JP2009057446A - Fluorescent material and method for producing the same - Google Patents

Fluorescent material and method for producing the same Download PDF

Info

Publication number
JP2009057446A
JP2009057446A JP2007225273A JP2007225273A JP2009057446A JP 2009057446 A JP2009057446 A JP 2009057446A JP 2007225273 A JP2007225273 A JP 2007225273A JP 2007225273 A JP2007225273 A JP 2007225273A JP 2009057446 A JP2009057446 A JP 2009057446A
Authority
JP
Japan
Prior art keywords
phosphor
group
particles
fluorescent
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007225273A
Other languages
Japanese (ja)
Other versions
JP5187657B2 (en
Inventor
Masahito Uehara
雅人 上原
Hiroyuki Nakamura
浩之 中村
Hideaki Maeda
英明 前田
Masaya Miyazaki
真佐也 宮崎
Yoshiko Yamaguchi
佳子 山口
Kenichi Yamashita
健一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007225273A priority Critical patent/JP5187657B2/en
Priority to PCT/JP2008/065374 priority patent/WO2009028592A1/en
Publication of JP2009057446A publication Critical patent/JP2009057446A/en
Application granted granted Critical
Publication of JP5187657B2 publication Critical patent/JP5187657B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescent material having high quantum yield and a method for producing the material. <P>SOLUTION: The fluorescent material is a nanoparticle produced by mixing a solution containing dispersed nanofluorescent particles composed of the first compound composed of each one kind of the elements of the group I-III-VI and having a chalcopyrite structure with (b) a solution containing a dissolved metal salt, and heating the mixture to substitute the element constituting the nanofluorescent particle with the metal element of the metal salt. The quantum yield of the fluorescent material is 10-40% at room temperature. The fluorescent particle generates fluorescent light of 550-800 nm wavelength. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、蛍光体、及びその製造方法に関する。詳しくは、生体関連物質の修飾・染色、照明、ディスプレイ等に用いる半導体ナノ粒子からなる蛍光体、及びその製造方法に関する。   The present invention relates to a phosphor and a manufacturing method thereof. More specifically, the present invention relates to a phosphor composed of semiconductor nanoparticles used for modification / dying of biological materials, illumination, displays, and the like, and a method for producing the same.

半導体をナノメートルオーダーまで微細化すると量子サイズ効果が発現し、原子数の減少に伴いエネルギーバンドギャップが増大する。ナノメーターオーダーの半導体からなる半導体蛍光ナノ粒子は、半導体のバンドギャップエネルギーに相当する蛍光を発する。   When semiconductors are miniaturized to the nanometer order, a quantum size effect appears, and the energy band gap increases as the number of atoms decreases. Semiconductor fluorescent nanoparticles composed of a semiconductor of nanometer order emit fluorescence corresponding to the band gap energy of the semiconductor.

II-VI族半導体のCdSeナノ粒子は、その粒径を調節することで蛍光色を約500〜700nmの範囲で自由に調節でき、高い蛍光特性を有する(例えば、特許文献1)。CdSeナノ粒子に代表されるII-VI族半導体は、無機半導体であり、有機色素に比べて安定していること等から生化学分析用の蛍光タグ、照明やディスプレイ用等の蛍光材料としての応用の可能性が示唆されている。   The CdSe nanoparticles of group II-VI semiconductors can have a fluorescent color freely adjusted in the range of about 500 to 700 nm by adjusting the particle size, and have high fluorescence characteristics (for example, Patent Document 1). II-VI group semiconductors typified by CdSe nanoparticles are inorganic semiconductors and are more stable than organic dyes, so they can be used as fluorescent tags for biochemical analysis and as fluorescent materials for lighting and displays. The possibility of is suggested.

本発明の発明者等は、CdSeに物性の類似したカルコパイライト構造を有する化合物、特にCuInS2を、対象材料として着目し、ZnS等のII-VI族系化合物との複合化を図り、蛍光特性の評価を行い、蛍光量子収率10%以下の蛍光量子収率を持つ蛍光体に関する発明を行い、提案した(特許文献2)。I-III-VI系の化合物であるカルコパイライト型半導体は3元素系化合物であり、IV族、II-VI族およびIII-V族の半導体に比べて、元素選択の自由度が広く、利用環境や目的による制約を受けた場合の材料設計を行う点で利点がある。 The inventors of the present invention focused on a compound having a chalcopyrite structure similar to that of CdSe, particularly CuInS 2 as a target material, and made a composite with a II-VI group compound such as ZnS to obtain fluorescence characteristics. And an invention relating to a phosphor having a fluorescence quantum yield of 10% or less was made and proposed (Patent Document 2). Chalcopyrite-type semiconductors, which are I-III-VI compounds, are three-element compounds that have a greater degree of freedom of element selection than Group IV, II-VI, and III-V semiconductors. There is an advantage in designing the material when there are restrictions depending on the purpose and purpose.

しかしながら、ZnS等のII-VI族半導体と複合を行っていないカルコパイライト系ナノ粒子自体に関しては、合成法の煩雑な単分子原料材料による合成例があるのみである(非特許文献1)。単分子原料を利用すれば、約4%の蛍光量子収率を持ち、粒子の外径2〜5nm程度のCuInS2のカルコパイライト型ナノ粒子が合成可能である。しかしながら、単分子原料の合成自体が複雑であり、工業的には、よりシンプルな合成法が望まれる。 However, with respect to chalcopyrite nanoparticles themselves that are not complexed with II-VI group semiconductors such as ZnS, there are only examples of synthesis using monomolecular raw materials with complicated synthesis methods (Non-patent Document 1). If a monomolecular raw material is used, it is possible to synthesize CuInS 2 chalcopyrite nanoparticles having a fluorescence quantum yield of about 4% and an outer diameter of about 2 to 5 nm. However, the synthesis of monomolecular raw materials is complicated, and industrially, a simpler synthesis method is desired.

本発明の発明者等は、原料となる金属錯体溶液を加熱して合成する方法において、加熱方法を工夫することで、蛍光量子収率が6%以上のカルコパイライト系ナノ粒子を開発した。更に、このカルコパイライト系ナノ粒子、例えばCuInS2ナノ粒子をZnS等のバンドギャップの大きい材料で被覆することで、30%程度の高い蛍光量子収率をもつナノ粒子を開発した。(特許文献3) The inventors of the present invention have developed chalcopyrite nanoparticles having a fluorescence quantum yield of 6% or more by devising a heating method in a method of heating and synthesizing a metal complex solution as a raw material. Furthermore, by coating these chalcopyrite nanoparticles, such as CuInS 2 nanoparticles, with a material with a large band gap such as ZnS, nanoparticles with a high fluorescence quantum yield of about 30% were developed. (Patent Document 3)

特表2003−524147号Special table 2003-524147 PCT/JP2005/013185PCT / JP2005 / 013185 国際公開WO2007/060889号International Publication WO 2007/060889 S.L.Castro, S.G.Bailey, R.P.Raffaelle, K.K.Banger, and A.F.Hepp, J.Phys.Chem.B 2004, Vol.108, p12429-12435.S.L.Castro, S.G.Bailey, R.P.Raffaelle, K.K.Banger, and A.F.Hepp, J.Phys.Chem.B 2004, Vol.108, p12429-12435.

上述の特許文献3は、本願発明者の精力的な研究活動の成果である。本願発明の発明者等は、更に試行錯誤の末、カルコパイライト構造を有するI-III-VI族の化合物からなるナノ粒子の金属元素を別の金属元素で置換してナノ粒子が製造できる方法を発明した。固体材料は異種物質の固溶によって特性が変化することがある。特に半導体材料のバンドギャップなどの特性は著しく変化するため、積極的に異種物質を固溶させて特性を制御している。CuInS2ナノ粒子も、CuGaS2やAgInS2、ZnSなどを固溶させるとバンドギャップや蛍光波長等の特性が変化する(特許文献3を参照。)。 The above-mentioned Patent Document 3 is the result of energetic research activities of the inventor of the present application. The inventors of the present invention further developed a method by which, after trial and error, a metal element of a nanoparticle composed of a compound of the I-III-VI group having a chalcopyrite structure can be substituted with another metal element to produce a nanoparticle. Invented. The characteristics of solid materials may change due to solid solution of different substances. In particular, since characteristics such as the band gap of the semiconductor material change remarkably, the characteristics are controlled by positively dissolving different substances. When CuGaS 2 , AgInS 2 , ZnS, or the like is dissolved in CuInS 2 nanoparticles, characteristics such as a band gap and a fluorescence wavelength change (see Patent Document 3).

この現象を利用することで蛍光波長を制御できるが、所望の蛍光波長をもつ固溶体粒子を製造するには、原料調製の段階で、固溶させる化合物の原料を混合して処理を行わなければならならず、製品の余剰生産を避けられない。
本発明は上述のような技術背景のもとになされたものであり、下記の目的を達成する。
本発明の目的は、カルコパイライト型半導体ナノ粒子で、粒子外径が0.5〜20nmの蛍光体、及びその製造方法を提供する。
Although this phenomenon can be used to control the fluorescence wavelength, in order to produce solid solution particles having the desired fluorescence wavelength, the raw material of the compound to be dissolved must be mixed and processed in the raw material preparation stage. In other words, it is inevitable to produce excess products.
The present invention has been made based on the technical background as described above, and achieves the following objects.
An object of the present invention is to provide a chalcopyrite type semiconductor nanoparticle having a particle outer diameter of 0.5 to 20 nm and a method for producing the same.

本発明の他の目的は、カルコパイライト構造を有する化合物からなるナノ粒子の特定の元素を他の元素で置換することで製造した蛍光体、及びその製造方法を提供する。この方法は、予め製造している基本となるナノ粒子を後処理することで、所望の特性をもつナノ粒子を製造するものであり、余剰生産を抑える手段となりうる。   Another object of the present invention is to provide a phosphor produced by substituting a specific element of nanoparticles composed of a compound having a chalcopyrite structure with another element, and a method for producing the same. This method is to produce nanoparticles having desired characteristics by post-processing basic nanoparticles that have been produced in advance, and can serve as a means of suppressing excess production.

本発明の更に他の目的は、高い量子収率を持つ蛍光体、及びその製造方法を提供する。   Still another object of the present invention is to provide a phosphor having a high quantum yield and a method for producing the same.

本発明は、前記目的を達成するため、次の手段を採る。
本発明は、蛍光体及びその製造方法に関する。
本発明の蛍光体は、ナノ蛍光粒子を分散させた溶液と、金属塩を溶解した溶液とを混合し、所定の熱温度で所定の加熱時間の間に加熱して、製造されたものである。ここで言うナノ蛍光粒子は、外径が0.5〜20.0nmの微粒子である。ナノ蛍光粒子は、既存の製造方法で、予め製造される。
In order to achieve the above object, the present invention employs the following means.
The present invention relates to a phosphor and a method for producing the same.
The phosphor of the present invention is manufactured by mixing a solution in which nano-fluorescent particles are dispersed and a solution in which a metal salt is dissolved, and heating at a predetermined heat temperature for a predetermined heating time. . The nano fluorescent particles referred to here are fine particles having an outer diameter of 0.5 to 20.0 nm. The nano fluorescent particles are manufactured in advance by an existing manufacturing method.

このナノ蛍光粒子は、カルコパイライト構造を有するI族元素、III族元素、VI族元素のそれぞれ1種からなる化合物からなることが好ましい。このナノ蛍光粒子は、CuInS2のナノ蛍光粒子であることが最も好ましい。本発明の蛍光体は、ナノ蛍光粒子を構成するI族元素及び/又はIII族元素を、金属塩の金属元素で置換する。蛍光量子収率は、励起光に対して、励起光を蛍光体に照射したときそれによって励起されて発する光波の割合を示すものである。 The nanofluorescent particles are preferably made of a compound having a chalcopyrite structure, each of a group I element, a group III element, and a group VI element. The nanofluorescent particles are most preferably CuInS 2 nanofluorescent particles. In the phosphor of the present invention, the group I element and / or group III element constituting the nanofluorescent particle is substituted with a metal element of a metal salt. The fluorescence quantum yield indicates the ratio of the light wave that is excited and emitted when the phosphor is irradiated with the excitation light with respect to the excitation light.

金属塩は、II族の金属元素の金属塩であることが好ましく、蛍光体の蛍光量子収率が、室温で10.0%以上であることが好ましい。また、金属塩は、I族金属や遷移金属の金属塩であることが好ましい。蛍光粒子が発する蛍光の波長が550nmから800nmであることが好ましい。   The metal salt is preferably a metal salt of a Group II metal element, and the fluorescent quantum yield of the phosphor is preferably 10.0% or more at room temperature. The metal salt is preferably a metal salt of a group I metal or a transition metal. The wavelength of the fluorescence emitted by the fluorescent particles is preferably 550 nm to 800 nm.

本発明の蛍光体は、ナノ蛍光粒子の金属が、金属塩の金属で置換される。よって、本発明の蛍光体は、その表面又は粒子全体が、金属塩の金属を固溶した微粒子になることが好ましい。また、ナノ蛍光粒子を分散させる溶媒及び金属塩を溶解する溶媒は、配位性溶媒又はそれを含む溶液であることが望ましい。   In the phosphor of the present invention, the metal of the nanofluorescent particles is substituted with the metal of the metal salt. Therefore, it is preferable that the surface of the phosphor of the present invention or the entire particle is a fine particle in which a metal salt metal is dissolved. The solvent for dispersing the nano fluorescent particles and the solvent for dissolving the metal salt are preferably a coordinating solvent or a solution containing the same.

この溶媒としては、オレイルアミンやオクチルアミン、ドデシルアミン、ヘキサデシルアミン、トリブチルアミン、オクタデシルジメチルアミン等のアミン化合物、トリオクチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、トリオクチルホスフィンオキシド、トリオクチルホスファイト等のリン系化合物、オレイン酸、ラウリン酸、ステアリン酸等のカルボン酸系化合物、ドデカンチオール、オクタンチオール等のチオール系化合物が好ましい。   Examples of the solvent include amine compounds such as oleylamine, octylamine, dodecylamine, hexadecylamine, tributylamine, octadecyldimethylamine, trioctylphosphine, tributylphosphine, triphenylphosphine, trioctylphosphine oxide, and trioctylphosphite. Phosphorus compounds, carboxylic acid compounds such as oleic acid, lauric acid and stearic acid, and thiol compounds such as dodecanethiol and octanethiol are preferred.

〔CuInS2とZnSの固溶体〕
本発明の蛍光体を製造した実施例1を示す。反応溶液の調整は、全てアルゴンガスを用いたアルゴン雰囲気下で行った。本実施例及び以下の他の実施例用にCuInS2ナノ粒子を用意した。このCuInS2ナノ粒子の基本的な特性は、下記の表1の加熱時間0分の行に示している通り、粒子径が3.5nm、蛍光ピーク波長が690nm、量子収率8.2%である。トリオクチルホスフィンにこのCuInS2ナノ粒子を分散させた溶液をA液(濃度0.02mmol/L)とし、ヨウ化亜鉛を溶解させたオレイルアミン溶液をB液(濃度:0.033 mol/L)とした。
[CuSoS 2 and ZnS solid solution]
Example 1 in which the phosphor of the present invention was manufactured is shown. The reaction solution was all adjusted in an argon atmosphere using argon gas. CuInS 2 nanoparticles were prepared for this example and the following other examples. The basic characteristics of the CuInS 2 nanoparticles are a particle size of 3.5 nm, a fluorescence peak wavelength of 690 nm, and a quantum yield of 8.2% as shown in the row of heating time 0 minutes in Table 1 below. A solution in which the CuInS 2 nanoparticles were dispersed in trioctylphosphine was designated as solution A (concentration 0.02 mmol / L), and an oleylamine solution in which zinc iodide was dissolved was designated as solution B (concentration: 0.033 mol / L).

14mLのA液と0.7 mLのB液を混合し、温度120〜240℃で1分〜60分間加熱することで、CuInS2とZnSからなる固溶型複合粒子を合成した。得られた生成物はトルエンで希釈し吸収・蛍光スペクトルを測定した。図1のグラフには、アルゴン雰囲気下、温度180℃で0〜60分間加熱処理して生成した固溶型複合粒子の蛍光スペクトルの測定結果である。 14 mL of solution A and 0.7 mL of solution B were mixed and heated at a temperature of 120 to 240 ° C. for 1 to 60 minutes to synthesize solid solution type composite particles composed of CuInS 2 and ZnS. The obtained product was diluted with toluene and the absorption / fluorescence spectrum was measured. The graph of FIG. 1 shows the measurement results of the fluorescence spectrum of solid solution type composite particles produced by heat treatment at 180 ° C. for 0 to 60 minutes in an argon atmosphere.

このグラフは、生成された蛍光体が発する光波の強度対スペクトルを図示している。図1のグラフの縦軸は蛍光強度を示し、横軸は波長を示している。蛍光強度は、任意相対値である(以下、同様である)。波長の単位はナノメーターである(以下、同様である)。このグラフから、加熱処理により、蛍光強度が増加するとともに、蛍光波長は短くなったことが分かる。   This graph illustrates the intensity versus spectrum of light waves emitted by the generated phosphor. The vertical axis of the graph in FIG. 1 indicates the fluorescence intensity, and the horizontal axis indicates the wavelength. The fluorescence intensity is an arbitrary relative value (hereinafter the same). The unit of wavelength is nanometer (hereinafter the same). From this graph, it can be seen that the heat treatment increased the fluorescence intensity and shortened the fluorescence wavelength.

表1は、温度180℃で、0〜60分間加熱して生成した結果を示している。蛍光波長の最大値は、約620〜690nmの範囲で制御が可能であった。なお、生成物はCuInS2とZnSの固溶型化合物である。表1の第1欄は本実施例の加熱時間を示している。第2欄は生成され粒子の組成比である。組成分析は、粒子一つ一つについて透過電子顕微鏡を用いてエネルギー分散型 X 線分光分析により行った。 Table 1 shows the results generated by heating at a temperature of 180 ° C. for 0-60 minutes. The maximum value of the fluorescence wavelength could be controlled in the range of about 620 to 690 nm. The product is a solid solution compound of CuInS 2 and ZnS. The first column of Table 1 shows the heating time of this example. The second column is the composition ratio of the particles produced. The composition analysis was performed by energy dispersive X-ray spectroscopic analysis using a transmission electron microscope for each particle.

第3欄は生成された固溶型複合粒子の粒子径を示している。第4欄は生成された固溶型複合粒子の蛍光波長を、第5欄は生成された固溶型複合粒子の蛍光量子収率を示している。蛍光量子収率とは、粒子に吸収された光子の数により、蛍光中の光子の数を除したものである。この値は、量子収率が既知であるローダミンB等を標準物質として、その吸光度、及び蛍光強度の相対的な比較を元にして求めたものである。   The third column shows the particle size of the produced solid solution type composite particles. The fourth column shows the fluorescence wavelength of the produced solid solution type composite particles, and the fifth column shows the fluorescence quantum yield of the produced solid solution type composite particles. The fluorescence quantum yield is obtained by dividing the number of photons in the fluorescence by the number of photons absorbed by the particles. This value is obtained based on relative comparison of absorbance and fluorescence intensity using rhodamine B or the like having a known quantum yield as a standard substance.

なお、吸光度は次のように定義される物理量である。吸光度Aは、入射光の強度をI、透過光の強度をIとすると、
A=−log(I/I) ...(式1)
で定義される。
The absorbance is a physical quantity defined as follows. Absorbance A is expressed as follows: I 0 is the intensity of incident light and I is the intensity of transmitted light.
A = −log (I / I 0 ). . . (Formula 1)
Defined by

量子収率の測定に用いたローダミンBは、365nm励起の場合、73%の量子収率を有するものである。蛍光特性は、日本分光株式会社(所在地:東京都八王子市)製の分光蛍光光度計FP6600を用いて測定した(以下の他の実施例においても同様である。)。表1から、加熱により、粒子径はほとんど変わらない一方で、元素組成においてZnが増加しCuが減少していることが分かる。   Rhodamine B used for the measurement of the quantum yield has a quantum yield of 73% when excited at 365 nm. The fluorescence characteristics were measured using a spectrofluorometer FP6600 manufactured by JASCO Corporation (location: Hachioji City, Tokyo) (the same applies to other examples below). From Table 1, it can be seen that, while heating, the particle diameter hardly changes, while Zn increases and Cu decreases in the elemental composition.

Figure 2009057446
Figure 2009057446

本実施例1の生成物のX線回折(XRD)測定をし、その結果を図2に示している。図2は加熱温度180℃、加熱時間0〜60分間の生成物の結果である。図2の横軸(X軸)直上の黒線は、バルクのCuInS2と、白線はZnSの回折線(JCPDSデータベースより)を示す。この図において、加熱により、回折線が高角度側へシフトしていることが分かる。これは、カルコパイライト型CuInS2にZnが固溶していることを示している。つまり、回折線がZnSの回折線に近くなることで、Znが固溶していることがわかる。 The product of Example 1 was measured by X-ray diffraction (XRD), and the result is shown in FIG. FIG. 2 shows the results of the product at a heating temperature of 180 ° C. and a heating time of 0 to 60 minutes. The black line immediately above the horizontal axis (X axis) in FIG. 2 indicates the bulk CuInS 2 and the white line indicates the ZnS diffraction line (from the JCPDS database). In this figure, it can be seen that the diffraction lines are shifted to the high angle side by heating. This indicates that Zn is dissolved in chalcopyrite type CuInS 2 . That is, it can be seen that Zn is in solid solution when the diffraction line is close to the diffraction line of ZnS.

〔CuInS2とCdSの固溶体〕
反応溶液の調整は、全てアルゴンガスを用いたアルゴン雰囲気下で行った。トリオクチルホスフィンにCuInS2ナノ粒子を分散させた溶液をA液(濃度0.02mmol/L)とし、ヨウ化カドミウムを溶解させたオレイルアミン溶液をB液(濃度0.033 mol/L)とした。14mLのA液と0.7mLのB液を混合し、温度120〜240℃で1分〜60分間加熱することで、CuInS2とCdSからなる固溶型複合粒子を合成した。得られた生成物はトルエンで希釈し吸収・蛍光スペクトルを測定した。
[CuInS 2 and CdS solid solution]
The reaction solution was all adjusted in an argon atmosphere using argon gas. A solution in which CuInS 2 nanoparticles were dispersed in trioctylphosphine was designated as solution A (concentration 0.02 mmol / L), and an oleylamine solution in which cadmium iodide was dissolved was designated as solution B (concentration 0.033 mol / L). 14 mL of liquid A and 0.7 mL of liquid B were mixed and heated at 120 to 240 ° C. for 1 to 60 minutes to synthesize solid solution type composite particles composed of CuInS 2 and CdS. The obtained product was diluted with toluene and the absorption / fluorescence spectrum was measured.

図3のグラフには、アルゴン雰囲気下、温度180℃で0〜60分間加熱処理して生成した固溶型複合粒子の蛍光スペクトルの測定結果である。このグラフは、生成された蛍光体が発する光波の強度対スペクトルを図示している。図3のグラフの縦軸は蛍光強度を示し、横軸は波長を示している。   The graph of FIG. 3 shows the measurement results of the fluorescence spectrum of solid solution type composite particles produced by heat treatment at 180 ° C. for 0 to 60 minutes in an argon atmosphere. This graph illustrates the intensity versus spectrum of light waves emitted by the generated phosphor. The vertical axis of the graph in FIG. 3 indicates the fluorescence intensity, and the horizontal axis indicates the wavelength.

表2は、温度180℃で、0〜60分間加熱して生成した結果を示している。蛍光強度は加熱とともに増大し最大で36%以上に達した。なお、生成物はCuInS2とCdSの固溶型化合物である。表2の第1欄は本実施例の加熱時間を示している。第2欄は生成された固溶型複合粒子の組成比である。組成分析は、粒子ひとつひとつについて透過電子顕微鏡を用いてエネルギー分散型X線分光分析により行った。 Table 2 shows the results generated by heating at a temperature of 180 ° C. for 0-60 minutes. The fluorescence intensity increased with heating and reached a maximum of 36%. The product is a solid solution compound of CuInS 2 and CdS. The first column of Table 2 shows the heating time of this example. The second column is the composition ratio of the produced solid solution type composite particles. The composition analysis was performed by energy dispersive X-ray spectroscopic analysis for each particle using a transmission electron microscope.

第3欄は生成された固溶型複合粒子の粒子径を示している。第4欄は生成された固溶型複合粒子の蛍光波長を、第5欄は生成された固溶型複合粒子の蛍光量子収率を示している。表から、加熱により、粒子径はほとんど変わらない一方で、元素組成においてCdが増加しCuとInが減少していることが分かる。   The third column shows the particle size of the produced solid solution type composite particles. The fourth column shows the fluorescence wavelength of the produced solid solution type composite particles, and the fifth column shows the fluorescence quantum yield of the produced solid solution type composite particles. From the table, it can be seen that the particle diameter is hardly changed by heating, while Cd increases and Cu and In decrease in the elemental composition.

Figure 2009057446
Figure 2009057446

本実施例2の生成物のX線回折(XRD)測定をし、その結果を図4に示している。図4は加熱温度180℃、加熱時間0〜60分間秒の生成物の結果である。図4の横軸(X軸)直上の黒線はバルクのCuInS2の回折線(JCPDSデータベースより)と、白線はCdSの回折線(JCPDSデータベースより)を示す。この図において、加熱により、回折線が低角度側へシフトしていることが分かる。これは、カルコパイライト型CuInS2にCdが固溶していることを示している。 The X-ray diffraction (XRD) measurement of the product of Example 2 was performed, and the result is shown in FIG. FIG. 4 shows the result of the product at a heating temperature of 180 ° C. and a heating time of 0 to 60 minutes. The black line immediately above the horizontal axis (X axis) in FIG. 4 indicates the bulk CuInS 2 diffraction line (from the JCPDS database), and the white line indicates the CdS diffraction line (from the JCPDS database). In this figure, it can be seen that the diffraction lines are shifted to the lower angle side by heating. This indicates that Cd is dissolved in chalcopyrite type CuInS 2 .

〔CuInS2とMnSの固溶体〕
反応溶液の調整は、全てアルゴンガスを用いたアルゴン雰囲気下で行った。トリオクチルホスフィンにCuInS2ナノ粒子を分散させた溶液をA液(濃度0.02mmol/L)とし、ヨウ化マンガンを溶解させたオレイルアミン溶液をB液(濃度0.033 mol/L)とした。14mLのA液と0.7mLのB液を混合し、温度120〜240℃で1分〜60分間加熱することで、CuInS2とMnSからなる粒子を合成した。得られた生成物はトルエンで希釈し吸収・蛍光スペクトルを測定した。
[CuSoS 2 and MnS solid solution]
The reaction solution was all adjusted in an argon atmosphere using argon gas. A solution in which CuInS 2 nanoparticles were dispersed in trioctylphosphine was designated as solution A (concentration 0.02 mmol / L), and an oleylamine solution in which manganese iodide was dissolved was designated as solution B (concentration 0.033 mol / L). 14 mL of solution A and 0.7 mL of solution B were mixed and heated at a temperature of 120 to 240 ° C. for 1 to 60 minutes to synthesize particles composed of CuInS 2 and MnS. The obtained product was diluted with toluene and the absorption / fluorescence spectrum was measured.

図5のグラフには、アルゴン雰囲気下、温度180℃で0〜60分間加熱処理して生成した固溶型複合粒子の蛍光スペクトルの測定結果である。このグラフは、生成された蛍光体が発する光波の強度対スペクトルを図示している。図5のグラフの縦軸は蛍光強度を示し、横軸は波長を示している。   The graph of FIG. 5 shows the measurement results of the fluorescence spectrum of the solid solution type composite particles produced by heat treatment at 180 ° C. for 0 to 60 minutes in an argon atmosphere. This graph illustrates the intensity versus spectrum of light waves emitted by the generated phosphor. The vertical axis of the graph in FIG. 5 indicates the fluorescence intensity, and the horizontal axis indicates the wavelength.

表3は、温度180℃で、0〜60分間加熱して生成した結果を示している。このグラフから、加熱処理により、蛍光波長は短くなったことが分かる。なお、生成物はCuInS2とMnSの固溶型化合物である。表3の第1欄は本実施例の加熱時間を示している。第2欄は生成された粒子の組成比である。組成分析は、粒子一つ一つについて透過電子顕微鏡を用いてエネルギー分散型 X 線分光分析により行った。 Table 3 shows the results generated by heating at a temperature of 180 ° C. for 0-60 minutes. From this graph, it can be seen that the fluorescence wavelength was shortened by the heat treatment. The product is a solid solution compound of CuInS 2 and MnS. The first column of Table 3 shows the heating time of this example. The second column is the composition ratio of the produced particles. The composition analysis was performed by energy dispersive X-ray spectroscopic analysis using a transmission electron microscope for each particle.

第3欄は生成された固溶型複合粒子の粒子径を示している。第4欄は生成された固溶型複合粒子の蛍光波長を、第5欄は生成された固溶型複合粒子の蛍光量子収率を示している。表3から、加熱により、粒子径はほとんど変わらない一方で、元素組成においてMnが増加しCuが減少していることが分かる。   The third column shows the particle size of the produced solid solution type composite particles. The fourth column shows the fluorescence wavelength of the produced solid solution type composite particles, and the fifth column shows the fluorescence quantum yield of the produced solid solution type composite particles. From Table 3, it can be seen that Mn increases and Cu decreases in the elemental composition while the particle diameter hardly changes by heating.

Figure 2009057446
Figure 2009057446

図1は、実施例1の蛍光体の蛍光強度グラフを図示している。FIG. 1 shows a fluorescence intensity graph of the phosphor of Example 1. 図2は、実施例1の蛍光体のX線回折図を図示しているグラフである。FIG. 2 is a graph illustrating an X-ray diffraction pattern of the phosphor of Example 1. 図3は、実施例2の蛍光体の蛍光強度グラフを図示している。FIG. 3 shows a fluorescence intensity graph of the phosphor of Example 2. 図4は、実施例2の蛍光体のX線回折図を図示しているグラフである。4 is a graph illustrating an X-ray diffraction pattern of the phosphor of Example 2. FIG. 図5は、実施例3の蛍光体の蛍光強度グラフを図示している。FIG. 5 shows a fluorescence intensity graph of the phosphor of Example 3.

Claims (10)

(a)カルコパイライト構造を有するI族元素、III族元素、及びVI族元素のそれぞれ1種からなる第1化合物からなり、外径が0.5〜20.0nmのナノ蛍光粒子を分散させた溶液と、(b)金属塩を溶解した溶液とを混合し、所定の第1加熱温度で所定の第1加熱時間の間に加熱して前記ナノ蛍光粒子を構成する前記I族元素及び/又は前記III族元素を、前記金属塩の金属元素と反応させて置換して製造された蛍光粒子である
ことを特徴とする蛍光体。
(A) A nanofluorescent particle having an outer diameter of 0.5 to 20.0 nm, which is made of a first compound composed of one kind each of a group I element, a group III element, and a group VI element having a chalcopyrite structure, is dispersed. The solution and (b) a solution in which a metal salt is dissolved are mixed and heated at a predetermined first heating temperature for a predetermined first heating time to constitute the group I element and / or the nanofluorescent particles. A phosphor produced by reacting and replacing the group III element with a metal element of the metal salt.
請求項1に記載の蛍光体において、
前記金属元素は、II族の金属元素である
ことを特徴とする蛍光体。
The phosphor according to claim 1,
The phosphor is characterized in that the metal element is a group II metal element.
請求項2に記載の蛍光体において、
前記蛍光粒子の励起光によって励起される光波を発する蛍光量子収率が、室温で10.0%以上40.0%以下である
ことを特徴とする蛍光体。
The phosphor according to claim 2, wherein
A phosphor having a quantum yield of fluorescence that emits a light wave excited by excitation light of the fluorescent particles is 10.0% or more and 40.0% or less at room temperature.
請求項1に記載の蛍光体において、
前記金属元素は、遷移金属である
ことを特徴とする蛍光体。
The phosphor according to claim 1,
The phosphor is characterized in that the metal element is a transition metal.
請求項1に記載の蛍光体において、
前記蛍光粒子が発する蛍光波長が550nmから800nmである
ことを特徴とする蛍光体。
The phosphor according to claim 1,
A phosphor having a fluorescence wavelength emitted from the fluorescent particles of 550 nm to 800 nm.
(a)カルコパイライト構造を有するI族元素、III族元素、及びVI族族元素のそれぞれ1種からなる第1化合物からなり、外径が0.5〜20.0nmのナノ蛍光粒子を分散させた溶液と、(b)金属塩を溶解した溶液とを混合し、所定の第1加熱温度で所定の第1加熱時間の間に加熱して前記ナノ蛍光粒子を構成する前記I族元素及び/又は前記III族元素を、前記金属塩の金属元素と反応させて置換して蛍光粒子を製造する
ことを特徴とする蛍光体の製造方法。
(A) Disperse nanofluorescent particles having an outer diameter of 0.5 to 20.0 nm made of a first compound composed of one kind of each of a group I element, a group III element, and a group VI element having a chalcopyrite structure. (B) a solution in which a metal salt is dissolved, and heated at a predetermined first heating temperature for a predetermined first heating time to constitute the group I element and / or Alternatively, the phosphor group is produced by reacting and replacing the group III element with a metal element of the metal salt to produce a phosphor.
請求項6に記載の蛍光体の製造方法において、
前記金属元素は、II族の金属元素である
ことを特徴とする蛍光体の製造方法。
In the manufacturing method of the fluorescent substance according to claim 6,
The method for producing a phosphor, wherein the metal element is a group II metal element.
請求項6に記載の蛍光体の製造方法において、
励起光によって励起される光波を発する前記蛍光粒子の蛍光量子収率が、前記ナノ蛍光粒子の蛍光量子収率より、前記加熱処理により増加し、
前記蛍光粒子の蛍光量子収率は、室温で10.0%以上40.0%以下である
ことを特徴とする蛍光体の製造方法。
In the manufacturing method of the fluorescent substance according to claim 6,
The fluorescence quantum yield of the fluorescent particles emitting light waves excited by the excitation light is increased by the heat treatment from the fluorescence quantum yield of the nanofluorescent particles,
The phosphor quantum yield of the phosphor particles is 10.0% or more and 40.0% or less at room temperature.
請求項6に記載の蛍光体の製造方法において、
前記金属元素は、遷移金属元素である
ことを特徴とする蛍光体の製造方法。
In the manufacturing method of the fluorescent substance according to claim 6,
The method for producing a phosphor, wherein the metal element is a transition metal element.
請求項6に記載の蛍光体において、
前記加熱時間を最適化することで、620nmから700nmの間の波長を持つ強度の蛍光波長を発する前記蛍光粒子を製造する
ことを特徴とする蛍光体の製造方法。
The phosphor according to claim 6,
A method for producing a phosphor, comprising: optimizing the heating time to produce the fluorescent particle that emits an intense fluorescent wavelength having a wavelength between 620 nm and 700 nm.
JP2007225273A 2007-08-31 2007-08-31 Phosphor and method for producing the same Expired - Fee Related JP5187657B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007225273A JP5187657B2 (en) 2007-08-31 2007-08-31 Phosphor and method for producing the same
PCT/JP2008/065374 WO2009028592A1 (en) 2007-08-31 2008-08-28 Phosphor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007225273A JP5187657B2 (en) 2007-08-31 2007-08-31 Phosphor and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009057446A true JP2009057446A (en) 2009-03-19
JP5187657B2 JP5187657B2 (en) 2013-04-24

Family

ID=40387306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007225273A Expired - Fee Related JP5187657B2 (en) 2007-08-31 2007-08-31 Phosphor and method for producing the same

Country Status (2)

Country Link
JP (1) JP5187657B2 (en)
WO (1) WO2009028592A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2937885A1 (en) * 2008-11-04 2010-05-07 Commissariat Energie Atomique FLUORESCENT NANOPARTICLES, PROCESS FOR THEIR PREPARATION AND THEIR APPLICATION IN BIOLOGICAL MARKING
JP2017025201A (en) * 2015-07-22 2017-02-02 国立大学法人名古屋大学 Semiconductor nanoparticle and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702638B (en) * 2021-08-24 2024-02-27 山东大学 CuInS-based 2 Chemiluminescent immunoassay kit for quantitatively detecting CEA antigen by adopting @ ZnS nanocrystals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060889A1 (en) * 2005-11-24 2007-05-31 National Institute Of Advanced Industrial Science And Technology Fluorescent substance and process for production thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4969088B2 (en) * 2005-11-28 2012-07-04 京セラ株式会社 Phosphor, wavelength converter and light emitting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060889A1 (en) * 2005-11-24 2007-05-31 National Institute Of Advanced Industrial Science And Technology Fluorescent substance and process for production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2937885A1 (en) * 2008-11-04 2010-05-07 Commissariat Energie Atomique FLUORESCENT NANOPARTICLES, PROCESS FOR THEIR PREPARATION AND THEIR APPLICATION IN BIOLOGICAL MARKING
WO2010052221A1 (en) * 2008-11-04 2010-05-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Fluorescent nanoparticles, method for preparing same, and application thereof in biological marking
JP2017025201A (en) * 2015-07-22 2017-02-02 国立大学法人名古屋大学 Semiconductor nanoparticle and manufacturing method therefor
US10233389B2 (en) 2015-07-22 2019-03-19 National University Corporation Nagoya University Semiconductor nanoparticles and method of producing semiconductor nanoparticles
US10717925B2 (en) 2015-07-22 2020-07-21 National University Corporation Nagoya University Semiconductor nanoparticles and method of producing semiconductor nanoparticles
US11174429B2 (en) 2015-07-22 2021-11-16 National University Corporation Tokai National Higher Education And Research System Semiconductor nanoparticles and method of producing semiconductor nanoparticles

Also Published As

Publication number Publication date
WO2009028592A1 (en) 2009-03-05
JP5187657B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5136877B2 (en) Phosphor and method for producing the same
JP2007169605A (en) Phosphor and method for manufacturing the same
WO2017126164A1 (en) Light emitter, method for producing light emitter, and biological substance-labeling agent
Ratnesh et al. Synthesis and optical properties of core-multi-shell CdSe/CdS/ZnS quantum dots: Surface modifications
JP5425201B2 (en) Method for synthesizing semiconductor quantum dots
Wang et al. A high efficient photoluminescence Zn–Cu–In–S/ZnS quantum dots with long lifetime
Singh et al. Magic-sized CdSe nanoclusters: a review on synthesis, properties and white light potential
Lee et al. Large-scale synthesis of highly emissive and photostable CuInS 2/ZnS nanocrystals through hybrid flow reactor
Gabka et al. A simple route to alloyed quaternary nanocrystals Ag–In–Zn–S with shape and size control
JP2023101543A (en) Quantum dot, wavelength conversion member using quantum dot, lighting member, backlight device, and display device
Li et al. I-III-VI chalcogenide semiconductor nanocrystals: Synthesis, properties, and applications
KR20110083718A (en) Fluorescent nanoparticles, method for preparing same, and application thereof in biological marking
Wang et al. Multinary copper-based chalcogenide semiconductor nanocrystals: synthesis and applications in light-emitting diodes and bioimaging
TWI652330B (en) Quantum dot and preparation method thereof
Vijai Anand Improved structural, optical and photoluminescence properties of EDTA capped zinc sulfide nanoparticles for optoelectronic applications
Gugula et al. Solid solution quantum dots with tunable Dual or ultrabroadband emission for LEDs
JP5187657B2 (en) Phosphor and method for producing the same
WO2021029389A1 (en) Quantum dots and production method therefor
JP2007238712A (en) Phosphor
WO2016185932A1 (en) Core-shell particles, method for manufacturing core-shell particles, and film
JP7007671B2 (en) Semiconductor nanoparticles, their manufacturing methods and light emitting devices
Khanna et al. White Emitting Magic Sized CdSe Nanoclusters Using Edible Oils: A Green Approach
KR20230125272A (en) Quantum dot manufacturing method, and, quantum dot
Altintas et al. Cd-free quantum dot pellets for efficient white light generation
WO2021065782A1 (en) Quantum dots and production method for same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees