JP2009054300A - Internal short circuit evaluation method of battery - Google Patents

Internal short circuit evaluation method of battery Download PDF

Info

Publication number
JP2009054300A
JP2009054300A JP2007217042A JP2007217042A JP2009054300A JP 2009054300 A JP2009054300 A JP 2009054300A JP 2007217042 A JP2007217042 A JP 2007217042A JP 2007217042 A JP2007217042 A JP 2007217042A JP 2009054300 A JP2009054300 A JP 2009054300A
Authority
JP
Japan
Prior art keywords
battery
short circuit
internal short
temperature
electrode group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007217042A
Other languages
Japanese (ja)
Inventor
Naoyuki Wada
直之 和田
Hajime Nishino
肇 西野
Shinji Kasamatsu
真治 笠松
Kazusato Fujikawa
万郷 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007217042A priority Critical patent/JP2009054300A/en
Publication of JP2009054300A publication Critical patent/JP2009054300A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that safety of a battery at an internal short circuit is limited when the short circuit takes place at an outermost periphery part of the battery in a nail-pegging test as a conventional battery internal short circuit evaluation method, its estimation result is greatly influenced by a structure of the outermost periphery part, moreover, accurate evaluation is not yet achieved in a crushing test similarly used as an internal short circuit evaluation method, due to variation in occurrence points of a short circuit according to tests. <P>SOLUTION: The method of evaluating safety of the battery at an internal short circuit enables to short-circuit any point in the battery at any temperature. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電池の評価法に関し、特に内部短絡時の安全性を評価する方法に関する。   The present invention relates to a battery evaluation method, and more particularly to a method for evaluating safety during an internal short circuit.

リチウム二次電池は、軽量で、高エネルギー密度を有することから、主にポータブル機器用の電源として実用化されている。また、現在は、大型で高出力な電源(例えば車載用の電源)としても、リチウム二次電池が注目されており、開発が盛んに行われている。   Lithium secondary batteries are lightweight and have a high energy density, and are therefore put to practical use mainly as power sources for portable devices. At present, lithium secondary batteries are attracting attention as a large-sized and high-output power source (for example, an on-vehicle power source) and are actively developed.

リチウム二次電池では、正極と負極との間に、それぞれの極板を電気的に絶縁し、さらに電解液を保持する役目をもつ絶縁層がある。リチウム二次電池を極度な高温環境に長時間保持した場合、上述した樹脂製の絶縁層は収縮しやすいために、正極と負極とが物理的に接触して内部短絡が発生する傾向があった。特に近年、リチウム二次電池の高容量化に伴う絶縁層の薄型化の傾向と相まって、内部短絡の課題はより一層重大なものになりつつある。一旦内部短絡が発生すると、短絡電流に伴うジュール熱によって短絡部はさらに拡大し、電池が発熱に至る場合もある。   In a lithium secondary battery, there is an insulating layer between a positive electrode and a negative electrode that electrically insulates each electrode plate and holds an electrolyte. When the lithium secondary battery is kept in an extremely high temperature environment for a long time, the above-mentioned resin insulating layer tends to shrink, so that there is a tendency that the positive electrode and the negative electrode are in physical contact and an internal short circuit occurs. . Particularly, in recent years, the problem of internal short-circuiting is becoming more serious, coupled with the trend toward thinning of the insulating layer accompanying the increase in capacity of lithium secondary batteries. Once an internal short circuit occurs, the short circuit part may further expand due to Joule heat associated with the short circuit current, and the battery may generate heat.

電池に内部短絡が生じた場合においても、その安全性を確保することは非常に重要であり、従来より電池の内部短絡時の安全性を高める技術について、盛んに開発が進められており、正極または負極の集電体露出部において、絶縁性テープを貼付し、集電体間の内部短絡を防ぐ技術(特許文献1参照)や、極板上にイオン透過性の、セラミック粒子とバインダーからなる絶縁層を印刷する技術(特許文献2参照)などが提案されている。   Even when an internal short circuit occurs in a battery, it is very important to ensure its safety, and technology has been actively developed to improve safety in the event of an internal short circuit of the battery. Alternatively, in the current collector exposed portion of the negative electrode, an insulating tape is applied to prevent an internal short circuit between the current collectors (see Patent Document 1), or an ion permeable ceramic particle and binder on the electrode plate. A technique for printing an insulating layer (see Patent Document 2) has been proposed.

さらに、内部短絡が生じた際の安全性を確保するためには、内部短絡が発生した際の電池の安全性を正しく評価することも非常に重要である。   Furthermore, in order to ensure safety when an internal short circuit occurs, it is also very important to correctly evaluate the safety of the battery when an internal short circuit occurs.

例えば、従来、リチウムイオン二次電池などの電池の安全性項目として内部短絡時の発熱挙動を評価する電池評価試験が例えばリチウム電池のためのUL規格(UL1642)、電池工業会からの指針(SBA G1101−1997リチウム二次電池安全性評価基準ガイドライン)などで制定されている(例えば特許文献3参照)。   For example, conventionally, a battery evaluation test for evaluating the heat generation behavior at the time of an internal short circuit as a safety item of a battery such as a lithium ion secondary battery is, for example, a UL standard (UL1642) for a lithium battery, a guideline (SBA G1101-1997 Lithium Secondary Battery Safety Evaluation Standard Guidelines) (see, for example, Patent Document 3).

これらの評価試験の中で、例えば釘刺し試験は電池側面より釘を貫通もしくは突き刺しを行う内部短絡試験である。釘を突き刺すことにより電池内部の正極、負極、釘間で短絡部が発生、そのために短絡部に短絡電流が流れ、ジュール発熱が発生する。これらの現象に基づく電池温度または電池電圧などの変化を観察するものである。また圧壊試験においては丸棒、角棒、平板などにより電池を物理的に変形させる内部短絡試験である。これにより正極、負極間での内部短絡を発生させ電池温度または電池電圧などの変化を観察するものである。
特開2004−247064号公報 特開平10−106530号公報 特開平11−102729号公報
Among these evaluation tests, for example, the nail penetration test is an internal short circuit test that penetrates or pierces the nail from the battery side. By piercing the nail, a short-circuit portion is generated between the positive electrode, the negative electrode, and the nail inside the battery, and therefore a short-circuit current flows through the short-circuit portion and Joule heat is generated. Changes in battery temperature or battery voltage based on these phenomena are observed. The crushing test is an internal short circuit test in which a battery is physically deformed by a round bar, a square bar, a flat plate or the like. This causes an internal short circuit between the positive electrode and the negative electrode to observe changes in battery temperature or battery voltage.
Japanese Patent Laid-Open No. 2004-247064 Japanese Patent Laid-Open No. 10-106530 JP-A-11-102729

しかしながらこれら従来の電池評価方法は、いずれも内部短絡に対する安全性を正確には評価できていなかった。   However, none of these conventional battery evaluation methods has been able to accurately evaluate the safety against internal short circuits.

また、電池の使用用途を考慮する上で、内部短絡が発生したときに「全く発熱しない」
もしくは「多少の発熱が存在する」など、どのレベルの安全性能を有しているか知る必要がある。しかるに、従来は内部短絡の安全性が正確に評価できていなかったために、安全性のレベルも特定されていなかった。そこで電池ごとに内部短絡に関する安全性レベルを特定することが切望されていた。
In addition, when considering the usage of the battery, "No heat is generated" when an internal short circuit occurs.
Or it is necessary to know what level of safety performance it has such as “there is some heat generation”. However, since the safety of internal short circuits has not been accurately evaluated in the past, the level of safety has not been specified. Therefore, it has been anxious to specify the safety level related to internal short circuit for each battery.

まず、内部短絡に対する安全性について、我々発明者の鋭意研究により、電池内の短絡箇所(電池表面からの距離、集電体の露出部や活物質形成部、ないしは電池の形状など)によって電池に内部短絡が発生した際の安全性が大きく変化することが明らかとなった。例えば、電池表面近くで発生した短絡は、内部で発生した短絡よりも放熱の影響で見かけ上安全性は高くなる。また、例えば電極の集電体などの抵抗の低い部材の対向した箇所と、電極活物質等の抵抗のある程度高い部材の対向した箇所で同時に短絡が起こった際、短絡に伴う短絡電流は抵抗の低い集電体対向箇所にその多くが流れ、すなわちジュール熱も、熱的な安定性の高くない活物質対向部ではなく、集電体の対向部でその多くが発生するため、見かけ上内部短絡の安全性が高くなる。   First, regarding the safety against internal short-circuiting, we have conducted extensive research to determine whether the battery has a short-circuit location (distance from the battery surface, exposed part of the current collector or active material forming part, or battery shape). It became clear that the safety when an internal short circuit occurred changed greatly. For example, a short circuit that occurs near the battery surface is apparently safer due to heat dissipation than a short circuit that occurs internally. Also, for example, when a short circuit occurs simultaneously at a location where a low-resistance member such as an electrode current collector faces and a location where a member with a relatively high resistance such as an electrode active material faces, the short-circuit current associated with the short-circuit is Most of the current flows in the low current collector facing area, that is, Joule heat is generated not at the active material facing area where the thermal stability is not high but at the current collector facing area. The safety will be higher.

すなわち、短絡の発生する箇所によっては、より危険な状態になる可能性のある電池においても、評価方法が適切でないと安全な電池であると間違った評価を下してしまう可能性があり、電池の内部短絡安全性を正しく評価するためには、電池の形状や構成を鑑み、見かけ上安全に評価されてしまう箇所を避けた、任意の場所で内部短絡を発生させることが非常に重要である。   That is, depending on the location where the short circuit occurs, even in a battery that may be in a more dangerous state, if the evaluation method is not appropriate, it may be wrongly evaluated as a safe battery. In order to correctly evaluate the internal short circuit safety of the battery, it is very important to generate an internal short circuit at an arbitrary place, avoiding the places where the safety is apparently evaluated in view of the shape and configuration of the battery. .

しかしながら、従来から行われている釘刺し試験においては、短絡箇所が電池の最表面に限られており、その評価結果は最外周部の構成に大きく左右される。例えば、釘刺し試験において、短絡部において発生する熱量W(W)は、電池の電圧をV(V)、短絡部の抵抗をR1(Ω)、電池の内部抵抗をR2(Ω)とすると、
W=V2×R1/(R1+R2)2
で表される。従って、短絡部の抵抗が電池の内部抵抗と等しいとき短絡部での発熱量は極大を示す。つまり、短絡部の抵抗が電池の内部抵抗に比べて十分小さいまたは十分大きいとき、発熱量は小さくなる。釘刺し試験においては、短絡の発生する最外周部に抵抗の小さな箇所、具体的には活物質の存在しない集電体の露出部等を設けることにより評価結果が安全になる。
However, in the conventional nail penetration test, the short-circuited portion is limited to the outermost surface of the battery, and the evaluation result greatly depends on the configuration of the outermost peripheral portion. For example, in the nail penetration test, the amount of heat W (W) generated in the short-circuit portion is expressed as follows: the battery voltage is V (V), the short-circuit resistance is R1 (Ω), and the battery internal resistance is R2 (Ω).
W = V 2 × R1 / (R1 + R2) 2
It is represented by Therefore, when the resistance of the short circuit portion is equal to the internal resistance of the battery, the amount of heat generated in the short circuit portion shows a maximum. That is, when the resistance of the short circuit portion is sufficiently small or sufficiently large compared to the internal resistance of the battery, the amount of heat generation is small. In the nail penetration test, an evaluation result becomes safe by providing a portion having a small resistance, specifically, an exposed portion of a current collector having no active material, in the outermost peripheral portion where a short circuit occurs.

しかし、仮に電池内に異物が混入した場合は、そのサイズや形状、硬さ等によっては、電池内の任意の場所で内部短絡が発生する可能性がある。すなわち、従来の内部短絡安全性評価法である釘刺し試験法においては、市場において起こりうる内部短絡に対する安全性を正確には評価できていない。   However, if a foreign substance is mixed in the battery, an internal short circuit may occur at an arbitrary location in the battery depending on its size, shape, hardness, and the like. That is, the conventional nail penetration test method, which is an internal short circuit safety evaluation method, cannot accurately evaluate the safety against internal short circuits that can occur in the market.

また、釘刺し試験と並び、内部短絡評価法として用いられている圧壊試験法においても、圧壊試験時の短絡挙動の解析から、一度に複数の点が短絡していることまたは短絡の発生箇所が試験によってばらつきがあることがあきらかとなり、内部短絡に対する安全性を正確には評価できていないと考えられる。   Also, in the crushing test method used as an internal short-circuit evaluation method, along with the nail penetration test, the analysis of the short-circuit behavior during the crushing test shows that multiple points are short-circuited at the same time or where the short-circuit occurred. It is clear that there are variations depending on the test, and it is considered that safety against internal short-circuits has not been accurately evaluated.

また、市場において、電池は使用される装置や環境によって、さまざまな温度で用いられる。よって、市場において起こりうる内部短絡に対する安全性を正確に評価するには、さまざまな温度で内部短絡を発生させる必要がある。   Also, in the market, batteries are used at various temperatures depending on the equipment and environment used. Therefore, in order to accurately evaluate the safety against an internal short circuit that can occur in the market, it is necessary to generate the internal short circuit at various temperatures.

これらのことより、電池内部の任意の場所で、任意の温度で短絡試験を行い、電池の内部短絡安全性を総合的に評価するための評価手法、評価装置及び電池の安全性レベルの特定が切望されている。   From these, it is possible to conduct a short-circuit test at an arbitrary temperature inside the battery at an arbitrary temperature, and to identify an evaluation method, an evaluation device, and a battery safety level for comprehensively evaluating the internal short-circuit safety of the battery. Longed for.

本発明は、上記課題を鑑みてなされたものであり、内部短絡時の安全性を正確に評価する方法に関する。   The present invention has been made in view of the above problems, and relates to a method for accurately evaluating safety at the time of an internal short circuit.

すなわち、本発明は、正極と、負極と、正負極を電気的に絶縁する絶縁層とを巻回、または積層した電極群と電解質と、これらを内包する外装体と、電極群と電気的に接続する集電端子とを含む電池の内部短絡時の安全性を評価する方法であって、臨界温度抵抗体により、電池内の任意の点で、前記臨界温度抵抗体の抵抗変化温度以上の環境温度において短絡を発生させることが可能であるものである。   That is, the present invention relates to an electrode group and an electrolyte in which a positive electrode, a negative electrode, and an insulating layer that electrically insulates the positive and negative electrodes are wound or laminated, an outer package that contains them, and an electrode group. A method for evaluating safety at the time of internal short-circuiting of a battery including a current collecting terminal to be connected, wherein the environment at or above a resistance change temperature of the critical temperature resistor at any point in the battery by a critical temperature resistor It is possible to generate a short circuit at temperature.

金属酸化物や半導体などは、電気抵抗が温度で大きく変化する。この特性を利用して、サーミスタなどの素子に利用されている。   For metal oxides, semiconductors, etc., the electrical resistance varies greatly with temperature. Utilizing this characteristic, it is used for an element such as a thermistor.

このうち温度の上昇で抵抗が大きくなるものを、正の温度係数(Positive Temperature Coefficient)からPTCと呼ばれ、チタン酸バリウムを主成分としてイットリウム、ランタンなどを配合したものが代表的なものである。   Among them, the one whose resistance increases as the temperature rises is called PTC from the positive temperature coefficient (Positive Temperature Coefficient), and the one that contains barium titanate as the main component and yttrium, lanthanum, etc. is typical. .

一方、温度の上昇で抵抗が減少するものを負の温度係数(Negative Temperature Coefficient)からNTCと呼ばれ、ニッケル、マンガン、コバルト、鉄などの遷移金属酸化物を混合して焼結したものが代表的なものである。   On the other hand, those whose resistance decreases as temperature rises are called NTC from the negative temperature coefficient (Negative Temperature Coefficient), and those that are sintered by mixing transition metal oxides such as nickel, manganese, cobalt, and iron are representative. Is something.

本発明に用いられる臨界温度抵抗体(Critical Tempreratur Resisiter、以下CTRと呼ぶ)は、特定の温度で抵抗が急変する臨界温度係数(Critical Tempreratur Coefficient)を持つものであり、酸化バナジウム系材料が代表的なものである。   The critical temperature resistor used in the present invention (Critical Temperature Resistor, hereinafter referred to as CTR) has a critical temperature coefficient (Critical Temperature Coefficient) in which resistance suddenly changes at a specific temperature, and a vanadium oxide-based material is representative. It is a thing.

第2の発明は、第1の発明の電池の内部短絡評価方法において、電池の電極群内部の正極と負極が対向する箇所にCTRを異物として混入させ、加圧子を用いて混入部をプレスし、さらに昇温することによって、正負極間に介在する絶縁体を局所的に破壊し、短絡を発生させて行うものである。   According to a second invention, in the internal short circuit evaluation method for a battery according to the first invention, CTR is mixed as a foreign substance at a position where the positive electrode and the negative electrode inside the battery electrode group face each other, and the mixed portion is pressed using a pressurizer. Further, by further raising the temperature, the insulator interposed between the positive and negative electrodes is locally destroyed and a short circuit is generated.

第3の発明は、第2の発明の電池の内部短絡評価方法において、CTRを異物として電極群構成時に混入することによって、短絡を発生させて行うものである。   According to a third aspect of the present invention, in the internal short circuit evaluation method for a battery according to the second aspect of the present invention, a short circuit is generated by mixing CTR as a foreign substance during electrode group configuration.

第4の発明は、第2の発明の電池の内部短絡評価方法において、完成した電池を分解して外装体から取り出した電極群内部の正極と負極が対向する箇所にCTRを異物として混入し、再度電極群を構成した後に、加圧子による加圧力で混入部をプレスし、昇温することによって、短絡を発生させて行うものである。   According to a fourth invention, in the internal short circuit evaluation method for a battery according to the second invention, CTR is mixed as a foreign substance at a position where the positive electrode and the negative electrode inside the electrode group taken out of the outer package after disassembling the completed battery, After the electrode group is formed again, the mixed portion is pressed with a pressurizing force by a pressurizer and heated to generate a short circuit.

第5の発明は、第1の発明の電池の内部短絡評価方法において、電池の電極群内部の正極と負極が対向する絶縁体の一部をCTRに置き換えて構成した電池を、昇温することによって、短絡を発生させて行うものである。   According to a fifth aspect of the present invention, in the internal short circuit evaluation method for a battery according to the first aspect, the temperature of a battery configured by replacing a part of an insulator facing the positive electrode and the negative electrode inside the electrode group of the battery with CTR is increased. Is performed by generating a short circuit.

第6の発明は、第5の発明の電池の内部短絡評価方法において、電池の電極群内部の正極と負極が対向する絶縁体の一部をCTRに、電極群構成時に置き換えて構成した電池を、昇温することによって、短絡を発生させて行うものである。   According to a sixth aspect of the present invention, in the internal short circuit evaluation method for a battery according to the fifth aspect of the present invention, there is provided a battery configured by replacing a part of an insulator facing a positive electrode and a negative electrode inside a battery electrode group with a CTR at the time of electrode group configuration. In this case, a short circuit is generated by raising the temperature.

第7の発明は、第5の発明の電池の内部短絡評価方法において、完成した電池を分解して外装体から取り出した電極群の正極と負極が対向する絶縁体の一部をCTRに置き換え、再度電極群を構成した後に、昇温することによって、短絡を発生させて行うものである
According to a seventh invention, in the internal short circuit evaluation method for a battery of the fifth invention, a part of the insulator in which the positive electrode and the negative electrode of the electrode group taken out of the outer package after disassembling the completed battery are replaced with CTR, After forming the electrode group again, the temperature is raised to cause a short circuit.

第8の発明は、第1の発明の電池の内部短絡評価方法において、CTRが酸化バナジウムまたはその変異体であるものである。   The eighth invention is the battery internal short-circuit evaluation method of the first invention, wherein the CTR is vanadium oxide or a variant thereof.

電池の内部短絡を電池内の任意の点をCTRの抵抗変化温度以上において短絡させる評価法を用いることによって、従来の釘刺し試験法のように、評価結果が電池の構成に左右されたり、圧壊試験のように試験結果にばらつきが出たりすることなく、内部短絡時の電池の安全性を正確に評価することが可能となる。またCTRは負の温度−抵抗特性を持ちかつ特定の温度で急激に抵抗値変化するため、低温では絶縁体である。よってCTRの異物は、金属異物と比較して、安全に電極群に挿入することができる。また、CTRを用いることにより、セパレータの一部を、CTRを含むシート等に置き換えて電池を構成した後、昇温し短絡させるといった従来になかった内部短絡評価法も可能となる。   By using an evaluation method in which any point in the battery is short-circuited above the resistance change temperature of the CTR, the evaluation result depends on the configuration of the battery or collapses, as in the conventional nail penetration test method. It is possible to accurately evaluate the safety of the battery at the time of an internal short circuit without causing variations in test results as in the test. CTR has a negative temperature-resistance characteristic and changes its resistance value rapidly at a specific temperature, so that it is an insulator at a low temperature. Therefore, the CTR foreign matter can be safely inserted into the electrode group as compared with the metal foreign matter. Further, by using CTR, an unprecedented internal short-circuit evaluation method is possible in which a part of the separator is replaced with a sheet containing CTR or the like to constitute a battery, and then the temperature is raised and short-circuited.

本発明の電池の内部短絡時の安全性評価方法は、電池内の任意の点をCTRの抵抗変化温度において短絡させることが可能であるものである。   The safety evaluation method at the time of internal short-circuiting of the battery of the present invention can short-circuit any point in the battery at the resistance change temperature of the CTR.

電池内に含ませる負の温度−抵抗特性を持ちかつ特定の温度で急激に抵抗値変化するCTRは、温度を上昇させた際、ある温度で急激に電気抵抗が低下する材料であり、その温度変化点は物質特有である。CTRとして、酸化バナジウムが挙げられる。また酸化バナジウムに添加元素(W,Mo,Nb,Ti,Fe,Alなど)を加えることによって、温度特性を変えることも可能である。CTRを用いることにより、CTRの抵抗変化温度において短絡させることが可能である。   CTR, which has a negative temperature-resistance characteristic contained in a battery and changes its resistance value rapidly at a specific temperature, is a material whose electrical resistance rapidly decreases at a certain temperature when the temperature is increased. The change points are material specific. An example of CTR is vanadium oxide. It is also possible to change the temperature characteristics by adding additional elements (W, Mo, Nb, Ti, Fe, Al, etc.) to vanadium oxide. By using CTR, it is possible to short-circuit at the resistance change temperature of CTR.

従来の内部短絡試験法である釘刺し試験は、短絡箇所が電池の最外周部に限られているため、その評価結果は最外周部の構成に大きく左右される。例えば、電池の内周部において内部短絡が発生した場合においては発熱量の大きい電池であっても、電池最外周部の構成を工夫することによって、釘刺し試験において発生する発熱量の低減が可能であり、市場で起こりうる内部短絡に対する安全性が正確に評価できない場合がある。   In the nail penetration test which is a conventional internal short-circuit test method, the short-circuit portion is limited to the outermost peripheral portion of the battery, and the evaluation result greatly depends on the configuration of the outermost peripheral portion. For example, when an internal short circuit occurs in the inner periphery of the battery, even if the battery generates a large amount of heat, the amount of heat generated in the nail penetration test can be reduced by devising the configuration of the outermost periphery of the battery. In some cases, safety against an internal short circuit that may occur in the market cannot be accurately evaluated.

それに対して、電池内の任意の点を短絡させることが可能な内部短絡評価法を用いることによって、電池の局所的な構成にとらわれることなく、内部短絡に対する安全性を正しく評価することができる。   On the other hand, by using an internal short-circuit evaluation method capable of short-circuiting an arbitrary point in the battery, safety against the internal short-circuit can be correctly evaluated without being bound by the local configuration of the battery.

電池内の任意の点を任意の温度で短絡させることが可能な評価方法としては、例えば電池の電極群内部の正負極が対向する箇所にCTRを異物として混入させ、混入部をプレスした後、環境温度を前記臨界温度抵抗体の抵抗変化温度以上にすることによって、絶縁層を局所的に破壊し、短絡を発生させて行う方法が挙げられる。異物は電池内の任意の箇所に設置することができるため、短絡にかかわる正負極を任意に選択することが可能となる。具体的には正極の活物質部と負極の活物質部、また正極集電体と負極活物質部などが挙げられる。また、CTRを変えることにより、異物の抵抗変化温度を制御することができるため、任意の温度で内部短絡を発生させることが可能となる。また異物の形状や硬さ、大きさあるいは短絡時の圧力等を変えることにより、発生する内部短絡を制御することができ、好ましい。   As an evaluation method capable of short-circuiting an arbitrary point in the battery at an arbitrary temperature, for example, CTR is mixed as a foreign substance at a location where the positive and negative electrodes inside the battery electrode group face each other, and after pressing the mixed portion, There is a method in which the ambient temperature is set to be equal to or higher than the resistance change temperature of the critical temperature resistor to locally destroy the insulating layer and generate a short circuit. Since the foreign substance can be placed at any location in the battery, it is possible to arbitrarily select the positive and negative electrodes involved in the short circuit. Specific examples include a positive electrode active material part and a negative electrode active material part, and a positive electrode current collector and a negative electrode active material part. Further, since the resistance change temperature of the foreign substance can be controlled by changing the CTR, an internal short circuit can be generated at an arbitrary temperature. Moreover, the internal short circuit which generate | occur | produces can be controlled by changing the shape, hardness, magnitude | size of a foreign material, or the pressure at the time of a short circuit, and is preferable.

さらに、評価の際に、短絡の発生を検出してプレスを停止することが好ましい。こうすることによって、内部短絡の発生箇所を局所に限定することが可能となる。短絡面積が変化すると発生する発熱量にばらつきが生じ、内部短絡に対する安全性の評価精度が低下す
る。短絡の検出方法としては、短絡に伴う電池の電圧低下、温度上昇、短絡時に発生する音、光などが挙げられる。
Furthermore, it is preferable to detect the occurrence of a short circuit and stop the press during the evaluation. By doing so, it is possible to limit the location where the internal short circuit occurs locally. When the short-circuit area changes, the amount of generated heat varies, and the safety evaluation accuracy against internal short-circuiting decreases. As a method for detecting a short circuit, there are a battery voltage drop, a temperature rise, a sound generated at the time of a short circuit, light, and the like due to the short circuit.

プレスの際には、一定速度で、または一定加圧でプレスすることが好ましい。こうすることにより、試験結果のばらつきを少なくし、精度よく評価を行うことができる。一定速度でプレスする場合は、絶縁層が破壊されるまでの加圧力が、短絡の発生によって開放され、加圧力が低下する。この加圧力の低下によって短絡の発生を検出してもよい。   When pressing, it is preferable to press at a constant speed or at a constant pressure. By doing so, it is possible to reduce the variation in the test results and perform the evaluation with high accuracy. When pressing at a constant speed, the applied pressure until the insulating layer is destroyed is released by the occurrence of a short circuit, and the applied pressure is reduced. The occurrence of a short circuit may be detected by the decrease in the applied pressure.

プレスの際の加圧力は50kg/cm2以下が好ましい。50kg/cm2を越えると、電極群自体が変形を起こす可能性があり、短絡発生面積がばらつくことが考えられる。さらには、異物混入部以外での短絡が起こる可能性があり、好ましくない。 The pressing force during pressing is preferably 50 kg / cm 2 or less. If it exceeds 50 kg / cm 2 , the electrode group itself may be deformed, and the short-circuit generation area may vary. Furthermore, there is a possibility that a short circuit will occur at a portion other than the foreign matter mixed portion, which is not preferable.

電池内に異物を混入させる方法としては、完成した電池を分解して外装体から取り出した電極群内部の、正極と負極が対向する箇所に異物を混入し、再度構成した後に、プレスする方法が挙げられる。電池作製後に異物を混入させることによって、電池作製の工程中に内部短絡が発生することを避けることが可能である。   As a method of mixing foreign matter in the battery, there is a method in which foreign matter is mixed in a position where the positive electrode and the negative electrode face each other in the electrode group taken out of the outer package after disassembling the completed battery, and re-configured and then pressed. Can be mentioned. It is possible to avoid the occurrence of an internal short circuit during the battery production process by mixing foreign matter after the battery production.

電池内に異物を混入させる、さらに別の方法としては、電池作製時の電解液注入前に任意の場所に混入させる方法が挙げられる。電解液注入前に異物を混入させることにより、作製した電池そのままの状態で評価することができ、簡便であるため好ましい。この際に電極群内に混入させるものとしては、電池の作動電圧範囲において電気化学的に、かつ化学的に安定であることが好ましい。例えば、電池がリチウム二次電池であるとき、酸化バナジウムを正極と絶縁層の間に混入させるのが好ましい。   As another method of mixing foreign matter in the battery, there is a method of mixing it in an arbitrary place before injecting the electrolyte at the time of manufacturing the battery. It is preferable to mix a foreign substance before injecting the electrolyte solution because it can be evaluated as it is in the produced battery and is simple. In this case, the material to be mixed in the electrode group is preferably electrochemically and chemically stable in the operating voltage range of the battery. For example, when the battery is a lithium secondary battery, vanadium oxide is preferably mixed between the positive electrode and the insulating layer.

電極群内に混入させる異物の大きさとしては、電池がリチウム二次電池である場合、電極面に対して垂直な方向の異物の長さをd、正極の活物質層の厚みをa、絶縁層の厚みをbとしたときに、d≧a+bを満たすことが好ましい。d<a+bの場合、正負極の活物質層に異物を混入した場合は、異物は正極板の集電体には到達せず、正極合剤と負極合剤を介した短絡となる。しかし、異物が大きく、正極集電体と負極合剤間で短絡が発生した場合は、リチウム二次電池の正極集電体の抵抗が正極活物質層の抵抗よりも低いために、より多くのジュール熱が発生する。すなわち、d<a+bの場合は内部短絡時の安全性を過大評価する可能性があるため、d≧a+bを満たすことが好ましい。   When the battery is a lithium secondary battery, the size of the foreign matter to be mixed in the electrode group is d for the length of the foreign matter in the direction perpendicular to the electrode surface, a for the thickness of the active material layer of the positive electrode, and insulation. When the thickness of the layer is b, it is preferable that d ≧ a + b is satisfied. In the case of d <a + b, when foreign matter is mixed in the active material layer of the positive and negative electrodes, the foreign matter does not reach the current collector of the positive electrode plate, but short-circuits through the positive electrode mixture and the negative electrode mixture. However, when the foreign material is large and a short circuit occurs between the positive electrode current collector and the negative electrode mixture, the resistance of the positive electrode current collector of the lithium secondary battery is lower than the resistance of the positive electrode active material layer, so that more Joule heat is generated. That is, in the case of d <a + b, there is a possibility of overestimating the safety at the time of an internal short circuit. Therefore, it is preferable that d ≧ a + b is satisfied.

また同様に、電極群内に混入させる異物の大きさとしては、電極上に置いた際の極板面に垂直な方向の長さをd、絶縁層の厚みをb、正極の厚みをc、負極の厚みをeとしたときに、d≦c+e+2×bを満たすことが好ましい。c+e+2×bを越えると、電極板に対して垂直方向に、2層分の短絡が同時に発生する可能性があり、局所的に発生する発熱量にばらつきが生じ、内部短絡に対する安全性の評価精度が低下する。   Similarly, the size of the foreign matter mixed in the electrode group is as follows: d is the length in the direction perpendicular to the electrode plate surface when placed on the electrode, b is the thickness of the insulating layer, c is the thickness of the positive electrode, It is preferable that d ≦ c + e + 2 × b is satisfied, where e is the thickness of the negative electrode. If c + e + 2 × b is exceeded, two layers of short circuits may occur simultaneously in the direction perpendicular to the electrode plate, resulting in variations in the amount of heat generated locally, and the accuracy of safety evaluation against internal short circuits Decreases.

電極群内に混入させる異物の形状については、異方性を有するものが好ましい。異方性を有することにより、プレス時に過剰な荷重をかけることなく、すみやかに絶縁層を局部的に破壊することができる。球状など、異方性が存在しない場合は、過剰な加圧によって、電極の破壊を伴う可能性がある。   About the shape of the foreign material mixed in an electrode group, what has anisotropy is preferable. By having anisotropy, the insulating layer can be locally broken immediately without applying an excessive load during pressing. When there is no anisotropy, such as a spherical shape, the electrode may be destroyed by excessive pressurization.

電池内の任意の点を任意の温度で短絡させることが可能な別の評価方法としては、電池の絶縁層のうち、正極と負極が対向する箇所を一定面積切除し、CTRに置き換えて構成した電池を、環境温度を前記臨界温度抵抗体の抵抗変化温度以上にすることによって、短絡を発生させて行う方法が挙げられる。絶縁層の切除箇所および短絡面積を任意に決めることができ、またCTRを変えることによって短絡温度を任意に決めることができる。さらにその面積が常に一定であることから、短絡の状態を非常に精度よく制御することがで
き、内部短絡に対する安全性を正確に評価することができる。
As another evaluation method capable of short-circuiting an arbitrary point in the battery at an arbitrary temperature, a portion of the insulating layer of the battery where the positive electrode and the negative electrode face each other is cut off and replaced with CTR. A method of performing a short circuit by causing the battery to have an environmental temperature equal to or higher than the resistance change temperature of the critical temperature resistor is exemplified. The location where the insulating layer is cut and the short-circuit area can be arbitrarily determined, and the short-circuit temperature can be arbitrarily determined by changing the CTR. Furthermore, since the area is always constant, the state of the short circuit can be controlled very accurately, and the safety against the internal short circuit can be accurately evaluated.

その際に絶縁層をCTR置き換える方法としては、電極群構成前に絶縁層をCTRに置き換えてもよいし、完成した電池を分解して外装体から取り出した後に、電極群内の絶縁層をCTRに置き換えて再度構成してもよい。   In this case, as a method of replacing the insulating layer with CTR, the insulating layer may be replaced with CTR before the electrode group is configured, or after disassembling the completed battery and taking it out of the outer package, the insulating layer in the electrode group is replaced with CTR. It may be replaced and reconfigured.

また、前記内部短絡評価方法によって、内部短絡に関する安全レベルが特定された製造法に於いて電池を製造することが好ましい。同じ製造方法に於いて電池を製造することにより、内部短絡安全性レベルを同様に保証することができる。   Moreover, it is preferable to manufacture a battery by the manufacturing method in which the safety level related to the internal short circuit is specified by the internal short circuit evaluation method. By manufacturing the battery in the same manufacturing method, the internal short circuit safety level can be ensured as well.

さらに、前記内部短絡評価方法によって、内部短絡に関する安全レベルが特定された製造法に於いて電池パックを製造することが好ましい。同じ製造方法に於いて電池パックを製造することにより、内部短絡安全性レベルを同様に保証することができる。   Furthermore, it is preferable that the battery pack is manufactured by the manufacturing method in which the safety level related to the internal short circuit is specified by the internal short circuit evaluation method. By manufacturing the battery pack in the same manufacturing method, the internal short circuit safety level can be similarly guaranteed.

また、前記製造方法によって製造された電池であることが好ましい。これにより電池の内部短絡安全性レベルを同様に保証することができる。   Moreover, it is preferable that it is the battery manufactured by the said manufacturing method. As a result, the internal short-circuit safety level of the battery can be similarly guaranteed.

さらに、前記製造方法によって製造された電池パックであることが好ましい。これにより電池パックの内部短絡安全性レベルを同様に保証することができる。   Furthermore, it is preferable that it is a battery pack manufactured by the said manufacturing method. As a result, the internal short-circuit safety level of the battery pack can be similarly guaranteed.

次に、電池の電極群内部の正負極が対向する箇所にCTRを異物として混入させ、混入部をプレスした後、昇温することによって絶縁層を局所的に破壊し、短絡を発生させて行う方法によって、電池の任意の箇所において任意の温度で短絡を発生させることが可能な、電池の内部短絡に対する安全性を評価する評価装置について、以下に具体的なブロック図を参照して本発明の実施形態を詳細に説明する。なお、以下に示す実施形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。   Next, CTR is mixed as a foreign substance at a position where the positive and negative electrodes inside the battery electrode group face each other, and after pressing the mixed portion, the insulating layer is locally broken by raising the temperature, thereby causing a short circuit. An evaluation apparatus for evaluating safety against an internal short circuit of a battery that can generate a short circuit at an arbitrary temperature at an arbitrary position of the battery by the method is described below with reference to a specific block diagram. The embodiment will be described in detail. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.

図1に本発明の電池評価装置ブロック図の一例を示す。1は電池、2は加圧部、3は加圧制御部、4は短絡検出部、5は電池情報測定部、6は加圧部高さ位置検出部、7は温度制御装置である。   FIG. 1 shows an example of a battery evaluation apparatus block diagram of the present invention. 1 is a battery, 2 is a pressurization unit, 3 is a pressurization control unit, 4 is a short circuit detection unit, 5 is a battery information measurement unit, 6 is a pressurization unit height position detection unit, and 7 is a temperature control device.

加圧部2は電池を強制的に短絡させるために設けられたものである。加圧部の先端に丸棒、角棒、平板、などを設置し、CTRを異物として混入させた試験電池に向かって駆動させ加圧する。これにより、例えば丸棒、角棒、平板などを設置した場合には電池を加圧して、絶縁層を局所的に破壊し、電池内部で異物を介して正極、負極間を接続することができる。   The pressure unit 2 is provided to forcibly short-circuit the battery. A round bar, a square bar, a flat plate, or the like is installed at the tip of the pressurizing unit, and the CTR is driven and pressurized toward the test battery mixed with foreign matters. Thereby, for example, when a round bar, a square bar, a flat plate, or the like is installed, the battery can be pressurized, the insulating layer can be locally broken, and the positive electrode and the negative electrode can be connected via foreign matter inside the battery. .

また加圧部に用いられる加圧機は上記試験を行うことができるものであればどのようなものでもよいが、例えばサーボモータを用いたスクリュー式、ポストガイドスクリュー式、フリコ式、テコ式、クランク式、メカニカルプレス式、油圧プレス式、エアープレス式などの加圧装置が用いられる。   The pressurizing unit used in the pressurizing unit may be any unit that can perform the above test. For example, a screw type using a servo motor, a post guide screw type, a frico type, a lever type, a crank type A pressure device such as a pressure type, a mechanical press type, a hydraulic press type, or an air press type is used.

温度制御装置7は試験電池の置かれる雰囲気温度を制御する装置である。CTRからなる異物を介して正極と負極が接続しても短絡が開始しないような温度において、CTRを異物として混入させ、混入部を加圧することによって絶縁層を局所的に破壊し、電池内部で異物を介して正極、負極間を接続する。そして、CTRからなる異物の抵抗が、短絡を開始するほど低くなるような温度まで昇温することによって、電池内部で正極、負極間で短絡が発生し内部短絡試験を行うことができる。   The temperature control device 7 is a device that controls the ambient temperature in which the test battery is placed. At a temperature at which a short circuit does not start even when the positive electrode and the negative electrode are connected via a foreign substance made of CTR, the insulating layer is locally destroyed by mixing the CTR as a foreign substance and pressurizing the mixed part. The positive electrode and the negative electrode are connected through a foreign substance. Then, by raising the temperature of the foreign substance consisting of CTR to such a temperature that the lower the resistance starts, a short circuit occurs between the positive electrode and the negative electrode inside the battery, and an internal short circuit test can be performed.

短絡検出部4は試験電池から得られる情報の変化を検知して基準値と比較して内部短絡
であることを判断し、加圧制御部3へ信号を発信することができる回路のことである。
The short-circuit detection unit 4 is a circuit that can detect a change in information obtained from the test battery, compare it with a reference value, determine that it is an internal short-circuit, and send a signal to the pressurization control unit 3. .

試験電池から得られる情報としては、電池電圧、電池温度、電池内部圧力などが挙げられる。特に電池電圧は内部短絡時に敏感に変化するため特に好ましい。短絡検出部4は電池情報測定部5からの電池情報を受け、短絡による電池情報の変化が生じた際に、短絡が発生したと判断し、加圧制御部3に信号を送る。加圧制御部3はその信号を受けて加圧を停止し、評価が終了する。なお信号の発信は内部短絡が発生した時点に対して任意に発信されるものであり、信号を直後に発信するほか、タイマーを用いて任意の時間を遅らせて発信してもよい。または、加圧部高さ位置検出部6から、加圧部2の位置情報を受け、短絡が発生したと判断してから一定深度に達するまで加圧を続けた後に加圧部2を停止させてもよい。   Information obtained from the test battery includes battery voltage, battery temperature, battery internal pressure, and the like. In particular, the battery voltage is particularly preferable because it changes sensitively when an internal short circuit occurs. The short circuit detection unit 4 receives the battery information from the battery information measurement unit 5, determines that a short circuit has occurred when a change in the battery information due to the short circuit occurs, and sends a signal to the pressurization control unit 3. The pressurization control unit 3 stops the pressurization upon receiving the signal, and the evaluation ends. Note that the signal is transmitted arbitrarily at the time when the internal short circuit occurs, and the signal may be transmitted immediately after the transmission, or may be transmitted with a delay of an arbitrary time using a timer. Alternatively, after receiving the position information of the pressurization unit 2 from the pressurization unit height position detection unit 6 and determining that a short circuit has occurred, the pressurization unit 2 is stopped after the pressurization is continued until a certain depth is reached. May be.

この一連の短絡評価法を用いたときの電池の安全性の評価基準としては、熱電対、サーモビュアーなどを用いて電池の温度上昇量で評価してもよいし、熱量計等で発生する熱量そのものを測定してもよい。   The battery safety evaluation criteria when using this series of short-circuit evaluation methods may be evaluated by the amount of battery temperature rise using a thermocouple, thermoviewer, etc., or the amount of heat generated by a calorimeter, etc. You may measure itself.

また、正極と負極が対向する箇所を一定面積切除し、CTRに置き換えて構成した電池を、昇温することによって、短絡を発生させて行う方法によって、電池の任意の箇所において任意の温度で短絡を発生させ電池の内部短絡に対する安全性を評価する場合は、図1の加圧部2、加圧制御部3、加圧部高さ検出器6を用いずに評価することが可能である。CTRを介して正極と負極が接続しても短絡が開始しないような温度において、絶縁層の正極と負極が対向する箇所を一定面積切除し、前記CTRに置き換えて構成した試験電池を、温度制御装置7を用いてCTRの抵抗が、短絡を開始するほど低くなるような温度まで昇温することによって、電池内部で正極、負極間で短絡が発生し内部短絡試験を行うことができる。   In addition, a battery formed by cutting out a portion where the positive electrode and the negative electrode face each other and replacing the CTR with a CTR is short-circuited at an arbitrary temperature at an arbitrary position of the battery by a method of generating a short circuit by raising the temperature. Can be evaluated without using the pressurization unit 2, the pressurization control unit 3, and the pressurization unit height detector 6 in FIG. At a temperature at which a short circuit does not start even when the positive electrode and the negative electrode are connected via the CTR, a portion of the insulating layer where the positive electrode and the negative electrode face each other is cut out by a certain area and replaced with the CTR. By using the device 7 to raise the temperature of the CTR so that the resistance becomes low enough to start a short circuit, a short circuit occurs between the positive electrode and the negative electrode inside the battery, and an internal short circuit test can be performed.

以上から、本発明の電池内部短絡評価装置を用いることで電池の内部短絡に対する安全性を正確に評価することができるものである。   From the above, the safety against internal short circuit of the battery can be accurately evaluated by using the battery internal short circuit evaluation device of the present invention.

また、上記内部短絡評価装置によって、内部短絡に関する安全レベルが特定された製造法に於いて電池を製造することが好ましい。同じ製造方法に於いて電池を製造することにより、内部短絡安全性レベルを同様に保証することができる。   Moreover, it is preferable to manufacture a battery in the manufacturing method in which the safety level related to the internal short circuit is specified by the internal short circuit evaluation device. By manufacturing the battery in the same manufacturing method, the internal short circuit safety level can be ensured as well.

さらに、内部短絡評価装置によって、内部短絡に関する安全レベルが特定された製造法に於いて電池パックを製造することが好ましい。同じ製造方法に於いて電池パックを製造することにより、内部短絡安全性レベルを同様に保証することができる。   Furthermore, it is preferable that the battery pack is manufactured by the manufacturing method in which the safety level related to the internal short circuit is specified by the internal short circuit evaluation device. By manufacturing the battery pack in the same manufacturing method, the internal short circuit safety level can be similarly guaranteed.

また、上記製造方法によって製造された電池であることが好ましい。これにより電池の内部短絡安全性レベルを同様に保証することができる。   Moreover, it is preferable that it is a battery manufactured by the said manufacturing method. As a result, the internal short-circuit safety level of the battery can be similarly guaranteed.

さらに、上記製造方法によって製造された電池パックであることが好ましい。これにより電池パックの内部短絡安全性レベルを同様に保証することができる。   Furthermore, it is preferable that it is a battery pack manufactured by the said manufacturing method. As a result, the internal short-circuit safety level of the battery pack can be similarly guaranteed.

なお、上述した本発明の電池評価装置は特定の電池種に限定されるものではなく、たとえばマンガン乾電池、アルカリ乾電池、リチウム一次電池のような一次電池、また鉛蓄電池 やニッケル・カドミウム蓄電池、ニッケル-水素電池、リチウム二次電池などの二次電池への適用が可能である。   The battery evaluation apparatus of the present invention described above is not limited to a specific battery type. For example, primary batteries such as manganese dry batteries, alkaline dry batteries, lithium primary batteries, lead storage batteries, nickel / cadmium storage batteries, nickel- Application to a secondary battery such as a hydrogen battery or a lithium secondary battery is possible.

以下に、本発明の電池の内部短絡評価方法を実施例に基づいて具体的に説明する。   Below, the internal short circuit evaluation method of the battery of this invention is demonstrated concretely based on an Example.

《実施例1》
<電池の作製>
内部短絡に対する安全性を評価する電池として、以下に示すような円筒型リチウム二次電池を作製した。
Example 1
<Production of battery>
A cylindrical lithium secondary battery as shown below was fabricated as a battery for evaluating safety against an internal short circuit.

(i)正極の作製
正極活物質であるニッケルマンガンコバルトリチウム酸化物(LiNi1/3Mn1/3Co1/32)粉末(メディアン径15μm)3kgと、結着剤であるポリフッ化ビニリデン(PVDF)を12重量%含むN−メチル−2−ピロリドン(NMP)溶液(呉羽化学工業株式会社製の#1320(商品名))1kgと、導電剤であるアセチレンブラック90gと、分散媒である適量のNMPとを、双腕式練合機で攪拌し、正極合剤ペーストを調製した。正極合剤ペーストを、厚み20μmのアルミニウム箔からなる帯状の正極集電体の両面に塗布した。塗布された正極合剤ペーストを乾燥させ、圧延ロールで活物質形成部の厚さが180μmになるように圧延し、正極活物質層を形成した。得られた電極を、円筒型の外装体(直径18mm、高さ65mm、内径17.85mm)に挿入可能な幅(56mm)に裁断して、正極を得た。
(I) Preparation of positive electrode 3 kg of nickel manganese cobalt lithium oxide (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) powder (median diameter 15 μm) as a positive electrode active material and polyvinylidene fluoride as a binder 1 kg of an N-methyl-2-pyrrolidone (NMP) solution (# 1320 (trade name) manufactured by Kureha Chemical Industry Co., Ltd.) containing 12% by weight of (PVDF), 90 g of acetylene black as a conductive agent, and a dispersion medium An appropriate amount of NMP was stirred with a double-arm kneader to prepare a positive electrode mixture paste. The positive electrode mixture paste was applied to both surfaces of a strip-shaped positive electrode current collector made of an aluminum foil having a thickness of 20 μm. The applied positive electrode mixture paste was dried and rolled with a rolling roll so that the thickness of the active material forming portion was 180 μm, thereby forming a positive electrode active material layer. The obtained electrode was cut into a width (56 mm) that could be inserted into a cylindrical outer package (diameter 18 mm, height 65 mm, inner diameter 17.85 mm) to obtain a positive electrode.

なお、電極群の最内周部にあたる部分に集電体露出部を設け、アルミニウムからなる接続端子を溶接した。   A current collector exposed portion was provided at a portion corresponding to the innermost peripheral portion of the electrode group, and a connection terminal made of aluminum was welded.

(ii)負極の作製
負極活物質である人造黒鉛粉末(メディアン径20μm)3kgと、結着剤である変性スチレンブタジエンゴム粒子を40重量%含む水分散液(日本ゼオン株式会社製のBM−400B(商品名))75gと、増粘剤であるカルボキシメチルセルロース(CMC)30gと、分散媒である適量の水とを、双腕式練合機で攪拌し、負極合剤ペーストを調製した。負極合剤ペーストを、厚み20μmの銅箔からなる帯状の負極集電体の両面に塗布した。塗布された負極合剤ペーストを乾燥させ、圧延ロールで活物質形成部の厚さが180μmになるように圧延し、負極活物質層を形成した。得られた極板を、外装体に挿入可能な幅(57.5mm)に裁断して、負極を得た。なお、電極群の最外周部にあたる部分に約1周分の長さの集電体露出部を設け、その端部にニッケルからなる接続端子を溶接し負極板とした。
(Ii) Production of negative electrode An aqueous dispersion (BM-400B manufactured by Zeon Corporation) containing 3 kg of artificial graphite powder (median diameter 20 μm) as a negative electrode active material and 40% by weight of modified styrene butadiene rubber particles as a binder. (Product Name) 75 g, 30 g of carboxymethyl cellulose (CMC) as a thickener, and an appropriate amount of water as a dispersion medium were stirred with a double arm kneader to prepare a negative electrode mixture paste. The negative electrode mixture paste was applied to both surfaces of a strip-shaped negative electrode current collector made of a copper foil having a thickness of 20 μm. The applied negative electrode mixture paste was dried and rolled with a rolling roll so that the thickness of the active material forming portion was 180 μm, thereby forming a negative electrode active material layer. The obtained electrode plate was cut into a width (57.5 mm) that can be inserted into the outer package to obtain a negative electrode. A current collector exposed portion having a length of about one turn was provided at a portion corresponding to the outermost peripheral portion of the electrode group, and a connecting terminal made of nickel was welded to the end portion to form a negative electrode plate.

(iii)電池の組み立て
正極と、負極とを、厚さ20μmのポリエチレン製の絶縁層(旭化成株式会社製のハイポア(商品名))を介して捲回し、電極群を作製した。ニッケルめっきを施した鉄製の円筒型の外装体(直径18mm、高さ65mm、内径17.85mm)に、電極群を挿入した後、電解質を5.0g外装体内に注液し、外装体の開口部を蓋体で封口して、容量2400mAhのリチウム二次電池を完成させた。電解質には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合溶媒にLiPF6を1モル/Lの濃度で溶解したものを用いた。混合溶媒におけるECとDMCとEMCとの体積比は、1:1:1とした。電解質には3重量%のビニレンカーボネート(VC)を添加した。
(Iii) Assembly of battery The positive electrode and the negative electrode were wound through a polyethylene insulating layer (Hypore (trade name) manufactured by Asahi Kasei Co., Ltd.) having a thickness of 20 μm to produce an electrode group. After the electrode group was inserted into a nickel-plated iron cylindrical outer package (diameter 18 mm, height 65 mm, inner diameter 17.85 mm), 5.0 g of electrolyte was injected into the outer package to open the outer package The part was sealed with a lid to complete a lithium secondary battery with a capacity of 2400 mAh. As the electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) was used. The volume ratio of EC, DMC, and EMC in the mixed solvent was 1: 1: 1. 3% by weight of vinylene carbonate (VC) was added to the electrolyte.

以上のような手順で20個の電池を作製し、以下の評価を行った。   Twenty batteries were produced according to the above procedure, and the following evaluation was performed.

まず、慣らし充放電を二度行い、次いで400mAの電流値で4.1Vに達するまで充電した。その後、45℃環境下で7日間保存した。   First, the charge-in / discharge-in was performed twice, and then charged at a current value of 400 mA until reaching 4.1V. Then, it preserve | saved for seven days in 45 degreeC environment.

その後、以下の条件で充電した電池を用いて内部短絡に対する安全性の評価を行った。
定電流充電: 電流値1500mA/充電終止電圧4.25V
定電圧充電: 充電電圧4.25V/充電終止電流100mA
以上のような手順で作製した電池を電池Aとし、以下の評価を行った。
Then, the safety | security with respect to an internal short circuit was evaluated using the battery charged on condition of the following.
Constant current charging: current value 1500mA / end-of-charge voltage 4.25V
Constant voltage charging: Charging voltage 4.25V / end-of-charge current 100mA
The battery produced by the above procedure was designated as battery A, and the following evaluation was performed.

(内部短絡安全性評価)
充電した電池Aをドライ環境で分解して電極群を取り出し、その最外周部を一部巻きほぐした。正極活物質層と負極活物質層の対向する箇所の、負極と絶縁層の間に幅200μm、厚み300μm、長さ3mmの酸化バナジウム(VO2:抵抗変化温度67℃)を置いた。この時、電極面に対して垂直な方向の長さ(高さ)は200μmとなる。このときの電極群の模式図を図2に示す。
(Internal short circuit safety evaluation)
The charged battery A was disassembled in a dry environment to take out the electrode group, and a part of the outermost periphery was loosened. Vanadium oxide (VO 2 : resistance change temperature 67 ° C.) having a width of 200 μm, a thickness of 300 μm, and a length of 3 mm was placed between the negative electrode and the insulating layer at a position where the positive electrode active material layer and the negative electrode active material layer face each other. At this time, the length (height) in the direction perpendicular to the electrode surface is 200 μm. A schematic diagram of the electrode group at this time is shown in FIG.

図2において、8は正極である。また、9は負極であり、負極活物質9a、負極集電体露出部9b、負極接続端子9cを備えている。さらに、10は絶縁層、11は異物および12は電極群である。異物11は、前述の200μm、厚み300μm、長さ3mmの酸化バナジウムである。   In FIG. 2, 8 is a positive electrode. Reference numeral 9 denotes a negative electrode, which includes a negative electrode active material 9a, a negative electrode current collector exposed portion 9b, and a negative electrode connection terminal 9c. Further, 10 is an insulating layer, 11 is a foreign substance, and 12 is an electrode group. The foreign material 11 is the aforementioned vanadium oxide having a thickness of 200 μm, a thickness of 300 μm, and a length of 3 mm.

その後、再度捲回した電極群を密閉状態で20℃の恒温槽内に入れ、電池温度が20℃に達するまでキープした。その後、φ6mmの半球状の加圧子を用いて電極群12を加圧した。加圧条件は1mm/sの一定速度、最大圧力を50kg/cm2とした。そして、異物11が絶縁層10を破壊することによって圧力が減少した瞬間に加圧を停止した。その後、恒温槽の温度を上昇させ、短絡によって、電池電圧が4.0V以下となった瞬間に昇温を停止した。電池電圧以外に、熱電対を用いて電池表面を測定し、電池電圧が4.0V以下になる瞬間を短絡開始とし、短絡開始温度および短絡発生後5秒後の電池温度を評価した。また、同様の測定を10個の電池について行い、短絡開始温度と短絡発生5秒後の電池温度の差である電池温度上昇量の標準偏差を求めた。 Thereafter, the wound electrode group was put in a thermostatic chamber at 20 ° C. in a sealed state, and kept until the battery temperature reached 20 ° C. Thereafter, the electrode group 12 was pressurized using a hemispherical pressurizer having a diameter of 6 mm. The pressing conditions were a constant speed of 1 mm / s and a maximum pressure of 50 kg / cm 2 . Then, the pressurization was stopped at the moment when the pressure decreased due to the foreign material 11 destroying the insulating layer 10. Thereafter, the temperature of the thermostatic chamber was increased, and the temperature increase was stopped at the moment when the battery voltage became 4.0 V or less due to a short circuit. In addition to the battery voltage, the surface of the battery was measured using a thermocouple. The short-circuit start temperature and the battery temperature 5 seconds after the occurrence of the short-circuit were evaluated at the moment when the battery voltage became 4.0 V or less. The same measurement was performed on 10 batteries, and the standard deviation of the battery temperature increase, which is the difference between the short circuit start temperature and the battery temperature 5 seconds after the occurrence of the short circuit, was obtained.

《実施例2》
電池の正極の最外周に集電体の露出部を約1周分設けたこと以外、実施例1と同様にして電池を作製し、同様の評価を行った。
Example 2
A battery was prepared in the same manner as in Example 1 except that the exposed portion of the current collector was provided for about one turn on the outermost periphery of the positive electrode of the battery, and the same evaluation was performed.

《比較例1》
実施例1と同様にして電池Aを作製し、次のような評価を行った。4.25Vに充電した電池を、分解することなく67℃の恒温槽内に入れ、電池温度が67℃に達するまでキープした。加圧子に鉄製の釘(φ3mm)を用いて電極群に突き刺した。加圧条件は1mm/s一定速度、最大圧力を200kg/cm2とした。そして、短絡によって電池電圧が4.0V以下となった後、さらに200μm釘を移動させた後に停止させた。電池電圧以外に、熱電対を用いて電池表面を測定し、短絡発生後5秒間での電池温度上昇量を評価した。また、同様の測定を10個の電池について行い、電池温度上昇量の標準偏差を求めた。
<< Comparative Example 1 >>
Battery A was produced in the same manner as in Example 1, and the following evaluation was performed. The battery charged to 4.25 V was placed in a constant temperature bath at 67 ° C. without being disassembled, and kept until the battery temperature reached 67 ° C. An iron nail (φ3 mm) was used as the pressurizer to pierce the electrode group. The pressurizing conditions were a constant speed of 1 mm / s and a maximum pressure of 200 kg / cm 2 . Then, after the battery voltage became 4.0 V or less due to a short circuit, the 200 μm nail was further moved and then stopped. In addition to the battery voltage, the surface of the battery was measured using a thermocouple, and the amount of battery temperature rise in 5 seconds after the occurrence of a short circuit was evaluated. Moreover, the same measurement was performed about ten batteries and the standard deviation of the battery temperature rise amount was calculated | required.

《比較例2》
実施例2と同様にして電池Aを作製し、次のような評価を行った。これを実施例2とする。4.25Vに充電した電池を、分解することなく67℃の恒温槽内に入れ、電池温度が67℃に達するまでキープした。加圧子に鉄製の釘(φ3mm)を用いて電極群に突き刺した。加圧条件は1mm/sの一定速度、最大圧力を200kg/cm2とした。そして、短絡によって電池電圧が4.0V以下となった後、さらに200μm釘を移動させた後に停止させた。電池電圧以外に、熱電対を用いて電池表面を測定し、短絡発生後5秒間での電池温度上昇量を評価した。また、同様の測定を10個の電池について行い、電池温度上昇量の標準偏差を求めた。
<< Comparative Example 2 >>
Battery A was produced in the same manner as in Example 2, and the following evaluation was performed. This is Example 2. The battery charged to 4.25 V was placed in a constant temperature bath at 67 ° C. without being disassembled, and kept until the battery temperature reached 67 ° C. An iron nail (φ3 mm) was used as the pressurizer to pierce the electrode group. The pressing conditions were a constant speed of 1 mm / s and a maximum pressure of 200 kg / cm 2 . Then, after the battery voltage became 4.0 V or less due to a short circuit, the 200 μm nail was further moved and then stopped. In addition to the battery voltage, the surface of the battery was measured using a thermocouple, and the amount of battery temperature rise in 5 seconds after the occurrence of a short circuit was evaluated. Moreover, the same measurement was performed about ten batteries and the standard deviation of the battery temperature rise amount was calculated | required.

表1に実施例1、2および比較例1、2の評価結果を示す。   Table 1 shows the evaluation results of Examples 1 and 2 and Comparative Examples 1 and 2.

Figure 2009054300
Figure 2009054300

内部短絡を発生させる方法として電極群内にCTRを異物として混入させて加圧、昇温した実施例1及び2は、67度において短絡させることができた。また、実施例1及び実施例2は電池の最外周の構成にかかわらず、同様の電池温度上昇量を示した。さらに、測定のばらつきも小さく抑えられた。その一方で、電池の外周から釘を刺すことによって短絡を発生させた比較例1及び2は、各々の電池温度上昇量のばらつきは小さかったものの、最外周の正極集電体の露出の有無によって短絡後の電池電圧上昇量に非常に大きな違いが生じており、特に正極の集電体露出部を設けた比較例2は異物混入によって短絡させた際と比較して電池温度上昇量が非常に小さかった。すなわち、釘刺しによる内部短絡評価法は、電池の局所的な構成によっては、安全性を過大評価する可能性があることが明らかである。その一方で、異物混入による評価法は、電池の局所的な構成に左右されることなく、正確に内部短絡に対する安全性を評価することができる。   As a method for generating an internal short circuit, Examples 1 and 2 in which CTR was mixed as a foreign substance in the electrode group and were pressurized and heated could be short-circuited at 67 degrees. Moreover, Example 1 and Example 2 showed the same amount of battery temperature rise irrespective of the structure of the outermost periphery of a battery. In addition, the variation in measurement was kept small. On the other hand, in Comparative Examples 1 and 2 in which a short circuit was generated by piercing a nail from the outer periphery of the battery, although the variation in the battery temperature increase was small, depending on whether or not the outermost positive electrode current collector was exposed There is a very large difference in the battery voltage increase after the short circuit, and in particular, Comparative Example 2 provided with the current collector exposed portion of the positive electrode has a very high battery temperature increase compared with the case where the short circuit is caused by the contamination. It was small. That is, it is clear that the internal short circuit evaluation method by nail penetration may overestimate the safety depending on the local configuration of the battery. On the other hand, the evaluation method based on contamination can accurately evaluate the safety against internal short circuit without being influenced by the local configuration of the battery.

《実施例3》
実施例1と同様にして電池Aを作製し、次のような評価を行った。充電した電池をドライ環境で分解して電極群を取り出し、その最外周部を一部巻きほぐした。正極活物質層と負極活物質層の対向する箇所の絶縁層を、幅方向の中心部においてφ3mmの円形に切除した。酸化バナジウム(VO2)(メディアン径0.5μm)25mgをφ3.5mmの円筒に入れ加圧することによって厚さ0.7mmのペレットを作製した。このφ3.5mmの酸化バナジウムのペレットをこの切除部を覆うように設置し、正極と負極が直接接しないようにした。このときの電極群の模式図を図3に示す。図2と同じ符号は、図2のものと同一の物質を用いているもので、同一の作用効果を示すものである。図3において、13は絶縁層切除部、14aはVO2のペレットである。
Example 3
Battery A was produced in the same manner as in Example 1, and the following evaluation was performed. The charged battery was disassembled in a dry environment, the electrode group was taken out, and a part of the outermost periphery was unwound. An insulating layer at a position where the positive electrode active material layer and the negative electrode active material layer face each other was cut into a circle having a diameter of 3 mm at the center in the width direction. Pellets having a thickness of 0.7 mm were prepared by placing 25 mg of vanadium oxide (VO 2 ) (median diameter 0.5 μm) in a φ3.5 mm cylinder and applying pressure. This φ3.5 mm vanadium oxide pellet was placed so as to cover the excised part so that the positive electrode and the negative electrode were not in direct contact with each other. A schematic diagram of the electrode group at this time is shown in FIG. The same reference numerals as those in FIG. 2 use the same substances as those in FIG. 2 and indicate the same effects. In FIG. 3, reference numeral 13 denotes an insulating layer cut portion, and reference numeral 14a denotes a VO 2 pellet.

その後、再度捲回した電極群を密閉状態で20℃の恒温槽内に入れ、電池温度を上昇させた。短絡によって電池電圧が4.0V以下となった瞬間に昇温を停止した。電池電圧以外に、熱電対を用いて電池表面を測定し、電池電圧が4.0V以下になる瞬間を短絡開始とし、短絡開始温度および短絡発生後5秒後の電池温度を評価した。また、同様の測定を10個の電池について行い、短絡開始温度と短絡発生5秒後の電池温度の差である電池温度上昇量の標準偏差を求めた。   Then, the electrode group wound again was put in a 20 degreeC thermostat in the airtight state, and battery temperature was raised. The temperature increase was stopped at the moment when the battery voltage became 4.0 V or less due to a short circuit. In addition to the battery voltage, the surface of the battery was measured using a thermocouple. The short-circuit start temperature and the battery temperature 5 seconds after the occurrence of the short-circuit were evaluated at the moment when the battery voltage became 4.0 V or less. The same measurement was performed on 10 batteries, and the standard deviation of the battery temperature increase, which is the difference between the short circuit start temperature and the battery temperature 5 seconds after the occurrence of the short circuit, was obtained.

《実施例4》
実施例1と同様にして電池Aを作製し、次のような評価を行った。充電した電池をドライ環境で分解して電極群を取り出し、その最外周部を一部巻きほぐした。正極活物質層と負極活物質層の対向する箇所の絶縁層を、幅方向の中心部においてφ3mmの円形に切除した。VO2(メディアン径0.5μm)200gと、結着剤であるポリフッ化ビニリデン(PVDF)を12重量%含むN−メチル−2−ピロリドン(NMP)溶液(呉羽化学工業株式会社製の#1320(商品名))100gを分散媒である適量のNMPとを、双腕式練合機で攪拌し、ペーストを調製した。このペーストをガラス板上に塗布した後、乾燥させ、乾燥後のVO2を含むシートを作製した。このシートの厚さが200μmとなるようにした。このVO2を含むシートをガラス板からはがし、φ3.5mmに打ち抜くことによってCTRからなるシートを作製した。このφ3.5mmの酸化バナジウムを含むシートをこの切除部を覆うように設置し、正極と負極が直接接しないようにした。このときの電極群の模式図を図4に示す。図2と同じ符号は、図2および図3のものと同一の物質を用いているもので、同一の作用効果を示すものである。図4において、13は絶縁層切除部、14bはVO2のシートである。
Example 4
Battery A was produced in the same manner as in Example 1, and the following evaluation was performed. The charged battery was disassembled in a dry environment, the electrode group was taken out, and a part of the outermost periphery was unwound. An insulating layer at a position where the positive electrode active material layer and the negative electrode active material layer face each other was cut into a circle having a diameter of 3 mm at the center in the width direction. N-methyl-2-pyrrolidone (NMP) solution (# 1320 manufactured by Kureha Chemical Co., Ltd.) containing 200 g of VO 2 (median diameter 0.5 μm) and 12% by weight of polyvinylidene fluoride (PVDF) as a binder. (Product name)) 100 g of an appropriate amount of NMP as a dispersion medium was stirred with a double-arm kneader to prepare a paste. This paste was applied on a glass plate and then dried to prepare a sheet containing VO 2 after drying. The thickness of this sheet was set to 200 μm. The sheet containing VO 2 was peeled off from the glass plate and punched to φ3.5 mm to prepare a sheet made of CTR. The sheet containing vanadium oxide of φ3.5 mm was placed so as to cover the cut portion so that the positive electrode and the negative electrode were not in direct contact with each other. A schematic diagram of the electrode group at this time is shown in FIG. The same reference numerals as those in FIG. 2 use the same substances as those in FIGS. 2 and 3, and indicate the same effects. In FIG. 4, reference numeral 13 denotes an insulating layer cut portion, and 14b denotes a VO 2 sheet.

その後、再度捲回した電極群を密閉状態で20℃の恒温槽内に入れ、電池温度が上昇させた。短絡によって電池電圧が4.0V以下となった瞬間に昇温を停止した。電池電圧以外に、熱電対を用いて電池表面を測定し、電池電圧が4.0V以下になる瞬間を短絡開始とし、短絡開始温度および短絡発生後5秒後の電池温度を評価した。また、同様の測定を10個の電池について行い、短絡開始温度と短絡発生5秒後の電池温度の差である電池温度上昇量の標準偏差を求めた。   Then, the electrode group wound again was put in a 20 degreeC thermostat in the airtight state, and the battery temperature was raised. The temperature increase was stopped at the moment when the battery voltage became 4.0 V or less due to a short circuit. In addition to the battery voltage, the surface of the battery was measured using a thermocouple. The short-circuit start temperature and the battery temperature 5 seconds after the occurrence of the short-circuit were evaluated at the moment when the battery voltage became 4.0 V or less. The same measurement was performed on 10 batteries, and the standard deviation of the battery temperature increase, which is the difference between the short circuit start temperature and the battery temperature 5 seconds after the occurrence of the short circuit, was obtained.

なお、実施例3および4は絶縁層をCTRに置き換える方法の一例である。これらの方法以外で、絶縁層をCTRに置き換えても、本発明の効果を得ることは可能である。
表2に実施例1、3および4の評価結果を示す。
Examples 3 and 4 are examples of a method of replacing the insulating layer with CTR. Other than these methods, the effect of the present invention can be obtained even if the insulating layer is replaced with CTR.
Table 2 shows the evaluation results of Examples 1, 3 and 4.

Figure 2009054300
Figure 2009054300

内部短絡を発生させる方法として、絶縁層とCTRを含むシートを置き換えた試験電池において内部短絡試験を行った実施例3および4は、67度において短絡させることができ、測定のばらつきも小さく抑えられた。   As a method for generating an internal short circuit, Examples 3 and 4 in which an internal short circuit test was performed on a test battery in which a sheet including an insulating layer and a CTR was replaced can be short-circuited at 67 degrees, and variation in measurement can be reduced. It was.

《実施例5》
電池Aと同様の正極板、負極板を用いて、電池Aと同じ絶縁層を介して捲回し、電極群を作製する際、図2に示すように、正極活物質層と負極活物質層の対向する箇所の、負極
と絶縁層の間に幅200μm、厚み300μm、長さ3mmの酸化バナジウム(VO2)を置き、電極群を作製した。この電極群を、ニッケルめっきを施した鉄製の円筒型の外装体(直径18mm、高さ65mm、内径17.85mm)に挿入した後、電池Aと同様の電解質を5.0g外装体内に注液し、外装体の開口部を蓋体で封口して、容量2400mAhのリチウム二次電池を完成させた。
Example 5
When a positive electrode plate and a negative electrode plate similar to battery A are used and wound through the same insulating layer as battery A to produce an electrode group, the positive electrode active material layer and the negative electrode active material layer are formed as shown in FIG. An electrode group was produced by placing vanadium oxide (VO 2 ) having a width of 200 μm, a thickness of 300 μm, and a length of 3 mm between the negative electrode and the insulating layer at the opposite positions. After inserting this electrode group into a nickel-plated iron cylindrical outer package (diameter 18 mm, height 65 mm, inner diameter 17.85 mm), 5.0 g of the same electrolyte as battery A was injected into the outer package. Then, the opening of the outer package was sealed with a lid to complete a lithium secondary battery with a capacity of 2400 mAh.

以上のような手順で20個の電池を作製し、以下の評価を行った。
まず、慣らし充放電を二度行い、次いで400mAの電流値で4.1Vに達するまで充電した。その後、45℃環境下で7日間保存した。
Twenty batteries were produced according to the above procedure, and the following evaluation was performed.
First, the charge-in / discharge-in was performed twice, and then charged at a current value of 400 mA until reaching 4.1V. Then, it preserve | saved for seven days in 45 degreeC environment.

その後、以下の条件で充電した電池を用いて内部短絡に対する安全性の評価を行った。定電流充電: 電流値1500mA/充電終止電圧4.25V
定電圧充電: 充電電圧4.25V/充電終止電流100mA
以上のような手順で作製した電池を電池Bとし、以下の評価を行った。
Then, the safety | security with respect to an internal short circuit was evaluated using the battery charged on condition of the following. Constant current charging: current value 1500mA / end-of-charge voltage 4.25V
Constant voltage charging: Charging voltage 4.25V / end-of-charge current 100mA
The battery produced by the above procedure was designated as battery B, and the following evaluation was performed.

(内部短絡安全性評価)
充電した電池Bを20℃の恒温槽内に入れ、電池温度が20℃に達するまでキープした。その後、φ6mmの半球状の加圧子を用いて電極群を加圧した。加圧条件は1mm/sの一定速度、最大圧力を50kg/cm2とした。そして、異物が絶縁層を破壊することによって圧力が減少した瞬間に加圧を停止した。その後、恒温槽の温度を上昇させ、短絡によって、電池電圧が4.0V以下となった瞬間に昇温を停止した。電池電圧以外に、熱電対を用いて電池表面を測定し、電池電圧が4.0V以下になる瞬間を短絡開始とし、短絡開始温度および短絡発生後5秒後の電池温度を評価した。また、同様の測定を10個の電池について行い、短絡開始温度と短絡発生5秒後の電池温度の差である電池温度上昇量の標準偏差を求めた。
(Internal short circuit safety evaluation)
The charged battery B was placed in a constant temperature bath at 20 ° C. and kept until the battery temperature reached 20 ° C. Thereafter, the electrode group was pressurized using a hemispherical pressurizer having a diameter of 6 mm. The pressing conditions were a constant speed of 1 mm / s and a maximum pressure of 50 kg / cm 2 . The pressurization was stopped at the moment when the pressure decreased due to the foreign matter destroying the insulating layer. Thereafter, the temperature of the thermostatic chamber was increased, and the temperature increase was stopped at the moment when the battery voltage became 4.0 V or less due to a short circuit. In addition to the battery voltage, the surface of the battery was measured using a thermocouple. The short-circuit start temperature and the battery temperature 5 seconds after the occurrence of the short-circuit were evaluated at the moment when the battery voltage became 4.0 V or less. The same measurement was performed on 10 batteries, and the standard deviation of the battery temperature increase, which is the difference between the short circuit start temperature and the battery temperature 5 seconds after the occurrence of the short circuit, was obtained.

《実施例6》
正極活物質層と負極活物質層の対向する箇所の絶縁層を、幅方向の中心部においてφ3mmの円形に切除し、実施例4と同様のφ3.5mmの酸化バナジウム(VO2)を含むシートに置き換えたこと以外、電池Aと同様に作製した。
以上のような手順で20個の電池を作製し、以下の評価を行った。
まず、慣らし充放電を二度行い、次いで400mAの電流値で4.1Vに達するまで充電した。その後、45℃環境下で7日間保存した。
その後、以下の条件で充電した電池を用いて内部短絡に対する安全性の評価を行った。
定電流充電: 電流値1500mA/充電終止電圧4.25V
定電圧充電: 充電電圧4.25V/充電終止電流100mA
以上のような手順で作製した電池を電池Cとし、以下の評価を行った。
Example 6
A sheet containing vanadium oxide (VO 2 ) of φ3.5 mm similar to that of Example 4 by cutting out the insulating layer at the opposite portion of the positive electrode active material layer and the negative electrode active material layer into a circular shape of φ3 mm at the center in the width direction. A battery A was prepared in the same manner as battery A, except that
Twenty batteries were produced according to the above procedure, and the following evaluation was performed.
First, the charge-in / discharge-in was performed twice, and then charged at a current value of 400 mA until reaching 4.1V. Then, it preserve | saved for seven days in 45 degreeC environment.
Then, the safety | security with respect to an internal short circuit was evaluated using the battery charged on condition of the following.
Constant current charging: current value 1500mA / end-of-charge voltage 4.25V
Constant voltage charging: Charging voltage 4.25V / end-of-charge current 100mA
The battery produced by the above procedure was designated as battery C, and the following evaluation was performed.

(内部短絡安全性評価)
充電した電池Cを20℃の恒温槽内に入れ、電池温度が上昇させた。短絡によって電池電圧が4.0V以下となった瞬間に昇温を停止した。電池電圧以外に、熱電対を用いて電池表面を測定し、電池電圧が4.0V以下になる瞬間を短絡開始とし、短絡開始温度および短絡発生後5秒後の電池温度を評価した。また、同様の測定を10個の電池について行い、短絡開始温度と短絡発生5秒後の電池温度の差である電池温度上昇量の標準偏差を求めた。
(Internal short circuit safety evaluation)
The charged battery C was placed in a constant temperature bath at 20 ° C., and the battery temperature was raised. The temperature increase was stopped at the moment when the battery voltage became 4.0 V or less due to a short circuit. In addition to the battery voltage, the surface of the battery was measured using a thermocouple. The short-circuit start temperature and the battery temperature 5 seconds after the occurrence of the short-circuit were evaluated at the moment when the battery voltage became 4.0 V or less. The same measurement was performed on 10 batteries, and the standard deviation of the battery temperature increase, which is the difference between the short circuit start temperature and the battery temperature 5 seconds after the occurrence of the short circuit, was obtained.

表3に実施例1、4、5及び6の評価結果を示す。   Table 3 shows the evaluation results of Examples 1, 4, 5 and 6.

Figure 2009054300
Figure 2009054300

内部短絡を発生させる方法として、群構成時にCTRを異物として混入させた試験電池において内部短絡試験を行った実施例7および、群構成時に絶縁層をCTRに置き換えた試験電池において内部短絡試験を行った実施例6は、67度において短絡させることができ、測定のばらつきも小さく抑えられた。   As a method of generating an internal short circuit, Example 7 in which an internal short circuit test was performed in a test battery in which CTR was mixed as a foreign substance during group configuration, and an internal short circuit test was performed in a test battery in which the insulating layer was replaced with CTR during group configuration. Example 6 could be short-circuited at 67 degrees, and the variation in measurement was also kept small.

《実施例7》
電極群に混入させる異物を、タングステンをドープした酸化バナジウム(V0.950.052)としたこと以外、実施例1と同様にして電池Aを作製し、評価を行った。
Example 7
A battery A was prepared and evaluated in the same manner as in Example 1 except that the foreign matter to be mixed into the electrode group was vanadium oxide doped with tungsten (V 0.95 W 0.05 O 2 ).

《実施例8》
電極群に混入させる異物を、タングステンをドープした酸化バナジウム(V0.90.12)としたこと以外、実施例1と同様にして電池Aを作製し、評価を行った。
Example 8
A battery A was produced and evaluated in the same manner as in Example 1 except that the foreign matter to be mixed into the electrode group was vanadium oxide doped with tungsten (V 0.9 W 0.1 O 2 ).

《実施例9》
電極群に混入させる異物を、タングステンとモリブデンをドープした酸化バナジウム(V0.8950.1Mo0.0052)としたこと以外、実施例1と同様にして電池Aを作製し、評価を行った。
Example 9
A battery A was produced and evaluated in the same manner as in Example 1 except that the foreign matter to be mixed into the electrode group was vanadium oxide doped with tungsten and molybdenum (V 0.895 W 0.1 Mo 0.005 O 2 ).

表4に実施例1、7〜9の評価結果を示す。   Table 4 shows the evaluation results of Examples 1 and 7-9.

Figure 2009054300
Figure 2009054300

内部短絡を発生させる方法として、CTRを変えて内部短絡試験を行った実施例7〜9は、それぞれ60,50,45℃において短絡を開始させることができた。また、測定のばらつきも小さく抑えられた。CTRを変更することによって、短絡開始温度を制御することが可能である。   As a method for generating an internal short circuit, Examples 7 to 9 in which the internal short circuit test was performed by changing the CTR were able to start the short circuit at 60, 50, and 45 ° C., respectively. In addition, the variation in measurement was kept small. It is possible to control the short circuit start temperature by changing the CTR.

本発明の電池の内部短絡評価方法及び電池内部短絡評価装置を用いることで、内部短絡に対する安全性を精度よく評価することが可能であるため、信頼性の高い電池を供給できるようになり、有用である。   By using the battery internal short-circuit evaluation method and the battery internal short-circuit evaluation apparatus of the present invention, it is possible to accurately evaluate the safety against internal short-circuits, so that a highly reliable battery can be supplied and useful. It is.

本発明の一実施の形態の電池の内部短絡評価装置のブロック図The block diagram of the internal short circuit evaluation apparatus of the battery of one embodiment of this invention 本発明の実施例1の内部短絡評価法の模式図The schematic diagram of the internal short circuit evaluation method of Example 1 of this invention 本発明の実施例3の内部短絡評価法の模式図Schematic diagram of internal short circuit evaluation method of Example 3 of the present invention 本発明の実施例4の内部短絡評価法の模式図Schematic diagram of internal short circuit evaluation method of Example 4 of the present invention

符号の説明Explanation of symbols

1 電池
2 加圧部
3 加圧制御部
4 短絡検出部
5 電池情報測定部
6 加圧部高さ位置検出部
7 温度制御装置
8 正極
9 負極
9a 負極活物質層
9b 負極集電体露出部
9c 負極接続端子
10 絶縁層
11 異物
12 電極群
13 絶縁層切除部
14a VO2のペレット
14b VO2のシート
DESCRIPTION OF SYMBOLS 1 Battery 2 Pressurization part 3 Pressurization control part 4 Short circuit detection part 5 Battery information measurement part 6 Pressurization part height position detection part 7 Temperature control device 8 Positive electrode 9 Negative electrode 9a Negative electrode active material layer 9b Negative electrode collector exposed part 9c Negative electrode connection terminal 10 Insulating layer 11 Foreign material 12 Electrode group 13 Insulating layer cut portion 14a VO 2 pellet 14b VO 2 sheet

Claims (8)

正極と、負極と、正負極を電気的に絶縁する絶縁層とを巻回、または積層した電極群と電解質と、これらを内包する外装体と、電極群と電気的に接続する集電端子とを含む電池の内部短絡時の安全性を評価する方法であって、臨界温度抵抗体により、電池内の任意の点で、前記臨界温度抵抗体の抵抗変化温度以上の環境温度において短絡を発生させることが可能であることを特徴とする電池の内部短絡評価方法。   An electrode group and an electrolyte in which a positive electrode, a negative electrode, and an insulating layer that electrically insulates the positive and negative electrodes are wound or laminated, an exterior body that contains these, and a current collecting terminal that is electrically connected to the electrode group A critical temperature resistor causes a short circuit to occur at an environmental temperature equal to or higher than the resistance change temperature of the critical temperature resistor at any point in the battery. The internal short circuit evaluation method of the battery characterized by the above-mentioned. 前記短絡を発生させることは、電池の電極群内部の正極と負極が対向する箇所に前記臨界温度抵抗体を異物として混入させ、加圧子による加圧力で混入部をプレスし、環境温度を前記臨界温度抵抗体の抵抗変化温度以上にすることによって、正負極間に介在する絶縁体を局所的に破壊し、短絡を発生させて行うことである請求項1記載の電池の内部短絡評価方法。   The short circuit is caused by mixing the critical temperature resistor as a foreign substance at a position where the positive electrode and the negative electrode inside the battery electrode group face each other, pressing the mixed portion with a pressurizing force, and setting the environmental temperature to the critical temperature. 2. The internal short circuit evaluation method for a battery according to claim 1, which is performed by causing the insulator interposed between the positive and negative electrodes to be locally broken and generating a short circuit by setting the temperature to a temperature at which the temperature resistance changes. 前記異物の混入は、前記異物を電極群構成時に混入することである請求項2記載の電池の内部短絡評価方法。   The battery internal short-circuit evaluation method according to claim 2, wherein the foreign substance is mixed when the foreign substance is mixed during electrode group configuration. 前記異物の混入は、完成した電池を分解して外装体から取り出した電極群内部の正極と負極が対向する箇所に前記臨界温度抵抗体を異物として混入し、再度電極群を構成することである請求項2記載の電池の内部短絡評価方法。   The mixing of the foreign matter means that the critical temperature resistor is mixed as a foreign matter at a position where the positive electrode and the negative electrode inside the electrode group taken out of the outer package after disassembling the completed battery, and constitutes the electrode group again. The internal short circuit evaluation method of the battery according to claim 2. 前記短絡を発生させることは、電池の電極群内部の正極と負極が対向する絶縁体の一部を前記臨界温度抵抗体に置き換えて構成した電池の環境温度を前記臨界温度抵抗体の抵抗変化温度以上にすることによって、短絡を発生させて行うことである請求項1記載の電池の内部短絡評価方法。   The short circuit is caused by replacing the part of the insulator in which the positive electrode and the negative electrode in the electrode group of the battery face each other with the critical temperature resistor to change the resistance temperature of the critical temperature resistor. The internal short-circuit evaluation method for a battery according to claim 1, wherein the short-circuit is generated by the above. 前記臨界温度抵抗体の置き換えは、電極群構成時に置き換えることである請求項5記載の電池の内部短絡評価方法。   The battery internal short-circuit evaluation method according to claim 5, wherein the replacement of the critical temperature resistor is replacement at the time of electrode group configuration. 前記臨界温度抵抗体の置き換えは、完成した電池を分解して外装体から取り出した電極群の正極と負極が対向する絶縁体の一部を前記臨界温度抵抗体に置き換え、再度電極群を構成することである請求項5記載の電池の内部短絡評価方法。   The replacement of the critical temperature resistor is performed by disassembling a completed battery and replacing a part of the insulator in which the positive electrode and the negative electrode of the electrode group facing each other are replaced with the critical temperature resistor, thereby forming the electrode group again. The internal short circuit evaluation method for a battery according to claim 5. 前記臨界温度抵抗体が酸化バナジウムまたはその変異体である請求項1から7のいずれかに記載の電池の内部短絡評価方法。   The battery internal short-circuit evaluation method according to claim 1, wherein the critical temperature resistor is vanadium oxide or a variant thereof.
JP2007217042A 2007-08-23 2007-08-23 Internal short circuit evaluation method of battery Pending JP2009054300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007217042A JP2009054300A (en) 2007-08-23 2007-08-23 Internal short circuit evaluation method of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007217042A JP2009054300A (en) 2007-08-23 2007-08-23 Internal short circuit evaluation method of battery

Publications (1)

Publication Number Publication Date
JP2009054300A true JP2009054300A (en) 2009-03-12

Family

ID=40505226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007217042A Pending JP2009054300A (en) 2007-08-23 2007-08-23 Internal short circuit evaluation method of battery

Country Status (1)

Country Link
JP (1) JP2009054300A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218390A (en) * 2006-12-15 2008-09-18 Matsushita Electric Ind Co Ltd Method for evaluating internal short circuiting of battery, device for evaluating internal short circuiting of battery, battery, battery pack and their manufacturing methods
JP2011181494A (en) * 2010-03-02 2011-09-15 Lenovo Singapore Pte Ltd System internally neutralizing power source
JP2013012583A (en) * 2011-06-29 2013-01-17 Nichicon Corp Critical temperature thermistor, thermistor element for the same and method for manufacturing the thermistor element
WO2014147808A1 (en) * 2013-03-22 2014-09-25 オートモーティブエナジーサプライ株式会社 Inspection method for film covered battery
CN108828384A (en) * 2018-02-28 2018-11-16 中国电力科学研究院有限公司 A kind of simulator and analogy method of battery internal short-circuit
CN110780225A (en) * 2018-07-30 2020-02-11 广州小鹏汽车科技有限公司 Battery pack internal short circuit detection method and device and electric automobile
CN110850331A (en) * 2014-10-22 2020-02-28 通用电气全球采购有限责任公司 System and method for electrical short detection
CN112630664A (en) * 2020-12-18 2021-04-09 广东风华新能源股份有限公司 Lithium battery short circuit failure analysis method and detection device
WO2021125694A1 (en) * 2019-12-17 2021-06-24 주식회사 엘지에너지솔루션 Battery cell for testing internal short circuit, and method for testing internal short circuit of battery cell by using same
CN113533966A (en) * 2021-07-21 2021-10-22 欣旺达电动汽车电池有限公司 Method and device for measuring short circuit resistance value in battery and computer readable storage medium
JP2022523954A (en) * 2019-08-07 2022-04-27 エルジー エナジー ソリューション リミテッド Electrochemical elements for inducing internal short circuits and safety evaluation methods using them

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218390A (en) * 2006-12-15 2008-09-18 Matsushita Electric Ind Co Ltd Method for evaluating internal short circuiting of battery, device for evaluating internal short circuiting of battery, battery, battery pack and their manufacturing methods
JP2011181494A (en) * 2010-03-02 2011-09-15 Lenovo Singapore Pte Ltd System internally neutralizing power source
JP2013012583A (en) * 2011-06-29 2013-01-17 Nichicon Corp Critical temperature thermistor, thermistor element for the same and method for manufacturing the thermistor element
WO2014147808A1 (en) * 2013-03-22 2014-09-25 オートモーティブエナジーサプライ株式会社 Inspection method for film covered battery
CN105051967A (en) * 2013-03-22 2015-11-11 汽车能源供应公司 Inspection method for film covered battery
EP2978063A4 (en) * 2013-03-22 2016-03-16 Automotive Energy Supply Corp Inspection method for film covered battery
JP5909022B2 (en) * 2013-03-22 2016-04-26 オートモーティブエナジーサプライ株式会社 Inspection method for film-clad battery
US9917337B2 (en) 2013-03-22 2018-03-13 Automotive Energy Supply Corporation Inspection method for film covered battery
CN110850331A (en) * 2014-10-22 2020-02-28 通用电气全球采购有限责任公司 System and method for electrical short detection
CN108828384A (en) * 2018-02-28 2018-11-16 中国电力科学研究院有限公司 A kind of simulator and analogy method of battery internal short-circuit
CN108828384B (en) * 2018-02-28 2023-12-19 中国电力科学研究院有限公司 Simulation device and simulation method for internal short circuit of battery
CN110780225A (en) * 2018-07-30 2020-02-11 广州小鹏汽车科技有限公司 Battery pack internal short circuit detection method and device and electric automobile
CN110780225B (en) * 2018-07-30 2021-10-12 广州小鹏汽车科技有限公司 Battery pack internal short circuit detection method and device and electric automobile
JP2022523954A (en) * 2019-08-07 2022-04-27 エルジー エナジー ソリューション リミテッド Electrochemical elements for inducing internal short circuits and safety evaluation methods using them
JP7262605B2 (en) 2019-08-07 2023-04-21 エルジー エナジー ソリューション リミテッド Electrochemical device for internal short circuit induction and safety evaluation method using the same
WO2021125694A1 (en) * 2019-12-17 2021-06-24 주식회사 엘지에너지솔루션 Battery cell for testing internal short circuit, and method for testing internal short circuit of battery cell by using same
US11923567B2 (en) 2019-12-17 2024-03-05 Lg Energy Solution, Ltd. Battery cell for testing internal short circuit, and method for testing internal short circuit of battery cell by using same
CN112630664A (en) * 2020-12-18 2021-04-09 广东风华新能源股份有限公司 Lithium battery short circuit failure analysis method and detection device
CN112630664B (en) * 2020-12-18 2023-11-03 广东风华新能源股份有限公司 Lithium battery short-circuit failure analysis method and detection device
CN113533966A (en) * 2021-07-21 2021-10-22 欣旺达电动汽车电池有限公司 Method and device for measuring short circuit resistance value in battery and computer readable storage medium
CN113533966B (en) * 2021-07-21 2024-04-09 欣旺达动力科技股份有限公司 Method and device for measuring short circuit resistance value in battery and computer readable storage medium

Similar Documents

Publication Publication Date Title
JP2009054300A (en) Internal short circuit evaluation method of battery
EP2093823B1 (en) Method for evaluating internal short circuit of battery, device for evaluating internal short circuit of battery, battery, battery pack and their manufacturing methods
JP5209896B2 (en) Battery internal short-circuit safety evaluation method
KR101023352B1 (en) Evaluation method and evaluation apparatus for evaluating battery safety
JP5060623B2 (en) Battery internal short circuit evaluation device
JP2008192496A (en) Internal short circuit evaluation method of battery, battery, battery pack, and their manufacturing method
JP2018085245A (en) Short circuit test device for battery and short circuit test method for battery