JP2009055745A - Noncontact feeder system - Google Patents

Noncontact feeder system Download PDF

Info

Publication number
JP2009055745A
JP2009055745A JP2007221844A JP2007221844A JP2009055745A JP 2009055745 A JP2009055745 A JP 2009055745A JP 2007221844 A JP2007221844 A JP 2007221844A JP 2007221844 A JP2007221844 A JP 2007221844A JP 2009055745 A JP2009055745 A JP 2009055745A
Authority
JP
Japan
Prior art keywords
core
primary side
primary
secondary side
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007221844A
Other languages
Japanese (ja)
Other versions
JP5118418B2 (en
Inventor
Kenji Okada
健治 岡田
Tomohito Kajiyama
智史 梶山
Koji Matsukawa
浩司 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007221844A priority Critical patent/JP5118418B2/en
Publication of JP2009055745A publication Critical patent/JP2009055745A/en
Application granted granted Critical
Publication of JP5118418B2 publication Critical patent/JP5118418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact feeder system which stably supplies desired power to a secondary side. <P>SOLUTION: A primary side unit 1 of the noncontact feeder system A includes primary side coils 35a, 35b arranged at a door frame side, and a high-frequency inverter circuit 12 which converts commercial power supply AC to a high frequency, and supplies it to the primary side coils 35a, 35b. A secondary side unit 2 includes secondary side coils 38a, 38b and a regulated power supply circuit 24, wherein secondary side coils are arranged at an opening/closing door side, and are magnetically coupled with the primary side coils 35a, 35b in such a state as an opening/closing door is closed, and a regulated power supply circuit stabilizes the high frequency supplied from the secondary side coils 38a and 38b, and supplies power supply to an electric lock unit 4. In the secondary side unit, a resonance circuit is formed together with leak inductance of the secondary side coils 38a, 38b, and resonance capacitors 21a, 21b are connected to the secondary side coils 38a, 38b in series, wherein the resonance capacitors have such electrostatic capacity values as the longer a distance between magnetic poles opposite each other, the stronger the values become, within a predetermined range of a distance between the magnetic poles of a primary side core and a secondary side core which are opposite each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非接触給電装置に関するものである。   The present invention relates to a non-contact power feeding device.

近年、集合住宅や事業所などへのセキュリティシステムの導入によって、開閉扉に電気錠装置を設置する事例が増加しているが、図11に示すように開閉扉52に取り付けられた電気錠装置4に商用電源を給電する場合、扉50枠に対して開閉扉52を支持させる蝶番51に通電金具6を配置し、この通電金具6を介して扉枠50から開閉扉52に取り付けた電気錠装置4へ給電する方法が一般的である。しかしながら、蝶番51に通電金具6を施工する配線作業が非常に複雑であり、また長期間に亘って開閉扉52の開閉が繰り返された場合は、電線の捩れや周辺部材との接触、摩耗によって短絡や断線が発生する可能性があった。   In recent years, with the introduction of security systems in apartment buildings and business establishments, the number of cases where an electric lock device is installed on an open / close door is increasing. As shown in FIG. 11, the electric lock device 4 attached to the open / close door 52 is provided. When supplying commercial power to the door 50 frame, an electric bracket 6 is disposed on a hinge 51 that supports the door 52 with respect to the door frame 50, and the electric lock device is attached to the door 52 from the door frame 50 via the bracket 6. A method of supplying power to 4 is common. However, the wiring work for constructing the current-carrying metal fitting 6 on the hinge 51 is very complicated, and when the opening / closing door 52 is repeatedly opened and closed over a long period of time, the wire is twisted, contacted with peripheral members, and worn. Short circuit or disconnection may occur.

また、開閉扉52がアルミ製や鋼製の場合には、開閉扉52の強度を確保するために、開閉扉52の内部に上下方向に延びる補強板53が配置されているのであるが、通電部材6を介して開閉扉52内部に配線された内部配線5を、蝶番51と反対側のハンドル54付近に取り付けられた電気錠装置4まで配線するためには、補強板53に貫通孔53aを開けて内部配線5を通す必要があり、配線作業に手間がかかっていた。   When the door 52 is made of aluminum or steel, a reinforcing plate 53 extending in the vertical direction is disposed inside the door 52 in order to ensure the strength of the door 52. In order to wire the internal wiring 5 wired inside the opening / closing door 52 through the member 6 to the electric lock device 4 attached near the handle 54 on the opposite side of the hinge 51, a through hole 53a is formed in the reinforcing plate 53. It was necessary to open and let the internal wiring 5 pass, and it took time and effort for the wiring work.

このように、扉枠に対して開閉自在に支持された開閉扉に扉枠側から接触給電する場合は、蝶番に配置される通電金具の接触信頼性が低いという問題や、蝶番が大型化して美観を損ねるといった問題があるため、扉枠側に設けられた一次側コイルと、開閉扉側に設けられて一次側コイルに磁気結合される二次側コイルとを用いて、扉枠側から開閉扉に取り付けられた電気錠装置へ非接触給電を行う非接触給電装置が提案されていた(例えば特許文献1参照)。   In this way, when contact power is supplied from the door frame side to the open / close door that is supported to be openable and closable with respect to the door frame, there is a problem that the contact reliability of the current-carrying metal fittings arranged on the hinge is low, and the hinge is enlarged. Opening and closing from the door frame side using the primary side coil provided on the door frame side and the secondary side coil provided on the open / close door side and magnetically coupled to the primary side coil due to the problem of detracting from aesthetics. A non-contact power feeding device that performs non-contact power feeding to an electric lock device attached to a door has been proposed (see, for example, Patent Document 1).

この種の非接触給電装置は、スイッチング電源と同様にフィードバック制御系で使用される場合が多く、受電側である二次側の状態を電流値或いは電圧値で監視して、給電側である一次側にフィードバックし、一次側の高周波インバータ回路の発振周波数やデューティ比を調整することによって二次側への電力供給を安定化していた(例えば特許文献2参照)。
特許第3927272号公報(段落[0033]−[0061]、及び、第1図) 特開2006−74848号公報(段落[0034]−[0038]、及び、第1図)
This type of non-contact power feeding device is often used in a feedback control system as with a switching power supply, and monitors the state of the secondary side, which is the power receiving side, by the current value or voltage value, and the primary side, which is the power feeding side. The power supply to the secondary side is stabilized by adjusting the oscillation frequency and duty ratio of the high-frequency inverter circuit on the primary side (see, for example, Patent Document 2).
Japanese Patent No. 3927272 (paragraphs [0033]-[0061] and FIG. 1) JP 2006-74848 A (paragraphs [0034]-[0038] and FIG. 1)

上述の非接触給電装置で一次側の高周波インバータ回路をフィードバック制御する場合、二次側から一次側に非接触で信号を帰還する手段が必要になる。信号を帰還する手段として赤外線通信を用いる場合は、外乱光や水滴、埃などの影響を受け易いという問題があった。すなわち、赤外波長域のエネルギーを持つ太陽光が通信部に照射される光量は、開閉扉や非接触給電装置の施工条件や天候あるいは時間帯によって一定とはならず、また結露による水滴の発生や長期間の使用により受光部に埃が蓄積する可能性も考えられるため、通信の信頼性が低いという問題があった。   When feedback control is performed on the primary-side high-frequency inverter circuit with the above-described contactless power supply device, means for feeding back a signal in a contactless manner from the secondary side to the primary side is required. When infrared communication is used as a means for returning a signal, there is a problem that it is easily affected by ambient light, water droplets, dust, and the like. In other words, the amount of light irradiated to the communication part by sunlight with energy in the infrared wavelength range is not constant depending on the construction conditions of the doors and contactless power supply equipment, the weather, or the time zone, and the generation of water droplets due to condensation In addition, there is a possibility that dust accumulates in the light receiving unit due to long-term use, and thus there is a problem that communication reliability is low.

また、信号を帰還する手段として、磁気的な高周波信号を磁気トランスの励磁磁束に重畳する方法を用いる場合、給電用の巻線(上記の一次側コイルおよび二次側コイル)とは別に、磁気トランスの一次側および二次側の両方に信号用の巻線をそれぞれ必要とし、また、信号の送信側には重畳する信号の発生回路、信号の受信側にはフィルタ回路や復調回路などの信号処理回路がそれぞれ必要になるため、回路規模が大きくなるといった問題やコストアップを招くといった問題があった。   In addition, when a method of superimposing a magnetic high-frequency signal on the excitation magnetic flux of the magnetic transformer is used as a means for feeding back the signal, the magnetic field is separated from the power supply winding (the primary side coil and the secondary side coil). Signal transformers are required on both the primary and secondary sides of the transformer, and a signal generation circuit to be superimposed is provided on the signal transmission side, and a signal such as a filter circuit and a demodulation circuit is provided on the signal reception side. Since each processing circuit is required, there are problems such as an increase in circuit scale and an increase in cost.

このような問題点を解決するために、非接触給電装置においてフィードバック制御を行わずに、信号を帰還する手段を不要にした場合、一次側の高周波インバータ回路は、磁気トランスの一次側コアと二次側コアとの磁極対向距離に関わらず一定条件で動作することになる。ここで、磁気トランスの磁極対向距離は開閉扉の種類や施工条件によってばらつきがあり、また経年による蝶番の緩みやズレに伴って開閉扉の建て付けが悪化すると、磁極対向距離は変動することになり、特に開閉の支軸となる蝶番から離れた位置にあるハンドル側ではその影響が顕著であった。そして、磁極対向距離が大きくなるほど、一次側コイルと二次側コイルとの磁気結合が低下するため、一次側の高周波インバータ回路を一定条件で動作させた場合は、磁極対向距離の増加に伴って給電能力が低下し、所望の給電能力を得られなくなるという問題があった。   In order to solve such a problem, when a means for feeding back a signal is not required without performing feedback control in the non-contact power feeding apparatus, the primary high-frequency inverter circuit is connected to the primary core of the magnetic transformer and the secondary core. The operation is performed under a constant condition regardless of the magnetic pole facing distance with the secondary core. Here, the magnetic pole facing distance of the magnetic transformer varies depending on the type and construction conditions of the door, and if the opening and closing of the door deteriorates due to loosening and displacement of the hinge over time, the magnetic pole facing distance will fluctuate. In particular, the influence is remarkable on the handle side at a position away from the hinge which is a support shaft for opening and closing. And as the magnetic pole facing distance increases, the magnetic coupling between the primary side coil and the secondary side coil decreases. Therefore, when the high frequency inverter circuit on the primary side is operated under a certain condition, the magnetic pole facing distance increases. There is a problem in that the power supply capability is reduced and a desired power supply capability cannot be obtained.

本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、二次側へ所望の電力を安定的に供給することができる非接触給電装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a non-contact power feeding apparatus capable of stably supplying desired power to the secondary side.

上記目的を達成するために、請求項1の発明は、扉枠側に設けた一次側ユニットと、蝶番を介して扉枠に支持される開閉扉側に設けた二次側ユニットとを有し、一次側ユニットから二次側ユニットへ非接触給電を行うことによって、扉枠側から一次側ユニットおよび二次側ユニットを介して開閉扉に配置した電気錠装置に電力供給する非接触給電装置であって、一次側ユニットは、開閉扉に磁極面を対向させるようにして扉枠側に配置される一次側コアおよび一次側コアに巻回された一次側巻線を有する一次側コイルと、商用電源を高周波に変換して一次側巻線に供給する高周波インバータ回路とを備えるとともに、二次側ユニットは、開閉扉が閉まった状態で一次側コアと磁極面同士が対向するように開閉扉に配置された二次側コアおよび二次側コアに巻回された二次側巻線を有し、一次側コイルと共に磁気トランスを構成する二次側コイルと、二次側巻線から供給される高周波を安定化して電気錠装置に電源を供給する安定化電源回路とを備え、二次側巻線の漏れインダクタンスと共に共振回路を形成し、一次側コアと二次側コアとの磁極対向距離の所定範囲内で磁極対向距離が大きいほど前記共振回路の共振が強くなるような静電容量値を有する共振コンデンサを、二次側巻線に電気的に接続したことを特徴とする。   In order to achieve the above object, the invention of claim 1 has a primary side unit provided on the door frame side, and a secondary side unit provided on the open / close door side supported by the door frame via a hinge. A non-contact power supply device that supplies power from the door frame side to the electric lock device disposed on the open / close door via the primary side unit and the secondary side unit by performing non-contact power supply from the primary side unit to the secondary side unit. The primary unit includes a primary side coil having a primary side coil wound on the primary side core and a primary side coil disposed on the door frame side so that the magnetic pole surface faces the open / close door, and a commercial coil A high-frequency inverter circuit that converts the power to high frequency and supplies it to the primary winding, and the secondary unit is installed on the open / close door so that the primary core and the pole face face each other with the open / close door closed. The arranged secondary core and The secondary side coil wound around the secondary side core, the secondary side coil constituting the magnetic transformer together with the primary side coil, and the high frequency supplied from the secondary side winding are stabilized to the electric lock device. And a stabilized power supply circuit for supplying power, forming a resonance circuit together with the leakage inductance of the secondary winding, and having a large magnetic pole facing distance within a predetermined range of the magnetic pole facing distance between the primary core and the secondary core A resonance capacitor having a capacitance value that makes the resonance of the resonance circuit stronger is electrically connected to the secondary winding.

請求項2の発明は、請求項1の発明において、一次側コア又は二次側コアのうち少なくとも何れか一方の、磁極対向面以外の部位の少なくとも一部を覆う非磁性の導電性材料からなる電磁遮蔽部材を設けたことを特徴とする。   The invention of claim 2 is the invention of claim 1, comprising a nonmagnetic conductive material that covers at least a part of a portion other than the magnetic pole facing surface of at least one of the primary side core and the secondary side core. An electromagnetic shielding member is provided.

請求項3の発明は、請求項1の発明において、一次側ユニット又は二次側ユニットのうち少なくとも何れか一方の筐体が、非磁性の導電性材料で形成されたことを特徴とする。   The invention of claim 3 is the invention of claim 1, characterized in that at least one of the primary side unit and the secondary side unit is formed of a nonmagnetic conductive material.

請求項4の発明は、請求項1乃至3の何れかの発明において、共振コンデンサが二次側巻線に直列接続されたことを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the resonance capacitor is connected in series to the secondary winding.

請求項5の発明は、請求項1乃至4の何れかの発明において、一次側コアおよび二次側コアは、それぞれ、両脚片の一端側を継ぎ部を介して連結したU字型コアからなり、各コアの継ぎ部の略全体に等ピッチで一次側巻線又は二次側巻線の何れかを巻回したことを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, each of the primary side core and the secondary side core comprises a U-shaped core in which one end sides of both leg pieces are connected via a joint portion. One of the primary side winding and the secondary side winding is wound around the entire joint portion of each core at an equal pitch.

請求項6の発明は、請求項1乃至5の何れかの発明において、一次側コアおよび二次側コアは、磁極対向面の面積が他の部位の断面積よりも大きく形成されるとともに、磁極対向面の少なくとも1つの辺の長さを一次側コアと二次側コアとで異なる長さに設定したことを特徴とする。   The invention of claim 6 is the invention according to any one of claims 1 to 5, wherein the primary side core and the secondary side core are formed such that the area of the magnetic pole facing surface is larger than the cross-sectional area of the other part, The length of at least one side of the opposing surface is set to be different between the primary side core and the secondary side core.

請求項7の発明は、請求項1乃至6の何れかの発明において、一次側巻線又は二次側巻線のうち少なくとも何れか一方が、コアにバイファイラ巻きされた2本の巻線からなることを特徴とする。ここにおいて、バイファイラ巻きとは、2本の巻線を1束にした状態で1束の巻線を一緒にコアに巻回する巻き方を言う。   The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein at least one of the primary side winding and the secondary side winding comprises two windings wound by bifilar around the core. It is characterized by that. Here, bifilar winding refers to a winding method in which two bundles of windings are wound around a core together.

請求項1の発明によれば、一次側コアと二次側コアとの磁極対向距離が大きくなると、磁気結合の低下によって供給電力の低下が発生するが、磁極対向距離が大きいほど、二次側巻線の漏れインダクタンスと共振コンデンサとで構成される共振回路の共振が強くなることで、二次側巻線から安定化電源回路に供給される高周波電力を大きくして、供給電力の低下を抑制することができる。したがって、経年によって磁極対向距離が変化する場合でも、安定化電源回路から所望の供給電力を得ることができ、広範囲の磁極対向距離に対してフィードバック制御を用いずに所望の供給電力を確保することができる。さらに、経年によって磁極間距離が変動しやすい開閉扉の自由端側に二次側ユニットを設置することができるから、ハンドル付近に配置される電気錠装置と二次側ユニットの間の距離を短くして、開閉扉内部の配線作業を簡略化することができる。   According to the first aspect of the present invention, when the magnetic pole facing distance between the primary side core and the secondary side core is increased, the supply power is reduced due to the decrease in magnetic coupling. Resonance of the resonance circuit composed of the winding leakage inductance and the resonance capacitor is strengthened, so that the high-frequency power supplied from the secondary winding to the stabilized power supply circuit is increased and the reduction in supply power is suppressed. can do. Therefore, even when the pole facing distance changes over time, the desired power supply can be obtained from the stabilized power supply circuit, and the desired power supply can be secured without using feedback control for a wide range of pole facing distance. Can do. Furthermore, since the secondary unit can be installed on the free end of the open / close door, where the distance between the magnetic poles is likely to fluctuate over time, the distance between the electric lock device placed near the handle and the secondary unit can be shortened. Thus, the wiring work inside the open / close door can be simplified.

ところで、磁気トランスの周辺に磁性材料がある場合、この磁性材料が漏れ磁束の経路(漏れ磁路)を形成するため、磁気結合が低下して給電能力を悪化させるという問題があった。また、例えば鋼製の扉枠や開閉扉に非接触給電装置を設置する場合、扉枠や開閉扉を高周波の漏れ磁束が鎖交することによって鉄損が発生し、扉枠や開閉扉が発熱してしまうという問題もあった。   By the way, when there is a magnetic material around the magnetic transformer, this magnetic material forms a leakage magnetic flux path (leakage magnetic path), so that there is a problem in that the magnetic coupling is lowered to deteriorate the power supply capability. For example, when a non-contact power supply device is installed on a steel door frame or door, iron loss occurs due to high-frequency leakage flux interlinking the door frame or door, and the door frame or door is heated. There was also the problem of doing.

それに対して、請求項2の発明によれば、一次側コア又は二次側コアのうち少なくとも何れか一方の、磁極対向面以外の部位の少なくとも一部を、非磁性の導電性材料からなる電磁遮蔽部材で覆っているので、電磁遮蔽部材の電磁遮蔽効果によって漏れ磁束を低減することができ、供給電力の低下を抑制するとともに、鉄損の発生によって扉枠や開閉扉が発熱するのを抑制できるという効果がある。   On the other hand, according to the second aspect of the present invention, at least a part of at least one of the primary side core and the secondary side core other than the magnetic pole facing surface is electromagnetically made of a nonmagnetic conductive material. Since it is covered with a shielding member, the magnetic flux leakage can be reduced by the electromagnetic shielding effect of the electromagnetic shielding member, and it is possible to suppress the decrease in power supply and to prevent the door frame and the door from being heated due to the occurrence of iron loss. There is an effect that can be done.

請求項3の発明によれば、一次側ユニット又は二次側ユニットの筐体に電磁遮蔽効果を持たせることができるので、筐体の電磁遮蔽効果によって漏れ磁束を低減することができ、供給電力の低下を抑制するとともに、鉄損の発生によって扉枠や開閉扉が発熱するのを抑制できるという効果がある。しかも、電磁遮蔽部材を別途設けなくても良いから、一次側ユニット又は二次側ユニットの部品数を少なくして、小型化を図ることができるという効果がある。   According to the invention of claim 3, since the casing of the primary side unit or the secondary side unit can have an electromagnetic shielding effect, the leakage magnetic flux can be reduced by the electromagnetic shielding effect of the casing, and the supplied power As well as suppressing the lowering of heat, it is possible to suppress the heat generation of the door frame and the open / close door due to the occurrence of iron loss. In addition, since it is not necessary to provide an electromagnetic shielding member separately, there is an effect that the number of parts of the primary side unit or the secondary side unit can be reduced and the size can be reduced.

ところで、負荷である電気錠装置の動作状態によって二次側ユニットの負荷インピーダンスは大きく変動するのであるが、請求項4の発明によれば、共振コンデンサを二次側巻線に直列接続しているので、負荷インピーダンスの大きさに関係なく、一定の負荷電圧を得ることができ、過大な共振電圧によって負荷に耐圧以上の電圧が印加されるのを防止できるという効果がある。   By the way, the load impedance of the secondary unit varies greatly depending on the operating state of the electric lock device as a load. According to the invention of claim 4, the resonant capacitor is connected in series to the secondary winding. Therefore, there is an effect that a constant load voltage can be obtained regardless of the magnitude of the load impedance, and it is possible to prevent a voltage exceeding the withstand voltage from being applied to the load due to an excessive resonance voltage.

請求項5の発明によれば、コアの継ぎ部の略全体に一次側巻線又は二次側巻線の何れかを巻回しているので、一次側巻線又は二次側巻線の巻幅をできるだけ大きくとることで、巻線周辺の漏れ磁路の磁気抵抗をできるだけ大きくして、漏れ磁束を減少させることができ、また等ピッチで巻線を巻回することによって、漏れ磁束を低減できるから、磁気結合の低下を抑制して、供給電力を向上させることができる。   According to the invention of claim 5, since either the primary side winding or the secondary side winding is wound around substantially the entire joint portion of the core, the winding width of the primary side winding or the secondary side winding As much as possible, the leakage magnetic flux can be reduced by increasing the magnetic resistance of the leakage magnetic path around the winding as much as possible, and reducing the leakage magnetic flux by winding the winding at an equal pitch. Therefore, it is possible to suppress the decrease in magnetic coupling and improve the power supply.

請求項6の発明によれば、一次側コアおよび二次側コアは、磁極対向面の面積が他の部位の断面積よりも大きく形成されており、磁気効率は磁極対向面積に比例するため、磁極対向面の面積を大きくとることで磁気効率を高めて、供給電力を向上させることができる。しかも、磁極対向面の少なくとも1つの辺の長さが一次側コアと二次側コアとで異なる長さに設定されているので、この辺に沿う方向において一次側コアと二次側コアの位置が相対的にずれたとしても、磁気結合の低下を抑制して、供給電力の低下を抑制することができ、位置ずれに対する許容範囲を大きくとることができる。   According to the invention of claim 6, the primary side core and the secondary side core are formed such that the area of the pole facing surface is larger than the cross-sectional area of the other part, and the magnetic efficiency is proportional to the pole facing area. By increasing the area of the magnetic pole facing surface, it is possible to increase the magnetic efficiency and improve the power supply. Moreover, since the length of at least one side of the magnetic pole facing surface is set to be different between the primary side core and the secondary side core, the positions of the primary side core and the secondary side core in the direction along this side are Even if they are relatively displaced, it is possible to suppress a decrease in magnetic coupling, to suppress a decrease in supplied power, and to increase a tolerance for misalignment.

請求項7の発明によれば、2本の巻線を1束にした状態で1束の巻線を一緒にコアに巻回しているので、2本の巻線の巻線長を均一化でき、巻線抵抗と漏れインダクタンスを含むインダクタンス値のばらつきを小さくできる。この結果、一次側ではインダクタンスのばらつきに起因して発生するノイズを抑制でき、二次側では共振条件のばらつきを小さくできるから、給電能力を安定化できるという効果がある。   According to the seventh aspect of the present invention, since one bundle of windings is wound around the core together with two windings in one bundle, the winding lengths of the two windings can be made uniform. The variation in inductance value including winding resistance and leakage inductance can be reduced. As a result, noise generated due to inductance variation can be suppressed on the primary side, and variation in resonance conditions can be reduced on the secondary side, so that the power supply capability can be stabilized.

以下に本発明の実施の形態を図1〜図10に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

本実施形態の非接触給電装置Aは、図3(a)に示すように、扉枠50に蝶番51を介して開閉自在に支持される開閉扉52に設けた電気錠装置4に対して扉枠側から非接触で電力供給を行うためのものであり、扉枠50の上枠部に設けた一次側ユニット1と、開閉扉52の上部に設けた二次側ユニット2とを有している。一次側ユニット1には電源線3を介して商用電源ACが供給され、一次側ユニット1から二次側ユニット2へ電磁誘導により非接触で電力を供給し、二次側ユニット2から内部配線5を介して電気錠装置4へ電力供給を行うようになっている。尚、図3(a)中の53は、開閉扉52の内部に上下方向に沿って配設された補強部材である。   As shown in FIG. 3A, the non-contact power feeding device A of the present embodiment is a door with respect to the electric lock device 4 provided on the open / close door 52 that is supported by the door frame 50 through a hinge 51 so as to be opened and closed. The non-contact power supply is performed from the frame side, and includes a primary side unit 1 provided on the upper frame portion of the door frame 50 and a secondary side unit 2 provided on the upper part of the opening / closing door 52. Yes. A commercial power supply AC is supplied to the primary unit 1 via the power supply line 3, and electric power is supplied from the primary side unit 1 to the secondary side unit 2 by electromagnetic induction in a non-contact manner. The electric power is supplied to the electric lock device 4 via the. In addition, 53 in FIG. 3A is a reinforcing member disposed along the vertical direction inside the opening / closing door 52.

図1は非接触給電装置Aの概略構成を示す回路ブロック図であり、一次側ユニット1は、入力フィルタ回路11と、高周波インバータ回路12と、一次側コイル31とを備える。また二次側ユニット2は、一次側コイル31に磁気結合された二次側コイル32と、共振コンデンサ21a,21bと、ダイオードブリッジ回路22と、平滑コンデンサ23と、安定化電源回路24とを備えている。   FIG. 1 is a circuit block diagram showing a schematic configuration of the non-contact power feeding apparatus A. The primary unit 1 includes an input filter circuit 11, a high frequency inverter circuit 12, and a primary coil 31. The secondary unit 2 includes a secondary coil 32 magnetically coupled to the primary coil 31, resonant capacitors 21 a and 21 b, a diode bridge circuit 22, a smoothing capacitor 23, and a stabilized power circuit 24. ing.

入力フィルタ回路11は、例えば電源投入時の突入電流を低減するサーミスタ素子、過電流ヒューズ、サージ吸収素子、雑音端子電圧を低減するLCフィルタ回路、整流平滑化回路などで構成される。   The input filter circuit 11 includes, for example, a thermistor element that reduces an inrush current when power is turned on, an overcurrent fuse, a surge absorber, an LC filter circuit that reduces a noise terminal voltage, a rectifying and smoothing circuit, and the like.

高周波インバータ回路12は、2巻線式の絶縁型スイッチングレギュレータ回路(例えばプッシュプル回路など)で構成され、入力フィルタ回路11を介して供給される商用電源ACの電源電圧を高周波に変換し、磁気トランス30の一次側コイル31(一次側巻線35a,35b)に供給する。   The high-frequency inverter circuit 12 is composed of a two-winding type insulated switching regulator circuit (for example, a push-pull circuit), converts the power supply voltage of the commercial power supply AC supplied via the input filter circuit 11 to a high frequency, and generates a magnetic field. The transformer 30 is supplied to the primary side coil 31 (primary side windings 35a and 35b).

一次側コイル31と、一次側コイル31に磁気的に結合された二次側コイル32とで磁気トランス30が構成されており、一次側コイル31の構成を図4および図5を参照して説明する。尚、図5中のB1は主磁路を、B2は漏れ磁路をそれぞれ示している。   A magnetic transformer 30 is constituted by the primary side coil 31 and the secondary side coil 32 magnetically coupled to the primary side coil 31, and the configuration of the primary side coil 31 will be described with reference to FIG. 4 and FIG. To do. In FIG. 5, B1 indicates a main magnetic path, and B2 indicates a leakage magnetic path.

一次側コイル31は、磁性材料により脚片33a,33bの一端側を継ぎ部33cを介して連結したU字形状に形成されるとともに、各脚片33a,33bの先端面を磁極対向面33dとした一次側コア33と、角筒状の巻胴部34bの両端部に鍔部34a,34aを有し、巻胴部34bの孔内に継ぎ部33cを挿通した状態で一次側コア33に組み合わされたコイルボビン34と、コイルボビン34にそれぞれ巻回された2本の一次側巻線35a,35bとを備える。なお、一次側コア33の材料としては、高周波領域の鉄損が小さく、形状の自由度が高いフェライト材料が好適であり、数点の部材を組み合わせることでU字形状に形成しても良い。   The primary side coil 31 is formed in a U-shape in which one end side of the leg pieces 33a and 33b is connected via a joint portion 33c with a magnetic material, and the front end face of each leg piece 33a and 33b is connected to the magnetic pole facing surface 33d. The primary side core 33 is combined with the primary side core 33 in a state in which the flanges 34a and 34a are provided at both ends of the rectangular tube-shaped winding drum portion 34b and the joint portion 33c is inserted into the hole of the winding drum portion 34b. Coil bobbin 34, and two primary windings 35a and 35b wound around the coil bobbin 34, respectively. As a material for the primary core 33, a ferrite material having a small iron loss in the high frequency region and a high degree of freedom in shape is suitable, and it may be formed in a U shape by combining several members.

また、一次側コア33の断面積は、高周波インバータ回路12の動作状態において磁気飽和しない程度の大きさが必要である。また継ぎ部33cの長さ、すなわち両脚片33a,33bの間隔はできるだけ広い方が好ましく、磁極対向面33d,33dは大面積である方が好ましい。そこで、本実施形態では両脚片33a,33bの側面視の形状を逆T字形に形成してあり、継ぎ部33cに連結される側の端部に比べて、磁極対向面33d側を幅広として、磁極対向面33dの面積を大きくしてある。   The cross-sectional area of the primary core 33 needs to be large enough not to cause magnetic saturation in the operating state of the high-frequency inverter circuit 12. The length of the joint portion 33c, that is, the distance between the leg pieces 33a and 33b is preferably as wide as possible, and the pole facing surfaces 33d and 33d are preferably large in area. Therefore, in the present embodiment, the shape of both leg pieces 33a and 33b in a side view is formed in an inverted T shape, and the pole facing surface 33d side is wider than the end on the side connected to the joint portion 33c. The area of the magnetic pole facing surface 33d is increased.

また、コイルボビン34はできるだけ大きな巻幅が得られるように、脚片33a,33bと鍔部34aとの間の隙間や、鍔部34aの厚みをできるだけ小さくして、巻胴部34bの長さを継ぎ部33cよりも若干小さい寸法に形成してあり、2本の一次側巻線35a,35bは、2本を1束にした状態で、1束の巻線を同時にコイルボビン34に巻回することで(この巻き方をバイファイラ巻きと言う。)、図4(b)に示すように軸方向において一次側巻線35aと一次側巻線35bとが交互に並ぶように両巻線35a,35bを複数回巻回している。このように2本の一次側巻線35a,35bは一束にされた状態でバイファイラ巻きされているので、2本の巻線35a,35bの巻線長を均一化でき、巻線抵抗と漏れインダクタンスを含むインダクタンス値のばらつきを小さくできる。この結果、一次側コイル31ではインダクタンスのばらつきに起因して発生するノイズを抑制でき、また二次側コイル32では共振条件のばらつきを小さくできるから、給電能力を安定化できるという効果がある。また一次側巻線35a,35bの巻幅をできるだけ大きくとることで、巻線周辺の漏れ磁路の磁気抵抗をできるだけ大きくして、漏れ磁束を減少させることができ、さらに等ピッチで均一に巻線を巻回することによって、漏れ磁束を低減できるから、磁気結合の低下を抑制して、供給電力を向上させることができる。   Further, the coil bobbin 34 has a gap between the leg pieces 33a and 33b and the flange 34a and the thickness of the flange 34a as small as possible so that the winding width as large as possible is obtained, and the length of the winding drum 34b is reduced. The primary windings 35a and 35b are formed to be slightly smaller than the joint portion 33c, and two primary windings 35a and 35b are wound around the coil bobbin 34 at the same time with the two windings in one bundle. (This winding method is referred to as bifilar winding.) As shown in FIG. 4B, the windings 35a and 35b are arranged so that the primary winding 35a and the primary winding 35b are alternately arranged in the axial direction. It is wound several times. Thus, since the two primary side windings 35a and 35b are bifilar wound in a bundled state, the winding lengths of the two windings 35a and 35b can be made uniform, winding resistance and leakage. Variations in inductance values including inductance can be reduced. As a result, the primary coil 31 can suppress noise generated due to the variation in inductance, and the secondary coil 32 can reduce the variation in resonance conditions, so that the power supply capability can be stabilized. Further, by making the winding widths of the primary side windings 35a and 35b as large as possible, the magnetic resistance of the leakage magnetic path around the windings can be increased as much as possible to reduce the leakage magnetic flux, and the windings can be uniformly wound at an equal pitch. Since the magnetic flux leakage can be reduced by winding the wire, it is possible to suppress the decrease in magnetic coupling and improve the power supply.

また、図4(a)に示すようにU字形状の一次側コア33の左右両側には、非磁性の導電材料からなる電磁遮蔽部材41a,41bが配置されている。電磁遮蔽部材41a,41bは、一次側巻線35a,35bの巻幅方向に沿った平板形状に形成され、脚片33a,33bおよび継ぎ部33cを側面方向から挟むように配置されている。電磁遮蔽部材41a,41bは、一次側コア33の側面の外形よりも十分大きな面積を有するほうが好ましく、その材料としては非磁性で導電率が高い金属材料(例えばアルミニウムや銅など)を用いることが好ましい。尚、電磁遮蔽部材41a,41bの形状は矩形板状に限定されるものではなく、電磁遮蔽部材41a,41bの形状をくの字形状やU字形状とし、その組み合わせによって、一次側コア33の側面や上面(磁極対向面33dと反対側の面)を覆うようにしても良い。   Further, as shown in FIG. 4A, electromagnetic shielding members 41a and 41b made of a nonmagnetic conductive material are disposed on the left and right sides of the U-shaped primary core 33. The electromagnetic shielding members 41a and 41b are formed in a flat plate shape along the winding width direction of the primary side windings 35a and 35b, and are arranged so as to sandwich the leg pieces 33a and 33b and the joint portion 33c from the side surface direction. The electromagnetic shielding members 41a and 41b preferably have a sufficiently larger area than the outer shape of the side surface of the primary side core 33, and the material thereof is a nonmagnetic and highly conductive metal material (for example, aluminum or copper). preferable. The shape of the electromagnetic shielding members 41a and 41b is not limited to the rectangular plate shape, and the shape of the electromagnetic shielding members 41a and 41b is a U shape or a U shape, and the combination of the shapes of the primary core 33 is determined. You may make it cover a side surface and an upper surface (surface on the opposite side to 33 d of magnetic pole opposing surfaces).

なお、磁気トランス30の二次側コイル32は、図5(a)(b)に示すようにU字形状の二次側コア36と、二次側コア36の継ぎ部36cに組み付けられたコイルボビン37と、コイルボビン37に巻回された二次側巻線38a,38bとを備えており、二次側コア36、コイルボビン37、二次側巻線38a,38bは、一次側コイル31の一次側コア33、コイルボビン34、一次側巻線35a,35bと同様の構成を有しているので、その説明は省略する。なお、二次側コイル32では、二次側コア36の磁極対向面36dが一次側コア33の磁極対向面33dに比べて大きく形成されている。すなわち、図5の例では磁極対向面33dの幅方向(図5(b)中の左右方向)に沿った2辺が磁極対向面33dよりも大きく形成されており、この辺に沿う双方向において一次側コア33と二次側コア36の相対的な位置が多少ずれたとしても、一次側コア33の磁極対向面33dが二次側コア36の磁極対向面36dに対向しているから、磁気結合の低下を抑制して、供給電力の低下を抑制することができ、ユニット1,2間の相対的な位置ずれに対する許容範囲を大きくとることができる。   The secondary coil 32 of the magnetic transformer 30 includes a coil bobbin assembled to a U-shaped secondary core 36 and a joint 36c of the secondary core 36 as shown in FIGS. 37 and secondary windings 38a and 38b wound around the coil bobbin 37. The secondary core 36, the coil bobbin 37, and the secondary windings 38a and 38b are provided on the primary side of the primary coil 31. Since it has the same configuration as the core 33, the coil bobbin 34, and the primary side windings 35a and 35b, description thereof will be omitted. In the secondary coil 32, the magnetic pole facing surface 36 d of the secondary core 36 is formed larger than the magnetic pole facing surface 33 d of the primary core 33. That is, in the example of FIG. 5, two sides along the width direction of the magnetic pole facing surface 33d (the left-right direction in FIG. 5B) are formed larger than the magnetic pole facing surface 33d. Even if the relative positions of the side core 33 and the secondary side core 36 are slightly shifted, the magnetic pole facing surface 33d of the primary side core 33 faces the magnetic pole facing surface 36d of the secondary side core 36. Can be suppressed, a decrease in power supply can be suppressed, and an allowable range for relative displacement between the units 1 and 2 can be increased.

そして、本実施形態では、二次側巻線38a,38bと直列にそれぞれ共振コンデンサ21a,21bを接続してあり、二次側巻線38a,38bの漏れインダクタンスと共振コンデンサ21a,21bとでそれぞれ共振回路を構成している。図6は非接触給電装置Aの二次側の等価回路であり、Eは二次側巻線38a,38bに誘起される周波数fの電圧を、Lは二次側巻線38a,38bの漏れインダクタンスを、Cは共振コンデンサ21a,21bの静電容量値を、Rは負荷回路のインピーダンスを夫々示している。ここで、周波数fがf=1/(2π√LC)のとき、LC直列共振の状態であり、電源E側から見たインピーダンスZが負荷回路のインピーダンスRに等しく(Z=R)、インピーダンスZが最小になるので負荷で最大電力を取り出すことができる。ここで、共振コンデンサ21a,21bの静電容量値は、磁気トランス30の磁気結合が初期に比べて小さくなるような条件下、すなわち一次側巻線35a,35bが巻回された一次側コア33と、二次側巻線38a,38bが巻回された二次側コア36との磁極対向距離が初期時に比べて大きくなった際に上記共振回路が共振点を有するような静電容量値に設定されている。ここにおいて、負荷である電気錠装置4の動作状態によって二次側ユニット2の負荷インピーダンスRは大きく変動するのであるが、本実施形態では、共振コンデンサ21a,21bを二次側巻線38a,38bに直列接続しているので、負荷インピーダンスRの大きさに関係なく、一定の負荷電圧を得ることができ、過大な共振電圧によって負荷に耐圧以上の電圧が印加されるのを防止できるという効果がある。なお、共振コンデンサ21a,21bとしては、誘導正接(tanδ)の小さいポリプロピレン系のものが、高周波領域で低損失のため好適である。   In this embodiment, the resonant capacitors 21a and 21b are connected in series with the secondary windings 38a and 38b, respectively. The leakage inductance of the secondary windings 38a and 38b and the resonant capacitors 21a and 21b are respectively connected. A resonant circuit is configured. FIG. 6 is an equivalent circuit on the secondary side of the non-contact power feeding apparatus A, where E is a voltage of frequency f induced in the secondary windings 38a and 38b, and L is a leakage of the secondary windings 38a and 38b. Inductance, C represents the capacitance values of the resonant capacitors 21a and 21b, and R represents the impedance of the load circuit. Here, when the frequency f is f = 1 / (2π√LC), it is in the LC series resonance state, the impedance Z seen from the power source E side is equal to the impedance R of the load circuit (Z = R), and the impedance Z Is minimized so that the maximum power can be extracted with the load. Here, the capacitance values of the resonance capacitors 21a and 21b are set under the condition that the magnetic coupling of the magnetic transformer 30 is smaller than the initial value, that is, the primary core 33 around which the primary windings 35a and 35b are wound. When the magnetic pole facing distance from the secondary core 36 around which the secondary windings 38a and 38b are wound is larger than that at the initial time, the resonance circuit has a capacitance value having a resonance point. Is set. Here, the load impedance R of the secondary unit 2 varies greatly depending on the operating state of the electric lock device 4 that is a load. In this embodiment, the resonant capacitors 21a and 21b are connected to the secondary windings 38a and 38b. In this case, a constant load voltage can be obtained regardless of the magnitude of the load impedance R, and an effect that an excessive resonance voltage can prevent a voltage exceeding the withstand voltage from being applied to the load is obtained. is there. As the resonance capacitors 21a and 21b, a polypropylene type having a small induction tangent (tan δ) is preferable because of low loss in a high frequency region.

ダイオードブリッジ回路22の交流入力端子間には共振コンデンサ21a,21bが接続されるとともに、直流出力端子間には平滑コンデンサ23が接続されており、共振コンデンサ21a,21bに発生した交流電圧はダイオードブリッジ回路22によって整流された後、平滑コンデンサ23によって平滑される。なお、ダイオードブリッジ回路22はショットキーバリアダイオードを4個組み合わせて構成しても良い。   The resonance capacitors 21a and 21b are connected between the AC input terminals of the diode bridge circuit 22, and the smoothing capacitor 23 is connected between the DC output terminals. The AC voltage generated at the resonance capacitors 21a and 21b is a diode bridge. After being rectified by the circuit 22, it is smoothed by the smoothing capacitor 23. The diode bridge circuit 22 may be configured by combining four Schottky barrier diodes.

安定化電源回路24は、例えばシリーズレギュレータ回路やスイッチングレギュレータ回路により構成され、平滑コンデンサ23から入力される直流電圧を安定化して、負荷となる電気錠装置4に供給する。   The stabilized power supply circuit 24 is composed of, for example, a series regulator circuit or a switching regulator circuit, stabilizes the DC voltage input from the smoothing capacitor 23, and supplies it to the electric lock device 4 serving as a load.

ところで、開閉扉52に設けた電気錠装置4に対して扉枠50側から非接触給電する場合に、開閉扉52を開閉自在に支持する蝶番51側に寄せて一次側ユニット1および二次側ユニット2を配置すると、開閉扉52の自由端側(蝶番51と反対側であってハンドル54の近傍)に配置される電気錠装置4と二次側ユニット2との間を内部配線5により接続する必要があり、開閉扉52内部に補強板53が配置されている場合は内部配線5の施工に手間がかかるという問題がある。   By the way, when non-contact power feeding is performed from the door frame 50 side to the electric lock device 4 provided on the opening / closing door 52, the primary side unit 1 and the secondary side are brought close to the hinge 51 side that supports the opening / closing door 52 so as to be opened and closed. When the unit 2 is disposed, the internal lock 5 connects the electric lock device 4 disposed on the free end side of the open / close door 52 (on the side opposite to the hinge 51 and in the vicinity of the handle 54) and the secondary unit 2. When the reinforcing plate 53 is disposed inside the open / close door 52, there is a problem that it takes time to construct the internal wiring 5.

そこで、本実施形態では、開閉扉52の自由端側(電気錠装置4と同じ側)に一次側ユニット1および二次側ユニット2を配置しているが、開閉扉52の自由端側では、経年による蝶番51の緩みやずれによって、一次側コア33および二次側コア36の磁極間距離が変化する量が蝶番側よりも大きくなっている。扉枠50の間口と開閉扉52の外側面との間の隙間(所謂チリ寸法)は一般に0mmより大きく10mm以下の範囲内であり、チリ寸法が0mmの状態とは扉枠50と開閉扉52とが干渉して、開閉動作に弊害を生じるような状態である。このチリ寸法は開閉扉52の種類や施工条件によって一概ではなく、また経年による蝶番51の緩みやズレなどでチリ寸法が変動する可能性がある。この変動は開閉の支軸となる蝶番51側では小さく、支軸から遠いハンドル54や電気錠装置4が配置される側では大きくなっているため、本実施形態のように開閉扉52の自由端側に両ユニット1,2を配置した場合は、磁極対向距離の変動によって磁気結合が低下する恐れがある。   Therefore, in this embodiment, the primary side unit 1 and the secondary side unit 2 are arranged on the free end side (the same side as the electric lock device 4) of the open / close door 52, but on the free end side of the open / close door 52, The amount by which the distance between the magnetic poles of the primary side core 33 and the secondary side core 36 changes due to the looseness and displacement of the hinge 51 due to aging is larger than that on the hinge side. A gap (so-called dust size) between the door frame 50 and the outer surface of the opening / closing door 52 is generally in a range of more than 0 mm and not more than 10 mm. Are in a state that causes an adverse effect on the opening and closing operation. This dust size is not unambiguous depending on the type of opening / closing door 52 and construction conditions, and there is a possibility that the dust size may fluctuate due to loosening or displacement of the hinge 51 due to aging. This variation is small on the hinge 51 side that is a pivot for opening and closing, and is large on the side where the handle 54 and the electric lock device 4 are arranged far from the spindle, so that the free end of the open / close door 52 as in this embodiment. When both units 1 and 2 are arranged on the side, the magnetic coupling may be lowered due to the variation of the magnetic pole facing distance.

そこで、本実施形態では、磁気トランス30の二次側巻線38a,38bと直列に共振コンデンサ21a,21bを接続してあり、二次側巻線38a,38bの漏れインダクタンスと共振コンデンサ21a,21bとで構成される共振回路は、一次側コア33と二次側コア36との磁極対向距離が所定範囲内で大きくなるほど、共振が強くなるように共振コンデンサ21a,21bの静電容量値が設定されているので、磁極対向距離の増加に伴う供給電力の低下を、共振回路による共振動作で補うことができ、フィードバック制御を行うことなく所望の供給電力を確保することが可能になる。図2(a)は本実施形態の磁極対向距離L(mm)と供給電力W1(W)との関係を示すグラフ、図2(b)は共振コンデンサ21a,21bが無い場合の磁極対向距離L(mm)と供給電力W1(W)との関係を示すグラフであり、共振コンデンサ21a,21bが無い場合は磁極間距離の増加に伴って、磁気トランス30の磁気結合(図2(b)中のb)が低下し、それによって供給電力W1(同図中のa)が低下するため、所望の目標電力を確保できる磁極対向距離Lの範囲が狭くなっている(0<L≦L2)。一方、本実施形態でも磁極間距離の増加に伴って、磁気トランス30の磁気結合(図2(a)中のb)が低下するのであるが、共振点に近付くにつれて共振回路の共振の強さ(同図中のc)が強くなることで、供給電力W1(同図中のa)の低下が抑制され、より広範囲の磁極対向距離(0<L≦L1、L1>L2)で所望の目標電力を得ることができる。   Therefore, in this embodiment, the resonant capacitors 21a and 21b are connected in series with the secondary windings 38a and 38b of the magnetic transformer 30, and the leakage inductance of the secondary windings 38a and 38b and the resonant capacitors 21a and 21b are connected. In the resonance circuit constituted by the capacitances of the resonance capacitors 21a and 21b, the resonance values become stronger as the magnetic pole facing distance between the primary core 33 and the secondary core 36 increases within a predetermined range. As a result, a decrease in the supply power accompanying an increase in the magnetic pole facing distance can be compensated for by a resonance operation by the resonance circuit, and a desired supply power can be secured without performing feedback control. FIG. 2A is a graph showing the relationship between the magnetic pole facing distance L (mm) and the supplied power W1 (W) of this embodiment, and FIG. 2B is the magnetic pole facing distance L when the resonance capacitors 21a and 21b are not provided. (Mm) is a graph showing the relationship between the supplied power W1 (W), and in the absence of the resonant capacitors 21a and 21b, the magnetic coupling of the magnetic transformer 30 (in FIG. 2B) increases as the distance between the magnetic poles increases. B) decreases, and thereby the supplied power W1 (a in the figure) decreases, so that the range of the magnetic pole facing distance L that can secure the desired target power is narrow (0 <L ≦ L2). On the other hand, in the present embodiment, the magnetic coupling (b in FIG. 2A) of the magnetic transformer 30 decreases as the distance between the magnetic poles increases. However, as the resonance point is approached, the resonance strength of the resonance circuit is reduced. (C in the figure) becomes stronger, so that the decrease in the supplied power W1 (a in the figure) is suppressed, and the desired target can be achieved over a wider range of magnetic pole facing distances (0 <L ≦ L1, L1> L2). Electric power can be obtained.

次に、本実施形態の非接触給電装置Aを開閉扉に施工した状態について図3(a)を参照して説明する。給電装置Aの一次側ユニット1は、一次側コア33の磁極対向面33dを下側に向けた状態で、扉枠50の上枠部内に埋込配設されている。一方、二次側ユニット2は、開閉扉52を閉じた状態で二次側コア36の磁極対向面36dが一次側コア33の磁極対向面33dと対向するように、開閉扉52の上側部に埋込配設されている。この時、両ユニット1,2は、開閉扉52の開閉動作が行われても接触したり干渉したりすることがないように所定の空間距離を確保した状態で、一次側の磁極対向面33d,33dと、二次側の磁極対向面36d,36dとをそれぞれ対向させて配置されている。尚、一次側ユニット1および二次側ユニット2は、それぞれ、ねじ止めなどの手段を用い、一次側の磁極対向面33d,33dと二次側の磁極対向面36d,36dとの間に所定の空間距離を開けた状態で、扉枠50および開閉扉52の表面に取り付けるようにしても良い。   Next, a state in which the non-contact power feeding apparatus A according to the present embodiment is constructed on the opening / closing door will be described with reference to FIG. The primary unit 1 of the power feeding device A is embedded in the upper frame portion of the door frame 50 with the magnetic pole facing surface 33d of the primary core 33 facing downward. On the other hand, the secondary unit 2 is arranged on the upper side of the door 52 so that the magnetic pole facing surface 36d of the secondary core 36 faces the magnetic pole facing surface 33d of the primary core 33 with the door 52 closed. It is embedded. At this time, both the units 1 and 2 have a predetermined space distance so that they do not come into contact with or interfere with each other even if the opening / closing operation of the opening / closing door 52 is performed. , 33d and the secondary magnetic pole facing surfaces 36d, 36d are arranged to face each other. Each of the primary side unit 1 and the secondary side unit 2 uses a screwing means or the like, and has a predetermined gap between the primary side magnetic pole facing surfaces 33d and 33d and the secondary side magnetic pole facing surfaces 36d and 36d. You may make it attach to the surface of the door frame 50 and the opening-and-closing door 52 in the state which opened the spatial distance.

また内部配線5は、二次側ユニット2の安定化電源回路24と電気錠装置4とを電気的に接続するための電気配線であり、開閉扉52の内部に配線されている。ここで、磁気トランス30の二次側コイル32は電気錠装置4の上方に配置されており、内部配線5は略上下方向に沿って配線するだけで良いので、二次側ユニット2と電気錠装置4との間の配線距離を短くして配線作業を簡略化することができる。またアルミニウム製や鋼製の開閉扉52の場合には、開閉扉52の内部に補強板53が上下方向に沿って配設されているが、二次側ユニット2と電気錠装置4とを補強板53で仕切られた同一の区画内に配置しているので、補強板53を貫通する形で内部配線5を配線する必要が無く、補強板53に通線用孔を貫設したり、通線用孔に内部配線5を通す手間がいらなくなるから、配線作業をさらに簡略化できる。   The internal wiring 5 is an electrical wiring for electrically connecting the stabilized power supply circuit 24 of the secondary unit 2 and the electric lock device 4, and is wired inside the opening / closing door 52. Here, the secondary coil 32 of the magnetic transformer 30 is disposed above the electric lock device 4 and the internal wiring 5 only needs to be wired substantially along the vertical direction. Wiring work can be simplified by shortening the wiring distance to the apparatus 4. Further, in the case of the door 52 made of aluminum or steel, a reinforcing plate 53 is disposed along the vertical direction inside the door 52, but the secondary unit 2 and the electric lock device 4 are reinforced. Since it is arranged in the same section partitioned by the plate 53, there is no need to route the internal wiring 5 in a form penetrating the reinforcing plate 53, and a through hole is provided in the reinforcing plate 53, or a through hole is provided. Since there is no need to pass the internal wiring 5 through the line hole, the wiring work can be further simplified.

また、開閉扉52又は扉枠50が鋼製の時、扉枠50内に配設された一次側ユニット1では、図7(a)に示すように、一次側ユニット1の筐体10内に一次側コア33の側面を覆うようにして電磁遮蔽部材41a,41bを配置してあり、この電磁遮蔽部材41a,41bは、扉枠50の側壁50a,50aと一次側コア33との間に配置されることになる。ここで、図7(b)のように扉枠50の側壁50a,50aと一次側コア33との間に、電磁遮蔽部材41a,41bが介在しない場合は、一次側コア33から扉枠50の側壁50a,50aに流入する漏れ磁束Bによって、一次側コイル31と二次側コイル32との磁気結合が低下してしまうが、本実施形態のように電磁遮蔽部材41a,41bを介在させた場合、その電磁遮蔽効果によって漏れ磁束Bが低減されるので、給電能力の低下を抑制することができ、且つ、鉄損の発生による扉枠50の異常発熱を防止することもできる。尚、図7(a)に示す例では、一次側コア33の磁極対向面33d以外の部位の少なくとも一部を覆うように電磁遮蔽部材41a,41bを配置しているが、電磁遮蔽部材によって二次側コア36の磁極対向面36d以外の部位の少なくとも一部を覆うことで、上述と同様に漏れ磁束を低減し、供給電力の低下や鉄損による開閉扉52の異常発熱を抑制することができる。   Further, when the open / close door 52 or the door frame 50 is made of steel, the primary unit 1 disposed in the door frame 50 has a housing 10 of the primary side unit 1 as shown in FIG. The electromagnetic shielding members 41 a and 41 b are arranged so as to cover the side surface of the primary side core 33, and the electromagnetic shielding members 41 a and 41 b are arranged between the side walls 50 a and 50 a of the door frame 50 and the primary side core 33. Will be. Here, when the electromagnetic shielding members 41a and 41b are not interposed between the side walls 50a and 50a of the door frame 50 and the primary core 33 as shown in FIG. The magnetic coupling between the primary side coil 31 and the secondary side coil 32 is reduced by the leakage magnetic flux B flowing into the side walls 50a, 50a, but when the electromagnetic shielding members 41a, 41b are interposed as in this embodiment. Since the magnetic flux B is reduced by the electromagnetic shielding effect, it is possible to suppress a decrease in power supply capability and to prevent abnormal heat generation of the door frame 50 due to the occurrence of iron loss. In the example shown in FIG. 7A, the electromagnetic shielding members 41a and 41b are arranged so as to cover at least a part of the primary side core 33 other than the magnetic pole facing surface 33d. By covering at least a part of the portion other than the magnetic pole facing surface 36d of the secondary core 36, the leakage magnetic flux is reduced in the same manner as described above, and the abnormal heat generation of the open / close door 52 due to a decrease in power supply or iron loss can be suppressed. it can.

また、一次側コア33の磁極対向面33d以外の部位を覆う電磁遮蔽部材41a,41bを設ける代わりに、図8(a)に示すように一次側ユニット1の筐体10A自体を非磁性の導電性材料により形成しても良く、電磁遮蔽部材41a,41bを別途設けなくても、筐体10A自体が電磁遮蔽機能を有しているので、漏れ磁束の低減を図りつつ、一次側ユニット1の部品数の低減や小型化を図ることができる。なお、この筐体10Aでは、一次側コア33の磁極対向面33dと対向する部位(図中の領域D1,D2)のみを、主磁束の通過を妨げることがないように合成樹脂製としているが、図8(b)に示すように一次側ユニット1の筐体10Bにおいて一次側コア33の全体と対向する部位(図中の矩形領域C2)を合成樹脂製としても良い。また、二次側コア36の磁極対向面36d以外の部位を電磁遮蔽部材で覆う代わりに、二次側ユニット2の筐体20そのものを非磁性の導電性材料により形成しても良く、上述と同様に電磁遮蔽部材を別途設けなくても、筐体20自体が電磁遮蔽機能を有しているので、漏れ磁束の低減を図りつつ、二次側ユニット2の部品数の低減や小型化を図ることができる。   Further, instead of providing electromagnetic shielding members 41a and 41b that cover portions other than the magnetic pole facing surface 33d of the primary side core 33, as shown in FIG. Even if the electromagnetic shielding members 41a and 41b are not separately provided, the housing 10A itself has an electromagnetic shielding function, so that the leakage flux can be reduced and the primary unit 1 can be reduced. The number of parts can be reduced and the size can be reduced. In this case 10A, only the portion (regions D1, D2 in the figure) facing the magnetic pole facing surface 33d of the primary core 33 is made of synthetic resin so as not to prevent the passage of the main magnetic flux. As shown in FIG. 8B, a portion (rectangular region C2 in the drawing) facing the entire primary side core 33 in the casing 10B of the primary side unit 1 may be made of synthetic resin. Further, instead of covering the portion other than the magnetic pole facing surface 36d of the secondary side core 36 with the electromagnetic shielding member, the casing 20 itself of the secondary side unit 2 may be formed of a nonmagnetic conductive material. Similarly, since the housing 20 itself has an electromagnetic shielding function without separately providing an electromagnetic shielding member, the number of components of the secondary side unit 2 is reduced and the size is reduced while reducing the leakage magnetic flux. be able to.

ところで、本実施形態では扉枠50および開閉扉52の上部の一端側(軸支される側と反対側)に一次側ユニット1および二次側ユニット2を配置しているが、扉枠50および開閉扉52の下部の一端側(軸支される側と反対側)に一次側ユニット1および二次側ユニット2を配置しても良いし、図3(b)に示すように開閉扉52の一端側(軸支される側と反対側)に磁極対向面36dを側方に向けて二次側ユニット2を配置すると共に、扉枠50の横枠部において二次側コア36と磁極対向面同士が対向するようにして一次側ユニット1を配置しても良い。このように配置した場合でも、経年により磁極対向面同士の距離が変動した場合には、二次側巻線38a,38bの漏れインダクタンスと共振コンデンサ21a,21bとで構成される共振回路の共振が強まることによって、磁気結合の低下による供給電力の低下を抑制することができ、広範囲の磁極対向距離で所望の供給電力を確保することができる。   By the way, in this embodiment, although the primary side unit 1 and the secondary side unit 2 are arrange | positioned at the one end side (opposite side supported by the axis) of the upper part of the door frame 50 and the door 52, the door frame 50 and The primary side unit 1 and the secondary side unit 2 may be disposed on one end side (the side opposite to the side to be pivotally supported) of the lower part of the opening / closing door 52, or as shown in FIG. The secondary unit 2 is disposed on one end side (opposite side to the axially supported side) with the magnetic pole facing surface 36d facing sideways, and the secondary core 36 and the magnetic pole facing surface in the horizontal frame portion of the door frame 50. The primary unit 1 may be arranged so that they face each other. Even in such an arrangement, when the distance between the magnetic pole facing surfaces fluctuates due to aging, the resonance of the resonance circuit constituted by the leakage inductances of the secondary windings 38a and 38b and the resonance capacitors 21a and 21b is caused. By strengthening, a decrease in supply power due to a decrease in magnetic coupling can be suppressed, and a desired supply power can be secured over a wide range of magnetic pole facing distances.

また、本実施形態では高周波インバータ回路12が2巻線式の絶縁型スイッチングレギュレータ回路で構成されているが、図10に示すように、磁気トランス30の一次側を2巻線(一次側巻線35a,35b)、二次側を1巻線(二次側巻線38)とした絶縁型スイッチングレギュレータ回路(例えばプッシュプル回路)で構成しても良く、この場合は、二次側巻線38と直接に共振コンデンサ21が接続されている。また、図10に示すように高周波インバータ回路12を1巻線式の絶縁型スイッチングレギュレータ回路(例えばハーフブリッジ回路)で構成しても良く、この場合は、磁気トランス30の一次側巻線35および二次側巻線38はそれぞれ1巻線となり、二次側巻線38に共振コンデンサ21が直列接続されている。   In the present embodiment, the high-frequency inverter circuit 12 is composed of a two-winding type insulation type switching regulator circuit. However, as shown in FIG. 10, the primary side of the magnetic transformer 30 has two windings (primary-side windings). 35a, 35b) and an insulating switching regulator circuit (for example, a push-pull circuit) in which the secondary side is one winding (secondary side winding 38). In this case, the secondary side winding 38 The resonance capacitor 21 is connected directly. Further, as shown in FIG. 10, the high-frequency inverter circuit 12 may be constituted by a single-winding type insulation type switching regulator circuit (for example, a half-bridge circuit). In this case, the primary winding 35 of the magnetic transformer 30 and Each of the secondary side windings 38 is one winding, and the resonance capacitor 21 is connected in series to the secondary side winding 38.

本実施形態の非接触給電装置の概略構成を示す回路ブロック図である。It is a circuit block diagram which shows schematic structure of the non-contact electric power feeder of this embodiment. (a)は同上の磁極対向距離と供給電力との関係を示すグラフ、(b)は従来例の磁極対向距離と供給電力との関係を示すグラフである。(A) is a graph which shows the relationship between magnetic pole opposing distance and supply electric power same as the above, (b) is a graph which shows the relationship between the magnetic pole opposing distance and supply electric power of a prior art example. (a)(b)は同上の施工状態を示す説明図である。(A) (b) is explanatory drawing which shows the construction state same as the above. 同上に用いる一次側コイルを示し、(a)は一部省略せる外観斜視図、(b)は側断面図である。The primary side coil used for the same as above is shown, (a) is an external perspective view that can be partially omitted, and (b) is a side sectional view. (a)は同上に用いる磁気トランスを概略的に示した正面図、(b)は側面図である。(A) is the front view which showed schematically the magnetic transformer used for the same as the above, (b) is a side view. 同上の二次側回路の等価回路図である。It is an equivalent circuit diagram of the secondary side circuit same as the above. (a)は同上の一次側コイルを扉枠内に配置した状態の概略断面図、(b)は従来の一次側コイルを扉枠内に配置した状態の概略断面図である。(A) is a schematic sectional drawing of the state which has arrange | positioned the primary side coil same as the above in a door frame, (b) is a schematic sectional drawing of the state which has arrange | positioned the conventional primary side coil in a door frame. (a)(b)は同上に用いる一次側ユニットの一部省略せる断面図である。(A) (b) is sectional drawing which can abbreviate | omit a part of primary side unit used for the same as the above. 同上の非接触給電装置の他の回路例を示す回路ブロック図である。It is a circuit block diagram which shows the other circuit example of a non-contact electric power supply same as the above. 同上の非接触給電装置のまた別の回路例を示す回路ブロック図である。It is a circuit block diagram which shows another circuit example of the non-contact electric power feeder same as the above. 従来の非接触給電装置の施工状態を示す説明図である。It is explanatory drawing which shows the construction state of the conventional non-contact electric power feeder.

符号の説明Explanation of symbols

A 非接触給電装置
1 一次側ユニット
2 二次側ユニット
4 電気錠装置
12 高周波インバータ回路
21a,21b 共振コンデンサ
24 安定化電源回路
31 一次側コイル
32 二次側コイル
33 一次側コア
35a,35b 一次側巻線
36 二次側コア
38a,38b 二次側巻線
AC 商用電源
50 扉枠
51 蝶番
52 開閉扉
A Non-contact power feeding device 1 Primary side unit 2 Secondary side unit 4 Electric lock device 12 High frequency inverter circuit 21a, 21b Resonance capacitor 24 Stabilized power supply circuit 31 Primary side coil 32 Secondary side coil 33 Primary side core 35a, 35b Primary side Winding 36 Secondary side core 38a, 38b Secondary side winding AC Commercial power supply 50 Door frame 51 Hinge 52 Opening / closing door

Claims (7)

扉枠側に設けた一次側ユニットと、蝶番を介して扉枠に支持される開閉扉側に設けた二次側ユニットとを有し、一次側ユニットから二次側ユニットへ非接触給電を行うことによって、扉枠側から一次側ユニットおよび二次側ユニットを介して開閉扉に配置した電気錠装置に電力供給する非接触給電装置であって、
一次側ユニットは、開閉扉に磁極面を対向させるようにして扉枠側に配置される一次側コアおよび一次側コアに巻回された一次側巻線を有する一次側コイルと、商用電源を高周波に変換して一次側巻線に供給する高周波インバータ回路とを備えるとともに、
二次側ユニットは、開閉扉が閉まった状態で一次側コアと磁極面同士が対向するように開閉扉に配置された二次側コアおよび二次側コアに巻回された二次側巻線を有し、一次側コイルと共に磁気トランスを構成する二次側コイルと、二次側巻線から供給される高周波を安定化して電気錠装置に電源を供給する安定化電源回路とを備え、
二次側巻線の漏れインダクタンスと共に共振回路を形成し、一次側コアと二次側コアとの磁極対向距離の所定範囲内で磁極対向距離が大きいほど前記共振回路の共振が強くなるような静電容量値を有する共振コンデンサを、二次側巻線に電気的に接続したことを特徴とする非接触給電装置。
It has a primary side unit provided on the door frame side and a secondary side unit provided on the open / close door side supported by the door frame via a hinge, and performs non-contact power supply from the primary side unit to the secondary side unit. By this, it is a non-contact power feeding device that supplies power from the door frame side to the electric lock device arranged on the opening / closing door via the primary side unit and the secondary side unit,
The primary side unit has a primary side coil disposed on the door frame side so that the magnetic pole surface faces the open / close door, a primary side coil wound around the primary side core, and a commercial power source with high frequency A high-frequency inverter circuit that converts the current into the primary winding and supplies it to the primary winding,
The secondary unit consists of a secondary side coil wound around the secondary side core and the secondary side core disposed on the open / close door so that the primary side core and the magnetic pole face face each other with the open / close door closed. A secondary side coil that forms a magnetic transformer together with the primary side coil, and a stabilized power supply circuit that stabilizes the high frequency supplied from the secondary side winding and supplies power to the electric lock device,
A resonance circuit is formed together with the leakage inductance of the secondary winding, and the resonance of the resonance circuit becomes stronger as the magnetic pole facing distance is larger within a predetermined range of the magnetic pole facing distance between the primary core and the secondary core. A non-contact power feeding device, wherein a resonance capacitor having a capacitance value is electrically connected to a secondary winding.
一次側コア又は二次側コアのうち少なくとも何れか一方の、磁極対向面以外の部位の少なくとも一部を覆う非磁性の導電性材料からなる電磁遮蔽部材を設けたことを特徴とする請求項1記載の非接触給電装置。   2. An electromagnetic shielding member made of a nonmagnetic conductive material that covers at least a part of a portion other than the magnetic pole facing surface of at least one of the primary side core and the secondary side core is provided. The non-contact electric power feeder of description. 一次側ユニット又は二次側ユニットのうち少なくとも何れか一方の筐体が、非磁性の導電性材料で形成されたことを特徴とする請求項1記載の非接触給電装置。   The contactless power feeding device according to claim 1, wherein at least one of the primary side unit and the secondary side unit is formed of a nonmagnetic conductive material. 共振コンデンサが二次側巻線に直列接続されたことを特徴とする請求項1乃至3の何れか1項に記載の非接触給電装置。   The non-contact power feeding device according to claim 1, wherein the resonance capacitor is connected in series to the secondary winding. 一次側コアおよび二次側コアは、それぞれ、両脚片の一端側を継ぎ部を介して連結したU字型コアからなり、各コアの継ぎ部の略全体に等ピッチで一次側巻線又は二次側巻線の何れかを巻回したことを特徴とする請求項1乃至4の何れか1項に記載の非接触給電装置。   Each of the primary side core and the secondary side core is composed of a U-shaped core in which one end sides of both leg pieces are connected via a joint portion, and the primary side winding or the secondary core is substantially pitched over substantially the entire joint portion of each core. 5. The non-contact power feeding device according to claim 1, wherein any one of the secondary windings is wound. 一次側コアおよび二次側コアは、磁極対向面の面積が他の部位の断面積よりも大きく形成されるとともに、磁極対向面の少なくとも1つの辺の長さを一次側コアと二次側コアとで異なる長さに設定したことを特徴とする請求項1乃至5の何れか1項に記載の非接触給電装置。   The primary side core and the secondary side core are formed such that the area of the magnetic pole facing surface is larger than the cross-sectional area of the other part, and the length of at least one side of the magnetic pole facing surface is set to the length of the primary side core and the secondary side core. The non-contact power feeding device according to claim 1, wherein the lengths are set to different lengths. 一次側巻線又は二次側巻線のうち少なくとも何れか一方が、コアにバイファイラ巻きされた2本の巻線からなることを特徴とする請求項1乃至6の何れか1項に記載の非接触給電装置。   The non-winding coil according to any one of claims 1 to 6, wherein at least one of the primary side winding and the secondary side winding includes two windings wound by bifilar around the core. Contact power supply device.
JP2007221844A 2007-08-28 2007-08-28 Non-contact power feeding device Active JP5118418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007221844A JP5118418B2 (en) 2007-08-28 2007-08-28 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007221844A JP5118418B2 (en) 2007-08-28 2007-08-28 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2009055745A true JP2009055745A (en) 2009-03-12
JP5118418B2 JP5118418B2 (en) 2013-01-16

Family

ID=40506310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007221844A Active JP5118418B2 (en) 2007-08-28 2007-08-28 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP5118418B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252517A (en) * 2009-04-15 2010-11-04 Seiko Epson Corp Power receiving apparatus, electronic apparatus and non-contact power transmission system
WO2010137414A1 (en) * 2009-05-26 2010-12-02 アイシン・エィ・ダブリュ株式会社 Power-supply circuit for driving inverters
CN101931272A (en) * 2010-07-16 2010-12-29 深圳绿拓科技有限公司 Passive network intelligent lockset
JP2011045189A (en) * 2009-08-21 2011-03-03 Fujitsu Ltd Method and device for shielding electromagnetic wave in radio power transmission system, and radio power transmission device
JP5494838B2 (en) * 2011-01-26 2014-05-21 株式会社村田製作所 Power transmission system
JP2015177614A (en) * 2014-03-14 2015-10-05 日本電産サンキョー株式会社 power supply device
JP2017022998A (en) * 2016-10-17 2017-01-26 パナソニックIpマネジメント株式会社 Electric lock system
CN108494262A (en) * 2018-04-20 2018-09-04 丰县宏祥电子科技有限公司 The special full isolation DC-DC converter of New-energy electric vehicle
CN110541620A (en) * 2019-10-11 2019-12-06 梁嘉烘 Intelligent lock and anti-theft door with same
JP2020510391A (en) * 2017-03-10 2020-04-02 ▲広▼州金▲昇▼▲陽▼科技有限公司 Flyback switching power supply

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238182A (en) * 1997-02-27 1998-09-08 Miwa Lock Co Ltd Electrical connection structure for electric locking system
JP2000148932A (en) * 1998-11-13 2000-05-30 Hitachi Ltd Reader or/and writer, and ic card system using them
JP2004166384A (en) * 2002-11-12 2004-06-10 Sharp Corp Non-contact power feeding system, electromagnetic coupling characteristic adjustment method therein and power feeder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238182A (en) * 1997-02-27 1998-09-08 Miwa Lock Co Ltd Electrical connection structure for electric locking system
JP3927272B2 (en) * 1997-02-27 2007-06-06 美和ロック株式会社 Energization structure of electric lock system
JP2000148932A (en) * 1998-11-13 2000-05-30 Hitachi Ltd Reader or/and writer, and ic card system using them
JP2004166384A (en) * 2002-11-12 2004-06-10 Sharp Corp Non-contact power feeding system, electromagnetic coupling characteristic adjustment method therein and power feeder

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252517A (en) * 2009-04-15 2010-11-04 Seiko Epson Corp Power receiving apparatus, electronic apparatus and non-contact power transmission system
US8369119B2 (en) 2009-05-26 2013-02-05 Aisin Aw Co., Ltd. Inverter drive power supply circuit for driving a plurality of inverter switching devices that form an inverter circuit
WO2010137414A1 (en) * 2009-05-26 2010-12-02 アイシン・エィ・ダブリュ株式会社 Power-supply circuit for driving inverters
JP2010279093A (en) * 2009-05-26 2010-12-09 Aisin Aw Co Ltd Power supply circuit for driving inverter
CN102292904A (en) * 2009-05-26 2011-12-21 爱信艾达株式会社 Inverter drive power supply circuit
JP2011045189A (en) * 2009-08-21 2011-03-03 Fujitsu Ltd Method and device for shielding electromagnetic wave in radio power transmission system, and radio power transmission device
CN101931272A (en) * 2010-07-16 2010-12-29 深圳绿拓科技有限公司 Passive network intelligent lockset
JP5494838B2 (en) * 2011-01-26 2014-05-21 株式会社村田製作所 Power transmission system
JP2015177614A (en) * 2014-03-14 2015-10-05 日本電産サンキョー株式会社 power supply device
JP2017022998A (en) * 2016-10-17 2017-01-26 パナソニックIpマネジメント株式会社 Electric lock system
JP2020510391A (en) * 2017-03-10 2020-04-02 ▲広▼州金▲昇▼▲陽▼科技有限公司 Flyback switching power supply
JP7096260B2 (en) 2017-03-10 2022-07-05 ▲広▼州金▲昇▼▲陽▼科技有限公司 Flyback switching power supply
CN108494262A (en) * 2018-04-20 2018-09-04 丰县宏祥电子科技有限公司 The special full isolation DC-DC converter of New-energy electric vehicle
CN110541620A (en) * 2019-10-11 2019-12-06 梁嘉烘 Intelligent lock and anti-theft door with same

Also Published As

Publication number Publication date
JP5118418B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5118418B2 (en) Non-contact power feeding device
Raabe et al. Practical design considerations for contactless power transfer quadrature pick-ups
JP6055530B2 (en) Non-contact power supply device
CN101707121B (en) Transformer with split primary winding
US10381148B2 (en) Transformer and power converter using the same
CN101128894B (en) Resonance type transformer and power supply unit using it
US8471666B2 (en) Coil bobbin, coil component and switching power source apparatus
US20050146902A1 (en) Method and apparatus for substantially reducing electrical earth displacement current flow generated by wound components
US8536967B2 (en) Coil bobbin, coil component and switching power source apparatus
JPH0837121A (en) Power supply device
US11043845B2 (en) Power feeding device and wireless power transmission device
TWI282201B (en) Power converter
KR20150023837A (en) Contactless power supply device
JP6323192B2 (en) Pad arrangement structure for power transmission and contactless power transmission system
CN110462767A (en) Reactor and power circuit
US20140286054A1 (en) Inductive component and use
JP2010232272A (en) Transformer
JP6460373B2 (en) Coil unit and wireless power transmission device
JP2010004633A (en) Dc power supply apparatus
JP5255881B2 (en) Non-contact power feeding device
JP2001268823A (en) Non-contact feeder system
JP2010171225A (en) Transformer and switching power supply
JP2021077826A (en) Coil unit, power transmitting device, power receiving device and power transmission system
US10305330B2 (en) Power transmission device
Hatchavanich et al. Effects of intermediate coil position in a triple-coil series-series compensation in wireless power transfer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5118418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3