項に記載の反応装置であって、前記高温反応部は水素を発生させる改質器を備えることを特徴とする。   The invention according to claim 8 is the reaction apparatus according to any one of claims 1 to 7, wherein the high-temperature reaction section includes a reformer that generates hydrogen.

請求項9に記載の発明は、請求項1〜8のいずれか一項に記載の反応装置であって、前記低温反応部は一酸化炭素を酸化させる一酸化炭素除去器を備えることを特徴とする。   Invention of Claim 9 is a reaction apparatus as described in any one of Claims 1-8, Comprising: The said low temperature reaction part is equipped with the carbon monoxide remover which oxidizes carbon monoxide, It is characterized by the above-mentioned. To do.

請求項10に記載の発明は、請求項8または9に記載の反応装置と、前記反応装置により生成される改質ガスから電気化学反応により電力を取り出す発電セルとを備えることを特徴とする燃料電池装置である。   The invention according to claim 10 is a fuel comprising the reactor according to claim 8 or 9, and a power generation cell for taking out electric power from the reformed gas generated by the reactor by an electrochemical reaction. It is a battery device.

請求項11に記載の発明は、請求項10に記載の燃料電池装置と、前記燃料電池装置より電力が供給される電子機器本体とを備えることを特徴とする電子機器である。   An eleventh aspect of the present invention is an electronic apparatus comprising the fuel cell apparatus according to the tenth aspect and an electronic apparatus main body to which electric power is supplied from the fuel cell apparatus.

本発明によれば、高温反応部と連結される低温反応部の温度分布を均一にすることができる。   According to the present invention, the temperature distribution of the low temperature reaction part connected to the high temperature reaction part can be made uniform.

本発明を実施するための最良の形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。   The best mode for carrying out the present invention will be described with reference to the drawings. However, although various technically preferable limitations for implementing the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples.

〔第1実施形態〕
図1は本発明が適用される電子機器20を示すブロック図である。この電子機器20はノート型パーソナルコンピュータ、PDA、電子手帳、デジタルカメラ、携帯電話機、腕時計、ゲーム機器等といった携帯型の電子機器である。
[First Embodiment]
FIG. 1 is a block diagram showing an electronic apparatus 20 to which the present invention is applied. The electronic device 20 is a portable electronic device such as a notebook personal computer, a PDA, an electronic notebook, a digital camera, a mobile phone, a wristwatch, or a game device.

電子機器20は、燃料電池装置30と、燃料電池装置30から供給される電気エネルギーにより駆動される電子機器本体21と、等から概略構成される。燃料電池装置30は後述するように、電気エネルギーを生成し電子機器本体21に供給する。   The electronic device 20 is generally configured by a fuel cell device 30, an electronic device main body 21 driven by electric energy supplied from the fuel cell device 30, and the like. The fuel cell device 30 generates electrical energy and supplies it to the electronic device main body 21 as will be described later.

次に、燃料電池装置30について説明する。この燃料電池装置30は、DC/DCコンバータ31に出力する電気エネルギーを生成するものであり、燃料容器2、ポンプ3、反応装置10、燃料電池セル8、触媒燃焼器9、DC/DCコンバータ31、二次電池32、制御部33、等を備える。   Next, the fuel cell device 30 will be described. The fuel cell device 30 generates electrical energy to be output to the DC / DC converter 31, and includes a fuel container 2, a pump 3, a reaction device 10, a fuel cell 8, a catalytic combustor 9, and a DC / DC converter 31. , A secondary battery 32, a control unit 33, and the like.

燃料容器2には、液体の原燃料(例えば、メタノール、エタノール、ジメチルエーテル)と水との混合液が貯留されている。なお、液体の原燃料と水とを燃料容器2内で別々に貯留してもよい。
燃料容器2内の混合液は、ポンプ3により気化器4に送液される。
The fuel container 2 stores a liquid mixture of raw liquid fuel (for example, methanol, ethanol, dimethyl ether) and water. Liquid raw fuel and water may be stored separately in the fuel container 2.
The liquid mixture in the fuel container 2 is sent to the vaporizer 4 by the pump 3.

反応装置10は、断熱容器11と、断熱容器11内に収容された気化器4、改質器5、一酸化炭素除去器6等からなる。
気化器4は燃料容器2から送られた混合液を改質器5からの伝熱等により約110〜160℃程度に加熱し、気化させる。気化器4で気化した混合気は改質器5へ送られる。
The reactor 10 includes a heat insulating container 11, a vaporizer 4, a reformer 5, a carbon monoxide remover 6 and the like housed in the heat insulating container 11.
The vaporizer 4 heats the liquid mixture sent from the fuel container 2 to about 110 to 160 ° C. by heat transfer from the reformer 5 and vaporizes it. The air-fuel mixture vaporized by the vaporizer 4 is sent to the reformer 5.

改質器5は内部に流路が形成され、流路の壁面に改質触媒が担持されている。改質触媒としては、Cu/ZnO系触媒やPd/ZnO系触媒等が用いられる。改質器5はヒータ兼温度センサ5aからの伝熱により気化器4から送られる混合気を約300〜400℃程度に加熱し、流路内の触媒により改質反応を起こさせる。すなわち、原燃料と水の触媒反応によって、燃料としての水素、二酸化炭素、及び、副生成物である微量な一酸化炭素等の混合気体(改質ガス)が生成される。   The reformer 5 has a flow path formed therein, and a reforming catalyst is supported on the wall surface of the flow path. As the reforming catalyst, a Cu / ZnO-based catalyst, a Pd / ZnO-based catalyst, or the like is used. The reformer 5 heats the air-fuel mixture sent from the vaporizer 4 to about 300 to 400 ° C. by heat transfer from the heater / temperature sensor 5a, and causes a reforming reaction to occur with the catalyst in the flow path. That is, a mixed gas (reformed gas) such as hydrogen, carbon dioxide as a fuel, and a minute amount of carbon monoxide as a by-product is generated by a catalytic reaction between raw fuel and water.

ここで、原燃料がメタノールの場合、改質器5では主に次式(1)に示すような主反応である水蒸気改質反応が起こる。
CH3OH+H2O→3H2+CO2 …(1)
なお、化学反応式(1)についで逐次的に起こる次式(2)のような副反応によって、副生成物として一酸化炭素が微量に(1%程度)生成される。
2+CO2→H2O+CO …(2)
(1)式及び(2)式の反応による生成物(改質ガス)は一酸化炭素除去器6に送出される。
Here, when the raw fuel is methanol, the reformer 5 mainly undergoes a steam reforming reaction which is a main reaction as shown in the following equation (1).
CH 3 OH + H 2 O → 3H 2 + CO 2 (1)
Note that a small amount (about 1%) of carbon monoxide is generated as a by-product by a side reaction such as the following formula (2) that occurs sequentially following the chemical reaction formula (1).
H 2 + CO 2 → H 2 O + CO (2)
The product (reformed gas) resulting from the reaction of the equations (1) and (2) is sent to the carbon monoxide remover 6.

一酸化炭素除去器6の内部には流路が形成され、その流路の壁面に一酸化炭素を選択的に酸化する一酸化炭素選択酸化触媒が担持されている。一酸化炭素選択酸化触媒としては、例えばPt/Al23等を用いることができる。 A flow path is formed inside the carbon monoxide remover 6, and a carbon monoxide selective oxidation catalyst that selectively oxidizes carbon monoxide is supported on the wall surface of the flow path. As the carbon monoxide selective oxidation catalyst, for example, Pt / Al 2 O 3 or the like can be used.

一酸化炭素除去器6には改質器5で生成された改質ガス及び、外部の空気が送られる。改質ガスが空気と混合して一酸化炭素除去器6の流路を流れ、改質器5やヒータ兼温度センサ6aからの伝熱により約110〜160℃程度に加熱される。そして、改質ガスのうち一酸化炭素が触媒により次式(3)のような主反応により優先的に酸化される。これにより主生成物として二酸化炭素が生成され、改質ガス中の一酸化炭素を燃料電池セル8に供給可能な10ppm程度まで低濃度化することができる。
2CO+O2→2CO2 …(3)
一酸化炭素除去器6を通過した改質ガスは燃料電池セル8に送出される。
The reformed gas generated by the reformer 5 and the external air are sent to the carbon monoxide remover 6. The reformed gas is mixed with air and flows through the flow path of the carbon monoxide remover 6, and is heated to about 110 to 160 ° C. by heat transfer from the reformer 5 and the heater / temperature sensor 6a. Then, carbon monoxide in the reformed gas is preferentially oxidized by the main reaction as expressed by the following formula (3) by the catalyst. As a result, carbon dioxide is generated as a main product, and the concentration of carbon monoxide in the reformed gas can be reduced to about 10 ppm at which the fuel cell 8 can be supplied.
2CO + O 2 → 2CO 2 (3)
The reformed gas that has passed through the carbon monoxide remover 6 is sent to the fuel cell 8.

燃料電池セル8は固体高分子型燃料電池であり、固体高分子電解質膜81と、固体高分子電解質膜81の両面に形成された燃料極82(アノード)及び酸素極83(カソード)と、燃料極82に改質ガスを供給する燃料供給流路84aが設けられた燃料極セパレータ84と、酸素極83に酸素を供給する酸素供給流路85aが設けられた酸素極セパレータ85と、が積層されている。   The fuel cell 8 is a solid polymer fuel cell, and includes a solid polymer electrolyte membrane 81, a fuel electrode 82 (anode) and an oxygen electrode 83 (cathode) formed on both surfaces of the solid polymer electrolyte membrane 81, fuel A fuel electrode separator 84 provided with a fuel supply channel 84a for supplying reformed gas to the electrode 82 and an oxygen electrode separator 85 provided with an oxygen supply channel 85a for supplying oxygen to the oxygen electrode 83 are laminated. ing.

固体高分子電解質膜81は水素イオンを透過するが、酸素分子や水素分子、電子を通さない性質を有する。
燃料極82には燃料供給流路84aを介して改質ガスが送られる。燃料極82では改質ガス中の水素による次式(4)のような反応が起こる。
2→2H++2e- …(4)
生成した水素イオンは固体高分子電解質膜81を透過して酸素極83に到達する。生成した電子はアノード出力電極86に供給される。
The solid polymer electrolyte membrane 81 is permeable to hydrogen ions but has the property of not passing oxygen molecules, hydrogen molecules, and electrons.
The reformed gas is sent to the fuel electrode 82 via the fuel supply channel 84a. In the fuel electrode 82, a reaction represented by the following equation (4) occurs due to hydrogen in the reformed gas.
H 2 → 2H + + 2e (4)
The generated hydrogen ions pass through the solid polymer electrolyte membrane 81 and reach the oxygen electrode 83. The generated electrons are supplied to the anode output electrode 86.

酸素極83には、空気が酸素供給流路85aを介して送られる。酸素極83では固体高分子電解質膜81を透過した水素イオンと、空気中の酸素とカソード出力電極87より供給される電子とにより、次式(5)に示すように水が生成される。
2H++1/2O2+2e-→H2O …(5)
なお、固体高分子電解質膜81の両面には、(4)、(5)の反応を促進する図示しない触媒が設けられている。
Air is sent to the oxygen electrode 83 via the oxygen supply channel 85a. In the oxygen electrode 83, water is generated by hydrogen ions that have passed through the solid polymer electrolyte membrane 81, oxygen in the air, and electrons supplied from the cathode output electrode 87 as shown in the following formula (5).
2H + + 1 / 2O 2 + 2e → H 2 O (5)
A catalyst (not shown) that promotes the reactions (4) and (5) is provided on both surfaces of the solid polymer electrolyte membrane 81.

アノード出力電極86及びカソード出力電極87は外部回路であるDC/DCコンバータ31と接続されており、アノード出力電極86に到達した電子はDC/DCコンバータ31を通ってカソード出力電極87に供給される。   The anode output electrode 86 and the cathode output electrode 87 are connected to the DC / DC converter 31 that is an external circuit, and electrons that have reached the anode output electrode 86 are supplied to the cathode output electrode 87 through the DC / DC converter 31. .

触媒燃焼器9の内部には流路が形成され、その流路の壁面に燃料供給流路84aを通過し、発電に寄与しなかった水素を含む改質ガス(オフガス)を燃焼させる燃焼触媒が担持されている。燃焼触媒としては、例えばPt/Al23等を用いることができる。 A flow path is formed inside the catalytic combustor 9, and a combustion catalyst that burns a reformed gas (off-gas) containing hydrogen that has not contributed to power generation passes through the fuel supply flow path 84a on the wall surface of the flow path. It is supported. For example, Pt / Al 2 O 3 can be used as the combustion catalyst.

触媒燃焼器9には燃料供給流路84aを通過した改質ガス(オフガス)及び空気が送られ、改質ガス中に残留する水素が空気により燃焼される。
なお、触媒燃焼器9を改質器5や一酸化炭素除去器6とともに断熱容器11内に設け、燃焼熱を改質器5における改質反応の反応熱として用いてもよい。
The reformed gas (off-gas) and air that have passed through the fuel supply channel 84a are sent to the catalyst combustor 9, and the hydrogen remaining in the reformed gas is combusted by the air.
The catalytic combustor 9 may be provided in the heat insulating container 11 together with the reformer 5 and the carbon monoxide remover 6, and the combustion heat may be used as the reaction heat of the reforming reaction in the reformer 5.

DC/DCコンバータ31は燃料電池セル8により生成された電気エネルギーを適切な電圧に変換したのちに電子機器本体21に供給するとともに、電気エネルギーを二次電池32に充電する。   The DC / DC converter 31 converts the electric energy generated by the fuel battery cell 8 into an appropriate voltage and then supplies the electric energy to the electronic device main body 21 and charges the secondary battery 32 with the electric energy.

制御部33は燃料電池装置30全体を制御し、ポンプ2等を駆動または停止し、ヒータ兼温度センサに通電する。   The control unit 33 controls the entire fuel cell device 30, drives or stops the pump 2 and the like, and energizes the heater / temperature sensor.

次に、反応装置10の具体的な構成について説明する。図2は反応装置10の内部構造を示す斜視図であり、図3は図2のIII−III矢視断面図である。図2、図3に示すように、反応装置10は、断熱容器11と、断熱容器11内に収容された反応装置本体12と、反応装置本体12を断熱容器11に固定する固定部13とからなる。反応装置本体12は、低温反応部14と、連結部15と、高温反応部16とからなる。   Next, a specific configuration of the reaction apparatus 10 will be described. 2 is a perspective view showing the internal structure of the reaction apparatus 10, and FIG. 3 is a cross-sectional view taken along arrows III-III in FIG. As shown in FIGS. 2 and 3, the reaction apparatus 10 includes a heat insulating container 11, a reaction apparatus main body 12 accommodated in the heat insulation container 11, and a fixing portion 13 that fixes the reaction apparatus main body 12 to the heat insulation container 11. Become. The reactor main body 12 includes a low temperature reaction unit 14, a connection unit 15, and a high temperature reaction unit 16.

固定部13は、断熱容器11を貫通しており、反応装置本体12を断熱容器11内に固定する。固定部13の断熱容器11内側の端部は低温反応部14と一体に形成されている。連結部15は低温反応部14と高温反応部16とを連結している。
なお、本実施形態に係る反応装置10においては、固定部13及び低温反応部14の高温反応部16側の面が面一に形成されている。
The fixing unit 13 penetrates the heat insulating container 11 and fixes the reaction apparatus main body 12 in the heat insulating container 11. An end portion of the fixed portion 13 inside the heat insulating container 11 is formed integrally with the low temperature reaction portion 14. The connecting part 15 connects the low temperature reaction part 14 and the high temperature reaction part 16.
In the reaction apparatus 10 according to this embodiment, the surfaces of the fixing unit 13 and the low temperature reaction unit 14 on the high temperature reaction unit 16 side are formed flush with each other.

低温反応部14の下面には、導体からなる薄膜パターン17が形成されている。薄膜パターン17の両端には、断熱容器11を貫通するリード線17a,17aが接続されている。また、高温反応部16の下面には、導体からなる薄膜パターン18が形成されている。薄膜パターン18の両端には、断熱容器11を貫通するリード線18a,18aが接続されている。   A thin film pattern 17 made of a conductor is formed on the lower surface of the low temperature reaction portion 14. Lead wires 17 a and 17 a penetrating the heat insulating container 11 are connected to both ends of the thin film pattern 17. A thin film pattern 18 made of a conductor is formed on the lower surface of the high temperature reaction portion 16. Lead wires 18 a and 18 a penetrating the heat insulating container 11 are connected to both ends of the thin film pattern 18.

リード線17a,17a及びリード線18a,18aにより薄膜パターン17,18に電圧を印加することで、薄膜パターン17,18をヒータとして用いることができる。また、温度に依存して変化する薄膜パターン17,18の抵抗を計測することで、薄膜パターン17,18を温度センサとして用いることができる。薄膜パターン17がヒータ兼温度センサ6aとなり、低温反応部14を約110〜160℃程度に加熱する。また、薄膜パターン18がヒータ兼温度センサ5aとなり、高温反応部16を約300〜400℃程度に加熱する。   The thin film patterns 17 and 18 can be used as a heater by applying a voltage to the thin film patterns 17 and 18 by the lead wires 17a and 17a and the lead wires 18a and 18a. Moreover, the thin film patterns 17 and 18 can be used as a temperature sensor by measuring the resistance of the thin film patterns 17 and 18 that change depending on the temperature. The thin film pattern 17 becomes the heater and temperature sensor 6a, and heats the low temperature reaction part 14 to about 110 to 160 ° C. Moreover, the thin film pattern 18 becomes the heater and temperature sensor 5a, and the high temperature reaction part 16 is heated to about 300-400 degreeC.

次に、反応装置本体12及び固定部13の内部構造について説明する。固定部13には、反応装置本体12の内外に反応物または生成物を入出させる気化用導入路13a、空気用導入路13b、改質ガス排出路13cが設けられている。低温反応部14には、気化用導入路14a、空気用導入路14b、混合流路14c、一酸化炭素除去流路14dが設けられている。連結部15には連結流路15a,15bが設けられている。高温反応部16には改質流路16aが設けられている。   Next, the internal structure of the reaction apparatus main body 12 and the fixing part 13 will be described. The fixed portion 13 is provided with a vaporization introduction path 13 a for allowing reactants or products to enter and exit the reactor main body 12, an air introduction path 13 b, and a reformed gas discharge path 13 c. The low temperature reaction section 14 is provided with a vaporization introduction path 14a, an air introduction path 14b, a mixing flow path 14c, and a carbon monoxide removal flow path 14d. The connecting portion 15 is provided with connecting channels 15a and 15b. The high temperature reaction section 16 is provided with a reforming channel 16a.

気化用導入路13aには吸液材13dが充填されている。吸液材は液体を吸収するものであり、例えば、フェルト材、セラミック多孔質材、繊維材、カーボン多孔質材等である。この吸液材13dが充填された部分が外部から供給された混合液を気化させ、混合気体を生成する気化器4の役割を果たす。   The vaporization introduction path 13a is filled with a liquid absorbing material 13d. The liquid absorbing material absorbs a liquid, and is, for example, a felt material, a ceramic porous material, a fiber material, a carbon porous material, or the like. The portion filled with the liquid absorbing material 13d serves as a vaporizer 4 that vaporizes the liquid mixture supplied from the outside and generates a mixed gas.

気化用導入路14a及び連結流路15aは気化用導入路13aより供給される混合気体を改質流路16aに供給する。改質流路16aの壁面には、燃料を改質して水素を含むガス(改質ガス)を生成する改質用触媒が担持されており、改質流路16aは改質器5の役割を果たす。メタノールの改質に用いられる改質用触媒としては、例えばCu/ZnO系触媒、Pt/ZnO系触媒が挙げられる。   The vaporization introduction path 14a and the connection flow path 15a supply the gas mixture supplied from the vaporization introduction path 13a to the reforming flow path 16a. A reforming catalyst for reforming the fuel to generate a gas containing hydrogen (reformed gas) is supported on the wall surface of the reforming channel 16a. The reforming channel 16a functions as the reformer 5. Fulfill. Examples of the reforming catalyst used for reforming methanol include a Cu / ZnO-based catalyst and a Pt / ZnO-based catalyst.

連結流路15bは改質流路16aで生成された改質ガスを混合流路14cに供給する。混合流路14cでは連結流路15bより供給される改質ガスと空気用導入路13b,14bより供給される外部の空気とを混合し、一酸化炭素除去流路14dに供給する。   The connection channel 15b supplies the reformed gas generated in the reforming channel 16a to the mixing channel 14c. In the mixing flow path 14c, the reformed gas supplied from the connection flow path 15b and the external air supplied from the air introduction paths 13b and 14b are mixed and supplied to the carbon monoxide removal flow path 14d.

一酸化炭素除去流路14dの壁面には、改質ガス中の一酸化炭素を選択的に酸化させる一酸化炭素選択酸化用触媒が担持されており、一酸化炭素除去流路14dは一酸化炭素除去器6の役割を果たす。一酸化炭素選択酸化用触媒としては例えば白金が挙げられる。
一酸化炭素除去流路14dで一酸化炭素を除去された改質ガスは、改質ガス排出路13cより断熱容器11の外部へ排出され、燃料電池セル8に供給される。
A carbon monoxide selective oxidation catalyst that selectively oxidizes carbon monoxide in the reformed gas is supported on the wall surface of the carbon monoxide removal channel 14d. The carbon monoxide removal channel 14d is carbon monoxide. It acts as a remover 6. An example of the catalyst for selective oxidation of carbon monoxide is platinum.
The reformed gas from which carbon monoxide has been removed by the carbon monoxide removal channel 14 d is discharged from the reformed gas discharge channel 13 c to the outside of the heat insulating container 11 and supplied to the fuel cell 8.

以下、反応装置本体12及び固定部13における熱の移動について説明する。
高温反応部16と連結部15との接合部15cの温度をT1、連結部15と低温反応部14との接合部15dの温度をT2、低温反応部14と固定部13との接合部13eの温度をT3、固定部13と断熱容器11との接合部13fの温度をT4とすると、定常運転時においてT1>T2>T3>T4となる。このため、熱量は高温反応部16から連結部15を介して低温反応部14に移動し、低温反応部14から固定部13を介して断熱容器11の外部へ移動する。
Hereinafter, heat transfer in the reaction apparatus main body 12 and the fixing portion 13 will be described.
The temperature of the junction 15c between the high temperature reaction portion 16 and the connection portion 15 is T1, the temperature of the junction 15d between the connection portion 15 and the low temperature reaction portion 14 is T2, and the temperature of the junction 13e between the low temperature reaction portion 14 and the fixing portion 13 is Assuming that the temperature is T3 and the temperature of the joint portion 13f between the fixed portion 13 and the heat insulating container 11 is T4, T1>T2>T3> T4 in the steady operation. For this reason, the amount of heat moves from the high temperature reaction part 16 to the low temperature reaction part 14 via the connecting part 15 and moves from the low temperature reaction part 14 to the outside of the heat insulating container 11 via the fixing part 13.

低温反応部14においては、連結部15から固定部13に向かって熱量が移動するため、接合部15dと、接合部13eとの間で温度勾配が生じ、T2とT3に温度差が生じることになる。このため、接合部15dと、接合部13eとの間に一酸化炭素除去流路14dを設けると、一酸化炭素除去流路14d内に温度差が生じ、一酸化炭素除去流路14d内における一酸化炭素選択酸化反応が不安定となる。   In the low temperature reaction part 14, since the amount of heat moves from the connection part 15 toward the fixing part 13, a temperature gradient is generated between the joint part 15d and the joint part 13e, and a temperature difference is generated between T2 and T3. Become. For this reason, when the carbon monoxide removal flow path 14d is provided between the joint 15d and the joint 13e, a temperature difference is generated in the carbon monoxide removal flow path 14d, and the carbon monoxide removal flow path 14d The carbon oxide selective oxidation reaction becomes unstable.

一酸化炭素除去流路14d内に温度差が生じるのを防ぐためには、接合部15dと、接合部13eとの間を回避して一酸化炭素除去流路14dを設ければよい。これにより一酸化炭素除去流路14d内における一酸化炭素選択酸化反応が安定し、一酸化炭素除去器6の役割を充分に果たすことができる。   In order to prevent a temperature difference from occurring in the carbon monoxide removal channel 14d, the carbon monoxide removal channel 14d may be provided while avoiding the gap between the junction 15d and the junction 13e. Thereby, the carbon monoxide selective oxidation reaction in the carbon monoxide removal flow path 14d is stabilized, and the role of the carbon monoxide remover 6 can be sufficiently fulfilled.

本実施形態に係る反応装置10においては、固定部13の高温反応部16側の壁が低温反応部14の高温反応部16側の壁の一部を形成しているので、接合部15dと接合部13eとが最短距離となる。そして、接合部15dと接合部13eとの間に気化用導入路14a及び空気用導入路14bが設けられ、一酸化炭素除去流路14dが低温反応部14内において、接合部15dと接合部13eとの間を回避して設けられている。このため、反応装置10が定常運転の温度になった場合、気化用導入路14a及び空気用導入路14bの部分は伝熱経路となるものの、一酸化炭素除去流路14dは伝熱経路とならないため、一酸化炭素除去流路14d内に温度差が生じるのを防ぐことができる。   In the reaction apparatus 10 according to the present embodiment, the wall on the high temperature reaction part 16 side of the fixing part 13 forms a part of the wall on the high temperature reaction part 16 side of the low temperature reaction part 14, so The portion 13e is the shortest distance. The vaporization introduction path 14a and the air introduction path 14b are provided between the joint 15d and the joint 13e, and the carbon monoxide removal flow path 14d is provided in the low temperature reaction section 14 with the joint 15d and the joint 13e. It is provided to avoid the gap. For this reason, when the reaction apparatus 10 reaches a steady operation temperature, the vaporization introduction path 14a and the air introduction path 14b are heat transfer paths, but the carbon monoxide removal flow path 14d is not a heat transfer path. Therefore, it is possible to prevent a temperature difference from occurring in the carbon monoxide removal channel 14d.

〔第2実施形態〕
次に、本発明の第2の実施形態に係る反応装置110の内部構造について説明する。図4は本発明の第2の実施形態に係る反応装置110の内部構造を示す斜視図であり、図5は図4のV−V矢視断面図である。なお、第1の実施形態と同様の構成については、下2桁に同符号を付して説明を割愛する。
[Second Embodiment]
Next, the internal structure of the reaction apparatus 110 according to the second embodiment of the present invention will be described. 4 is a perspective view showing the internal structure of the reaction apparatus 110 according to the second embodiment of the present invention, and FIG. 5 is a cross-sectional view taken along the line V-V in FIG. In addition, about the structure similar to 1st Embodiment, the same code | symbol is attached | subjected to the last 2 digits, and description is omitted.

本実施形態においては、固定部113が低温反応部114と隣接した状態で連結部115に接続されている。すなわち、固定部113の高温反応部116と反対側の壁は低温反応部114の高温反応部116と対向する壁の一部を形成している。このため、本実施形態では、定常運転時において、熱量が高温反応部116から連結部115及び固定部113を介して断熱容器111の外部へ移動する。したがって低温反応部114が伝熱経路とならないため、低温反応部114の一酸化炭素除去流路114d内に温度差が生じるのを防ぐことができる。   In the present embodiment, the fixing part 113 is connected to the connecting part 115 in a state adjacent to the low temperature reaction part 114. That is, the wall of the fixed portion 113 opposite to the high temperature reaction portion 116 forms part of the wall of the low temperature reaction portion 114 that faces the high temperature reaction portion 116. For this reason, in this embodiment, during steady operation, the amount of heat moves from the high temperature reaction unit 116 to the outside of the heat insulating container 111 via the connection unit 115 and the fixing unit 113. Therefore, since the low temperature reaction part 114 does not become a heat transfer path, it is possible to prevent a temperature difference from occurring in the carbon monoxide removal channel 114d of the low temperature reaction part 114.

なお、第1実施形態においては固定部の高温反応部側の壁、第2実施形態においては高温反応部と反対側の壁が低温反応部の高温反応部側の壁の一部を形成していたが、本発明はこれに限らず、低温反応部の高温反応部側の壁の一部に固定部を形成してもよい。すなわち、第1実施形態と第2実施形態の間の任意の位置に固定部を設けてもよい。   In the first embodiment, the wall on the high temperature reaction part side of the fixed part, and in the second embodiment, the wall on the opposite side to the high temperature reaction part forms a part of the wall on the high temperature reaction part side of the low temperature reaction part. However, the present invention is not limited to this, and a fixing part may be formed on a part of the wall on the high temperature reaction part side of the low temperature reaction part. That is, you may provide a fixing | fixed part in the arbitrary positions between 1st Embodiment and 2nd Embodiment.

〔第3実施形態〕
次に、本発明の第3の実施形態に係る反応装置210の内部構造について説明する。図6は本発明の第3の実施形態に係る反応装置110の内部構造を示す斜視図であり、図7は図6のVII−VII矢視断面図である。なお、第1の実施形態と同様の構成については、下2桁に同符号を付して説明を割愛する。
[Third Embodiment]
Next, the internal structure of the reaction apparatus 210 according to the third embodiment of the present invention will be described. FIG. 6 is a perspective view showing the internal structure of the reaction apparatus 110 according to the third embodiment of the present invention, and FIG. 7 is a sectional view taken along the arrow VII-VII in FIG. In addition, about the structure similar to 1st Embodiment, the same code | symbol is attached | subjected to the last 2 digits, and description is omitted.

本実施形態においては、固定部213が低温反応部214と離間した状態で連結部215に接続されている。このため、本実施形態では、定常運転時において、熱量が高温反応部116から連結部115及び固定部113を介して断熱容器111の外部へ移動する。したがって低温反応部114が伝熱経路とならないため、低温反応部114の一酸化炭素除去流路114d内に温度差が生じるのを防ぐことができる。   In the present embodiment, the fixing portion 213 is connected to the connecting portion 215 in a state of being separated from the low temperature reaction portion 214. For this reason, in this embodiment, during steady operation, the amount of heat moves from the high temperature reaction unit 116 to the outside of the heat insulating container 111 via the connection unit 115 and the fixing unit 113. Therefore, since the low temperature reaction part 114 does not become a heat transfer path, it is possible to prevent a temperature difference from occurring in the carbon monoxide removal channel 114d of the low temperature reaction part 114.

〔第4実施形態〕
次に、本発明の第4の実施形態に係る反応装置310の内部構造について説明する。図8は本発明の第4の実施形態に係る反応装置310の内部構造を示す斜視図であり、図9は図8のIX−IX矢視断面図であり、図10は図9のX−X矢視断面図である。なお、第1の実施形態と同様の構成については、下2桁に同符号を付して説明を割愛する。
[Fourth Embodiment]
Next, the internal structure of the reaction apparatus 310 according to the fourth embodiment of the present invention will be described. FIG. 8 is a perspective view showing the internal structure of the reaction apparatus 310 according to the fourth embodiment of the present invention, FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. 8, and FIG. It is X arrow sectional drawing. In addition, about the structure similar to 1st Embodiment, the same code | symbol is attached | subjected to the last 2 digits, and description is omitted.

本実施形態においては、2つの固定部313A,313Bが低温反応部314の左右側面の高温反応部316側の端部において上下方向の中央位置に接続されている。固定部313A,313B及び低温反応部314の高温反応部316側の面が面一に形成されている。一方の固定部313Aには気化用導入路313a及び空気用導入路313bが設けられ、他方の固定部313Bには気化用導入路313a及び改質ガス排出路313cが設けられている。   In the present embodiment, the two fixing portions 313A and 313B are connected to the center position in the vertical direction at the ends of the left and right side surfaces of the low temperature reaction portion 314 on the high temperature reaction portion 316 side. The surfaces of the fixing portions 313A and 313B and the low temperature reaction portion 314 on the high temperature reaction portion 316 side are formed flush with each other. One fixing portion 313A is provided with a vaporization introduction passage 313a and an air introduction passage 313b, and the other fixing portion 313B is provided with a vaporization introduction passage 313a and a reformed gas discharge passage 313c.

本実施形態においても、低温反応部314と連結部315との接合部315dから低温反応部314と固定部313A,313Bとの接合部313eまでの距離が最短となる。そして、接合部315dと接合部313eとの間に気化用導入路314aが設けられ、一酸化炭素除去流路314dが低温反応部314内において、末端部を除き接合部315dと接合部313eとの間を回避して設けられている。このため、一酸化炭素除去流路314dのほとんどが伝熱経路とならず、温度差が生じるのを防ぐことができる。また、2つの固定部313A,313Bにより2通りの伝熱経路が形成されるため、温度差をさらに低減することができる。   Also in this embodiment, the distance from the junction 315d between the low temperature reaction part 314 and the connection part 315 to the junction 313e between the low temperature reaction part 314 and the fixing parts 313A and 313B is the shortest. A vaporization introduction path 314a is provided between the joint 315d and the joint 313e, and the carbon monoxide removal flow path 314d is provided between the joint 315d and the joint 313e in the low-temperature reaction section 314 except for the end portion. It is provided to avoid the gap. For this reason, most of the carbon monoxide removal flow path 314d does not become a heat transfer path, and a temperature difference can be prevented from occurring. Further, since two heat transfer paths are formed by the two fixing portions 313A and 313B, the temperature difference can be further reduced.

〔第5実施形態〕
次に、本発明の第5の実施形態に係る反応装置410の内部構造について説明する。図11は本発明の第5の実施形態に係る反応装置410の内部構造を示す斜視図であり、図12は図11のXII−XII矢視断面図であり、図13は図12のXIII−XIII矢視断面図である。なお、第1の実施形態と同様の構成については、下2桁に同符号を付して説明を割愛する。
[Fifth Embodiment]
Next, the internal structure of the reaction apparatus 410 according to the fifth embodiment of the present invention will be described. 11 is a perspective view showing the internal structure of a reaction apparatus 410 according to the fifth embodiment of the present invention, FIG. 12 is a cross-sectional view taken along the line XII-XII in FIG. 11, and FIG. It is XIII arrow sectional drawing. In addition, about the structure similar to 1st Embodiment, the same code | symbol is attached | subjected to the last 2 digits, and description is omitted.

本実施形態においては、2つの固定部413A,413Bが低温反応部414の左右側面の高温反応部416側の端部において下端部に接続されている。固定部413A,413B及び低温反応部414の高温反応部416側の面及び下面が面一に形成されている。一方の固定部413Aには気化用導入路413a及び空気用導入路413bが設けられ、他方の固定部413Bには気化用導入路413a及び改質ガス排出路413cが設けられている。   In the present embodiment, the two fixing portions 413A and 413B are connected to the lower end portion at the ends on the left and right side surfaces of the low temperature reaction portion 414 on the high temperature reaction portion 416 side. The surfaces of the fixing portions 413A and 413B and the low temperature reaction portion 414 on the high temperature reaction portion 416 side and the lower surface are formed flush with each other. One fixing part 413A is provided with a vaporization introduction path 413a and an air introduction path 413b, and the other fixing part 413B is provided with a vaporization introduction path 413a and a reformed gas discharge path 413c.

本実施形態においても、低温反応部414と連結部415との接合部415dから低温反応部414と固定部413A,413Bとの接合部413e,413eまでの距離が最短となる。そして、接合部415dと接合部413eとの間に気化用導入路414aが設けられ、一酸化炭素除去流路414dが低温反応部414内において、末端部を除き接合部415dと接合部413eとの間を回避して設けられている。このため、一酸化炭素除去流路414dのほとんどが伝熱経路とならず、温度差が生じるのを防ぐことができる。また、固定部413A,413Bを低温反応部414の左右側面の高温反応部416側の端部において下端部に接続されているため、さらに温度差が生じるのを抑えることができる。   Also in the present embodiment, the distance from the joint portion 415d between the low temperature reaction portion 414 and the connecting portion 415 to the joint portions 413e and 413e between the low temperature reaction portion 414 and the fixing portions 413A and 413B is the shortest. A vaporization introduction path 414a is provided between the joint 415d and the joint 413e, and the carbon monoxide removal flow path 414d is provided between the joint 415d and the joint 413e in the low-temperature reaction part 414 except for the end part. It is provided to avoid the gap. For this reason, most of the carbon monoxide removal channel 414d does not become a heat transfer path, and it is possible to prevent a temperature difference from occurring. Further, since the fixing portions 413A and 413B are connected to the lower end portion at the end portions on the left and right side surfaces of the low temperature reaction portion 414 on the high temperature reaction portion 416 side, it is possible to further suppress the occurrence of a temperature difference.

次に、固定部の位置による反応装置の温度分布の違いについて説明する。図14は低温反応部の高温反応部側の面に対して、高温反応部よりも遠ざかる位置に固定部を設けた場合(図20)における反応装置の等温線を示す図であり、図15は固定部の高温反応部側の面と低温反応部の高温反応部側の面とが面一となる位置に設けた場合(第1実施形態)における反応装置の等温線を示す図であり、図16は固定部の高温反応部と反対側の面と低温反応部の高温反応部側の面とが面一となる位置に設けた場合(第2実施形態)における反応装置の等温線を示す図である。   Next, the difference in temperature distribution of the reaction apparatus depending on the position of the fixing part will be described. FIG. 14 is a diagram showing an isotherm of the reaction apparatus when a fixing part is provided at a position farther from the high temperature reaction part (FIG. 20) than the surface of the low temperature reaction part on the high temperature reaction part side. It is a figure which shows the isotherm of the reaction apparatus in the case where it provides in the position where the surface by the side of the high temperature reaction part of a fixing | fixed part and the surface by the side of the high temperature reaction part of a low-temperature reaction part (1st Embodiment). 16 is a diagram illustrating an isotherm of the reaction apparatus when the surface of the fixed portion opposite to the high temperature reaction portion and the surface of the low temperature reaction portion on the high temperature reaction portion side are provided at the same position (second embodiment). It is.

なお、高温反応部の寸法は8mm×8mm×7mm(反応装置本体の長手方向)、低温反応部の寸法は8mm×8mm×20mm(反応装置本体の長手方向)、連結部の寸法は1.8mm×1.8mm×3mm(反応装置本体の長手方向)、固定部の寸法は1.8×1.8mm×1mm(低温反応部から断熱容器まで)または4.1mm(連結部から断熱容器まで)、断熱容器の寸法は10.6mm×10.6mm×32.6mm(反応装置本体の長手方向)、高温反応部及び低温反応部の外面と断熱容器の内面との間は1mm、反応装置の材質はSUS304、厚さ0.3mmの板材とした。断熱容器内の圧力を0.03Pa、高温反応部の平均温度を375℃とした。図14では低温反応部の高温反応部側の面に対して、高温反応部よりも6mm遠ざかる位置に固定部を設けた場合として計算した。等温線は約16℃間隔で記載した。   The dimension of the high temperature reaction part is 8 mm × 8 mm × 7 mm (longitudinal direction of the reaction apparatus main body), the dimension of the low temperature reaction part is 8 mm × 8 mm × 20 mm (longitudinal direction of the reaction apparatus main body), and the dimension of the connecting part is 1.8 mm. × 1.8 mm × 3 mm (longitudinal direction of the main body of the reaction apparatus), the dimension of the fixed part is 1.8 × 1.8 mm × 1 mm (from the low temperature reaction part to the heat insulation container) or 4.1 mm (from the connection part to the heat insulation container) The dimensions of the heat insulation container are 10.6 mm × 10.6 mm × 32.6 mm (longitudinal direction of the reaction apparatus main body), and the space between the outer surface of the high temperature reaction part and the low temperature reaction part and the inner surface of the heat insulation container is 1 mm. Was a plate material of SUS304, thickness 0.3 mm. The pressure in the heat insulation container was set to 0.03 Pa, and the average temperature of the high temperature reaction part was set to 375 ° C. In FIG. 14, the calculation is performed on the assumption that the fixing part is provided at a position 6 mm away from the high temperature reaction part on the surface of the low temperature reaction part on the high temperature reaction part side. The isotherms are shown at approximately 16 ° C. intervals.

図14では、低温反応部に120.1℃、136.1℃、152.0℃、167.9℃、183.8℃、199.8℃、215.7℃の7本の等温線が描かれていた。
一方、図15では136.1℃、152.0℃、167.9℃、183.8℃、199.8℃の5本の等温線が描かれていた。図14よりも等温線の数が減っており、低温反応部の温度差が減っていることがわかる。
さらに、図16では、183.8℃、199.8℃の2本の等温線が描かれていた。図15よりもさらに等温線の数が減っており、低温反応部の温度差がさらに減っていることがわかる。
In FIG. 14, seven isotherms of 120.1 ° C., 136.1 ° C., 152.0 ° C., 167.9 ° C., 183.8 ° C., 199.8 ° C., and 215.7 ° C. are drawn in the low-temperature reaction part. It was.
On the other hand, in FIG. 15, five isotherms of 136.1 ° C., 152.0 ° C., 167.9 ° C., 183.8 ° C., and 199.8 ° C. are drawn. It can be seen from FIG. 14 that the number of isotherms is reduced and the temperature difference in the low-temperature reaction part is reduced.
Furthermore, in FIG. 16, two isotherms of 183.8 ° C. and 199.8 ° C. were drawn. It can be seen that the number of isotherms is further reduced than in FIG. 15, and the temperature difference in the low-temperature reaction part is further reduced.

図17及び図18は、低温反応部の長手方向の温度分布を示すグラフである。ここで、反応装置の寸法は図14〜図16と同様とし、横軸は低温反応部の高温反応部と反対側の端面の位置を0mmとし、高温反応部側の面の位置を20mmとした。なお、17〜20mmの領域は温度勾配が大きく一酸化炭素除去器として使わない領域とした。   17 and 18 are graphs showing the temperature distribution in the longitudinal direction of the low-temperature reaction part. Here, the dimensions of the reaction apparatus are the same as those in FIGS. 14 to 16, and the horizontal axis is 0 mm at the position of the end face on the opposite side of the high temperature reaction section of the low temperature reaction section and the position of the surface at the high temperature reaction section side is 20 mm. . Note that the region of 17 to 20 mm was a region where the temperature gradient was large and was not used as a carbon monoxide remover.

aは固定部を低温反応部の高温反応部と反対側の端面に接続した場合(図19)、bは低温反応部の高温反応部側の面に対して、高温反応部よりも6mm遠ざかる位置に固定部を設けた場合(図20)、cは固定部の高温反応部側の面と低温反応部の高温反応部側の面とが面一となる位置に設けた場合(第1実施形態)、dは固定部の高温反応部と反対側の面と低温反応部の高温反応部側の面とが面一となる位置に設けた場合(第2実施形態)、eは固定部を連結部の低温反応部から高温反応部側に0.3mm近づいた位置に設けた場合(第3実施形態)、fは2つの固定部を低温反応部の左右側面の高温反応部側の端部において上下方向の中央位置に接続した場合(第4実施形態)、gは2つの固定部を低温反応部の左右側面の高温反応部側の下端部に接続した場合(第5実施形態)である。   a is a position where the fixed part is connected to the end face of the low temperature reaction part opposite to the high temperature reaction part (FIG. 19), and b is a position 6 mm away from the high temperature reaction part side of the low temperature reaction part. When c is provided with a fixing part (FIG. 20), c is a case where the surface on the high temperature reaction part side of the fixing part and the surface on the high temperature reaction part side of the low temperature reaction part are flush with each other (first embodiment). ), D is provided at a position where the surface of the fixed part opposite to the high temperature reaction part and the surface of the low temperature reaction part on the high temperature reaction part side are flush with each other (second embodiment), and e is the connection of the fixed part. In the case where it is provided at a position 0.3 mm closer to the high temperature reaction part side from the low temperature reaction part of the part (third embodiment), f is the two fixing parts at the ends of the left and right side surfaces of the low temperature reaction part on the high temperature reaction part side When connected to the center position in the vertical direction (fourth embodiment), g is a high temperature reaction part on the left and right sides of the low temperature reaction part. A case connected to the lower end portion (the fifth embodiment).

0〜17(mm)間の温度差(ΔT)は、a:81.6℃、b:28.7℃、c:18.3℃、d:12.6℃、e:11.8℃、f:17.0℃、g:12.1℃となった。第1〜第5実施形態においては、ΔTが20℃以下に抑えられることがわかる。なお、低温反応部の短手方向の温度差はいずれも±1℃以内となった。
The temperature difference (ΔT) between 0 to 17 (mm) is as follows: a: 81.6 ° C., b: 28.7 ° C., c: 18.3 ° C., d: 12.6 ° C., e: 11.8 ° C. f: 17.0 ° C, g: 12.1 ° C. In 1st-5th embodiment, it turns out that (DELTA) T is restrained to 20 degrees C or less. The temperature difference in the short direction of the low temperature reaction part was within ± 1 ° C.

本発明が適用される電子機器20を示すブロック図である。It is a block diagram which shows the electronic device 20 with which this invention is applied. 反応装置10の内部構造を示す斜視図である。2 is a perspective view showing an internal structure of the reaction apparatus 10. FIG. 図2のIII−III矢視断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2. 本発明の第2の実施形態に係る反応装置110の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the reaction apparatus 110 which concerns on the 2nd Embodiment of this invention. 図4のV−V矢視断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. 本発明の第3の実施形態に係る反応装置110の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the reaction apparatus 110 which concerns on the 3rd Embodiment of this invention. 図6のVII−VII矢視断面図である。FIG. 7 is a sectional view taken along arrow VII-VII in FIG. 6. 本発明の第4の実施形態に係る反応装置310の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the reaction apparatus 310 which concerns on the 4th Embodiment of this invention. 図8のIX−IX矢視断面図である。It is IX-IX arrow sectional drawing of FIG. 図9のX−X矢視断面図である。It is XX arrow sectional drawing of FIG. 本発明の第5の実施形態に係る反応装置410の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the reaction apparatus 410 which concerns on the 5th Embodiment of this invention. 図11のXII−XII矢視断面図である。It is XII-XII arrow sectional drawing of FIG. 図12のXIII−XIII矢視断面図である。It is XIII-XIII arrow sectional drawing of FIG. 低温反応部の高温反応部側の面に対して、高温反応部よりも遠ざかる位置に固定部を設けた場合における反応装置の等温線を示す図である。It is a figure which shows the isotherm of the reaction apparatus when a fixing | fixed part is provided in the position away from a high temperature reaction part with respect to the surface at the side of the high temperature reaction part of a low temperature reaction part. 固定部の高温反応部側の面と低温反応部の高温反応部側の面とが面一となる位置に設けた場合(第1実施形態)における反応装置の等温線を示す図である。It is a figure which shows the isotherm of the reaction apparatus in the case of providing in the position where the surface by the side of the high temperature reaction part of a fixing | fixed part and the surface by the side of the high temperature reaction part of a low temperature reaction part are flush (1st Embodiment). 固定部の高温反応部と反対側の面と低温反応部の高温反応部側の面とが面一となる位置に設けた場合(第2実施形態)における反応装置の等温線を示す図である。It is a figure which shows the isotherm of the reaction apparatus in the case where it provides in the position where the surface on the opposite side to the high temperature reaction part of a fixing | fixed part, and the surface at the side of the high temperature reaction part of a low temperature reaction part (2nd Embodiment). . 低温反応部の長手方向の温度分布を示すグラフである。It is a graph which shows the temperature distribution of the longitudinal direction of a low-temperature reaction part. 低温反応部の長手方向の温度分布を示すグラフである。It is a graph which shows the temperature distribution of the longitudinal direction of a low-temperature reaction part. 固定部を低温反応部の高温反応部と反対側の端面に接続した反応装置を示す模式図である。It is a schematic diagram which shows the reaction apparatus which connected the fixing | fixed part to the end surface on the opposite side to the high temperature reaction part of a low temperature reaction part. 低温反応部の高温反応部側の面に対して、高温反応部よりも遠ざかる位置に固定部を設けた反応装置を示す模式図である。It is a schematic diagram which shows the reaction apparatus which provided the fixing | fixed part in the position away from a high temperature reaction part with respect to the surface at the side of the high temperature reaction part of a low temperature reaction part.

符号の説明Explanation of symbols

5 改質器
6 一酸化炭素除去器
8 燃料電池セル
10,110,210,310,410,510,610 反応装置
11,111,211,311,411,511,611 断熱容器
12,112,212,312,412,512,612 反応装置本体
13,113,213,313A,313B,413A,413B,513,613 固定部
14,114,214,314,414,514,614 低温反応部
15,115,215,315,415,515,615 連結部
16,116,216,316,416,516,616 高温反応部
20 電子機器
21 電子機器本体
30 燃料電池装置
5 reformer 6 carbon monoxide remover 8 fuel cell 10, 110, 210, 310, 410, 510, 610 reactor 11, 111, 211, 311, 411, 511, 611 heat insulation container 12, 112, 212, 312, 412, 512, 612 Reactor body 13, 113, 213, 313 A, 313 B, 413 A, 413 B, 513, 613 Fixing part 14, 114, 214, 314, 414, 514, 614 Low temperature reaction part 15, 115, 215 , 315, 415, 515, 615 Connecting portion 16, 116, 216, 316, 416, 516, 616 High temperature reaction portion 20 Electronic device 21 Electronic device main body 30 Fuel cell device

Claims (11)

反応物の反応を起こす高温反応部及び前記高温反応部よりも低温で反応物の反応を起こす低温反応部を連結部で連結してなる反応装置本体と、
前記反応装置本体を収納する断熱容器と、
前記反応装置本体及び前記断熱容器に連結され、前記反応装置本体を前記断熱容器の内部に固定する固定部とを備え、
前記固定部の一部が前記低温反応部の前記高温反応部と対向する壁の一部を形成していることを特徴とする反応装置。
A reaction apparatus main body formed by connecting a high-temperature reaction part that causes a reaction of a reactant and a low-temperature reaction part that causes a reaction of a reaction substance at a lower temperature than the high-temperature reaction part at a connection part;
A heat insulating container for housing the reactor main body;
A fixed portion connected to the reactor main body and the heat insulating container, and fixing the reactor main body to the inside of the heat insulating container;
A reaction apparatus characterized in that a part of the fixing part forms a part of a wall facing the high temperature reaction part of the low temperature reaction part.
反応物の反応を起こす高温反応部及び前記高温反応部よりも低温で反応物の反応を起こす低温反応部を連結部で連結してなる反応装置本体と、
前記反応装置本体を収納する断熱容器と、
前記反応装置本体及び前記断熱容器に連結され、前記反応装置本体を前記断熱容器の内部に固定する固定部とを備え、
前記固定部は前記連結部に連結されていることを特徴とする反応装置。
A reaction apparatus main body formed by connecting a high-temperature reaction part that causes a reaction of a reactant and a low-temperature reaction part that causes a reaction of a reaction substance at a lower temperature than the high-temperature reaction part at a connection part;
A heat insulating container for housing the reactor main body;
A fixed portion connected to the reactor main body and the heat insulating container, and fixing the reactor main body to the inside of the heat insulating container;
The reaction device characterized in that the fixing portion is connected to the connecting portion.
反応物の反応を起こす高温反応部及び前記高温反応部よりも低温で反応物の反応を起こす低温反応部を連結部で連結してなる反応装置本体と、
前記反応装置本体を収納する断熱容器と、
前記反応装置本体及び前記断熱容器に連結され、前記反応装置本体を前記断熱容器の内部に複数箇所で固定する複数の固定部とを備え、
前記固定部の一部が前記低温反応部の前記高温反応部と対向する壁の一部を形成していることを特徴とする反応装置。
A reaction apparatus main body formed by connecting a high-temperature reaction part that causes a reaction of a reactant and a low-temperature reaction part that causes a reaction of a reaction substance at a lower temperature than the high-temperature reaction part at a connection part;
A heat insulating container for housing the reactor main body;
A plurality of fixing portions connected to the reaction apparatus main body and the heat insulating container, and fixing the reaction apparatus main body to the inside of the heat insulating container at a plurality of locations;
A reaction apparatus characterized in that a part of the fixing part forms a part of a wall facing the high temperature reaction part of the low temperature reaction part.
前記連結部及び前記固定部の壁面の一部が前記低温反応部の前記高温反応部と対向する壁面に交差するいずれかの壁面と面一に形成されていることを特徴とする請求項3に記載の反応装置。   The part of the wall surface of the connecting part and the fixed part is formed flush with any wall surface that intersects the wall surface of the low temperature reaction part facing the high temperature reaction part. The reactor described. 前記固定部には前記反応装置本体の内外に反応物または生成物を入出させる流路が設けられていることを特徴とする請求項1〜4のいずれか一項に記載の反応装置。   The reaction apparatus according to any one of claims 1 to 4, wherein a flow path for allowing a reactant or a product to enter and exit from the inside and outside of the reaction apparatus main body is provided in the fixing portion. 前記固定部には液体を気化させる気化器が設けられていることを特徴とする請求項1〜5のいずれか一項に記載の反応装置。   The reaction apparatus according to claim 1, wherein a vaporizer that vaporizes a liquid is provided in the fixing portion. 反応物の反応を起こす高温反応部及び前記高温反応部よりも低温で反応物の反応を起こす低温反応部を連結部で連結してなる反応装置本体と、
前記反応装置本体を収納する断熱容器と、
前記反応装置本体及び前記断熱容器に連結され、前記反応装置本体を前記断熱容器の内部に固定する固定部とを備え、
前記低温反応部は、気化用導入路部と、空気用導入路部と、混合流路部と、反応流路部と、を有し、
前記固定部は、前記低温反応部の、気化用導入路部、空気用導入路部、混合流路部の、いずれかに連結されていることを特徴とする反応装置。
A reaction apparatus main body formed by connecting a high-temperature reaction part that causes a reaction of a reactant and a low-temperature reaction part that causes a reaction of a reaction substance at a lower temperature than the high-temperature reaction part at a connection part;
A heat insulating container for housing the reactor main body;
A fixed portion connected to the reactor main body and the heat insulating container, and fixing the reactor main body to the inside of the heat insulating container;
The low-temperature reaction section has a vaporization introduction path section, an air introduction path section, a mixing flow path section, and a reaction flow path section.
The reaction device according to claim 1, wherein the fixing portion is connected to any one of a vaporization introduction passage portion, an air introduction passage portion, and a mixing flow passage portion of the low temperature reaction portion.
前記高温反応部は水素を発生させる改質器を備えることを特徴とする請求項1〜7のいずれか一項に記載の反応装置。   The reaction apparatus according to claim 1, wherein the high-temperature reaction unit includes a reformer that generates hydrogen. 前記低温反応部は一酸化炭素を酸化させる一酸化炭素除去器を備えることを特徴とする請求項1〜8のいずれか一項に記載の反応装置。   The said low temperature reaction part is equipped with the carbon monoxide remover which oxidizes carbon monoxide, The reaction apparatus as described in any one of Claims 1-8 characterized by the above-mentioned. 請求項8または9に記載の反応装置と、前記反応装置により生成される改質ガスから電気化学反応により電力を取り出す発電セルとを備えることを特徴とする燃料電池装置。   A fuel cell device comprising: the reactor according to claim 8 or 9; and a power generation cell that extracts electric power from a reformed gas generated by the reactor by an electrochemical reaction. 請求項10に記載の燃料電池装置と、前記燃料電池装置より電力が供給される電子機器本体とを備えることを特徴とする電子機器。   11. An electronic device comprising: the fuel cell device according to claim 10; and an electronic device main body to which electric power is supplied from the fuel cell device.
JP2007231481A 2007-09-06 2007-09-06 Reactor Expired - Fee Related JP5239263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007231481A JP5239263B2 (en) 2007-09-06 2007-09-06 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007231481A JP5239263B2 (en) 2007-09-06 2007-09-06 Reactor

Publications (2)

Publication Number Publication Date
JP2009062227A true JP2009062227A (en) 2009-03-26
JP5239263B2 JP5239263B2 (en) 2013-07-17

Family

ID=40557168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007231481A Expired - Fee Related JP5239263B2 (en) 2007-09-06 2007-09-06 Reactor

Country Status (1)

Country Link
JP (1) JP5239263B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190288A (en) * 1993-12-28 1995-07-28 Kubota Corp Heat insulation container
JP2001089105A (en) * 1999-09-27 2001-04-03 Mitsubishi Electric Corp Fuel reformer
JP2006156096A (en) * 2004-11-29 2006-06-15 Ishikawajima Harima Heavy Ind Co Ltd Thermal control device, reformer, and fuel cell
JP2007073408A (en) * 2005-09-08 2007-03-22 Casio Comput Co Ltd Reaction device
JP2007095359A (en) * 2005-09-27 2007-04-12 Nippon Sheet Glass Co Ltd Fuel reformer for fuel cell
JP2007179927A (en) * 2005-12-28 2007-07-12 Casio Comput Co Ltd Thermally insulated container

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190288A (en) * 1993-12-28 1995-07-28 Kubota Corp Heat insulation container
JP2001089105A (en) * 1999-09-27 2001-04-03 Mitsubishi Electric Corp Fuel reformer
JP2006156096A (en) * 2004-11-29 2006-06-15 Ishikawajima Harima Heavy Ind Co Ltd Thermal control device, reformer, and fuel cell
JP2007073408A (en) * 2005-09-08 2007-03-22 Casio Comput Co Ltd Reaction device
JP2007095359A (en) * 2005-09-27 2007-04-12 Nippon Sheet Glass Co Ltd Fuel reformer for fuel cell
JP2007179927A (en) * 2005-12-28 2007-07-12 Casio Comput Co Ltd Thermally insulated container

Also Published As

Publication number Publication date
JP5239263B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
KR100570755B1 (en) Reformer for fuel cell system and fuel cell system having thereof
KR100948995B1 (en) Reactor
KR100570752B1 (en) Reformer for fuel cell system and fuel cell system having thereof
JP6037749B2 (en) Fuel cell module
JP4983169B2 (en) Reaction apparatus and electronic equipment
JP5066927B2 (en) FUEL CELL DEVICE AND ELECTRONIC DEVICE
KR20090033071A (en) Fuel cell unit and electronic device
KR100804913B1 (en) Reacting device
JP5239263B2 (en) Reactor
JP5440751B2 (en) Fuel cell system
JP4983859B2 (en) Combustor
JP5262483B2 (en) Fuel cell system
JP2016192391A (en) Fuel cell device and fuel cell system
JP4254769B2 (en) Reactor
JP2007070178A (en) Reaction device
JP5505381B2 (en) FUEL CELL TYPE POWER GENERATOR AND FUEL TREATMENT METHOD
JP4872406B2 (en) FUEL CELL TYPE POWER GENERATOR AND FUEL TREATMENT METHOD
JP5223501B2 (en) FUEL CELL DEVICE AND ELECTRONIC DEVICE
JP5045004B2 (en) Reactor
JP5228739B2 (en) Reaction apparatus and electronic equipment
JP4400273B2 (en) Combustor and reactor
JP6466136B2 (en) Fuel cell module
JP4715405B2 (en) Reactor
KR100846716B1 (en) Apparatus for reforming fuel
JP5182223B2 (en) Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees