JP2009062203A - Method for producing silicon carbide structure - Google Patents

Method for producing silicon carbide structure Download PDF

Info

Publication number
JP2009062203A
JP2009062203A JP2007228893A JP2007228893A JP2009062203A JP 2009062203 A JP2009062203 A JP 2009062203A JP 2007228893 A JP2007228893 A JP 2007228893A JP 2007228893 A JP2007228893 A JP 2007228893A JP 2009062203 A JP2009062203 A JP 2009062203A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbon
mainly composed
heating
carbide structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007228893A
Other languages
Japanese (ja)
Other versions
JP5083814B2 (en
Inventor
Hisanori Yamane
久典 山根
Takahiro Yamada
高広 山田
Fumihiro Kawamura
文洋 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2007228893A priority Critical patent/JP5083814B2/en
Publication of JP2009062203A publication Critical patent/JP2009062203A/en
Application granted granted Critical
Publication of JP5083814B2 publication Critical patent/JP5083814B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a silicon carbide structure wherein the silicon carbide structure holds the shape of a structure which mainly comprise carbon and which has not been realized by a conventional method, and can be produced more simply than a conventional method at a low temperature and in a short time. <P>SOLUTION: The method is characterized in that a structure mainly comprising carbon is heated in a reaction vessel in an inert gas atmosphere and at a state of being added with a sodium molten liquid containing silicon, the main crystal structure of silicon carbide in the resultant silicon carbide structure after heating is β-type and the heating temperature for the structure mainly comprising carbon is 600°C or higher and 1,200°C or lower. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高温ガスや金属融液のフィルター、高温ガス吸着材、触媒担体、半導体製造装置部材、生体培養坦体材料として、実用化が期待されている炭化ケイ素構造体の製造方法に関するものである。   The present invention relates to a method for producing a silicon carbide structure that is expected to be put to practical use as a high-temperature gas or metal melt filter, a high-temperature gas adsorbent, a catalyst carrier, a semiconductor production apparatus member, and a biological culture carrier material. is there.

炭化ケイ素の多結晶体セラミックスは、高温においても高強度で、耐摩耗性、耐食性に優れた非酸化物半導体で、そのバルク体や多孔体などの構造体は、高温構造部材や半導体製造用部材、発熱体、ディーゼル車の廃ガス浄化用フィルターをはじめとする高温ガスフィルター、溶融金属濾過材、ガス分解浄化反応触媒の坦体などの用途に用いられている。また、炭化ケイ素は、地球の地殻中に豊富に存在する元素で構成されることや、非酸化物セラミックスの中では、表面酸化被膜の形成により耐酸化性も高く、低毒性で長寿命である。   Polycrystalline ceramics of silicon carbide are non-oxide semiconductors that have high strength even at high temperatures, and are excellent in wear resistance and corrosion resistance. Structures such as bulk bodies and porous bodies are high-temperature structural members and semiconductor manufacturing members. It is used in applications such as heating elements, high-temperature gas filters such as diesel exhaust gas purification filters, molten metal filter media, and gas decomposition purification reaction catalyst carriers. Silicon carbide is composed of elements that are abundant in the earth's crust, and among non-oxide ceramics, it has high oxidation resistance due to the formation of a surface oxide film, has low toxicity, and has a long life. .

従来、炭化ケイ素の構造体は、炭化ケイ素粉体の固相および焼結助剤添加による液相焼結技術や加圧焼結技術、有機または無機前駆体の化学反応および熱分解反応を利用した製造技術、各種構造体にシリコンを含む溶液やシリコン融液を含浸させる技術等により合成されてきた。炭化ケイ素の前述の様々な特性を引き出すためには、α型またはβ型の結晶相でなければならず、α型やβ型の結晶相の炭化ケイ素を得るには、不活性雰囲気下で1200℃から2400℃におよぶ高温反応や焼成が必要である。高温での製造には時間がかかり効率が悪く、高温条件での処理に対応できる設備が必要となり、製造コストが高いという問題がある。   Conventionally, the structure of silicon carbide has utilized liquid phase sintering technology and pressure sintering technology by adding solid phase and sintering aid of silicon carbide powder, chemical reaction and thermal decomposition reaction of organic or inorganic precursors. It has been synthesized by a manufacturing technique, a technique in which various structures are impregnated with a solution containing silicon or a silicon melt. In order to derive the above-mentioned various characteristics of silicon carbide, it must be in the α-type or β-type crystal phase. To obtain silicon carbide in the α-type or β-type crystal phase, 1200 under an inert atmosphere. A high temperature reaction or calcination ranging from 0 to 2400 ° C. is required. Manufacturing at high temperatures is time consuming and inefficient, and requires equipment that can handle processing under high temperature conditions, resulting in high manufacturing costs.

この長時間の高温製造プロセスを短縮、または省略する製造方法として、非晶質炭素またはフラーレンの粉末とシリコンの粉末とを原料とし、これらの原料の混合体を金型圧縮成型し、ナトリウム蒸気下600℃から900℃に加熱することにより、β型結晶構造を有し、混合原料粉末の形態を維持した炭化ケイ素多孔体の合成方法が提案された(非特許文献1参照)。   As a manufacturing method that shortens or omits this long-time high-temperature manufacturing process, amorphous carbon or fullerene powder and silicon powder are used as raw materials, and a mixture of these raw materials is molded by molding, A method for synthesizing a silicon carbide porous body having a β-type crystal structure and maintaining the form of a mixed raw material powder by heating from 600 ° C. to 900 ° C. has been proposed (see Non-Patent Document 1).

しかし、非特許文献1に記載の方法では、炭素とシリコンとの原料粉末を混合成形しなければならず、炭化ケイ素構造体の形態や組織も、混合原料粉末から成形可能な形態に限られてしまうという問題点がある。   However, in the method described in Non-Patent Document 1, the raw material powder of carbon and silicon must be mixed and molded, and the form and structure of the silicon carbide structure are limited to a form that can be formed from the mixed raw material powder. There is a problem that.

川村文洋、山根久典、山田高広、殷シュウ、佐藤次雄,「Naを利用した炭化ケイ素粉末および多孔体の作製」,第45回セラミックス基礎科学討論会講演予稿集,東北大学金属材料研究所,2007年1月22日,p.562−563Fumihiro Kawamura, Hissunori Yamane, Takahiro Yamada, Shu Shu, Tatsuo Sato, “Preparation of Silicon Carbide Powders and Porous Materials Using Na”, Proceedings of the 45th Ceramics Science Symposium, Institute for Materials Research, Tohoku University January 22, 2007, p. 562-563

本発明の目的は、従来法の原料粉末の混合工程を省き、従来法では実現できなかった主として炭素からなる構造体の形態を保持した炭化ケイ素構造体の製造を、低温で、かつ短時間で行うことことができる炭化ケイ素構造体の製造方法を提供することにある。   The object of the present invention is to eliminate the mixing step of the raw material powder of the conventional method, and to produce a silicon carbide structure that retains the form of the structure mainly composed of carbon, which could not be realized by the conventional method, at a low temperature and in a short time. An object of the present invention is to provide a method for producing a silicon carbide structure that can be performed.

本発明によれば、不活性ガス雰囲気の反応容器中で、シリコンを含むナトリウムの融液を付加した状態で、主として炭素からなる構造体を加熱することを、特徴とする炭化ケイ素構造体の製造方法が得られる。   According to the present invention, a silicon carbide structure characterized by heating a structure mainly composed of carbon in a reaction vessel in an inert gas atmosphere with a silicon-containing sodium melt added thereto. A method is obtained.

また、本発明によれば、前記主として炭素からなる構造体は、天然木材または植物・生体組織を炭化したもの、非晶質炭素、フラーレンまたはカーボンナノチューブを主な構成要素とする素材で人工的に合成された3次元バルク体、布、網、線、繊維、およびそれらが合わさったもののうち、少なくともいずれか一種類であることを、特徴とする炭化ケイ素構造体の製造方法が得られる。   Further, according to the present invention, the structure mainly composed of carbon is artificially made of a material mainly composed of natural wood, carbonized plant / living tissue, amorphous carbon, fullerene, or carbon nanotube. A method for producing a silicon carbide structure characterized in that it is at least one of a synthesized three-dimensional bulk body, cloth, net, wire, fiber, and a combination thereof is obtained.

また、本発明によれば、前記主として炭素からなる構造体を加熱して得られる炭化ケイ素構造体が、前記主として炭素からなる構造体の形態や組織、構造を保持していることを、特徴とする炭化ケイ素構造体の製造方法が得られる。   According to the present invention, the silicon carbide structure obtained by heating the structure mainly composed of carbon retains the form, structure and structure of the structure mainly composed of carbon. A method for producing a silicon carbide structure is obtained.

また、本発明によれば、前記主として炭素からなる構造体を加熱して得られる炭化ケイ素構造体中の主たる炭化ケイ素の結晶構造がβ型であることを、特徴とする炭化ケイ素構造体の製造方法が得られる。   According to the present invention, the silicon carbide structure is characterized in that the main silicon carbide crystal structure in the silicon carbide structure obtained by heating the structure mainly composed of carbon is β-type. A method is obtained.

更に、本発明によれば、前記主として炭素からなる構造体を加熱する温度は、600℃以上、1200℃以下であることを、特徴とする炭化ケイ素構造体の製造方法が得られる。   Furthermore, according to the present invention, there is obtained a method for producing a silicon carbide structure characterized in that a temperature for heating the structure mainly composed of carbon is 600 ° C. or more and 1200 ° C. or less.

本発明により、従来よりも簡易に、低温で、かつ短時間で炭化ケイ素構造体を製造することができる炭化ケイ素構造体の製造方法が得られる。これにより、炭化ケイ素構造体を用いた低価格、高性能な高温構造部材や半導体製造用部材、発熱体、廃ガス浄化用フィルター、高温ガスフィルター、溶融金属濾過材、ガス分解浄化反応触媒の坦体、生体培養坦体材料等が得られるという効果が得られる。   By this invention, the manufacturing method of the silicon carbide structure which can manufacture a silicon carbide structure at low temperature and a short time more simply than before is obtained. As a result, low-cost, high-performance high-temperature structural members and semiconductor manufacturing members using silicon carbide structures, heating elements, waste gas purification filters, high-temperature gas filters, molten metal filter media, and gas decomposition purification reaction catalyst carriers The effect that a body, a biological culture carrier material, etc. are obtained is acquired.

以下、本発明の実施の形態について、詳細に説明する。
図1は、合成に使用した反応容器の概略図を示す。まず初めに、木材(バルサと檜材各10×10×30mm,バルサφ10mm×40mm)を80℃の空気中で4時間乾燥後、550℃の減圧下(約100Torr)で6時間加熱し、木材を炭化し、植物細胞壁の高次構造を保持した主に炭素からなる構造体とした。次に、得られた植物細胞壁の高次構造を保持した主に炭素からなる構造体である2つの炭化木1(合計296.2mg)を、シリコン3(814.6mg、三津和化学薬品株式会社製、純度99.999%、粒径−200mesh)、およびナトリウム2(790.7mg、日本曹達株式会社製、純度99.95%)とともに、アルゴンガス雰囲気のグローブボックス中で、焼結窒化ホウ素坩堝4(内径28mm、深さ25mm、昭和電工株式会社製、純度99.5%)の中に入れた。さらに、これらをニッケル製ルツボ5に入れた。図2(a)は、それぞれの材料をチャージした加熱前の焼結窒化ホウ素坩堝4である。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 shows a schematic diagram of a reaction vessel used for synthesis. First, wood (balsa and bran 10 × 10 × 30 mm, balsa φ10 mm × 40 mm) was dried in air at 80 ° C. for 4 hours and then heated at 550 ° C. under reduced pressure (about 100 Torr) for 6 hours. Was carbonized to obtain a structure mainly composed of carbon retaining the higher-order structure of the plant cell wall. Next, two carbonized woods 1 (total 296.2 mg), which is a structure mainly composed of carbon retaining the higher-order structure of the obtained plant cell wall, were replaced with silicon 3 (814.6 mg, Mitsuwa Chemicals Co., Ltd.). Sintered boron nitride crucible in a glove box in an argon gas atmosphere together with manufactured product, purity 99.999%, particle size -200 mesh), and sodium 2 (790.7 mg, manufactured by Nippon Soda Co., Ltd., purity 99.95%) 4 (inner diameter 28 mm, depth 25 mm, Showa Denko KK, purity 99.5%). Further, these were put in a nickel crucible 5. FIG. 2A shows a sintered boron nitride crucible 4 before heating and charged with each material.

次に、図1に示したように、熱電対8を通したニッケル台6の上にニッケル製ルツボ5を置き、ニッケル製キャップ7で覆った。試料部の雰囲気をArガスで約3atmに加圧し、ヒーター9により2時間で700℃まで昇温し、24時間保持加熱した後、炉冷した。炉冷後、グローブボックス中で焼結窒化ホウ素坩堝4内に入った試料を取り出した。600℃以下の反応温度では、炭化ケイ素の十分な生成反応が得られず、また、1000℃では、炭化ケイは合成されるが、ナトリウムの蒸発が激しくなり、1200℃以上の温度では、図1の装置を用いた合成が困難となる。従って、加熱する温度は、600℃以上、1200℃以下、好ましくは900℃以下の必要がある。   Next, as shown in FIG. 1, a nickel crucible 5 was placed on a nickel base 6 through which a thermocouple 8 was passed and covered with a nickel cap 7. The atmosphere of the sample part was pressurized to about 3 atm with Ar gas, heated to 700 ° C. in 2 hours by the heater 9, held and heated for 24 hours, and then cooled in the furnace. After cooling in the furnace, the sample contained in the sintered boron nitride crucible 4 in the glove box was taken out. At a reaction temperature of 600 ° C. or lower, sufficient formation reaction of silicon carbide cannot be obtained, and at 1000 ° C., silicon carbide is synthesized, but sodium evaporates vigorously, and at a temperature of 1200 ° C. or higher, FIG. It becomes difficult to synthesize using the apparatus. Therefore, the heating temperature needs to be 600 ° C. or higher and 1200 ° C. or lower, preferably 900 ° C. or lower.

図2(b)は、加熱冷却後の焼結窒化ホウ素坩堝4である。図2(b)から明らかに、加熱後の試料は加熱前の形態を維持しており、表面および内部には、固化したナトリウム−シリコン系の金属間化合物を含むナトリウムが付着していることが確認された。この試料に付着したナトリウムやナトリウム−シリコン系の金属間化合物を、イソプロピルアルコールやエタノールと反応させた。その後、この試料を蒸留水で超音波洗浄し、空気中200℃で乾燥させた。   FIG. 2B shows the sintered boron nitride crucible 4 after heating and cooling. As apparent from FIG. 2 (b), the sample after heating maintains the form before heating, and the surface and the inside are attached with sodium containing solidified sodium-silicon intermetallic compound. confirmed. Sodium or sodium-silicon intermetallic compounds attached to this sample were reacted with isopropyl alcohol or ethanol. Then, this sample was ultrasonically cleaned with distilled water and dried at 200 ° C. in air.

得られた試料をメノウ乳鉢で粉砕し、そのX線粉末回折(XRD)パターンをX線回折装置(株式会社リガク製、製品名「RINT2200」:CuKα線、管電圧40kV、管電流40mA)を用いて測定した。図3は、バルサを使用して作製した粉砕試料のXRDパターンである。すべてのXRDピークは、立方晶系、格子定数a=0.436nmで指数付けされ、さらに各ピークの相対強度から、作製された試料がβ型の結晶構造を有する炭化ケイ素であることが分かる。   The obtained sample was pulverized in an agate mortar, and its X-ray powder diffraction (XRD) pattern was used using an X-ray diffractometer (manufactured by Rigaku Corporation, product name “RINT2200”: CuKα ray, tube voltage 40 kV, tube current 40 mA). Measured. FIG. 3 is an XRD pattern of a ground sample produced using balsa. All XRD peaks are indexed with a cubic system, lattice constant a = 0.436 nm, and the relative intensity of each peak indicates that the prepared sample is silicon carbide having a β-type crystal structure.

洗浄後の試料の形態を、走査型電子顕微鏡:SEM(株式会社日立製作所製、製品名「X−650S」)で観察するとともに、このSEMに搭載されている半導体検出器(EDAX Inc製、製品名「NEW XL30」)を用いて元素分析を行った。図4は、炭化ケイ素試料のSEM像である。図4(a)は、檜材の炭化木から得られた試料で、図4(b)は、バルサ材の炭化木を用いて得られた試料である。両炭化ケイ素試料に植物特有のセル構造が観察されたことから、ミクロな構造も保持されていることが明らかである。これらの部分のエネルギー分散型X線分析(EDX分析)で、シリコンと炭素とがおおよそ50at%づつ含まれており、その他、0.6〜0.7at%のナトリウム、2〜3at%の酸素、および0.1at%の生体由来のカルシウムが検出された。   The morphology of the sample after washing is observed with a scanning electron microscope: SEM (manufactured by Hitachi, Ltd., product name “X-650S”), and a semiconductor detector mounted on this SEM (manufactured by EDAX Inc., product) Elemental analysis was performed using the name “NEW XL30”). FIG. 4 is an SEM image of a silicon carbide sample. FIG. 4A is a sample obtained from a carbonized wood made of firewood, and FIG. 4B is a sample obtained using a carbonized wood made of balsa wood. It is clear that the microscopic structure is also retained from the fact that plant-specific cell structures were observed in both silicon carbide samples. The energy dispersive X-ray analysis (EDX analysis) of these parts contains silicon and carbon in an amount of approximately 50 at%, 0.6 to 0.7 at% sodium, 2-3 at% oxygen, And 0.1 at% of biological calcium was detected.

更に、人工的に合成された炭素構造体として活性炭を使用し、内径28mmの焼結窒化ホウ素坩堝4内に、粒径6mmの活性炭を30mg、ナトリウム2を73mg、シリコン3を71mg入れ、Arガス雰囲気中、700℃で24時間加熱することにより、活性炭の形態を保持したβ型炭化ケイ素が合成された。   Furthermore, using activated carbon as an artificially synthesized carbon structure, 30 mg of activated carbon having a particle diameter of 6 mm, 73 mg of sodium 2 and 71 mg of silicon 3 are placed in a sintered boron nitride crucible 4 having an inner diameter of 28 mm, and Ar gas Β-type silicon carbide retaining the activated carbon form was synthesized by heating at 700 ° C. for 24 hours in an atmosphere.

本実施の形態では、バルサ材と桧材と活性炭とについて説明したが、炭素からなる構造体が得られる天然木材または植物・生体組織を炭化したもの、非晶質炭素、フラーレンまたはカーボンナノチューブなどを主な構成要素とする素材で人工的に合成された3次元バルク体、布、網、線、繊維、およびそれらが合わさったもののうち、少なくともいずれか一種類であれば、同様の反応が得られることは明らかである。   In this embodiment, balsa wood, straw wood, and activated carbon have been described. However, natural wood obtained by obtaining a carbon structure or carbonized plant / biological tissue, amorphous carbon, fullerene, carbon nanotube, etc. The same reaction can be obtained if it is at least one of the three-dimensional bulk material, cloth, net, wire, fiber, and the combination thereof, which are artificially synthesized with the main constituent materials. It is clear.

本発明の実施の形態の炭化ケイ素構造体の製造方法の、炭化ケイ素構造体の作製に使用した反応容器の概略図である。It is the schematic of the reaction container used for preparation of the silicon carbide structure of the manufacturing method of the silicon carbide structure of embodiment of this invention. 図1に示す炭化ケイ素構造体の製造方法の、炭化ケイ素構造体の作製に使用した焼結窒化ホウ素坩堝内に炭化木、シリコンおよびナトリウムを入れた使用状態を示す(a)加熱前の斜視図、(b)加熱冷却後の斜視図である。FIG. 1 is a perspective view before heating (a) showing a use state in which carbonized wood, silicon and sodium are placed in a sintered boron nitride crucible used for producing a silicon carbide structure in the method for producing the silicon carbide structure shown in FIG. (B) It is a perspective view after heating and cooling. 本発明の実施の形態の炭化ケイ素構造体の製造方法の、バルサを使用して作製した炭化ケイ素構造体の粉砕試料のX線粉末回折(XRD)パターンを示すグラフである。It is a graph which shows the X-ray powder diffraction (XRD) pattern of the grinding | pulverization sample of the silicon carbide structure produced using the balsa of the manufacturing method of the silicon carbide structure of embodiment of this invention. 本発明の実施の形態の炭化ケイ素構造体の製造方法の、(a)檜材の炭化木から得られた炭化ケイ素構造体を示す走査型電子顕微鏡(SEM)写真、(b)バルサ材の炭化木から得られた炭化ケイ素構造体を示す走査型電子顕微鏡(SEM)写真である。(A) Scanning electron microscope (SEM) photograph showing a silicon carbide structure obtained from a carbonized wood of a timber, (b) carbonization of a balsa material, in the method for producing a silicon carbide structure of an embodiment of the present invention It is a scanning electron microscope (SEM) photograph which shows the silicon carbide structure obtained from the tree.

符号の説明Explanation of symbols

1 炭化木
2 ナトリウム
3 シリコン
4 焼結窒化ホウ素坩堝
5 ニッケル製ルツボ
6 ニッケル台
7 ニッケル製キャップ
8 熱電対
9 ヒーター
1 Carbide wood 2 Sodium 3 Silicon 4 Sintered boron nitride crucible 5 Nickel crucible 6 Nickel stand 7 Nickel cap 8 Thermocouple 9 Heater

Claims (5)

不活性ガス雰囲気の反応容器中で、シリコンを含むナトリウムの融液を付加した状態で、主として炭素からなる構造体を加熱することを、特徴とする炭化ケイ素構造体の製造方法。   A method for producing a silicon carbide structure, comprising: heating a structure mainly composed of carbon in a reaction vessel in an inert gas atmosphere with a sodium melt containing silicon added thereto. 前記主として炭素からなる構造体は、天然木材または植物・生体組織を炭化したもの、非晶質炭素、フラーレンまたはカーボンナノチューブを主な構成要素とする素材で人工的に合成された3次元バルク体、布、網、線、繊維、およびそれらが合わさったもののうち、少なくともいずれか一種類であることを、特徴とする請求項1記載の炭化ケイ素構造体の製造方法。   The structure mainly composed of carbon is a three-dimensional bulk body artificially synthesized with a material mainly composed of natural wood, carbonized plant or biological tissue, amorphous carbon, fullerene or carbon nanotube, 2. The method for manufacturing a silicon carbide structure according to claim 1, wherein the silicon carbide structure is at least one of cloth, net, wire, fiber, and a combination thereof. 前記主として炭素からなる構造体を加熱して得られる炭化ケイ素構造体が、前記主として炭素からなる構造体の形態や組織、構造を保持していることを、特徴とする請求項1または2記載の炭化ケイ素構造体の製造方法。   3. The silicon carbide structure obtained by heating the structure mainly composed of carbon retains the form, structure, and structure of the structure mainly composed of carbon. A method for producing a silicon carbide structure. 前記主として炭素からなる構造体を加熱して得られる炭化ケイ素構造体中の主たる炭化ケイ素の結晶構造がβ型であることを、特徴とする請求項1、2または3記載の炭化ケイ素構造体の製造方法。   4. The silicon carbide structure according to claim 1, wherein a crystal structure of main silicon carbide in the silicon carbide structure obtained by heating the structure mainly composed of carbon is β-type. Production method. 前記主として炭素からなる構造体を加熱する温度は、600℃以上、1200℃以下であることを、特徴とする請求項1、2、3または4記載の炭化ケイ素構造体の製造方法。
5. The method for manufacturing a silicon carbide structure according to claim 1, wherein a temperature for heating the structure mainly composed of carbon is 600 ° C. or more and 1200 ° C. or less.
JP2007228893A 2007-09-04 2007-09-04 Method for manufacturing silicon carbide structure Expired - Fee Related JP5083814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007228893A JP5083814B2 (en) 2007-09-04 2007-09-04 Method for manufacturing silicon carbide structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007228893A JP5083814B2 (en) 2007-09-04 2007-09-04 Method for manufacturing silicon carbide structure

Publications (2)

Publication Number Publication Date
JP2009062203A true JP2009062203A (en) 2009-03-26
JP5083814B2 JP5083814B2 (en) 2012-11-28

Family

ID=40557153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007228893A Expired - Fee Related JP5083814B2 (en) 2007-09-04 2007-09-04 Method for manufacturing silicon carbide structure

Country Status (1)

Country Link
JP (1) JP5083814B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083732A (en) * 2008-10-02 2010-04-15 Tohoku Univ Method for manufacturing silicon crystal and method for manufacturing solar cell film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294413A (en) * 2000-04-11 2001-10-23 Toyota Motor Corp METHOD FOR MANUFACTURING CARBON NANOTUBE, METHOD FOR MANUFACTURING POROUS SiC MATERIAL AND POROUS SiC MATERIAL
JP2005104752A (en) * 2003-09-29 2005-04-21 Toto Ltd Silicon ceramic composite and manufacturing method thereof
WO2006070749A1 (en) * 2004-12-28 2006-07-06 Matsushita Electric Industrial Co., Ltd. METHOD FOR PRODUCING SILICON CARBIDE (SiC) SINGLE CRYSTAL AND SILICON CARBIDE (SiC) SINGLE CRYSTAL OBTAINED BY SUCH METHOD

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294413A (en) * 2000-04-11 2001-10-23 Toyota Motor Corp METHOD FOR MANUFACTURING CARBON NANOTUBE, METHOD FOR MANUFACTURING POROUS SiC MATERIAL AND POROUS SiC MATERIAL
JP2005104752A (en) * 2003-09-29 2005-04-21 Toto Ltd Silicon ceramic composite and manufacturing method thereof
WO2006070749A1 (en) * 2004-12-28 2006-07-06 Matsushita Electric Industrial Co., Ltd. METHOD FOR PRODUCING SILICON CARBIDE (SiC) SINGLE CRYSTAL AND SILICON CARBIDE (SiC) SINGLE CRYSTAL OBTAINED BY SUCH METHOD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083732A (en) * 2008-10-02 2010-04-15 Tohoku Univ Method for manufacturing silicon crystal and method for manufacturing solar cell film

Also Published As

Publication number Publication date
JP5083814B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
US20210147301A1 (en) Method for Producing Non-Oxide Ceramic Powders
Ding et al. Growth of SiC nanowires on wooden template surface using molten salt media
Kan et al. Low-temperature fabrication of porous ZrC/C composite material from molten salts
Ding et al. Preparation and characterisation of porous biomorphic SiC/C ceramic from molten salt
KR100952341B1 (en) Method for manufacturing porous SiC and porous SiC manufactured thereby
Asgarian et al. The effect of different sources of porous carbon on the synthesis of nanostructured boron carbide by magnesiothermic reduction
CN100338266C (en) Method of synthetizing silicon carbide nano rods
JP7440726B2 (en) New sp2-sp3 hybrid crystal boron nitride
CN109574014B (en) B4C fiber felt and preparation method thereof
Li et al. Simple in situ synthesis of SiC nanofibers on graphite felt as a scaffold for improving performance of paraffin-based composite phase change materials
Chen et al. Aligned SnS 2 nanotubes fabricated via a template-assisted solvent-relief process
CN103073300A (en) Method for realizing low-temperature sintering of transition metal nitride ceramics
JP5083814B2 (en) Method for manufacturing silicon carbide structure
Yamane et al. Fabrication of porous SiC ceramics having pores shaped with Si grain templates
Choudhary et al. Lithium orthosilicate ceramics with preceramic polymer as silica source
CN109320277B (en) Preparation method of SiCnw/C nano composite material
CN109503172B (en) Preparation method of porous silicon carbide ceramic with vermicular crystal grains
CN102051676A (en) In-situ grown tantalum carbide whisker material and preparation method thereof
Kawamura et al. Low‐temperature fabrication of porous β‐SiC ceramics in sodium vapor
Soltys et al. Synthesis and Properties of Silicon Carbide
Dong et al. Synthesis and properties of lightweight flexible insulant composites with a mullite fiber-based hierarchical heterostructure
JP5142211B2 (en) Method for producing silicon crystal and method for producing solar cell film
Yamane et al. Low-temperature synthesis of biomorphic cellular SiC ceramics from wood by using a Na flux
CN107986282A (en) Ultra-long silicon carbide nano-wires blanket and preparation method thereof
Ding et al. High surface area ZnO–carbon composite tubular arrays based on the Kirkendall effect and in situ Zn evaporation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120829

R150 Certificate of patent or registration of utility model

Ref document number: 5083814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees