JP2009050900A - Solder with particles and its manufacturing method - Google Patents

Solder with particles and its manufacturing method Download PDF

Info

Publication number
JP2009050900A
JP2009050900A JP2007221048A JP2007221048A JP2009050900A JP 2009050900 A JP2009050900 A JP 2009050900A JP 2007221048 A JP2007221048 A JP 2007221048A JP 2007221048 A JP2007221048 A JP 2007221048A JP 2009050900 A JP2009050900 A JP 2009050900A
Authority
JP
Japan
Prior art keywords
solder
particles
metal particles
particle
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007221048A
Other languages
Japanese (ja)
Inventor
Hironari Nakako
裕也 中子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007221048A priority Critical patent/JP2009050900A/en
Publication of JP2009050900A publication Critical patent/JP2009050900A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/83138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/8314Guiding structures outside the body

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solder with particles which can ensure a thickness of solder even if a component is inclined and its manufacturing method. <P>SOLUTION: The method for manufacturing the plate solder by melting solder material 11 mixed with metal particles (12) and stirring, solidifying and rolling it includes: a step S105 for determining an additive amount N corresponding to a value S where a distance merit obtained by the additive amount of the metal particles 12 converges when determining the diameter of the metal particle and its additive amount; a step S106 for deriving a shape at a maximum inclination of the upper component 120 overlapped on the solder 10 with particles from the distance merit S, an initial plate thickness T of the solder with particles, a narrow side length L of a square, and a warranted thickness B of the solder 10 with particles for gaining a certain life derived from an experimental value, and a step S107 for calculating the diameter D of the metal particle at the distance merit S from the inclined shape. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、パワーモジュール等などの製造に使用される粒子入りはんだに関し、特に、はんだ付け後のはんだ厚を一定以上に確保するための粒子入りはんだ及びその製造方法に関する。   The present invention relates to a particle-containing solder used for manufacturing a power module and the like, and more particularly to a particle-containing solder for securing a solder thickness after soldering to a certain level and a method for manufacturing the same.

自動車用のパワーモジュール等は、その使用環境からはんだ付け部の耐久性が重要視されている。パワーモジュールは、図7(a)に示すように、ベース基板130の上に板はんだ110が重ねられ、更にその上に半導体素子120が重ねられる。板はんだ110は、板状はんだに予め金属粒子115が複数入れられており、これを半導体素子120とベース基板130との間に配設し、加熱溶融してはんだ接合が行われる。
特開2001−168252号公報
For power modules for automobiles, the durability of the soldered part is regarded as important because of the usage environment. As shown in FIG. 7A, in the power module, the sheet solder 110 is overlaid on the base substrate 130, and further the semiconductor element 120 is overlaid thereon. In the plate solder 110, a plurality of metal particles 115 are placed in advance in a plate-shaped solder, which is disposed between the semiconductor element 120 and the base substrate 130, and heated and melted to perform solder bonding.
JP 2001-168252 A

ところで、自動車のパワーモジュールなどは、その使用環境からはんだ付け部分の耐久性が重要視されている。そこで、はんだ厚さに応じたはんだ寿命を調べてみたところ、図4に示すように、はんだ厚に従って寿命も延び、一定厚を超えることで寿命の延びも大きくなることが分かった。従って、必要な耐用年数を得るためには、一定のはんだ厚を確保することが必要である。この点、従来例の粒子入りはんだ110では、はんだ内に金属粒子115が入れられ、それによって半導体素子120などの上部品を支え、はんだ厚が薄くならないように工夫されている。   By the way, durability of a soldering part is regarded as important from the use environment of the power module of a motor vehicle. Therefore, when the solder life corresponding to the solder thickness was examined, it was found that the life was extended according to the solder thickness as shown in FIG. 4, and the life extension was increased by exceeding a certain thickness. Therefore, in order to obtain the required service life, it is necessary to ensure a certain solder thickness. In this regard, the conventional solder 110 with particles is devised so that metal particles 115 are placed in the solder, thereby supporting upper components such as the semiconductor element 120 and the solder thickness is not reduced.

しかし、金属粒子115を入れた板はんだ110を使用しても、図7(b)に示すように、半導体素子120などの上部品が傾いてしまったのでは、部分的に必要なはんだ厚が得られないことになる。すなわち、金属粒子115の位置が端部xから遠ければ、粒子径とは関係なく、半導体素子120とベース基板130との距離が近くなり、はんだ厚bが薄くなってしまうからである。そうした場合、パワーモジュールは、温度サイクルによってその薄肉部分にクラックが発生してしまい、十分な寿命が確保できなくなってしまう。従って、傾きをコントロールできない粒子入りはんだの製造方法では、こうした不適切なものが製造されることで歩留まりが低かった。   However, even when the plate solder 110 containing the metal particles 115 is used, if the upper part such as the semiconductor element 120 is inclined as shown in FIG. It will not be obtained. That is, if the position of the metal particle 115 is far from the end portion x, the distance between the semiconductor element 120 and the base substrate 130 is reduced regardless of the particle diameter, and the solder thickness b is reduced. In such a case, the power module cracks in its thin wall portion due to the temperature cycle, and a sufficient life cannot be secured. Therefore, in the method of manufacturing the solder containing particles in which the inclination cannot be controlled, such an unsuitable product is manufactured and the yield is low.

そこで、本発明は、かかる課題を確保すべく、部品が傾いた状態でも必要なはんだ厚を確保する粒子入りはんだ及びその製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a particle-containing solder that secures a necessary solder thickness even when the component is tilted, and a method for manufacturing the same, in order to secure such a problem.

本発明に係る粒子入りはんだの製造方法は、金属粒子を混ぜたはんだ材を溶融して撹拌した後、固めて圧延加工することよって板状のはんだを製造する方法であって、前記金属粒子の直径と添加量の決定に当たり、前記金属粒子の添加量とはんだ内における粒子存在位置との関係により、添加量に従って得られるはんだ端部からの平均距離である距離実力(S)がほぼ収束する、その収束する距離実力の値に対応して添加量(N)を決定する工程と、前記距離実力(S)、前記粒子入りはんだの初期板はんだ厚(T)、はんだ接合面の短辺側長さ(L)、および実験値より導出された一定の寿命を得るために必要な前記粒子入りはんだの保証はんだ厚(B)から、前記粒子入りはんだの上に重ねられた上部品の最大傾き時の形状を導出し、その傾き形状より、前記距離実力(S)における前記金属粒子の粒子径(D)を算出する工程とを有するものであることを特徴とする。   The method for producing a particle-containing solder according to the present invention is a method for producing a plate-like solder by melting and stirring a solder material mixed with metal particles, and then solidifying and rolling the solder material. In determining the diameter and the addition amount, the distance ability (S), which is an average distance from the solder end portion obtained according to the addition amount, substantially converges due to the relationship between the addition amount of the metal particles and the position of the particles in the solder. The step of determining the addition amount (N) corresponding to the value of the converged distance ability, the distance ability (S), the initial plate solder thickness (T) of the solder containing particles, and the short side length of the solder joint surface From the guaranteed thickness (B) of the solder containing particles necessary for obtaining a certain life derived from the thickness (L) and experimental values, the maximum inclination of the upper part overlaid on the solder containing particles From the slope shape, Characterized in that the serial distance ability (S) and a step of calculating the particle diameter (D) of the metal particles.

また、本発明に係る粒子入りはんだの製造方法は、前記金属粒子の添加量(N)が、前記初期板はんだ厚(T)との関係から22/T以上としたものであることが好ましい。
また、本発明に係る粒子入りはんだの製造方法は、前記金属粒子の粒子径(D)が、B+2S(T−B)/L<D<Tの範囲内で決定するものであることが好ましい。
In addition, in the method for producing a particle-containing solder according to the present invention, it is preferable that the addition amount (N) of the metal particles is 22 / T or more in relation to the initial plate solder thickness (T).
Moreover, it is preferable that the manufacturing method of the solder containing a particle | grain which concerns on this invention determines the particle diameter (D) of the said metal particle within the range of B + 2S (TB) / L <D <T.

一方、本発明の粒子入りはんだは、はんだ材に複数の金属粒子を含んだ板状のはんだであって、前記金属粒子の添加量(N)が、初期板はんだ厚をTとした場合に重量で比較した割合が22/T以上であり、前記金属粒子の粒子径(D)が、前記金属粒子の添加量とはんだ内における粒子存在位置との関係により、添加量に従って得られるはんだ端部からの平均距離である距離実力がほぼ収束する、その収束する距離実力の値をS、はんだ接合面の短辺側長さをL、実験値より導出された一定の寿命を得るために必要な前記粒子入りはんだの保証はんだ厚をBとした場合、B+2S(T−B)/L<D<Tの範囲内であることを特徴とする。   On the other hand, the solder with particles of the present invention is a plate-like solder containing a plurality of metal particles in a solder material, and the amount of addition of the metal particles (N) is weight when the initial plate solder thickness is T. The particle diameter (D) of the metal particles is from the end portion of the solder obtained according to the addition amount depending on the relationship between the addition amount of the metal particles and the position of the particles in the solder. The distance ability, which is the average distance of, is almost converged. The convergent distance ability value is S, the short side length of the solder joint surface is L, and the above-mentioned necessary for obtaining a constant life derived from experimental values. When the guaranteed solder thickness of the solder containing particles is B, it is in the range of B + 2S (T−B) / L <D <T.

よって、本発明によれば、収束する距離実力(S)の値や、それに対応する金属粒子の添加量(N)の値を得て、金属粒子の粒子径(D)を設定し、その粒子径(D)と添加量(N)に従い、金属粒子を混ぜたはんだ材を溶融して撹拌した後、固めて圧延加工することよって板状の粒子入りはんだを製造する。こうして製造された粒子入りはんだは、上部品が傾いたとしても、薄くなった端部でのはんだ厚を保証はんだ厚(B)以上に保つことができ、必要とする寿命を確保することが可能なる。   Therefore, according to the present invention, the value of the converging distance ability (S) and the value of the added amount (N) of the corresponding metal particles are obtained, the particle diameter (D) of the metal particles is set, and the particles According to the diameter (D) and the addition amount (N), the solder material mixed with metal particles is melted and stirred, and then solidified and rolled to produce a plate-like particle-containing solder. Even if the upper part is tilted, the solder with particles manufactured in this way can maintain the solder thickness at the thinned edge more than the guaranteed solder thickness (B) and ensure the required life. Become.

次に、本発明に係る粒子入りはんだ及びその製造方法の一実施形態について図面を参照しながら以下に説明する。本実施形態の粒子入りはんだ及びその製造方法は、接合時に傾きが生じることを前提にしたものであって、たとえ傾いたとしてもはんだ厚を一定以上に確保することができるように、金属粒子の添加量と粒子径を定めたものである。図1は、金属粒子の添加量と粒子径を定めた所定厚の粒子入りはんだを設計する場合のフローを示した図である。   Next, an embodiment of a solder containing particles and a method for producing the same according to the present invention will be described below with reference to the drawings. The solder with particles of this embodiment and the manufacturing method thereof are based on the premise that an inclination occurs at the time of joining, and even if it is inclined, the metal particles can be secured to have a certain thickness or more. The amount added and the particle size are determined. FIG. 1 is a diagram showing a flow in the case of designing a solder containing particles having a predetermined thickness in which the addition amount of metal particles and the particle diameter are determined.

本実施形態の粒子入りはんだは、例えば、はんだ材に金属粒子を混ぜて熱をかけて溶融し、撹拌した後、固めて圧延加工することよって板状のはんだとして製造される。図2は、そうした粒子入りの板はんだを示した平面図であって、金属粒子の位置が分かるように記載している。この粒子入りはんだ10は、例えばはんだ材11にSnPb系およびSnを90%以上含むPbフリーはんだが使用され、金属粒子12にはNiやCuなどが使用される。   The particle-containing solder of the present embodiment is manufactured as, for example, a plate-like solder by mixing metal particles into a solder material, applying heat to melt, stirring, hardening, and rolling. FIG. 2 is a plan view showing such a plate solder containing particles so that the positions of the metal particles can be seen. As the solder 10 with particles, for example, Pb-free solder containing SnPb and 90% or more of Sn is used for the solder material 11, and Ni, Cu, or the like is used for the metal particles 12.

この粒子入りはんだ10は、自動車のパワーモジュールなどを製造するために用いられ、例えば、図3に示すように、ベース基板130の上に粒子入りはんだ10が重ねられ、更にその上に半導体素子120が重ねられる。
そこで、粒子入りはんだの製造に当たっては、先ず、はんだ接合部の強度確保など、使用される粒子入りはんだ10について、はんだ付け前の初期はんだ厚Tが決められる(S101)。また、半導体素子120の大きさによって、はんだ接合面の寸法取得が行われる(S102)。本実施形態では、粒子入りはんだ10が長辺と短辺のある矩形形状の場合には、傾いた際により傾き角が大きくなる短辺側の長さLが利用される。
This particle-containing solder 10 is used for manufacturing a power module of an automobile. For example, as shown in FIG. 3, the particle-containing solder 10 is superimposed on a base substrate 130, and further a semiconductor element 120 is formed thereon. Are superimposed.
Therefore, when manufacturing the solder with particles, first, the initial solder thickness T before soldering is determined for the solder 10 with particles to be used, such as ensuring the strength of the solder joint (S101). Moreover, the dimension acquisition of the solder joint surface is performed according to the size of the semiconductor element 120 (S102). In the present embodiment, when the particle-containing solder 10 has a rectangular shape having a long side and a short side, the length L on the short side where the tilt angle becomes larger when tilted is used.

ところで、パワーモジュールを構成するはんだは、使用による温度サイクルが作用し、一定量の使用によってクラックが発生するなどして寿命を迎える。そこで先ず、はんだ厚と寿命との関係を実験によって調べた。すると、図4においてグラフで示すような結果が得られた。すなわち、はんだの寿命は、はんだ厚さに応じて図示するように上昇し、厚くなるほどに寿命の延びも大幅に増加するように変化することが分かった。   By the way, the solder which comprises a power module reaches the lifetime by the temperature cycle by use acting, and a crack generate | occur | producing by use of a fixed amount. First, the relationship between the solder thickness and the life was examined by experiment. Then, the result as shown in the graph in FIG. 4 was obtained. In other words, it has been found that the life of the solder rises as shown in the figure according to the thickness of the solder and changes so that the increase in the life greatly increases as the thickness increases.

ところで、粒子入りはんだ10は、パワーモジュールの使用環境と同様に熱サイクルをかけた場合、前述したように時間が経つに従ってその周辺から複数のクラックが入る。そこで、はんだ周辺から入った複数のクラックの先をはんだ周縁に沿って結び、それによって囲まれた面積が許容面積を超えるまでの時間(h)を寿命として判断した。そして、こうした実験結果から、目標のはんだ寿命Eに対し、保証はんだ厚としてB(μm)という値が得られた(S103)。   By the way, when the thermal solder is applied to the particle-containing solder 10 in the same manner as the usage environment of the power module, as described above, a plurality of cracks enter from its periphery as time passes. Accordingly, the tip of a plurality of cracks entering from the periphery of the solder was connected along the solder periphery, and the time (h) until the area surrounded by the crack exceeded the allowable area was determined as the lifetime. From these experimental results, a value of B (μm) was obtained as the guaranteed solder thickness for the target solder life E (S103).

一方で、はんだ材11に対する金属粒子12の添加量と金属粒子12の存在位置との関係を実験によって調べた(S104)。すなわち、粒子入りはんだ10は、前述したように、はんだ材11と金属粒子12とを混ぜ、溶融して撹拌した後、固めて圧延加工することによって製造される。その際、金属粒子12の位置を任意に設定することができない。そこで、金属粒子12の添加量によって金属粒子12の位置をコントロールできないか、検討を行った。具体的には、金属粒子12の添加量を変えて、図2に示すような粒子入りはんだ10を形成した場合に、金属粒子12がどれほど周縁の端部に近づくか実験を行った。   On the other hand, the relationship between the amount of the metal particles 12 added to the solder material 11 and the position where the metal particles 12 are present was examined by experiments (S104). That is, as described above, the solder with particles 10 is manufactured by mixing the solder material 11 and the metal particles 12, melting and stirring, and then hardening and rolling. In that case, the position of the metal particle 12 cannot be set arbitrarily. Therefore, it was examined whether the position of the metal particles 12 could be controlled by the amount of the metal particles 12 added. Specifically, when the amount of the metal particles 12 added was changed to form the particle-containing solder 10 as shown in FIG.

すると、図5においてグラフに示すような結果が得られた。横軸には添加量(wt%)を示し、縦軸には角部からの距離をとり、その平均値(mm)を示している。ここでは、ある添加量に従って得られるはんだ端部からの平均値+4σ(σ:標準偏差)を「距離実力」と定義し、その値を縦軸にとっている。そして、金属粒子12が端部に近い場合を「距離実力が高い」と表現し、端部から遠ざかる場合を「距離実力が低い」と表現することとする。なお、端部からの平均距離は、角部からの距離を測定して求めた。そして、添加量としては、重量で比較した金属粒子12の割合(wt%)で示した。   Then, the result as shown in the graph in FIG. 5 was obtained. The abscissa indicates the amount of addition (wt%), and the ordinate indicates the distance from the corner and the average value (mm). Here, the average value + 4σ (σ: standard deviation) from the solder end obtained according to a certain addition amount is defined as “distance ability”, and the value is on the vertical axis. A case where the metal particles 12 are close to the end portion is expressed as “distance ability is high”, and a case where the metal particles 12 are away from the end portion is expressed as “distance ability is low”. In addition, the average distance from an edge part was calculated | required by measuring the distance from a corner | angular part. The amount added was indicated by the ratio (wt%) of the metal particles 12 compared by weight.

そこで、金属粒子12の添加量と距離実力との関係は、図5に示すように、添加量の増加に伴って距離実力が高くなることが分かる。すなわち、添加量を増加させるに従って、金属粒子12がはんだ内に広く分布するようになり、距離実力も高まっていった。ところが、距離実力は、最終的にゼロに近づくのではなく、ある値S(mm)以上には高く成らず、ほぼその値に収束する結果となった。そして、距離実力がSに達した際の添加量がN(wt%)であり、この実験結果から、金属粒子12の添加量をN(wt%)以上に増やしても、それ以上に距離実力は高くならず、効果が上がらないことが分かった。   Therefore, as shown in FIG. 5, the relationship between the addition amount of the metal particles 12 and the distance ability shows that the distance ability increases as the addition amount increases. That is, as the addition amount is increased, the metal particles 12 are widely distributed in the solder, and the distance ability is increased. However, the distance ability does not eventually approach zero, but does not become higher than a certain value S (mm) and converges to that value. When the distance ability reaches S, the addition amount is N (wt%). From this experimental result, even if the addition amount of the metal particles 12 is increased to N (wt%) or more, the distance ability is more than that. Was not high and the effect was not improved.

一方、粒子入りはんだ10は、はんだ自身の性能を考えた場合、金属粒子12をあまり多く含むことは好ましくない。そのため、なるべく端部からの距離を近づけるように距離実力を高めながらも、金属粒子12の添加量を抑えるようにした。そこで、図5に示す実験結果から、金属粒子12の添加量を距離実力がS(mm)になるN(wt%)に決定した(S105)。具体的には、距離実力S=3.5(mm)、添加量N=0.11(wt%)が数値として得られ、更に、こうした結果から初期はんだ厚Tとの関係について検討したところ、N=22/T(22は実験により求められた係数)を得ることができた。従って、粒子入りはんだ10の製造に当たっては、金属粒子12の添加量をN=22/T以上にするのが好ましい。   On the other hand, it is not preferable that the particle-containing solder 10 contains too many metal particles 12 in view of the performance of the solder itself. Therefore, the addition amount of the metal particles 12 is suppressed while increasing the distance ability so as to make the distance from the end as close as possible. Therefore, from the experimental results shown in FIG. 5, the addition amount of the metal particles 12 is determined to be N (wt%) at which the distance ability is S (mm) (S105). Specifically, the distance ability S = 3.5 (mm) and the addition amount N = 0.11 (wt%) were obtained as numerical values, and further, from these results, the relationship with the initial solder thickness T was examined. N = 22 / T (22 is a coefficient obtained by experiment) could be obtained. Therefore, in the production of the solder 10 with particles, it is preferable that the added amount of the metal particles 12 is N = 22 / T or more.

次に、図6に示すように、はんだ付けした半導体素子120に角度θの傾きが生じ、粒子入りはんだ10の厚さが変化した場合の形状を導出する(S106)。
このとき、金属粒子12の添加量はN(wt%)であるため、図5から距離実力はS(mm)として考え、各辺から法線方向の距離S(mm)の位置に金属粒子12が存在しているとする。そして、半導体素子120は、図6に示すように、最端部にあるその金属粒子12に当たってそれ以上の傾きが規制される。
Next, as shown in FIG. 6, the shape in the case where the tilted angle θ occurs in the soldered semiconductor element 120 and the thickness of the particle-containing solder 10 changes is derived (S <b> 106).
At this time, since the addition amount of the metal particles 12 is N (wt%), the distance ability is considered as S (mm) from FIG. 5, and the metal particles 12 are located at distances S (mm) in the normal direction from each side. Is present. Then, as shown in FIG. 6, the semiconductor element 120 abuts on the metal particles 12 at the endmost part and is further tilted.

こうして半導体素子120が傾いた形状では、接合面の短辺側端部xが最もはんだ厚が薄くなる部分となり、その厚さが問題になる。従って、必要なはんだ寿命を確保するためには、短辺側端部xの最も薄いはんだ厚部分が保証はんだ厚B(μm)以上であることが必要である。また、粒子入りはんだ10の体積は、はんだ付け後でも変化しないので、傾きが生じた場合の短辺側寸法の中心位置の厚さが初期はんだ厚T(μm)であるとすることができる。   Thus, when the semiconductor element 120 is inclined, the short side end portion x of the joint surface becomes the portion where the solder thickness is the thinnest, and the thickness becomes a problem. Therefore, in order to ensure the necessary solder life, it is necessary that the thinnest solder thickness portion of the short side end portion x is equal to or greater than the guaranteed solder thickness B (μm). Further, since the volume of the solder with particles 10 does not change even after soldering, it can be assumed that the thickness of the center position of the short side dimension when the inclination occurs is the initial solder thickness T (μm).

こうして、傾きをもった粒子入りはんだ10の形状を捉えた後、短辺側端部xで保証はんだ厚B(μm)を得るための金属粒子12の粒子径Dを決定する(S107)。
金属粒子12の粒子径DをD=B+a…(1)と表し、半導体素子120の傾きをθとすると、tanθ=a/S=(T−B)/(L/2)…(2)が得られる。よって、この(1)式及び(2)式からD=B+2S(T−B)/L…(3)が金属粒子12の粒子径を導き出す式として得られる。一方、金属粒子12の粒子径Dが初期はんだ厚Tよりも大きいことはない。従って、本実施形態では、粒子入りはんだ10に入れる金属粒子12の粒子径Dを、B+2S(T−B)/L<D<T…(4)の範囲内で決定する。
After capturing the shape of the particle-containing solder 10 having an inclination in this way, the particle diameter D of the metal particle 12 for obtaining the guaranteed solder thickness B (μm) at the short side end portion x is determined (S107).
When the particle diameter D of the metal particles 12 is expressed as D = B + a (1) and the inclination of the semiconductor element 120 is θ, tan θ = a / S = (T−B) / (L / 2) (2) is obtained. can get. Therefore, D = B + 2S (T−B) / L (3) is obtained as an equation for deriving the particle diameter of the metal particles 12 from the equations (1) and (2). On the other hand, the particle diameter D of the metal particles 12 is never larger than the initial solder thickness T. Therefore, in this embodiment, the particle diameter D of the metal particle 12 put into the solder with particle 10 is determined within the range of B + 2S (TB) / L <D <T (4).

よって、本実施形態では、図5に示す、収束する距離実力S(mm)の値や、それに対応する金属粒子12の添加量N(wt%)の値を得て、上記(4)式から金属粒子12の粒子径Dを設定し、その粒子径と添加量に従い、従来と同様の製法によって粒子入りはんだ10を製造する。こうして製造された粒子入りはんだ10は、例えばパワーモジュールのはんだ付けに使用されるが、上部品の半導体素子120が傾いたとしても、薄くなった端部xでのはんだ厚を保証はんだ厚B(μm)以上に保つことができ、必要とするはんだ寿命を確保することが可能なった。その結果、製造工程において傾きをコントロールできなくても、製品として適切なものが製造され、歩留まりが高まった。   Therefore, in this embodiment, the value of the convergence distance ability S (mm) shown in FIG. 5 and the value of the addition amount N (wt%) of the metal particles 12 corresponding thereto are obtained, and the above equation (4) is obtained. The particle diameter D of the metal particles 12 is set, and the particle-containing solder 10 is manufactured by the same manufacturing method as before according to the particle diameter and the amount added. The particle-containing solder 10 manufactured in this way is used, for example, for soldering of a power module. Even if the upper component semiconductor element 120 is inclined, the solder thickness at the thinned end x is guaranteed. μm) or more, and the required solder life can be secured. As a result, even if the inclination could not be controlled in the manufacturing process, an appropriate product was manufactured and the yield was increased.

以上、本発明の粒子入りはんだ及びその製造方法について実施形態を説明したが、本発明はこれに限定されることなく、その趣旨を逸脱しない範囲で様々な変更が可能である。   As mentioned above, although embodiment was described about the solder containing a particle | grain of this invention, and its manufacturing method, this invention is not limited to this, A various change is possible in the range which does not deviate from the meaning.

ところで、前記実施形態の粒子入りはんだ10は、はんだ材11内に複数の金属粒子12を入れて撹拌することによって製造したものであるため、金属粒子12の位置を特定することができなかった。しかし、金属粒子12を板はんだ内の特定箇所に後から選択的に配置する製法を行うのであれば、同様に上記(3)式から粒子径Dを求めることができ、しかも4隅に配置するだけで上部品の傾きを支えられる。そのため、これによれば、金属粒子12の粒子数を大幅に減らすことでコストダウンが可能であり、また粒子配合によるはんだ材の物性への影響を小さく抑えることも可能になる。   By the way, since the solder 10 with a particle of the said embodiment is manufactured by putting and stirring the several metal particle 12 in the solder material 11, the position of the metal particle 12 was not able to be specified. However, if a manufacturing method in which the metal particles 12 are selectively arranged later at specific locations in the sheet solder is performed, the particle diameter D can be similarly obtained from the above equation (3), and arranged at the four corners. Just support the tilt of the upper part. Therefore, according to this, it is possible to reduce the cost by significantly reducing the number of particles of the metal particles 12, and it is also possible to suppress the influence on the physical properties of the solder material by the mixing of the particles.

金属粒子の添加量と粒子径を定めた所定厚の粒子入りはんだを設計する場合のフローを示した図である。It is the figure which showed the flow in the case of designing the solder with a particle | grain of predetermined thickness which defined the addition amount and particle diameter of the metal particle. 粒子入りはんだを示した平面図である。It is the top view which showed the solder containing particle | grains. ベース基板上に粒子入りはんだ及び半導体素子を重ねた状態を示した図である。It is the figure which showed the state which piled up the solder containing a particle and the semiconductor element on the base substrate. はんだ厚とはんだ寿命との関係をグラフにして示した図である。It is the figure which showed the relationship between solder thickness and a solder lifetime in the graph. 距離実力と添加量との関係をグラフにして示した図である。It is the figure which showed the relationship between distance capability and addition amount in the graph. はんだ付けした半導体素子に傾きが生じた場合において、粒子入りはんだの厚さ形状を導出するための図である。It is a figure for derivation | leading-out the thickness shape of the solder containing a particle | grain when the inclination arises in the soldered semiconductor element. 粒子入りはんだの傾きについて示した図である。It is the figure shown about the inclination of the solder containing a particle.

符号の説明Explanation of symbols

10 粒子入りはんだ
11 はんだ材
12 金属粒子
120 半導体素子
130 ベース基板
B 保証はんだ厚
E はんだ寿命
L 接合面の短辺側長さ
N 添加量
S 距離実力
T 初期はんだ厚
10 Solder with Particles 11 Solder Material 12 Metal Particles 120 Semiconductor Element 130 Base Board B Guaranteed Solder Thickness E Solder Life L Short Side Length N of Bonded Surface Addition S Distance Ability T Initial Solder Thickness

Claims (4)

金属粒子を混ぜたはんだ材を溶融して撹拌した後、固めて圧延加工することよって板状に形成する粒子入りはんだの製造方法において、
前記金属粒子の直径と添加量の決定に当たり、
前記金属粒子の添加量とはんだ内における粒子存在位置との関係により、添加量に従って得られるはんだ端部からの平均距離である距離実力(S)がほぼ収束する、その収束する距離実力の値に対応して添加量(N)を決定する工程と、
前記距離実力(S)、前記粒子入りはんだの初期板はんだ厚(T)、はんだ接合面の短辺側長さ(L)、および実験値より導出された一定の寿命を得るために必要な前記粒子入りはんだの保証はんだ厚(B)から、前記粒子入りはんだの上に重ねられた上部品の最大傾き時の形状を導出し、その傾き形状より、前記距離実力(S)における前記金属粒子の粒子径(D)を算出する工程と
を有するものであることを特徴とする粒子入りはんだの製造方法。
In the manufacturing method of the solder containing particles, which is formed into a plate shape by melting and stirring the solder material mixed with the metal particles, then solidifying and rolling,
In determining the diameter and addition amount of the metal particles,
Due to the relationship between the amount of the metal particles added and the position of the particles in the solder, the distance ability (S), which is the average distance from the solder end obtained according to the amount of addition, almost converges. Correspondingly determining the addition amount (N);
The above-mentioned distance capability (S), the initial plate solder thickness (T) of the solder containing particles, the short side length (L) of the solder joint surface, and the above-mentioned necessary lifespan derived from experimental values. From the guaranteed solder thickness (B) of the particle-containing solder, the shape of the upper part of the upper part superimposed on the particle-containing solder is derived at the maximum inclination, and from the inclination shape of the metal particles at the distance ability (S). And a step of calculating a particle diameter (D).
請求項1に記載する粒子入りはんだの製造方法において、
前記金属粒子の添加量(N)は、前記初期板はんだ厚(T)との関係から22/T以上としたものであることを特徴とする粒子入りはんだの製造方法。
In the manufacturing method of the solder containing a particle according to claim 1,
The method for producing a solder containing particles, wherein the addition amount (N) of the metal particles is 22 / T or more in relation to the initial plate solder thickness (T).
請求項1又は請求項2に記載する粒子入りはんだの製造方法において、
前記金属粒子の粒子径(D)は、B+2S(T−B)/L<D<Tの範囲内で決定するものであることを特徴とする粒子入りはんだの製造方法。
In the manufacturing method of the solder containing a particle according to claim 1 or claim 2,
The particle diameter (D) of the metal particles is determined within a range of B + 2S (T−B) / L <D <T.
はんだ材に複数の金属粒子を含んだ板状の粒子入りはんだにおいて、
前記金属粒子の添加量(N)は、初期板はんだ厚をTとした場合に重量で比較した割合が22/T以上であり、
前記金属粒子の粒子径(D)は、前記金属粒子の添加量とはんだ内における粒子存在位置との関係により、添加量に従って得られるはんだ端部からの平均距離である距離実力がほぼ収束する、その収束する距離実力の値をS、はんだ接合面の短辺側長さをL、実験値より導出された一定の寿命を得るために必要な前記粒子入りはんだの保証はんだ厚をBとした場合、B+2S(T−B)/L<D<Tの範囲内であることを特徴とする粒子入りはんだ。
In plate-like particle-containing solder containing a plurality of metal particles in the solder material,
The added amount of the metal particles (N) is a ratio of 22 / T or more by weight when the initial plate solder thickness is T.
The particle diameter (D) of the metal particles is such that the distance ability, which is the average distance from the solder end obtained according to the addition amount, substantially converges due to the relationship between the addition amount of the metal particles and the position of the particles in the solder. When the convergence distance value is S, the short side length of the solder joint surface is L, and the guaranteed solder thickness of the particle-containing solder necessary to obtain a certain life derived from experimental values is B B + 2S (T−B) / L <D <T.
JP2007221048A 2007-08-28 2007-08-28 Solder with particles and its manufacturing method Withdrawn JP2009050900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007221048A JP2009050900A (en) 2007-08-28 2007-08-28 Solder with particles and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007221048A JP2009050900A (en) 2007-08-28 2007-08-28 Solder with particles and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009050900A true JP2009050900A (en) 2009-03-12

Family

ID=40502460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007221048A Withdrawn JP2009050900A (en) 2007-08-28 2007-08-28 Solder with particles and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009050900A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103503132A (en) * 2011-06-09 2014-01-08 三菱电机株式会社 Semiconductor device
DE102016219565A1 (en) * 2016-10-07 2018-04-12 Continental Automotive Gmbh Power electronics circuit
JP2020092232A (en) * 2018-12-07 2020-06-11 トヨタ自動車株式会社 Semiconductor device
WO2023157210A1 (en) * 2022-02-18 2023-08-24 三菱電機株式会社 Element package

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103503132A (en) * 2011-06-09 2014-01-08 三菱电机株式会社 Semiconductor device
EP2720263A1 (en) * 2011-06-09 2014-04-16 Mitsubishi Electric Corporation Semiconductor device
EP2720263A4 (en) * 2011-06-09 2015-04-22 Mitsubishi Electric Corp Semiconductor device
US9401319B2 (en) 2011-06-09 2016-07-26 Mitsubishi Electric Corporation Semiconductor device
DE102016219565A1 (en) * 2016-10-07 2018-04-12 Continental Automotive Gmbh Power electronics circuit
JP2020092232A (en) * 2018-12-07 2020-06-11 トヨタ自動車株式会社 Semiconductor device
CN111293095A (en) * 2018-12-07 2020-06-16 株式会社电装 Semiconductor device and method for manufacturing the same
JP7107199B2 (en) 2018-12-07 2022-07-27 株式会社デンソー semiconductor equipment
WO2023157210A1 (en) * 2022-02-18 2023-08-24 三菱電機株式会社 Element package

Similar Documents

Publication Publication Date Title
US11735505B2 (en) Semiconductor device
FI3576491T3 (en) Pane with electric connection element
KR102027615B1 (en) Power module substrate with heat sink, power module substrate with cooler, and power module
US6753596B1 (en) Resin-sealed semiconductor device
TW200913202A (en) Semiconductor die package including stand off structures
JP2014519149A (en) Glass plate with electrical connection elements
WO2007125991A1 (en) Foam solder and electronic component
JP2014519150A (en) Glass plate with electrical connection elements
CN106475702B (en) Height-limiting type preformed soldering lug
TWI752178B (en) Soldering Materials, Solder Paste, Solder Foam, and Solder Heads
JP2010214396A (en) Au-Ge ALLOY SOLDERING BALL
JP5207707B2 (en) Molded solder containing metal wire and method for producing the same
JP2009050900A (en) Solder with particles and its manufacturing method
JP4966261B2 (en) Semiconductor device and manufacturing method thereof
JP2006245437A (en) Ceramic circuit board, power module, and manufacturing method therefor
US20150061129A1 (en) Bump Electrode, Board Which Has Bump Electrodes, and Method for Manufacturing the Board
JP2007088045A (en) Heat dissipation plate for mounting plurality of semiconductor substrates, and semiconductor substrate junction using it
CN104112677A (en) Semiconductor Device Manufacturing Method And Soldering Weight
US20150311177A1 (en) Chip packaging method and chip package using hydrophobic surface
US20110014826A1 (en) Lead pin for package substrate
JP2013219194A (en) Semiconductor device
JP6551432B2 (en) Semiconductor device and method of manufacturing the same
CN109693054B (en) Core material, solder joint and bump electrode forming method
JP2011228604A (en) Manufacturing method of circuit board and circuit board
US20150373845A1 (en) Electronic component mounting structure and method of manufacturing electronic component mounting structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101102