JP2009051209A - Resin transfer molding method - Google Patents

Resin transfer molding method Download PDF

Info

Publication number
JP2009051209A
JP2009051209A JP2008196025A JP2008196025A JP2009051209A JP 2009051209 A JP2009051209 A JP 2009051209A JP 2008196025 A JP2008196025 A JP 2008196025A JP 2008196025 A JP2008196025 A JP 2008196025A JP 2009051209 A JP2009051209 A JP 2009051209A
Authority
JP
Japan
Prior art keywords
reinforcing fiber
molding method
foamed resin
resin
fiber base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008196025A
Other languages
Japanese (ja)
Inventor
Takashi Yoshiyama
高史 吉山
Shigeru Kawashima
茂 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008196025A priority Critical patent/JP2009051209A/en
Publication of JP2009051209A publication Critical patent/JP2009051209A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Resin Transfer Molding (RTM) method in which a manufacturing cost of forming dies can be drastically reduced by restricting the requirement for a desired cavity shape only to the lower die, and FRP molded articles of the quality equivalent to that in the case that conventional both-sided dies are used, can be easily and surely formed. <P>SOLUTION: The RTM method is characterized by; arranging a reinforcing fiber base material 3 on the lower die 1 having the cavity 2 formed into the desired shape; superposing the upper die 5 on the lower die 1 so as to hermetically close the cavity at its circumference; injecting a foamed resin 8 into a space 6 formed between the upper die 5 and the reinforcing fiber base material 3; and injecting a matrix resin 10 toward the reinforcing fiber base material 3 to impregnated the base material with the resin. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、FRP(繊維強化樹脂)成形品のRTM(Resin Transfer Molding)成形方法に関し、とくに、成形型を簡単な構造にでき安価に製作することが可能なRTM成形方法に関する。   The present invention relates to an RTM (Resin Transfer Molding) molding method for an FRP (fiber reinforced resin) molded product, and more particularly to an RTM molding method in which a molding die can have a simple structure and can be manufactured at low cost.

複数の型、例えば図5に示すように、上下型101、102からなる成形型のキャビティ内に強化繊維基材103を配置し、型締めした後、樹脂104を注入してFRP成形品を成形するRTM成形方法が知られている(例えば、特許文献1)。従来のRTM成形方法に用いられる成形型としては、例えば上記図5に示したような、内部に所望の形状のキャビティを画成する上下型101、102からなる両面型を用いてきた。しかし、このような両面型は、一般に製作費用が高く、少量の生産には不向きである。   As shown in FIG. 5, for example, as shown in FIG. 5, the reinforcing fiber base material 103 is placed in the cavity of the mold composed of the upper and lower molds 101 and 102, and after the mold is clamped, the resin 104 is injected to mold the FRP molded product. An RTM molding method is known (for example, Patent Document 1). As a mold used in the conventional RTM molding method, for example, a double-sided mold including upper and lower molds 101 and 102 that define a cavity having a desired shape inside has been used as shown in FIG. However, such a double-sided type is generally expensive to manufacture and is not suitable for small-scale production.

また、このようなRTM成形方法において、成形すべきFRP成形品にアンダーカット形状が存在すると、成形品形状のまま上下型にアンダーカットを形成すると型締めができないため、成形型内にスライドコアなどの複雑な特殊形状の中子を配置する必要があり、やはり、成形型全体として構造が複雑になるとともに、その製作費用が高くなる、さらに中子配置作業により工程が煩雑になるという問題がある。   Also, in such an RTM molding method, if there is an undercut shape in the FRP molded product to be molded, if an undercut is formed in the upper and lower molds while maintaining the shape of the molded product, the mold cannot be clamped. It is necessary to arrange a complicated special-shaped core, and the structure of the molding die as a whole is complicated, the manufacturing cost is high, and the process of placing the core is complicated. .

このような両面型を使用する場合の問題に対し、片面型を使用し、その片面型のキャビティ内に強化繊維基材を配置し、上型を用いることなく、全体をバッグ材で覆ってその内部を減圧し、減圧された内部に樹脂を注入する方法が知られている(例えば、特許文献2)。この方法では、上型が不要となるため、成形型の製作費用が低減されるが、樹脂の供給は真空圧に頼るため、加圧が不十分であることによるボイドや基材の浮きなどの成形上の品質の問題が発生することがある。
特開2007−7910号公報 米国特許第5052906号公報
For the problem when using such a double-sided mold, use a single-sided mold, place a reinforcing fiber base in the cavity of the single-sided mold, and cover the whole with a bag material without using an upper mold. A method is known in which the inside is decompressed and a resin is injected into the decompressed interior (for example, Patent Document 2). This method eliminates the need for an upper mold, thereby reducing the production cost of the mold. However, since the resin supply depends on the vacuum pressure, voids due to insufficient pressurization, floating of the base material, etc. Molding quality problems may occur.
JP 2007-7910 A U.S. Pat. No. 5,052,906

そこで本発明の課題は、上記のような現状に鑑み、所望のキャビティ形状が要求されるのを下型のみとして成形型の製作費用の大幅な低減を可能とし、かつ、従来の両面型を用いる場合と同等の品質のFRP成形品を容易にかつ確実に得ることが可能なRTM成形方法を提供することにある。   Therefore, in view of the present situation as described above, it is an object of the present invention to make it possible to significantly reduce the manufacturing cost of a mold by using only a lower mold that requires a desired cavity shape, and to use a conventional double-sided mold. An object of the present invention is to provide an RTM molding method capable of easily and reliably obtaining an FRP molded product having the same quality as the case.

上記課題を解決するために、本発明に係るRTM成形方法は、所望の形状に形成されたキャビティを有する下型に強化繊維基材を配置し、前記下型に前記キャビティの周囲で密閉するように上型を重ね、発泡樹脂を前記上型と前記強化繊維基材の間の空間に注入し、マトリックス樹脂を前記強化繊維基材に向けて注入し含浸させることを特徴とする方法からなる。   In order to solve the above-described problems, an RTM molding method according to the present invention is arranged such that a reinforcing fiber base is disposed in a lower mold having a cavity formed in a desired shape, and is sealed in the lower mold around the cavity. The upper mold is overlaid, the foamed resin is injected into the space between the upper mold and the reinforcing fiber base, and the matrix resin is injected toward the reinforcing fiber base and impregnated.

このようなRTM成形方法においては、上型と強化繊維基材の間の空間に注入された発泡樹脂が、強化繊維基材を、所望の形状に形成された下型のキャビティの面に沿うように押圧することができるので、この発泡樹脂が従来の両面型における上型と同等の機能を発揮でき、本RTM成形方法における上型としては、単に密閉可能な発泡樹脂注入用空間を形成できるだけのごく簡単な形状の型でよいことになる。したがってまず、上型の製作費用が大幅に低減され、成形型全体としての製作費用も大幅に低減される。また、発泡樹脂が従来の両面型における上型と同等の機能を発揮できることにより、従来の両面型による場合と同等の品質のFRP成形品を容易にかつ確実に得ることが可能になる。さらに、上型の下型への対向面の形状は、下型側のキャビティの形状にかかわらず、例えば単なる平面形状等のごく単純な形状でよく、各下型の各種のキャビティ形状にかかわらず、各下型共通の上型として使用することが可能になる。したがって、複数種のFRP成形品を成形する場合にも、成形型全体としての型製作費用が大幅に低減されることになる。   In such an RTM molding method, the foamed resin injected into the space between the upper mold and the reinforcing fiber base causes the reinforcing fiber base to follow the surface of the lower mold cavity formed in a desired shape. This foamed resin can exhibit the same function as the upper mold in the conventional double-sided mold, and the upper mold in this RTM molding method can only form a foamable resin injection space that can be sealed. A very simple shape mold is sufficient. Therefore, first, the manufacturing cost of the upper mold is greatly reduced, and the manufacturing cost of the entire mold is also greatly reduced. In addition, since the foamed resin can exhibit the same function as the upper mold in the conventional double-sided mold, it becomes possible to easily and reliably obtain an FRP molded product having the same quality as that of the conventional double-sided mold. Furthermore, the shape of the surface facing the lower die of the upper die may be a very simple shape such as a simple planar shape, regardless of the shape of the cavity on the lower die side, regardless of the various cavity shapes of each lower die. It becomes possible to use as an upper die common to each lower die. Therefore, even when a plurality of types of FRP molded products are molded, the cost of mold production for the entire molding die is greatly reduced.

上記本発明に係るRTM成形方法においては、マトリックス樹脂の注入タイミングとしては、発泡樹脂側の圧力とマトリックス樹脂側の圧力とをバランスさせて成形物を目標とする成形形状に保つ観点から、注入された発泡樹脂の硬化後にマトリックス樹脂を注入することが好ましい。ただし、発泡樹脂の完全硬化前にマトリックス樹脂の注入を開始したり、発泡樹脂の注入直後や注入がほぼ終了しているものの注入を行っている間にマトリックス樹脂の注入を開始したりすることも可能である。マトリックス樹脂の注入タイミングを適切に早めることで、成形サイクルのタクトタイムの短縮が可能である。   In the RTM molding method according to the present invention, the injection timing of the matrix resin is injected from the viewpoint of keeping the molded product in a target molded shape by balancing the pressure on the foamed resin side and the pressure on the matrix resin side. It is preferable to inject the matrix resin after curing of the foamed resin. However, the injection of the matrix resin may be started before the foam resin is completely cured, or the injection of the matrix resin may be started immediately after the injection of the foam resin or while the injection is almost completed. Is possible. By appropriately advancing the matrix resin injection timing, the cycle time of the molding cycle can be shortened.

また、本発明に係るRTM成形方法においては、注入された発泡樹脂の強化繊維基材側の面の、上記マトリックス樹脂の注入による歪み量が、0.5mm以下であることが好ましい。歪み量が0.5mmを越えると、FRP成形品の表面が粗くなりすぎたり望ましくない凹凸やうねりが生じるおそれがある。歪み量の0.5mm以下への抑制には、例えば、マトリックス樹脂の注入圧力の制御や、発泡樹脂の注入圧や発泡倍率の調整等が有効である。   Moreover, in the RTM molding method according to the present invention, it is preferable that the amount of distortion caused by the injection of the matrix resin on the surface of the injected foamed resin on the side of the reinforcing fiber base is 0.5 mm or less. If the amount of strain exceeds 0.5 mm, the surface of the FRP molded product may become too rough, or undesirable unevenness and waviness may occur. In order to suppress the strain amount to 0.5 mm or less, for example, control of the injection pressure of the matrix resin, adjustment of the injection pressure of the foamed resin, and the expansion ratio are effective.

また、上記下型に配置した強化繊維基材の上面にシート状物を配置し、その上に発泡樹脂を注入するようにすることもできる。発泡樹脂は、成形のためのみに用いられるもので、本質的にFRP成形品自体とは無関係なものである。したがって、このようなシート状物を介在させれば、発泡樹脂と、強化繊維基材へと含浸されていくマトリックス樹脂との間に、容易に所望の境界を形成でき、成形後にシート状物とともに発泡樹脂をFRP成形品から分離することにより、一層容易に目標形状のFRP成形品が得られやすくなる。   Moreover, a sheet-like object can be arrange | positioned on the upper surface of the reinforced fiber base material arrange | positioned at the said lower mold | type, and a foamed resin can also be inject | poured on it. The foamed resin is used only for molding, and is essentially independent of the FRP molded product itself. Therefore, if such a sheet-like material is interposed, a desired boundary can be easily formed between the foamed resin and the matrix resin that is impregnated into the reinforcing fiber base material, together with the sheet-like material after molding. By separating the foamed resin from the FRP molded product, it becomes easier to obtain the FRP molded product having the target shape.

このため、上記シート状物としては、強化繊維基材とマトリックス樹脂によりFRP成形品を成形した後に、該FRP成形品から剥離除去可能なシート状物(いわゆる、ピールプライと呼ばれるシート状物)からなることが好ましい。剥離性に優れたシート状物を使用することにより、FRP成形品の脱型およびFRP成形品からのシート状物および発泡樹脂の剥離除去の容易化が可能である。   For this reason, the sheet-like material is a sheet-like material that can be peeled and removed from the FRP-molded product after forming the FRP-molded product with the reinforcing fiber base material and the matrix resin (a sheet-like material called a peel ply). It is preferable. By using a sheet-like material having excellent releasability, it is possible to facilitate the demolding of the FRP molded product and the peeling and removal of the sheet-like material and the foamed resin from the FRP molded product.

また、上記シート状物の剛性を示すEI、
EI=5×W×L4 /(T×0.25×384)
以上であることが好ましい。ここで、Eは弾性率(N/m2 )、Iは断面2次モーメント(m4 )、Wは発泡樹脂圧力(N/m2 )、Lはストランド間隔で、隣接する同方向に延びるストランドの中心線間の距離(m)、Tはストランド厚みで、織物全体の厚み(m)である。これにより、発泡樹脂が、強化繊維基材の目隙空間に入り込んで、RTM成型時のマトリックス樹脂の流れを阻害せず、良好な成形が可能となる。なお、上記式は、「等分布荷重を受ける両端支持梁の公式」(例えば、「現代材料力学」(オーム社、初版1970年)中に記載の公式)を本発明に当てはめたものである。すなわち、等分布荷重を受ける両端支持梁の公式では、Ymax=5WL4 /(384EI)となる。ここで、Wは分布荷重、Lは梁長さ、Eは弾性率、Iは断面2次モーメント、Ymaxは歪み最大値となるが、この分布荷重Wは本発明における「発泡樹脂圧力」に相当し、梁長さLは本発明における「ストランド間隔」に相当し、歪み最大値Ymaxは、本発明における「シート状物の成形面から見て歪み限界」に相当し、これを本発明では基材の厚みの1/4=0.25と規定した。したがって、上記「等分布荷重を受ける両端支持梁の公式」から、
EI=5WL4 /((Ymax/4)×384)
が導出され、この式に本発明の対応項目を代入することにより、前記式が導かれる。
EI indicating the rigidity of the sheet-like material,
EI = 5 × W × L 4 /(T×0.25×384)
The above is preferable. Here, E is the elastic modulus (N / m 2 ), I is the secondary moment of inertia (m 4 ), W is the foamed resin pressure (N / m 2 ), L is the strand spacing, and adjacent strands extending in the same direction The distance (m) between the center lines and T is the strand thickness, which is the thickness (m) of the entire fabric. As a result, the foamed resin enters the interstices space of the reinforcing fiber base material and does not impede the flow of the matrix resin during RTM molding, thereby enabling good molding. In the above formula, “formula of both-end support beam subjected to equally distributed load” (for example, formula described in “Modern Material Mechanics” (Ohm Co., first edition 1970)) is applied to the present invention. That is, in the formula of the both-end support beam subjected to the uniform load, Ymax = 5WL 4 / (384EI). Here, W is a distributed load, L is a beam length, E is a modulus of elasticity, I is a secondary moment of section, and Ymax is a maximum strain value. This distributed load W corresponds to “foaming resin pressure” in the present invention. The beam length L corresponds to the “strand spacing” in the present invention, and the maximum strain value Ymax corresponds to the “strain limit as viewed from the molding surface of the sheet-like material” in the present invention. 1/4 of the thickness of the material was defined as 0.25. Therefore, from the above "Formula of both-ends support beam subjected to equally distributed load"
EI = 5WL 4 / ((Ymax / 4) × 384)
Is derived, and the above equation is derived by substituting the corresponding item of the present invention into this equation.

上記式で求められる値以上の剛性を有するシート状物を強化繊維基材と発泡樹脂との間に配置しておくと、発泡樹脂の注入圧力によってシート状物が強化繊維基材の目隙空間に入り込んだり、発泡樹脂がシート状物を押し破って発泡樹脂そのものが強化繊維基材の目隙空間に入り込んだりするおそれをなくすことができる。その結果、RTM成形時においてマトリックス樹脂を強化繊維基材の空間に十分に含浸させ、マトリックス樹脂が硬化した後も表面意匠性を保持したままシート状物を剥離させることができるので、良好なFRP成形品を得ることが可能となる。   If a sheet-like material having a rigidity equal to or greater than the value obtained by the above formula is placed between the reinforcing fiber base material and the foamed resin, the sheet-like material is in the gap space of the reinforcing fiber base material due to the injection pressure of the foamed resin. It is possible to eliminate the possibility that the foamed resin penetrates into or the foamed resin breaks the sheet-like material and the foamed resin itself enters the space between the reinforcing fiber bases. As a result, the matrix resin can be sufficiently impregnated in the space of the reinforcing fiber base during RTM molding, and the sheet-like material can be peeled off while maintaining the surface design even after the matrix resin is cured. A molded product can be obtained.

なお、本発明に係るRTM成形方法の応用適用形態として、上記のようなシート状物を用いることなく、RTM成形によるFRPとそれに一体化される発泡樹脂をともに成形することが可能である。このような成形品では、例えばFRP成形部分にクッション機能等を備えた発泡樹脂成形部分との一体化成形品の製造が可能になる。   In addition, as an application application form of the RTM molding method according to the present invention, it is possible to mold both FRP by RTM molding and foamed resin integrated therewith without using the sheet-like material as described above. In such a molded product, for example, it becomes possible to manufacture an integrally molded product with a foamed resin molded part having a cushion function or the like in the FRP molded part.

また、本発明に係るRTM成形方法においては、マトリックス樹脂は、発泡樹脂の非存在部にて注入することが好ましい。注入対象空間が異なる上、互いに混ざり合うことは回避されなければならないので、完全分離が可能な発泡樹脂の非存在部にて注入することが好ましい。   Moreover, in the RTM molding method according to the present invention, it is preferable that the matrix resin is injected in the absence of the foamed resin. Since the injection target spaces are different and mixing with each other must be avoided, it is preferable to inject in a non-existing portion of the foamed resin that can be completely separated.

さらに、本発明に係るRTM成形方法は、上記下型のキャビティがアンダーカット部を有する場合にとくに有効な方法である。すなわち、下型のキャビティがアンダーカット部を有する場合にも、発泡樹脂は容易にアンダーカット部に対しても注入、充満されていくから、従来の中子等と同等の機能を発揮でき、複雑な形状のFRP成形品に対しても本発明に係るRTM成形方法を容易に適用できるようになる。また、従来方法では、仮に上型にもアンダーカット部を設けるとその型締めが不可能になることが多かったが、本発明に係るRTM成形方法では、上型にはアンダーカット部を設ける必要は全くなく上型はごく簡単な形状でよいから、上型について型締めおよび型開き上の問題は全く生じない。発泡樹脂はFRP成形品の脱型とともに、あるいは脱型後に除去されればよく、その際にある形状に形成されていた発泡樹脂は壊れてもよいので、結局、上型の型開き、下型からのFRP成形品の脱型、FRP成形品からの発泡樹脂の除去の全てが容易に行われ得る。   Furthermore, the RTM molding method according to the present invention is a particularly effective method when the lower mold cavity has an undercut portion. In other words, even when the lower mold cavity has an undercut part, the foamed resin is easily injected into and filled in the undercut part. The RTM molding method according to the present invention can be easily applied to FRP molded products having various shapes. Further, in the conventional method, if an undercut portion is also provided in the upper die, it is often impossible to clamp the die. However, in the RTM molding method according to the present invention, it is necessary to provide an undercut portion in the upper die. Since there is no upper mold, the upper mold may have a very simple shape, so that there is no problem with clamping and opening of the upper mold. The foamed resin may be removed together with or after the demolding of the FRP molded product, and the foamed resin formed in a certain shape at that time may be broken. All of the demolding of the FRP molded product and the removal of the foamed resin from the FRP molded product can be easily performed.

このように、本発明に係るRTM成形方法によれば、上型はごく単純な形状、構造ですみ、また、上型を各下型に対して共通に使用することも可能になり、成形型の製作費用の大幅な低減が可能なる。また、注入された発泡樹脂は、従来の両面型における上型や、複雑な形状の成形が要求される場合の中子と同等の機能を発揮できるので、目標とする良好な形状、品質のFRP成形品を容易に得ることができる。さらに、アンダーカット形状が要求される場合にも、特別な手段を用いることなく所望のFRP成形品を得ることができるようになる。   As described above, according to the RTM molding method according to the present invention, the upper mold can have a very simple shape and structure, and the upper mold can be commonly used for each lower mold. Production costs can be greatly reduced. In addition, the injected foamed resin can perform the same function as the upper mold in the conventional double-sided mold and the core when molding of complicated shapes is required. A molded product can be easily obtained. Furthermore, even when an undercut shape is required, a desired FRP molded product can be obtained without using a special means.

以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。
図1は、本発明の一実施態様に係るRTM成形方法の実施の様子を示している。図1において、1は、FRP成形のための所望の形状に形成されたキャビティ2を有する下型を示している。この下型1のキャビティ2内に、強化繊維基材3をキャビティ2の内面に沿うように配置し、その状態で、下型1上に、該下型1をそのキャビティ2の周囲でシール材4を用いて密閉するように上型5を重ねる。この状態では、上型5の下面とキャビティ2内に配置された強化繊維基材3の上面との間には空間6が形成されるが、この上型5と強化繊維基材3の間の空間6に、発泡樹脂注入口7から発泡樹脂8を注入する。発泡樹脂8の注入とともに、あるいは注入後に、あるいは、注入硬化後に、発泡樹脂8の非存在部に配置されたマトリックス樹脂注入口9からマトリックス樹脂10を強化繊維基材3に向けて注入し、強化繊維基材3に含浸させる。余剰のマトリックス樹脂10は、排出口11から排出させ、強化繊維基材3の延在範囲全体にわたって十分にマトリックス樹脂10を行き渡らせる。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows how the RTM molding method according to one embodiment of the present invention is carried out. In FIG. 1, reference numeral 1 denotes a lower mold having a cavity 2 formed in a desired shape for FRP molding. In the cavity 2 of the lower mold 1, the reinforcing fiber base 3 is disposed along the inner surface of the cavity 2, and in this state, the lower mold 1 is sealed around the cavity 2 on the lower mold 1. The upper mold 5 is stacked so as to be sealed with 4. In this state, a space 6 is formed between the lower surface of the upper mold 5 and the upper surface of the reinforcing fiber base 3 disposed in the cavity 2. The foamed resin 8 is injected into the space 6 from the foamed resin injection port 7. Along with the injection of the foamed resin 8, or after the injection, or after the injection curing, the matrix resin 10 is injected from the matrix resin injection port 9 disposed in the non-existing portion of the foamed resin 8 toward the reinforcing fiber base 3 and strengthened. The fiber base material 3 is impregnated. Excess matrix resin 10 is discharged from the discharge port 11, and the matrix resin 10 is sufficiently spread over the entire extending range of the reinforcing fiber base 3.

上記強化繊維基材3は、図2に示すように、例えば、複数枚の強化繊維材(例えば強化繊維クロス)が積層された形態に形成される。強化繊維基材3は、柔軟性を持たせた状態で下型1のキャビティ2に沿わせて賦形するようにしてもよく、予め概略所定形状に賦形した、いわゆるプリフォームの形態としてキャビティ2内に配置するようにしてもよい。強化繊維基材3としては、炭素繊維強化基材である、東レ(株)製BT7030などが好適である。この基材は、例えば図3に示すように、炭素繊維フィラメントを複数本束ねて帯状に形成したストランドを縦糸31および横糸32として用いた平織りの強化繊維クロスを、1枚もしくは複数枚積層させた形態であることが好ましい。なお、本発明に使用できる炭素繊維強化基材3はこの限りではなく、一方向織物や一方向繊維にナイロンやアラミド繊維を横糸に用いたクロス等、あるいはこれらを組み合わせて積層した形態も好適に使用することができる。この強化繊維クロスは、図3(a)〜(c)に示すように、おおよそストランド幅が4mm、ストランド間隔Lが5mm、基材厚み(ストランド厚みT)は約0.3mmである。また、図3(a)に示すように、強化繊維クロスを構成する縦糸31と横糸32の各ストランドは隙間なく並べられておらず、隣接しあうストランド同士の隙間で形成される四辺形状の目隙空間33が形成されている。この強化繊維基材3の上には、好ましくは、フィルム等のピールプライからなるシート状物12が配置され、その上に、上記発泡樹脂8が注入されて、上記空間6内に充満される。シート状物12の配置により、注入された発泡樹脂8と、注入されたマトリックス樹脂10とを、確実に分離でき、両樹脂領域間に明確な境界が形成される。   As shown in FIG. 2, the reinforcing fiber base 3 is formed, for example, in a form in which a plurality of reinforcing fiber materials (for example, reinforcing fiber cloths) are laminated. The reinforcing fiber base 3 may be shaped along the cavity 2 of the lower mold 1 in a flexible state, and the cavity is formed in the form of a so-called preform that is shaped in advance in a roughly predetermined shape. 2 may be arranged. As the reinforcing fiber base 3, BT7030 manufactured by Toray Industries, Inc., which is a carbon fiber reinforced base, is suitable. For example, as shown in FIG. 3, this base material is formed by laminating one or a plurality of plain-woven reinforcing fiber cloths using strands formed by bundling a plurality of carbon fiber filaments in a band shape as warp yarns 31 and weft yarns 32. The form is preferred. The carbon fiber reinforced base material 3 that can be used in the present invention is not limited to this, and a form in which a unidirectional woven fabric, a cloth using nylon or aramid fiber as a weft yarn, or a combination of these is laminated suitably. Can be used. As shown in FIGS. 3A to 3C, the reinforcing fiber cloth has a strand width of about 4 mm, a strand interval L of 5 mm, and a base material thickness (strand thickness T) of about 0.3 mm. Further, as shown in FIG. 3 (a), the strands of the warp 31 and the weft 32 constituting the reinforcing fiber cloth are not arranged without gaps, and the quadrilateral eyes formed by the gaps between adjacent strands. A gap space 33 is formed. On the reinforcing fiber base 3, a sheet-like material 12 made of a peel ply such as a film is preferably disposed, and the foamed resin 8 is injected thereon to fill the space 6. By arranging the sheet-like material 12, the injected foamed resin 8 and the injected matrix resin 10 can be reliably separated, and a clear boundary is formed between both resin regions.

強化繊維基材3の強化繊維としては、とくに限定されず、炭素繊維の他、例えば、ガラス繊維等の無機繊維や、ケブラー繊維、ポリエチレン繊維、ポリアミド繊維などの有機繊維からなる強化繊維、これらを併用した強化繊維を使用することが可能である。FRP成形品の剛性等の制御の容易性の面からは、とくに炭素繊維が好ましい。FRPのマトリックス樹脂10としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ジシクロペンタジエン樹脂、ポリウレタン樹脂等の熱硬化性樹脂が挙げられ、さらには、ポリアミド樹脂、ポリオレフィン樹脂等の熱可塑性樹脂も使用可能である。   The reinforcing fiber of the reinforcing fiber base 3 is not particularly limited, and other than carbon fibers, for example, inorganic fibers such as glass fibers, reinforcing fibers made of organic fibers such as Kevlar fibers, polyethylene fibers, polyamide fibers, and the like. It is possible to use reinforcing fibers used in combination. Carbon fiber is particularly preferable from the viewpoint of easy control of the rigidity and the like of the FRP molded product. Examples of the FRP matrix resin 10 include thermosetting resins such as epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, dicyclopentadiene resins, polyurethane resins, and polyamide resins and polyolefin resins. A thermoplastic resin such as can also be used.

発泡樹脂8としては、注入圧に加えて発泡による圧力により、マトリックス樹脂10の注入圧とバランスして、良好なFRP成形面を形成できるものであれば特に限定されないが、代表的な発泡樹脂8として、発泡ポリウレタン樹脂を挙げることができる。この発泡樹脂8としては、注入時には極力低粘度で複雑な形状の空間6に対しても所望の領域全体にわたって良好に充満できるものが好ましく、発泡後あるいは硬化後には、マトリックス樹脂10の注入圧に対抗できるだけの硬さを有することができるものが好ましい。このような発泡樹脂8として、例えば、特開平5−279448号公報に記載されているものを使用可能である。   The foamed resin 8 is not particularly limited as long as it can form a good FRP molding surface by balancing with the injection pressure of the matrix resin 10 by the pressure due to foaming in addition to the injection pressure, but the typical foamed resin 8 Examples thereof include foamed polyurethane resins. The foamed resin 8 is preferably one that can satisfactorily fill the entire desired region even in the space 6 having a complex shape with a low viscosity as much as possible at the time of injection. After foaming or after curing, the injection pressure of the matrix resin 10 is used. What can have the hardness which can oppose is preferable. As such a foamed resin 8, for example, those described in JP-A-5-279448 can be used.

図1、図2に示した態様では、まず、強化繊維基材3を、成形すべき製品形状に形成した下型1のキャビティ2に沿わせて配置する。強化繊維基材3の最外層には フィルムなどの発泡樹脂8が基材3へ入り込まないシート状物12を配置する。このシート状物12は、後で剥がす場合にはピールプライなどを用いると良い。この状態で、とくに下面が図示の如く平面形状等のごく単純な形状に形成された汎用の上型5により、強化繊維基材3配置部を密閉する。上型5と下型1との間に形成された空間6に、所定量の発泡樹脂8を注入し充填する。発泡樹脂8の充填量は、必要に応じて調整が必要であるが、マトリクス樹脂10の注入圧に応じて、発泡倍率を調整し、樹脂注入圧による変形量(歪み量)を前述の如く0.5mm以下になるようにコントロールすればよい。そして、例えば注入された発泡樹脂8が硬化した後、マトリックス樹脂10を注入する。マトリックス樹脂10が強化繊維基材3した後硬化したら、上型5を開いてFRP成形品を脱型する。その際、例えば同時に、発泡樹脂8をFRP成形品から取り除く。   In the embodiment shown in FIGS. 1 and 2, first, the reinforcing fiber base 3 is arranged along the cavity 2 of the lower mold 1 formed into a product shape to be molded. In the outermost layer of the reinforcing fiber base 3, a sheet-like material 12 in which the foamed resin 8 such as a film does not enter the base 3 is disposed. The sheet-like material 12 may be peeled off when peeled off later. In this state, the reinforcing fiber base 3 placement portion is sealed with a general-purpose upper mold 5 whose lower surface is formed in a very simple shape such as a planar shape as shown in the drawing. A predetermined amount of foamed resin 8 is injected and filled into a space 6 formed between the upper mold 5 and the lower mold 1. The filling amount of the foamed resin 8 needs to be adjusted as necessary, but the foaming magnification is adjusted according to the injection pressure of the matrix resin 10 and the deformation amount (distortion amount) due to the resin injection pressure is 0 as described above. It may be controlled to be 5 mm or less. For example, after the injected foamed resin 8 is cured, the matrix resin 10 is injected. When the matrix resin 10 is cured after the reinforcing fiber base 3 is cured, the upper mold 5 is opened and the FRP molded product is demolded. At that time, for example, the foamed resin 8 is simultaneously removed from the FRP molded product.

このようなRTM成形方法においては、上型5とシート状物12の間の空間6に注入された発泡樹脂8が、強化繊維基材3をキャビティ2の面に沿うように押圧してマトリックス樹脂10の注入時にも強化繊維基材3を所定の成形すべき形状に維持する。したがって、発泡樹脂8が従来の両面型における上型と同等の機能を発揮でき、従来の両面型による場合と同等の品質のFRP成形品を容易にかつ確実に得ることが可能になる。上型5としては、図示の如く下面が平面形状の極めて単純な汎用型でよいので、上型5の製作費用が大幅に低減され、上型5、下型1の成形型全体としての製作費用も大幅に低減される。また、汎用上型とすることにより、下型1の種類にかかわらず、とくにそのキャビティ2の形状にかかわらず、共通に使用することが可能になり、この面からも型製作費用が大幅に低減されることになる。   In such an RTM molding method, the foamed resin 8 injected into the space 6 between the upper mold 5 and the sheet-like material 12 presses the reinforcing fiber base 3 along the surface of the cavity 2 to press the matrix resin. The reinforcing fiber base material 3 is maintained in a predetermined shape to be molded even when 10 is injected. Therefore, the foamed resin 8 can exhibit a function equivalent to that of the upper mold in the conventional double-sided mold, and an FRP molded product having the same quality as that of the conventional double-sided mold can be obtained easily and reliably. As shown in the figure, the upper die 5 may be a very simple general-purpose die having a flat bottom surface, so that the production cost of the upper die 5 is greatly reduced, and the production costs of the upper die 5 and the lower die 1 as a whole are increased. Is also greatly reduced. In addition, by using a general-purpose upper mold, it can be used in common regardless of the type of the lower mold 1, and in particular regardless of the shape of the cavity 2. Will be.

なお、図3(c)に示すとおり強化繊維基材3の織り構造の目隙空間33に発泡樹脂8が押し込まれることがある。目隙空間33が大きい強化繊維基材3や、発泡樹脂8の発泡圧力が高い場合には特に入り込み易い。目隙空間33に発泡樹脂8が入り込むと、マトリックス樹脂10の流れる流路を塞ぎ、強化繊維基材3にマトリックス樹脂10が十分充填されない問題が発生する。   In addition, as shown in FIG.3 (c), the foamed resin 8 may be pushed in into the gap space 33 of the woven structure of the reinforced fiber base material 3. FIG. This is particularly easy when the reinforcing fiber base 3 has a large gap space 33 or the foaming pressure of the foamed resin 8 is high. When the foamed resin 8 enters the gap space 33, the flow path through which the matrix resin 10 flows is blocked, and a problem that the matrix resin 10 is not sufficiently filled in the reinforcing fiber base 3 occurs.

また、シート状物12にフィルム等の軟質な材料を用いたとしても、強化繊維基材3の織り構造の目隙空間33に発泡樹脂8の発泡圧力によってシート状物12が押し込まれたり、場合によってはシート状物12を突き破って目隙空間33にまで直接発泡樹脂8が浸入したりすることがある。このような場合、シート状物12にはフィルムのような軟質な材料ではなく、発泡樹脂8の発泡圧力が加わっても、強化繊維基材3の目隙空間33に押し込まれない剛性を持ったシート状物12を用いると良い。強化繊維基材3の積層数が多い場合は、流路が下層にも成立するため、本問題の影響は比較的は少ないが同様の問題が発生する。そこで、最も積層数が少ない1層のケースで良好な成型が可能なシート状物12を示すこととし、積層数が多い場合でもこの条件を満たしていれば問題ない。   Further, even when a soft material such as a film is used for the sheet-like material 12, the sheet-like material 12 may be pushed into the gap space 33 of the woven structure of the reinforcing fiber base 3 by the foaming pressure of the foamed resin 8. Depending on the case, the foamed resin 8 may penetrate directly into the gap space 33 through the sheet-like material 12. In such a case, the sheet-like material 12 is not a soft material such as a film, but has rigidity that is not pushed into the gap space 33 of the reinforcing fiber base 3 even when the foaming pressure of the foamed resin 8 is applied. A sheet-like material 12 may be used. When the number of the reinforcing fiber bases 3 is large, the flow path is also formed in the lower layer, so that the same problem occurs although the influence of this problem is relatively small. Therefore, the sheet-like material 12 that can be satisfactorily molded in the case of one layer having the smallest number of layers is shown, and there is no problem if this condition is satisfied even when the number of layers is large.

マトリックス樹脂10の種類や温度にも影響するが、目隙空間33の厚みが75%程度になった時に樹脂の流量が70%程度に低下する。多くの場合、マトリックス樹脂10の硬化時間や工程サイクルタイムなどから、目隙空間33の厚みが75%以下になるまで発泡樹脂8もしくはシート状物12が押し込まれると、マトリックス樹脂10の含浸不良が急激に増加する。そこで、ストランド厚みの25%まで厚み方向に目隙空間33が塞がらないようなシート状物12の剛性を持たせる条件を鋭意検討した。   Although it affects the type and temperature of the matrix resin 10, the flow rate of the resin decreases to about 70% when the thickness of the gap space 33 is about 75%. In many cases, if the foamed resin 8 or the sheet-like material 12 is pushed in until the thickness of the gap space 33 becomes 75% or less from the curing time of the matrix resin 10 or the process cycle time, the poor impregnation of the matrix resin 10 occurs. Increases rapidly. Therefore, the inventors studied diligently on conditions for giving the sheet-like material 12 rigidity so that the gap space 33 is not blocked in the thickness direction up to 25% of the strand thickness.

ここで示すシート状物12の剛性をEI(弾性率Eと断面二次モーメントIの積)で表し、前述の如く、等分布荷重を受ける両端支持梁の公式に当てはめると
EI>5×発泡圧力×(ストランド間隔)4 /(ストランド厚み×0.25×384)
であれば良いこととなる。
When the rigidity of the sheet-like material 12 shown here is expressed by EI (product of elastic modulus E and secondary moment of inertia I) and applied to the formula of the both-end support beam subjected to the uniform load as described above, EI> 5 × foaming pressure × (strand spacing) 4 / (strand thickness × 0.25 × 384)
If it is good.

発泡圧力が98MPa(=10kg/mm2)、ストランド間隔は5mm、ストランド厚みは0.3mmとすると、EIは1.063×104N・m2(=1085kg・mm2)以上のシート部材であれば良い。 When the foaming pressure is 98 MPa (= 10 kg / mm 2 ), the strand spacing is 5 mm, and the strand thickness is 0.3 mm, the EI is a sheet member of 1.063 × 10 4 N · m 2 (= 1085 kg · mm 2 ) or more. I just need it.

一例として、ガラス繊維(目付600gのチョップドストランドマット)とビニルエステル樹脂を用いて板圧1.4mmのFRPシートを作成したところ、EIは2.4×104N・m2(=2400kg・mm2)となり、2倍以上剛性の高いシートとなり、上記条件を大きく上回る。このシート状物12を用いて成形作業を行った結果、若干のマトリクス樹脂重点時間が延びるが何ら問題なく良好な成形が可能となった。 As an example, when an FRP sheet having a plate pressure of 1.4 mm was made using glass fiber (chopped strand mat having a basis weight of 600 g) and a vinyl ester resin, the EI was 2.4 × 10 4 N · m 2 (= 2400 kg · mm). 2 ) and the sheet is more than twice as rigid and greatly exceeds the above conditions. As a result of performing the molding operation using this sheet-like material 12, it was possible to perform good molding without any problem although the matrix resin important time was slightly extended.

なお、FRP成形品から剥離除去可能なシートの反成形品側に本シート状物12を重ねて使用してもなんら問題はない。   It should be noted that there is no problem even if the sheet-like material 12 is used in an overlapping manner on the side opposite to the molded product that can be peeled and removed from the FRP molded product.

また、本発明に係るRTM成形方法は、例えば図4に別の実施態様を示すように、アンダーカット部21を有するFRP成形品の成形に好適なものである。この場合、下型22のキャビティ23に、対応するアンダーカット部が形成されるが、このようなアンダーカット部に対しても、発泡樹脂8は容易に隅々まで注入、充満されていき、従来の中子等と同等の機能を発揮して、特別な手段を用いることなく、複雑な形状のFRP成形品を容易に成形することが可能になる。その他の作用効果は図1に示した実施態様に準じる。   In addition, the RTM molding method according to the present invention is suitable for molding an FRP molded product having an undercut portion 21 as shown in, for example, another embodiment in FIG. In this case, a corresponding undercut portion is formed in the cavity 23 of the lower mold 22, and the foamed resin 8 is easily injected and filled into every corner of the undercut portion. A function equivalent to that of the core or the like is exhibited, and a complex shaped FRP molded product can be easily formed without using any special means. Other functions and effects are in accordance with the embodiment shown in FIG.

本発明に係るRTM成形方法は、強化繊維基材を用いてFRP成形品を成形するあらゆるRTM成形に適用でき、とくにFRP成形品がアンダーカット形状を有する場合に好適な方法である。   The RTM molding method according to the present invention can be applied to any RTM molding in which an FRP molded product is molded using a reinforcing fiber substrate, and is particularly suitable when the FRP molded product has an undercut shape.

本発明の一実施態様に係るRTM成形方法の実施の様子を示す概略断面図である。It is a schematic sectional drawing which shows the mode of implementation of the RTM shaping | molding method which concerns on one embodiment of this invention. 図1のRTM成形方法に用いる強化繊維基材の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the reinforced fiber base material used for the RTM shaping | molding method of FIG. (a)は本発明における強化繊維基材とシート状物の構成を上方から示した概略図であり、(b)は(a)のA−A断面図であり、(c)は(b)の部分拡大図である。(A) is the schematic which showed the structure of the reinforcing fiber base material and sheet-like material in this invention from the upper part, (b) is AA sectional drawing of (a), (c) is (b). FIG. 本発明の別の実施態様に係るRTM成形方法の実施の様子を示す概略断面図である。It is a schematic sectional drawing which shows the mode of implementation of the RTM shaping | molding method which concerns on another embodiment of this invention. 従来のRTM成形方法の実施の様子を示す概略断面図である。It is a schematic sectional drawing which shows the mode of implementation of the conventional RTM shaping | molding method.

符号の説明Explanation of symbols

1 下型
2 キャビティ
3 強化繊維基材
4 シール材
5 上型
6 空間
7 発泡樹脂注入口
8 発泡樹脂
9 マトリックス樹脂注入口
10 マトリックス樹脂
11 排出口
12 シート状物
21 アンダーカット部
22 下型
23 キャビティ
31 縦糸
32 横糸
33 目隙空間
DESCRIPTION OF SYMBOLS 1 Lower mold | type 2 Cavity 3 Reinforcement fiber base material 4 Seal material 5 Upper mold | type 6 Space 7 Foamed resin injection port 8 Foamed resin 9 Matrix resin injection port 10 Matrix resin 11 Outlet port 12 Sheet-like material 21 Undercut part 22 Lower mold | type 23 Cavity 31 warp 32 weft 33 gap space

Claims (8)

所望の形状に形成されたキャビティを有する下型に強化繊維基材を配置し、前記下型に前記キャビティの周囲で密閉するように上型を重ね、発泡樹脂を前記上型と前記強化繊維基材の間の空間に注入し、マトリックス樹脂を前記強化繊維基材に向けて注入し含浸させることを特徴とするRTM成形方法。   A reinforcing fiber base is disposed in a lower mold having a cavity formed in a desired shape, an upper mold is stacked on the lower mold so as to be sealed around the cavity, and a foamed resin is placed on the upper mold and the reinforcing fiber base. An RTM molding method comprising injecting into a space between materials and injecting and impregnating a matrix resin toward the reinforcing fiber substrate. 注入された前記発泡樹脂の硬化後に前記マトリックス樹脂を注入する、請求項1に記載のRTM成形方法。   The RTM molding method according to claim 1, wherein the matrix resin is injected after the injected foamed resin is cured. 注入された前記発泡樹脂の前記強化繊維基材側の面の、前記マトリックス樹脂の注入による歪み量が、0.5mm以下である、請求項1または2に記載のRTM成形方法。   The RTM molding method according to claim 1 or 2, wherein an amount of distortion caused by injection of the matrix resin on a surface of the injected foamed resin on the side of the reinforcing fiber base is 0.5 mm or less. 前記下型に配置した強化繊維基材の上面にシート状物を配置し、その上に前記発泡樹脂を注入する、請求項1〜3のいずれかに記載のRTM成形方法。   The RTM molding method according to any one of claims 1 to 3, wherein a sheet-like material is disposed on an upper surface of the reinforcing fiber base disposed in the lower mold, and the foamed resin is injected thereon. 前記シート状物が、前記強化繊維基材と前記マトリックス樹脂によりFRP成形品を成形した後に、該FRP成形品から剥離除去可能なシート状物からなる、請求項4に記載のRTM成形方法。   The RTM molding method according to claim 4, wherein the sheet-like material is a sheet-like material that can be peeled and removed from the FRP molded product after the FRP molded product is molded with the reinforcing fiber base material and the matrix resin. 前記シート状物は帯状の強化繊維束からなるストランドを縦横に織り込んだ二方向性織物からなり、前記シート状物の剛性を示すEIが、
EI=5×W×L4 /(T×0.25×384)
以上からなる請求項5に記載のRTM成型方法。
(ここで、Eは弾性率(N/m2 )、Iは断面2次モーメント(m4 )、Wは発泡樹脂圧力(N/m2 )、Lはストランド間隔で、隣接する同方向に延びるストランドの中心線間の距離(m)、Tはストランド厚みで、織物全体の厚み(m)である。)
The sheet-like material is composed of a bi-directional woven fabric in which strands composed of a band-shaped reinforcing fiber bundle are woven vertically and horizontally, and EI indicating the rigidity of the sheet-like material,
EI = 5 × W × L 4 /(T×0.25×384)
The RTM molding method according to claim 5, comprising the above.
(Where E is the elastic modulus (N / m 2 ), I is the secondary moment of inertia (m 4 ), W is the foamed resin pressure (N / m 2 ), L is the strand spacing, and extends in the same direction. (The distance (m) between the center lines of the strands, T is the thickness of the strand, and is the thickness (m) of the entire fabric.)
前記マトリックス樹脂を、前記発泡樹脂の非存在部にて注入する、請求項1〜6のいずれかに記載のRTM成形方法。   The RTM molding method according to claim 1, wherein the matrix resin is injected at a non-existing portion of the foamed resin. 前記下型のキャビティがアンダーカット部を有する、請求項1〜7のいずれかに記載のRTM成形方法。   The RTM molding method according to claim 1, wherein the lower mold cavity has an undercut portion.
JP2008196025A 2007-07-31 2008-07-30 Resin transfer molding method Pending JP2009051209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008196025A JP2009051209A (en) 2007-07-31 2008-07-30 Resin transfer molding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007199102 2007-07-31
JP2008196025A JP2009051209A (en) 2007-07-31 2008-07-30 Resin transfer molding method

Publications (1)

Publication Number Publication Date
JP2009051209A true JP2009051209A (en) 2009-03-12

Family

ID=40502715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008196025A Pending JP2009051209A (en) 2007-07-31 2008-07-30 Resin transfer molding method

Country Status (1)

Country Link
JP (1) JP2009051209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181870A1 (en) * 2014-05-26 2015-12-03 日産自動車株式会社 Composite material molded article and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181870A1 (en) * 2014-05-26 2015-12-03 日産自動車株式会社 Composite material molded article and method for producing same
JPWO2015181870A1 (en) * 2014-05-26 2017-04-20 日産自動車株式会社 COMPOSITE MATERIAL MOLDED BODY AND MANUFACTURING METHOD THEREOF
US10293558B2 (en) 2014-05-26 2019-05-21 Nissan Motor Co., Ltd. Composite material molded article and method of producing same

Similar Documents

Publication Publication Date Title
WO2018181983A1 (en) Prepreg sheet, method for manufacturing same, skin material-provided unitary layer, method for manufacturing article molded from fiber-reinforced composite material, and article molded from fiber-reinforced composite material
JP4106826B2 (en) Fiber-reinforced resin structure and method for producing the same
US11173687B2 (en) Reinforced substrate for composite material, composite material, and method for manufacturing reinforced substrate for composite material
US20120219660A1 (en) Jig used for manufacturing composite material structure having thickened wall portion in transverse cross-section
JP5440049B2 (en) RTM molding method
US20130079434A1 (en) Process for manufacturing a part made of a composite having a hollow core
JP4839523B2 (en) Manufacturing method of fiber reinforced resin
JP2009028939A (en) Rtm molding method
JP6665149B2 (en) Fiber reinforced resin body and method for producing the same
JP4442256B2 (en) RTM molding method
CN101015954B (en) Method of making a warp knitting element carrying bar of synthetic material and bar of synthetic material for warp knitting elements
JP2009051209A (en) Resin transfer molding method
JP2009045924A (en) Frp production method
JP6519214B2 (en) Fiber reinforced plastic manufacturing method
JP2004130723A (en) Method of manufacturing fiber-reinforced resin structure and manufacturing device using this method
JP6652523B2 (en) Reinforcing fiber substrate and preform.
JP2002192535A (en) Method for rtm molding
JP2009090646A (en) Resin transfer molding process
KR102070596B1 (en) Flow medium for fabricating fiber reinforced plastic and Compound mat and Vacuum assisted molding process using the Same
JP6786989B2 (en) Composite material molding method
JP4371671B2 (en) Resin transfer molding method and sandwich laminate manufacturing method
JP2006015611A (en) Method for producing sandwich laminate
US11203178B2 (en) Reinforced substrate for composite material, composite material, and method for manufacturing reinforced substrate for composite material
JPH1158536A (en) Manufacture of fiber reinforced resin composite body
KR20190055376A (en) Reinforcement member for car pillar and manufacturing method for the same