JP2009055056A - Manufacturing method of nitride semiconductor - Google Patents

Manufacturing method of nitride semiconductor Download PDF

Info

Publication number
JP2009055056A
JP2009055056A JP2008268254A JP2008268254A JP2009055056A JP 2009055056 A JP2009055056 A JP 2009055056A JP 2008268254 A JP2008268254 A JP 2008268254A JP 2008268254 A JP2008268254 A JP 2008268254A JP 2009055056 A JP2009055056 A JP 2009055056A
Authority
JP
Japan
Prior art keywords
gan
nitride semiconductor
layer
substrate
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008268254A
Other languages
Japanese (ja)
Other versions
JP4968232B2 (en
Inventor
Harunori Sakaguchi
春典 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008268254A priority Critical patent/JP4968232B2/en
Publication of JP2009055056A publication Critical patent/JP2009055056A/en
Application granted granted Critical
Publication of JP4968232B2 publication Critical patent/JP4968232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)
  • Weting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a nitride semiconductor which is superior in quality and productivity, by reducing the generation of crystal defects and preventing the generation of warpages. <P>SOLUTION: In the manufacturing method of the nitride semiconductor, a first nitride semiconductor layer 10 is grown on a substrate 1 comprising GaN; a porous layer 2 having many minute voids 2a is formed on the first nitride semiconductor layer 10; then a second nitride semiconductor layer is grown on the porous layer 2; and the substrate 1 or the porous layer 2, having the substrate 1 and the voids, is peeled off. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、窒化物半導体の製造方法に係り、特に結晶欠陥が少なく、反りが少ない窒化物半導体層が形成される窒化物半導体の製造方法に関するものである。   The present invention relates to a method for manufacturing a nitride semiconductor, and more particularly to a method for manufacturing a nitride semiconductor in which a nitride semiconductor layer with less crystal defects and less warpage is formed.

一般に、GaN、あるいはその混晶のAlGaN、InGaNなどの窒化物半導体は、同種の基板が実質的に存在しないため、サファイアやSiC等の異種基板上に薄膜成長されて製造されている。   In general, nitride semiconductors such as GaN or mixed crystal AlGaN and InGaN thereof are manufactured by growing a thin film on a heterogeneous substrate such as sapphire or SiC because substantially the same kind of substrate does not exist.

しかし、このように異種基板上に成長された窒化物半導体は、基板との格子定数が異なるため、それに起因する結晶欠陥の増加や、基板と薄膜との熱膨張差により発生する反りが成長時及び成長後に問題となっている。   However, since nitride semiconductors grown on different substrates in this way have different lattice constants from the substrate, an increase in crystal defects and warpage caused by a difference in thermal expansion between the substrate and the thin film occur during the growth. And it has become a problem after growth.

結晶欠陥は、その窒化物半導体から製造される、光素子の発光特性や信頼性を悪化させ、電子デバイスのリーク電流や非線形性の発生、信頼性低下などの原因となる。   Crystal defects deteriorate the light emission characteristics and reliability of optical elements manufactured from the nitride semiconductor, causing leakage current and nonlinearity of electronic devices, and reducing reliability.

また、反りは、成長中では加熱物体(例えばグラファイト製のサセプタ)との接触の不均一性を生じさせ、エピ薄膜のキャリア濃度や組成などの特性に不均一性をもたらす。特に窒化物半導体がInGaNでは、この温度の不均一性は致命的である。   Further, warping causes non-uniformity of contact with a heated object (for example, a susceptor made of graphite) during growth, and causes non-uniformity in characteristics such as the carrier concentration and composition of the epitaxial thin film. In particular, when the nitride semiconductor is InGaN, this temperature non-uniformity is fatal.

成長後の常温での反りは、その後の素子製造工程で行われるフォトリソグラフィーにおいて、微細パターンの露光の際に大きな問題となる。   The warpage at room temperature after the growth becomes a serious problem in the exposure of a fine pattern in photolithography performed in the subsequent element manufacturing process.

このため、これら結晶欠陥及び反りの発生の防止対策として、選択成長によるラテラル方向成長を利用したELOG(O.-H.Nam etl,Appl.Phys.Lett.71(1997)2472)やFIELO(A.Sakai etl,Appl.Phys.Lett.71(1997)2259 )が開発されている。   Therefore, ELOG (O.-H. Nam etl, Appl. Phys. Lett. 71 (1997) 2472) and FIELO (A) using lateral growth by selective growth are used as measures for preventing the occurrence of these crystal defects and warpage. Sakai etl, Appl. Phys. Lett. 71 (1997) 2259) has been developed.

これ以外にも、製造する窒化物半導体の同種基板となるGaN基板の開発も進んでいる。   In addition to this, the development of a GaN substrate that is the same type of substrate for the nitride semiconductor to be manufactured is also progressing.

また、HVPEで数百μmのGaN膜をサファイア基板上に成長し、後にサファイア基板を除去してGaN基板とする手法も提案されており、この方法は、品質やコストの面からより現実的である。   In addition, a method has been proposed in which a GaN film having a thickness of several hundred μm is grown on a sapphire substrate by HVPE, and the sapphire substrate is removed later to make a GaN substrate. This method is more realistic in terms of quality and cost. is there.

しかしながら、ELOGやFIELOは、いまだ結晶欠陥が10E6〜10E7/cm−3ほどあり、反りの問題は全く改善されていない。 However, ELOG and FIELO still have crystal defects of about 10E6 to 10E7 / cm −3, and the problem of warping has not been improved at all.

また、GaN基板の開発は、まだ10mm直径のものしか製造できておらず、製法も超高圧下で行うため製造コストが非常に高く、実用的でない。   In addition, the development of a GaN substrate has only been able to produce a substrate having a diameter of 10 mm, and the production method is performed under an ultra-high pressure, so the production cost is very high and not practical.

また、HVPEでサファイア基板上にGaNを成長した後、サファイア基板を除去する方法は、結晶欠陥がかなり多く、さらに実用的なサファイア基板の除去法が無く、除去後も反りが残るなどの問題がある。   In addition, the method of removing sapphire substrate after growing GaN on sapphire substrate by HVPE has a considerable number of crystal defects, and there is no practical method for removing sapphire substrate, and there is a problem that warp remains after removal. is there.

そこで、本発明の目的は、結晶欠陥の発生を低減すると共に反りの発生を防止することにより、品質と生産性に優れた窒化物半導体の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for manufacturing a nitride semiconductor excellent in quality and productivity by reducing the occurrence of crystal defects and preventing the occurrence of warpage.

上記課題を解決するために本発明は、GaNからなる基板上に第一の窒化物半導体層を成長させ、その第一の窒化物半導体層に多数の微細なボイドを形成した後、その上に第二の窒化物半導体層を成長させ、上記基板或いは上記基板及びボイドを有する多孔質層を剥離することにある。   In order to solve the above-mentioned problems, the present invention grows a first nitride semiconductor layer on a substrate made of GaN, forms a large number of fine voids in the first nitride semiconductor layer, and then on the first nitride semiconductor layer. The second nitride semiconductor layer is grown and the substrate or the porous layer having the substrate and voids is peeled off.

すなわち、本発明の要点は、GaN膜(AlGaN、InGaNでも可。)を、陽極酸化や光エッチング(C.Youtsey etl,Appl.Phys.Lett.71,(1997)2151)でエッチングしてそのGaN膜表面に多孔質(ポアラス)を形成し、さらにこの多孔質GaNを水素中で熱処理して、表面が連続した平滑な再結晶層を有するGaNエピ膜を形成することにある。   That is, the gist of the present invention is that a GaN film (AlGaN or InGaN is also acceptable) is etched by anodic oxidation or photoetching (C. Youtsey etl, Appl. Phys. Lett. 71, (1997) 2151). A porous (pores) is formed on the film surface, and the porous GaN is heat-treated in hydrogen to form a GaN epi film having a smooth recrystallized layer with a continuous surface.

上記構成によれば、多孔質GaNが水素と反応して一部がGaとNHになり、このGaが表面をマイグレートしてキンクやステップなどの核成長サイトでNH と反応し、GaNがエピタキシャル成長する。これが熱平衡となるまで進行し、適切な温度、時間、水素の純度、NHなどのガス混合により、多孔質GaNの表面が再結晶化すると共にエピタキシャル成長して、表面が連続した平滑なGaNエピ膜が形成される。 According to the above arrangement, partially porous GaN reacts with hydrogen becomes Ga and NH 3, reacts with NH 3 in the nucleus growth sites such as the Ga kink or step by migrating surfaces, GaN Grows epitaxially. This progresses until thermal equilibrium is reached, and the surface of the porous GaN is recrystallized and epitaxially grown by mixing gas such as appropriate temperature, time, hydrogen purity, NH 3, etc. Is formed.

これにより、第一の窒化物半導体層の表面の再結晶化はラテラル方向に起こるため、再結晶層は、ELOGのように結晶欠陥が低減する。   Thereby, since recrystallization of the surface of the first nitride semiconductor layer occurs in the lateral direction, crystal defects in the recrystallized layer are reduced like ELOG.

また、基板と窒化物半導体との熱膨張差や格子定数差による歪みは、表面が再結晶化してもその下に多孔質が存在するため、このミクロな多数のボイドの部分が基板と薄膜(窒化物半導体)との熱膨張差や格子定数差による歪みをいわばクッション層のような効果で緩和する。   In addition, the strain caused by the difference in thermal expansion and lattice constant between the substrate and the nitride semiconductor is porous even if the surface is recrystallized. The distortion due to the difference in thermal expansion and the difference in lattice constant from the nitride semiconductor is alleviated by the effect of a cushion layer.

従ってエピ膜中の結晶欠陥が減り、エピ成長中及び成長後の反りも大幅に低減される。   Accordingly, crystal defects in the epi film are reduced, and warpage during and after epi growth is greatly reduced.

さらに、本発明は、この多孔質(ボイド)の層を選択エッチング、超高圧水流、GaAsジェット、レーザー割断などにより、溶解、破断して基板からエピ膜を剥離し、そのエピ膜を他の基板に貼り付ける(無論、剥離前に貼り付けることもできる。)ことにより、デバイス応用に応じた最適な基板・エピ構造とすることもできる。   In addition, the present invention dissolves and breaks this porous layer by selective etching, ultra-high pressure water flow, GaAs jet, laser cleaving, etc., and peels off the epi film from the substrate. It is possible to obtain an optimum substrate / epi structure according to the device application.

以上要するに本発明によれば、第一の窒化物半導体層の表面の再結晶層の再結晶化がラテラル方向に起こるため、ELOGのように結晶欠陥が低減する。
また、基板と窒化物半導体との熱膨張差や格子定数差による歪みは、多孔質層により緩和されるので、反りが発生しない。
In short, according to the present invention, since recrystallization of the recrystallized layer on the surface of the first nitride semiconductor layer occurs in the lateral direction, crystal defects are reduced as in ELOG.
Further, since the distortion due to the difference in thermal expansion and the difference in lattice constant between the substrate and the nitride semiconductor is relaxed by the porous layer, no warpage occurs.

次に、本発明の好適一実施の形態を添付図面に基づいて詳述する。   Next, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に本発明にかかる窒化物半導体としてGaNの側面図を示す。   FIG. 1 shows a side view of GaN as a nitride semiconductor according to the present invention.

図1に示すように、このGaNは、サファイア基板1と、そのサファイア基板1上に形成された窒化物半導体層10とから構成されており、すなわち異種基板上に形成された窒化物半導体である。   As shown in FIG. 1, the GaN is composed of a sapphire substrate 1 and a nitride semiconductor layer 10 formed on the sapphire substrate 1, that is, a nitride semiconductor formed on a different substrate. .

窒化物半導体層10は、表面側には良質なGaNからなる再結晶層3が形成され、また、基板側には微細なボイド及びその集合体2aからなる多孔質GaN層2が形成されている。   The nitride semiconductor layer 10 has a recrystallized layer 3 made of high-quality GaN formed on the surface side, and a porous GaN layer 2 made of fine voids and aggregates 2a formed on the substrate side. .

このGaNの製造方法を図5を用いて説明する。   This GaN manufacturing method will be described with reference to FIG.

図1に示したGaNを製造するに際しては、まず、図5(a)に示すように、サファイア基板1上に、通常のMOCVD法や、MBE法、HVPEH法などにより、GaNの薄膜10aを成長させる。   When the GaN shown in FIG. 1 is manufactured, first, as shown in FIG. 5A, a GaN thin film 10a is grown on the sapphire substrate 1 by an ordinary MOCVD method, MBE method, HVPEH method or the like. Let

そして、このGaN10aを、図5(b)に示すように、上述した光エッチング(C.Youtsey etl,Appl.Phys.Lett.71,(1997)2151)によりエッチングし、多数の微細なボイド及びその集合体2aからなる多孔質10bを形成する。この多数のボイド2aの形成は、光エッチングの条件(光の強度、波長、エッチング液の温度)を調節して行われる。   Then, the GaN 10a is etched by the above-mentioned photoetching (C. Youtsey etl, Appl. Phys. Lett. 71, (1997) 2151) as shown in FIG. A porous 10b made of the aggregate 2a is formed. The formation of the large number of voids 2a is performed by adjusting photoetching conditions (light intensity, wavelength, etching solution temperature).

また、このエッチングの基本条件は、例えば、照射光は波長365nmの紫外線、エッチング液はKOHとKとの混合水溶液であり、GaNをこのエッチング液中に入れ、これに照射光を当ててエッチングする。この時、エッチング液に溶解させたくない部分(GaNの表面あるいは裏面の一部又は全面)がある場合には、その部分にAuやPtなどの貴金属を付着させる場合もある。 The basic conditions of this etching are, for example, that the irradiation light is ultraviolet light with a wavelength of 365 nm, the etching solution is a mixed aqueous solution of KOH and K 2 S 2 O 8 , GaN is put in this etching solution, and the irradiation light Hit to etch. At this time, when there is a portion (a part or the whole of the GaN front surface or back surface) that is not desired to be dissolved in the etching solution, a noble metal such as Au or Pt may be adhered to the portion.

そして、この多孔質GaNをMOCVD炉に入れ、水素中で加熱する。この時、水素にNHや窒素を混合する場合もある。加熱温度は800℃〜1100℃、加熱時間は数秒から数時間の範囲が一般的だが、多孔質GaNの状態などによっては上述した温度・時間以外の条件でも良い。 Then, this porous GaN is put in a MOCVD furnace and heated in hydrogen. At this time, NH 3 or nitrogen may be mixed with hydrogen. The heating temperature is generally in the range of 800 ° C. to 1100 ° C., and the heating time is in the range of several seconds to several hours.

この加熱により、図5(c)に示すように、多孔質GaNが水素と反応して一部はGaとNHになり、このGaが表面をマイグレートしてキンクやステップなどの核成長サイトでNHと反応し、GaNがエピタキシャル成長する。そして、このエピタキシャル成長が熱平衡となるまで進行し、適切な温度、時間、水素の純度、NHなどのガス混合により、多孔質のGaN表面が再結晶化すると共に表面がエピタキシャル成長して、表面が連続した平滑な再結晶層3が形成される。 By this heating, as shown in FIG. 5 (c), porous GaN reacts with hydrogen to partially become Ga and NH 3 , and this Ga migrates the surface and nucleation sites such as kinks and steps. Reacts with NH 3 to grow GaN epitaxially. This epitaxial growth proceeds until thermal equilibrium is reached, and the porous GaN surface is recrystallized and the surface is epitaxially grown by mixing gas such as appropriate temperature, time, hydrogen purity, NH 3 , and the surface is continuous. The smooth recrystallized layer 3 thus formed is formed.

このようにして、表面には再結晶層3を有し、その下に微細なボイド2aが多数存在する多孔質層(微細ボイド層)2を有するGaN膜が形成される。   In this way, a GaN film having a porous layer (a fine void layer) 2 having a recrystallized layer 3 on the surface and a large number of fine voids 2a thereunder is formed.

そして、この微細ボイド層2の性状(ボイドの大きさ、密度、大きさの分布、微細ボイド層2の厚さなど)は、さらなる熱処理、あるいは加熱工程後の更なる熱処理で制御される。   The properties of the fine void layer 2 (void size, density, size distribution, thickness of the fine void layer 2, etc.) are controlled by further heat treatment or further heat treatment after the heating step.

その後、炉内が冷却され、GaNが取り出される。   Thereafter, the inside of the furnace is cooled and GaN is taken out.

このようにして製造されたGaNは、サファイア基板1と窒化物半導体層10との格子定数の違いにより、それらの界面付近に結晶欠陥が発生するが、表面の再結晶層3の再結晶化がラテラル方向に起こるため、ELOGのように結晶欠陥が低減する。   In the GaN manufactured in this way, crystal defects are generated in the vicinity of the interface due to the difference in lattice constant between the sapphire substrate 1 and the nitride semiconductor layer 10, but the recrystallization layer 3 on the surface is recrystallized. Since it occurs in the lateral direction, crystal defects are reduced as in ELOG.

また、サファイア基板1と窒化物半導体層10との熱膨張差による歪みも、多孔質層2により緩和されるので、GaNに反りが発生しない。   Further, distortion due to the difference in thermal expansion between the sapphire substrate 1 and the nitride semiconductor layer 10 is also relaxed by the porous layer 2, so that no warpage occurs in GaN.

更に、微細ボイド層(多孔質層)2は、低誘電率、高抵抗となるため、このGaNから製造されるHEMT横型デバイスでは、リーク電流が低減されると共に、寄生抵抗の発生が低減される。   Furthermore, since the fine void layer (porous layer) 2 has a low dielectric constant and a high resistance, in the HEMT lateral device manufactured from this GaN, the leakage current is reduced and the generation of parasitic resistance is reduced. .

さらに、本発明は、この多孔質(ボイド)層2を選択エッチング、超高圧水流、GaAsジェット、レーザー割断などにより、溶解、破断してサファイア基板1からエピ膜を剥離し、そのエピ膜を他の基板に貼り付ける(無論、剥離前に貼り付けることもできる。)ことにより、デバイス応用に応じた最適な基板・エピ構造とすることもできる。   Furthermore, in the present invention, the porous layer 2 is melted and broken by selective etching, ultra-high pressure water flow, GaAs jet, laser cleaving, etc., and the epi film is peeled off from the sapphire substrate 1. By affixing to the substrate (of course, it can also be affixed before peeling), it is possible to obtain an optimum substrate / epi structure according to the device application.

次に、本発明の他の実施の形態を説明する。   Next, another embodiment of the present invention will be described.

図2に、図1に示したGaNの基板及び多孔質層を剥離・除去した再結晶層の側面図を示す。   FIG. 2 shows a side view of the recrystallized layer from which the GaN substrate and porous layer shown in FIG.

図2に示すように、このGaN(3)は、多孔質GaN上に成長されたGaNのみで形成されている。   As shown in FIG. 2, the GaN (3) is formed only of GaN grown on porous GaN.

すなわち、このGaN(3)は、同種基板上に成長されたGaNであるため、結晶欠陥が存在せず、それ自体に反りも発生していない。   That is, since this GaN (3) is GaN grown on the same kind of substrate, there is no crystal defect, and no warpage occurs in itself.

これにより、このGaN(3)から光素子を製造した場合には、その光素子は、発光特性が低下せず、信頼性も高い。また、電子デバイスのリーク電流や非線形性も発生しない。   Thereby, when an optical element is manufactured from this GaN (3), the optical element does not deteriorate in light emission characteristics and has high reliability. In addition, there is no leakage current or non-linearity of the electronic device.

さらに、GaN(3)は反りがないので、成長中の加熱物体との接触が均一に保たれ、エピタキシャル薄膜のキャリア濃度や組成などの特性が均一になると共に、また、成長後のフォトリソグラフィーにおいても、微細パターンの露光工程の作業性に優れる。   Furthermore, since GaN (3) has no warpage, the contact with the heating object during growth is kept uniform, and the characteristics such as the carrier concentration and composition of the epitaxial thin film become uniform, and also in photolithography after growth. Also, the workability of the fine pattern exposure process is excellent.

また、他の実施の形態として、図3に、図1に示したGaNの基板を剥離・除去したGaN(窒化物半導体層)の側面図を示す。   As another embodiment, FIG. 3 shows a side view of a GaN (nitride semiconductor layer) obtained by peeling and removing the GaN substrate shown in FIG.

図3に示すように、このGaNは、基板側に形成された多孔質層2と、表面側に形成された再結晶層3とから構成されている。   As shown in FIG. 3, this GaN is composed of a porous layer 2 formed on the substrate side and a recrystallized layer 3 formed on the surface side.

すなわち、このGaNは、基板側の結晶には、基板との格子定数の違いにより発生した結晶欠陥が存在するが、表面の再結晶化がラテラル方向に起こるため、再結晶層3に結晶欠陥が発生しない。また、同種基板上に形成されたGaNであるため、上述した図2のGaNと同様に、このGaNから光素子を製造する場合、素子の特性が低下せず、信頼性の高い素子が製造できる。   That is, this GaN has crystal defects that occur due to the difference in lattice constant from the substrate in the crystal on the substrate side, but since recrystallization of the surface occurs in the lateral direction, there is a crystal defect in the recrystallized layer 3. Does not occur. Further, since the GaN is formed on the same kind of substrate, as in the case of the GaN of FIG. 2 described above, when an optical element is manufactured from this GaN, the characteristics of the element are not deteriorated and a highly reliable element can be manufactured. .

また、これら以外の他の実施の形態として、図4に、窒化物半導体の薄膜を多層に積層したGaNの側面図を示す。   As another embodiment other than these, FIG. 4 shows a side view of GaN in which nitride semiconductor thin films are stacked in multiple layers.

図4に示すように、このGaNは、本実施の形態で説明した多孔質GaNの加熱工程まで行った後、引き続き、そのまま炉内でGaN、AlGaN、又はInGaNなどの窒化物半導体4a,4b,...4nを、GaN系のデバイス用の構造となるようにエピタキシャル成長させるか、又は、炉内からGaNウェハを取り出した後、別途、MOCVD法によりそのGaNウェハの上にデバイス構造のエピタキシャル成長を行って、サファイア基板1上の再結晶層3の上に、窒化物半導体4a,4b,...4nが多層に積層された薄膜(多層膜)4を形成したものである。   As shown in FIG. 4, after the GaN is subjected to the porous GaN heating step described in the present embodiment, the nitride semiconductors 4a, 4b, GaN, such as GaN, AlGaN, or InGaN are continued in the furnace. . . . 4n is epitaxially grown so as to have a structure for a GaN-based device, or after the GaN wafer is taken out from the furnace, the device structure is epitaxially grown on the GaN wafer by MOCVD, and sapphire is obtained. On the recrystallized layer 3 on the substrate 1, the nitride semiconductors 4a, 4b,. . . A thin film (multilayer film) 4 in which 4n is laminated in multiple layers is formed.

この多層窒化物半導体から製造するデバイスがLEDの場合は、上述した表面結晶化多孔質GaNの上に、例えば、Siドープn型GaN層、アンドープInGaNとアンドープGaNの量子井戸型活性層、Mgドープp型GaN層を順次成長すれば良い。   When the device manufactured from this multilayer nitride semiconductor is an LED, for example, a Si-doped n-type GaN layer, an undoped InGaN and undoped GaN quantum well active layer, Mg-doped on the above-mentioned surface crystallized porous GaN A p-type GaN layer may be grown sequentially.

また、製造するデバイスがHEMTの場合は、例えば、はじめにアンドープGaN層を成長させ、さらにAlGaN層とGaN層を交互に複数層積層したバッファ層を成長させ、さらにGaN又はInGaNのチャネル層を成長させる。そして、n型AlGaN又はn型GaNキャリア供給層を成長させ、さらにその層の上に、n++型GaN、又はn++型InGaN層をオーミックコンタクト層として成長させる場合もある。また、キャリア供給層をアンドープとしても良い。   When the device to be manufactured is a HEMT, for example, an undoped GaN layer is first grown, a buffer layer in which a plurality of AlGaN layers and GaN layers are alternately stacked is grown, and a channel layer of GaN or InGaN is further grown. . In some cases, an n-type AlGaN or n-type GaN carrier supply layer is grown, and an n ++ type GaN or n ++ type InGaN layer is further grown on the layer as an ohmic contact layer. Further, the carrier supply layer may be undoped.

また、本実施の形態では、窒化物半導体層10がGaNの場合について説明したが、変形例として、AlGaN、又はInGaNのいずれかの薄膜であっても良い。また、他の実施の形態で、多層膜について説明したが、GaN、AlGaN、又はInGaNの組み合わせはこれに限定されないことは勿論である。   In the present embodiment, the case where the nitride semiconductor layer 10 is GaN has been described. However, as a modification, any thin film of AlGaN or InGaN may be used. In the other embodiments, the multilayer film has been described. However, the combination of GaN, AlGaN, or InGaN is not limited to this.

更に、基板としてサファイア以外にも、基板としてGaNやSiCでもバルクGaNを用いても良い。   In addition to sapphire, the substrate may be GaN, SiC, or bulk GaN.

また、本実施の形態では、反応炉としてMOCVD炉を用いたが、通常のCVD炉や、MBE炉、HVPE炉、拡散炉のようなものでも良く、この時の熱処理も、水素中だけでなく、NH中、もしくはその両者を含む雰囲気中で行っても良い。 In this embodiment, the MOCVD furnace is used as the reaction furnace, but a normal CVD furnace, an MBE furnace, an HVPE furnace, a diffusion furnace may be used, and the heat treatment at this time is not limited to hydrogen. , NH 3 , or in an atmosphere containing both of them.

本発明の一実施の形態を示すGaNの側面図である。It is a side view of GaN which shows one embodiment of the present invention. 図1の基板及び多孔質層を剥離・除去した窒化物半導体の側面図である。FIG. 2 is a side view of a nitride semiconductor from which the substrate and porous layer of FIG. 1 have been peeled and removed. 図1の基板を剥離・除去した窒化物半導体の側面図である。FIG. 2 is a side view of a nitride semiconductor with the substrate of FIG. 1 peeled and removed. 図1の再結晶層上に多層膜が形成された窒化物半導体の側面図である。FIG. 2 is a side view of a nitride semiconductor in which a multilayer film is formed on the recrystallized layer in FIG. 1. 図1の窒化物半導体の製造過程を説明するための流れ図である。2 is a flowchart for explaining a manufacturing process of the nitride semiconductor of FIG. 1.

符号の説明Explanation of symbols

1 サファイア基板
2 多孔質層(微細ボイド層)
2a 微細なボイド及びその集合体
3 再結晶層
10窒化物半導体層
1 Sapphire substrate 2 Porous layer (fine void layer)
2a Fine voids and aggregates thereof 3 Recrystallized layer 10 Nitride semiconductor layer

Claims (1)

GaNからなる基板上に第一の窒化物半導体層を成長させ、その第一の窒化物半導体層に多数の微細なボイドを形成した後、その上に第二の窒化物半導体層を成長させ、上記基板或いは上記基板及びボイドを有する多孔質層を剥離することを特徴とする窒化物半導体の製造方法。   A first nitride semiconductor layer is grown on a substrate made of GaN, and after forming a large number of fine voids in the first nitride semiconductor layer, a second nitride semiconductor layer is grown thereon. A method for producing a nitride semiconductor, comprising peeling off the substrate or the porous layer having the substrate and voids.
JP2008268254A 2008-10-17 2008-10-17 Manufacturing method of nitride semiconductor Expired - Fee Related JP4968232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008268254A JP4968232B2 (en) 2008-10-17 2008-10-17 Manufacturing method of nitride semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008268254A JP4968232B2 (en) 2008-10-17 2008-10-17 Manufacturing method of nitride semiconductor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000038213A Division JP2001223165A (en) 2000-02-10 2000-02-10 Nitride semiconductor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2009055056A true JP2009055056A (en) 2009-03-12
JP4968232B2 JP4968232B2 (en) 2012-07-04

Family

ID=40505776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008268254A Expired - Fee Related JP4968232B2 (en) 2008-10-17 2008-10-17 Manufacturing method of nitride semiconductor

Country Status (1)

Country Link
JP (1) JP4968232B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818464B2 (en) * 2009-07-30 2011-11-16 キヤノン株式会社 Microstructure manufacturing method
JP2014118346A (en) * 2012-12-14 2014-06-30 Seoul Viosys Co Ltd Epitaxial layer wafer having cavity for substrate separation growth, and semiconductor element produced by using the same
JP2014123765A (en) * 2014-02-27 2014-07-03 Sumitomo Electric Ind Ltd Wafer product and gallium nitride-based semiconductor optical element
JP2016181709A (en) * 2010-01-27 2016-10-13 イェイル ユニヴァーシティ Conductivity based selective etch for gan device and application thereof
US10554017B2 (en) 2015-05-19 2020-02-04 Yale University Method and device concerning III-nitride edge emitting laser diode of high confinement factor with lattice matched cladding layer
JP2020096164A (en) * 2019-08-14 2020-06-18 株式会社サイオクス Manufacturing method and device of structure, and light-irradiation device
WO2020121950A1 (en) * 2018-12-10 2020-06-18 株式会社サイオクス Method and apparatus for producing structure, and light irradiation apparatus
US11018231B2 (en) 2014-12-01 2021-05-25 Yale University Method to make buried, highly conductive p-type III-nitride layers
US11043792B2 (en) 2014-09-30 2021-06-22 Yale University Method for GaN vertical microcavity surface emitting laser (VCSEL)
US11095096B2 (en) 2014-04-16 2021-08-17 Yale University Method for a GaN vertical microcavity surface emitting laser (VCSEL)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012900A (en) * 1998-06-18 2000-01-14 Sumitomo Electric Ind Ltd GaN SINGLE CRYSTAL SUBSTRATE AND MANUFACTURE THEREOF

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012900A (en) * 1998-06-18 2000-01-14 Sumitomo Electric Ind Ltd GaN SINGLE CRYSTAL SUBSTRATE AND MANUFACTURE THEREOF

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129210B2 (en) 2009-07-30 2012-03-06 Canon Kabushiki Kaisha Manufacturing method of microstructure
JP4818464B2 (en) * 2009-07-30 2011-11-16 キヤノン株式会社 Microstructure manufacturing method
JP2016181709A (en) * 2010-01-27 2016-10-13 イェイル ユニヴァーシティ Conductivity based selective etch for gan device and application thereof
US10458038B2 (en) 2010-01-27 2019-10-29 Yale University Conductivity based on selective etch for GaN devices and applications thereof
JP2014118346A (en) * 2012-12-14 2014-06-30 Seoul Viosys Co Ltd Epitaxial layer wafer having cavity for substrate separation growth, and semiconductor element produced by using the same
JP2014123765A (en) * 2014-02-27 2014-07-03 Sumitomo Electric Ind Ltd Wafer product and gallium nitride-based semiconductor optical element
US11095096B2 (en) 2014-04-16 2021-08-17 Yale University Method for a GaN vertical microcavity surface emitting laser (VCSEL)
US11043792B2 (en) 2014-09-30 2021-06-22 Yale University Method for GaN vertical microcavity surface emitting laser (VCSEL)
US11018231B2 (en) 2014-12-01 2021-05-25 Yale University Method to make buried, highly conductive p-type III-nitride layers
US10554017B2 (en) 2015-05-19 2020-02-04 Yale University Method and device concerning III-nitride edge emitting laser diode of high confinement factor with lattice matched cladding layer
JP2020096015A (en) * 2018-12-10 2020-06-18 株式会社サイオクス Manufacturing method and device of structure and light-irradiation device
WO2020121950A1 (en) * 2018-12-10 2020-06-18 株式会社サイオクス Method and apparatus for producing structure, and light irradiation apparatus
US11342220B2 (en) 2018-12-10 2022-05-24 Sciocs Company Limited Structure manufacturing method and manufacturing device, and light irradiation device
US11756827B2 (en) 2018-12-10 2023-09-12 Sumitomo Chemical Company, Limited Structure manufacturing method and manufacturing device, and light irradiation device
JP2020096164A (en) * 2019-08-14 2020-06-18 株式会社サイオクス Manufacturing method and device of structure, and light-irradiation device

Also Published As

Publication number Publication date
JP4968232B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4968232B2 (en) Manufacturing method of nitride semiconductor
JP2001223165A (en) Nitride semiconductor and method of manufacturing the same
JP4529846B2 (en) III-V nitride semiconductor substrate and method for manufacturing the same
JP3821232B2 (en) Porous substrate for epitaxial growth, method for producing the same, and method for producing group III nitride semiconductor substrate
JP4597259B2 (en) Group III nitride semiconductor growth substrate, group III nitride semiconductor epitaxial substrate, group III nitride semiconductor device, group III nitride semiconductor free-standing substrate, and methods of manufacturing the same
JP5371430B2 (en) Semiconductor substrate, method for manufacturing a self-supporting semiconductor substrate by hydride vapor phase epitaxy, and mask layer used therefor
TWI440073B (en) Method for fabricating circuit structure
JP2006203196A (en) Method for manufacturing epitaxial wafer
JP2007246330A (en) Group iii-v nitride based semiconductor substrate, group iii-v nitride based device and method for manufacturing the same
WO2005088687A1 (en) Method for manufacturing gallium nitride semiconductor substrate
JP2009007241A (en) METHOD FOR MANUFACTURING GaN-BASED NITRIDE SEMICONDUCTOR SELF-SUPPORTING SUBSTRATE
CN115020192A (en) Method for producing group III nitride semiconductor substrate, and group III nitride semiconductor substrate
JP6986645B1 (en) Semiconductor substrates, semiconductor devices, electronic devices
JP4996448B2 (en) Method for creating a semiconductor substrate
US20240136181A1 (en) Semiconductor substrate, method for manufacturing the same, apparatus for manufacturing the same, and template substrate
JP3729065B2 (en) Nitride semiconductor epitaxial wafer manufacturing method and nitride semiconductor epitaxial wafer
JP2007053251A (en) Formation method of group iii nitride crystal, lamination, and epitaxial substrate
JP2011051849A (en) Nitride semiconductor self-supporting substrate and method for manufacturing the same
JP2005032823A (en) Method for manufacturing epitaxial wafer for field-effect transistor
JP2011138971A (en) Epitaxial wafer, transistor and light-emitting device using same, and method of manufacturing epitaxial wafer
JP3946976B2 (en) Semiconductor device, epitaxial substrate, semiconductor device manufacturing method, and epitaxial substrate manufacturing method
JP2010040737A (en) Semiconductor substrate and method of manufacturing the same
JP2008214132A (en) Group iii nitride semiconductor thin film, group iii nitride semiconductor light-emitting element, and method for manufacturing group iii nitride semiconductor thin film
JP4233894B2 (en) Manufacturing method of semiconductor single crystal
JP2009084136A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees