JP2009050818A - Method for purifying contaminated soil and contaminated ground water - Google Patents

Method for purifying contaminated soil and contaminated ground water Download PDF

Info

Publication number
JP2009050818A
JP2009050818A JP2007221920A JP2007221920A JP2009050818A JP 2009050818 A JP2009050818 A JP 2009050818A JP 2007221920 A JP2007221920 A JP 2007221920A JP 2007221920 A JP2007221920 A JP 2007221920A JP 2009050818 A JP2009050818 A JP 2009050818A
Authority
JP
Japan
Prior art keywords
groundwater
contaminated
purification
well
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007221920A
Other languages
Japanese (ja)
Inventor
Tetsuya Watanabe
哲哉 渡辺
Mutsumu Ishii
六夢 石井
Tomonori Kusama
友紀 草間
Mitsuaki Kamiya
光昭 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2007221920A priority Critical patent/JP2009050818A/en
Publication of JP2009050818A publication Critical patent/JP2009050818A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for purifying contaminated soil and contaminated ground water which is capable of performing purification being small-scale, needing substantially no after-treatment after a purification work, and being highly efficient. <P>SOLUTION: A well 1 is drilled in soil contaminated with a chemical, a purification device 9 composed of a cylindrical container and a purifying material 7 is set in the ground water in the well 1, and the ground water in the well 1 is forced to pass into the purifying material 7. The purification device 9 is provided with the cylindrical container 11 which contains the purifying material 7 and a pump 15 which is formed in the cylindrical container 11 and forces the ground water to pass into the purifying material 7 in the cylindrical container 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、化学物質に汚染された土壌および地下水を浄化する汚染土壌および汚染地下水の浄化方法に関する。   The present invention relates to a method for purifying contaminated soil and contaminated groundwater that purifies soil and groundwater contaminated with chemical substances.

化学物質、例えば有機ハロゲン化合物は、優れた溶解力を持つ脱脂溶剤として、半導体製造業、金属加工業、クリーニング業などで広く使用されてきたが、使用後に工場などから排出され或いは投棄された有機ハロゲン化合物による土壌或いは地下水の汚染が社会的に深刻な問題となっている。
このような状況において、有機ハロゲン化合物に汚染された土壌或いは地下水の浄化方法について種々の提案が行われている。
Chemical substances, such as organic halogen compounds, have been widely used in the semiconductor manufacturing industry, metal processing industry, cleaning industry, etc. as degreasing solvents with excellent dissolving power. Contamination of soil or groundwater with halogen compounds is a serious social problem.
Under such circumstances, various proposals have been made on methods for purifying soil or groundwater contaminated with organic halogen compounds.

例えば、特許第3753644号(特許文献1)では土壌にボーリング孔を窄孔し、圧縮空気および鉄粉を吹き込み地下でフラクチャ-を発生させることで鉄粉を分散させ、鉄粉分散層を地下水と接触させることにより有機ハロゲン化合物を無害化する方法が開示されている。   For example, in Japanese Patent No. 3753644 (Patent Document 1), a boring hole is narrowed in the soil, and compressed air and iron powder are blown to generate fracture in the basement to disperse the iron powder. A method for detoxifying an organic halogen compound by bringing it into contact is disclosed.

また、特開2005−161124号公報(特許文献2)には、浄化対象とする汚染領域(例えば、工場敷地)を高遮水性鋼矢板で囲い、敷地外からの汚染水の流入および敷地外への汚染水の流出を遮断し、次に、浄化機能材をその内部に充填し、かつ先端部に汚染水の流入する開口部を有する少なくとも1本以上の鋼管を地中に設置し、所定時間放置後、鋼管内部で汚染水を滞留させて浄化水とし、前記浄化水を、前記少なくとも1本以上の鋼管に接続したポンプで汲み上げ、その後、前記浄化水を前記汚染領域の地表面に散布する汚染地下水の浄化方法が開示されている。   JP-A-2005-161124 (Patent Document 2) encloses a contaminated area (for example, a factory site) to be purified with a highly water-impervious steel sheet pile, inflow of contaminated water from outside the site, and outside the site. And then, at least one steel pipe having an opening into which the contaminated water flows is installed in the tip and filled with the purification function material in the inside thereof for a predetermined time. After leaving, contaminated water is retained inside the steel pipe to obtain purified water, and the purified water is pumped up by a pump connected to the at least one steel pipe, and then the purified water is sprayed on the ground surface of the contaminated area. A method for purifying contaminated groundwater is disclosed.

特許第3753644号Japanese Patent No. 3757644 特開2005−161124号公報JP 2005-161124 A

しかし、特許文献1に記載の方法は、土壌中或いは地下水中に鉄粉を混合させて有機ハロゲン化合物を分解・浄化する方法であり、混合した鉄粉は有機ハロゲン化合物を分解無害化した後も土壌又は地下水にそのまま放置するため放置された鉄粉による環境への影響が懸念される。
また、土壌と鉄粉の混合により地盤が攪乱され地盤強度が低下するという問題もある。
さらに、鉄粉の土壌への混合または注入のために大型機械または大規模な設備を要するという問題がある。
However, the method described in Patent Document 1 is a method in which iron powder is mixed in soil or groundwater to decompose and purify the organic halogen compound, and the mixed iron powder can be used after decomposing and detoxifying the organic halogen compound. Since it is left as it is in soil or groundwater, there is a concern about the environmental impact of the left iron powder.
In addition, there is a problem that the ground is disturbed by the mixing of soil and iron powder, and the strength of the ground is lowered.
Furthermore, there is a problem that a large machine or large-scale equipment is required for mixing or pouring iron powder into the soil.

この点、特許文献2に記載の方法では、鋼管内に鉄粉などの浄化機能部材を充填する構造であり、特許文献1のように残留鉄粉による環境汚染の問題はない。
しかしながら、特許文献2に記載のものは、その実施形態に記載されているように内径が1.2mという大径の鋼管を用いるものであり、鋼管の設置が大掛かりな工事となる。また、汚染地下水の浄化が終了した後、鋼管を撤去した後の地盤の処理も大掛かりとなり、コストが掛かるという問題がある。
In this respect, the method described in Patent Document 2 has a structure in which a purification function member such as iron powder is filled in a steel pipe, and there is no problem of environmental pollution caused by residual iron powder as in Patent Document 1.
However, what is described in Patent Document 2 uses a large-diameter steel pipe having an inner diameter of 1.2 m as described in the embodiment, and installation of the steel pipe is a large-scale construction. In addition, after the purification of the contaminated groundwater is completed, the ground treatment after the steel pipe is removed becomes large, and there is a problem that costs increase.

本発明はかかる課題を解決するためになされたものであり、小規模で浄化工法後の後処理がほとんど不要であり、かつ効率のよい浄化ができる汚染土壌および汚染地下水の浄化方法を得ることを目的とする。   The present invention has been made to solve such a problem, and is to obtain a method for purifying contaminated soil and contaminated groundwater, which is small and requires little post-treatment after the purification method, and can efficiently purify. Objective.

(1)本発明に係る汚染土壌および汚染地下水の浄化方法は、化学物質で汚染された土壌に井戸を穿孔し、浄化材を容器内に収容してなる浄化器具を前記井戸の地下水内に設置し、前記浄化材に井戸内の地下水を強制的に通水させることを特徴とするものである。
なお、汚染物質である化学物質としては、例えばテトラクロロエチレン、トリクロロエチレン、ジクロロエチレン、ジクロロメタン、ジクロロエタン、トリクロロエタン、ジクロロプロペンおよび四塩化炭素などの有機ハロゲンや、ヒ素、セレン、六価クロム、鉛、カドミウムなどの重金属類が挙げられる。
浄化材は、浄化対象となる汚染源の化学物質に対して浄化作用のあるものを選択すればよい。
(1) In the method for purifying contaminated soil and groundwater according to the present invention, a well is drilled in soil contaminated with a chemical substance, and a purifier that contains the purifier in the container is installed in the groundwater of the well. The ground water in the well is forced to flow through the purification material.
Examples of chemical substances that are pollutants include organic halogens such as tetrachloroethylene, trichloroethylene, dichloroethylene, dichloromethane, dichloroethane, trichloroethane, dichloropropene, and carbon tetrachloride, and heavy metals such as arsenic, selenium, hexavalent chromium, lead, and cadmium. Kind.
As the purification material, a material having a purification action on the chemical substance of the contamination source to be purified may be selected.

(2)また、化学物質で汚染された土壌に複数の井戸を穿孔し、浄化材を容器内に収容してなる浄化器具を前記複数の井戸のうち少なくとも一つの井戸の地下水内に設置し、前記浄化材に井戸内の地下水を強制的に通水させ、該通水させた地下水を前複数の井戸の他の井戸に移送することを特徴とするものである。 (2) Further, a plurality of wells are drilled in the soil contaminated with the chemical substance, and a purification device comprising a purification material in a container is installed in the groundwater of at least one of the plurality of wells, The purifying material is forced to pass groundwater in the well, and the groundwater passed is transferred to other wells of the plurality of previous wells.

(3)また、上記(1)または(2)に記載のものにおいて、浄化器具は、浄化材を収容する筒状容器と、該筒状容器に設けられて該筒状容器内の浄化材に地下水を強制的に通水するポンプとを備えてなることを特徴とするものである。 (3) Further, in the above-described (1) or (2), the purification device includes a cylindrical container for storing the purification material, and the purification material in the cylindrical container provided in the cylindrical container. And a pump that forcibly passes groundwater.

(4)また、上記(1)〜(3)のいずれかに記載のものにおいて、汚染源である化学物質が有機ハロゲン化合物の場合において、浄化材は、ステンレス鋼粉と鉄粉との混合粉を含み、混合粉におけるステンレス鋼粉の割合が0.5質量%〜50質量%であることを特徴とするものである。なお、鉄粉は純鉄粉である必要はない。 (4) Moreover, in the thing in any one of said (1)-(3), when the chemical substance which is a pollution source is an organic halogen compound, a purification | cleaning material is a mixed powder of stainless steel powder and iron powder. In addition, the ratio of the stainless steel powder in the mixed powder is 0.5% by mass to 50% by mass. The iron powder does not need to be pure iron powder.

(5)また、上記(1)〜(4)のいずれかに記載のものにおいて、粒子径が0.1〜10mmの粒状の充填材を浄化材と共に容器に収容していることを特徴とするものである。 (5) Moreover, the thing in any one of said (1)-(4) WHEREIN: The granular filler with a particle diameter of 0.1-10 mm is accommodated in the container with the purification | cleaning material. Is.

(6)また、上記(1)〜(5)のいずれかに記載のものにおいて、井戸の内径が40mm〜100mmであることを特徴とするものである。 (6) Moreover, the thing in any one of said (1)-(5) WHEREIN: The internal diameter of a well is 40 mm-100 mm, It is characterized by the above-mentioned.

本発明においては、化学物質で汚染された土壌に井戸を穿孔し、浄化材を容器内に収容してなる浄化器具を前記井戸の地下水内に設置し、前記浄化材に井戸内の地下水を強制的に通水させるようにしたので、小径の井戸であっても浄化を効率的に行なうことができ、このことが小径の井戸での効率的な浄化作用を実現している。
したがって、本発明によれば、環境への負荷、地盤強度への影響が従来工法に比べて極めて低減でき、施工費用も大幅に削減できる。
また、浄化材を容器に収容しているので、汚染土壌および汚染地下水の浄化が終了した後は容器ごと回収することができ、浄化材を土壌内に残留させることによる環境への影響がない。
In the present invention, a well is drilled in a soil contaminated with a chemical substance, and a purifier that contains a purifier in a container is installed in the groundwater of the well, and the groundwater in the well is forced to the purifier. Therefore, even if it is a small-diameter well, purification can be performed efficiently, which realizes an efficient purification action in the small-diameter well.
Therefore, according to the present invention, the load on the environment and the influence on the ground strength can be greatly reduced as compared with the conventional construction method, and the construction cost can be greatly reduced.
Moreover, since the purification material is accommodated in the container, after the purification of the contaminated soil and the contaminated groundwater is completed, the entire container can be recovered, and there is no environmental impact due to the purification material remaining in the soil.

[実施の形態1]
図1は本発明の一実施の形態に係る汚染土壌および汚染地下水の浄化方法を説明する説明図である。図1に基づいて有機ハロゲン化合物で汚染された汚染土壌および汚染地下水の浄化方法を説明する。
[Embodiment 1]
FIG. 1 is an explanatory diagram for explaining a method for purifying contaminated soil and contaminated groundwater according to an embodiment of the present invention. A method for purifying contaminated soil and contaminated groundwater contaminated with an organic halogen compound will be described with reference to FIG.

(1)有機ハロゲン化合物で汚染された土壌にボーリングマシンによって井戸1を穿孔する。穿孔する井戸1の径は、仕上げ径が40mm〜100mmとなるように、これらの径よりも若干大きめの径とする。
穿孔する井戸1の深さは、井戸1の底が遮水層3に到達する深さとする。井戸1の底が遮水層3に到達するようにすることにより、井戸内に地下水を滞留させることができる。
井戸1の穿孔が終了すると、地層の軟弱度等の地層状況に合わせて、井戸1の周囲にフィルタ・充填材5を充填する。フィルタ材としては、例えば珪砂を用いる。
なお、汚染物である有機ハロゲン化合物としては、例えばテトラクロロエチレン、トリクロロエチレン、ジクロロエチレン、ジクロロメタン、ジクロロエタン、トリクロロエタン、ジクロロプロペンおよび四塩化炭素である。
(1) A well 1 is drilled in a soil contaminated with an organic halogen compound by a boring machine. The diameter of the well 1 to be drilled is slightly larger than these diameters so that the finished diameter is 40 mm to 100 mm.
The depth of the well 1 to be drilled is a depth at which the bottom of the well 1 reaches the impermeable layer 3. By making the bottom of the well 1 reach the impermeable layer 3, the groundwater can be retained in the well.
When the drilling of the well 1 is completed, the filter / filler 5 is filled around the well 1 according to the formation conditions such as the softness of the formation. For example, silica sand is used as the filter material.
Examples of organic halogen compounds that are contaminants include tetrachloroethylene, trichloroethylene, dichloroethylene, dichloromethane, dichloroethane, trichloroethane, dichloropropene, and carbon tetrachloride.

(2)次に浄化材7を充填した浄化器具9を井戸内に挿入して地下水内に浸漬する。浄化器具9を形成する容器としては、例えばアクリル製の筒状容器11を用いる。
浄化材7としては、浄化期間を短縮するためには有機ハロゲン化合物の分解速度が高い浄化材が好ましい。
有機ハロゲン化合物の分解速度が高い浄化材として、オーステナイト系SUS304やSUS316、フェライト系SUS430、マルテンサイト系SUS410などのステンレス鋼粉と鉄粉との混合粉が好ましく、特に混合粉におけるステンレス鋼粉の割合が0.5〜50質量%含有するものがより好ましく、さらにはステンレス鋼粉の割合が3〜20質量%含有するものがより好ましい。
ステンレス鋼粉の割合が0.5質量%未満では上記の分解速度はステンレス鋼粉を含有しない鉄と同程度になり分解反応は加速しない。
なお、ステンレス鋼粉の中でもオーステナイト系のステンレス鋼粉を混合粉として用いるのが、有機ハロゲン化合物の分解速度が特に高いので、より好ましい。
(2) Next, the purifier 9 filled with the purifier 7 is inserted into the well and immersed in the groundwater. As a container for forming the purification instrument 9, for example, an acrylic cylindrical container 11 is used.
The purification material 7 is preferably a purification material having a high organic halogen compound decomposition rate in order to shorten the purification period.
As a purification material with a high decomposition rate of organohalogen compounds, a mixture powder of stainless steel powder and iron powder such as austenitic SUS304, SUS316, ferrite SUS430, martensite SUS410, etc. is preferable, especially the ratio of stainless steel powder in the mixed powder Is more preferably 0.5 to 50% by mass, and more preferably a stainless steel powder content of 3 to 20% by mass.
When the ratio of the stainless steel powder is less than 0.5% by mass, the above decomposition rate is comparable to that of iron not containing the stainless steel powder, and the decomposition reaction is not accelerated.
In addition, it is more preferable to use an austenitic stainless steel powder as the mixed powder among the stainless steel powders because the decomposition rate of the organic halogen compound is particularly high.

上記の混合粉は、スチールショット(スチールグリットを含む)等を例えば、ステンレス鋼を含有する鋼材表面にブラストして、鋼材表面から剥離した鉄粉や研掃材の粉砕粉を集塵したショットブラストダストを用いることができる。スチールショットは鉄を主成分とするものであればよい。このショットブラストダストの粒径は、通常1〜250μm程度であり、平均粒径で20μm〜100μm程度である。   The above mixed powder is shot blasting in which steel shot (including steel grit), etc. is blasted onto the surface of a steel material containing, for example, stainless steel, and iron powder peeled off from the steel material surface or pulverized powder of the abrasive is collected. Dust can be used. The steel shot only needs to have iron as a main component. The particle size of the shot blast dust is usually about 1 to 250 μm, and the average particle size is about 20 μm to 100 μm.

上記のショットブラストダストは他のショットブラストダストあるいは鉄粉等と混合して用いることができる。混合する他のショットブラストダストの例としては普通鋼材、鉄鋳物等にスチールショットをブラストしたものが挙げられ、鉄粉の例としては、スチールショットの未使用品、その粉砕品、製造鉄粉等や鋼材切削粉、製鉄過程で発生する金属鉄を含有するダスト、スチールショット製造過程で発生するダスト等を挙げることができる。   The above shot blast dust can be used by mixing with other shot blast dust or iron powder. Examples of other shot blasting dust to be mixed include ordinary steel materials, iron castings, etc., which are steel shots blasted. Examples of iron powders include unused steel shots, pulverized products, manufactured iron powders, etc. And steel material cutting powder, dust containing metallic iron generated in the iron making process, dust generated in the steel shot manufacturing process, and the like.

なお、亜鉛含有量の多いもの、例えば塗料の塗装鋼や亜鉛メッキ品をショットブラストした際のダストなどは亜鉛粉末を含有するため分解反応を大きく妨害するので好ましく、混合粉に含まれる亜鉛はその含有量が1質量%未満、好ましくは0.2質量%未満にすることが好ましい。   It should be noted that a material having a high zinc content, for example, dust when shot blasting a paint steel or a galvanized product, is preferable because it contains a zinc powder, which greatly hinders the decomposition reaction. The content is preferably less than 1% by mass, preferably less than 0.2% by mass.

混合粉を単体で収容すると通水性が悪くなるので、通水性を確保するために、粒子径が0.1〜10mmの粒状物からなる充填材を混合粉と共に筒状容器11に収容する。
充填材の種類は特に限定しないが、地下水の透水性に優れた中性から弱酸性の材料が好ましい。例えば、水処理のろ過材として使用されるアンスラサイト、ざくろ石、砂などで粒径は0.1〜10mm程度のものを用いる。
When the mixed powder is contained alone, the water permeability deteriorates. Therefore, in order to ensure the water permeability, a filler made of a granular material having a particle diameter of 0.1 to 10 mm is accommodated in the cylindrical container 11 together with the mixed powder.
Although the kind of filler is not particularly limited, a neutral to slightly acidic material excellent in water permeability of groundwater is preferable. For example, anthracite, garnet, sand or the like used as a filter for water treatment is used with a particle size of about 0.1 to 10 mm.

筒状容器11の上下端面には浄化材7が筒状容器11から散逸しないようにするためのフィルタ13を設けてある。
筒状容器11の下端部には地下水を筒状容器内へ強制的に通水させる小型のポンプ15を取り付けてある。筒状容器11は水中に浸漬されているので揚程が必要なくポンプ15は小型のものでよい。
筒状容器11の井戸内における設置高さは、図1に示すように、汚染源の位置が想定できる場合には筒状容器11がその位置になるようにするのが好ましい。
筒状容器11は例えばワイヤ19などによって吊り下げて井戸内の所定の高さ位置に配置する。
Filters 13 are provided on the upper and lower end surfaces of the cylindrical container 11 so that the purification material 7 does not dissipate from the cylindrical container 11.
A small pump 15 for forcibly passing groundwater into the cylindrical container is attached to the lower end of the cylindrical container 11. Since the cylindrical container 11 is immersed in water, there is no need for a lift and the pump 15 may be small.
As shown in FIG. 1, the installation height of the cylindrical container 11 in the well is preferably such that the cylindrical container 11 is positioned when the position of the contamination source can be assumed.
The cylindrical container 11 is suspended by, for example, a wire 19 and placed at a predetermined height position in the well.

(3)浄化材7を充填した容器の設置が完了すると、ポンプ15を稼動する。ポンプ15を稼動することにより、地下水が筒状容器内の浄化材7に強制的に通水され、地下水が浄化材7に接触することにより、有機ハロゲン化合物が分解され、地下水の汚染濃度が低減する。
汚染濃度が低下した地下水は井戸1の周壁から滞水層へと透水し、新たな汚染水が井戸1に流れ込む。このような循環を繰り返すことにより、井戸1の周囲の汚染土壌及び地下水の浄化が行なわれる。
(3) When the installation of the container filled with the purification material 7 is completed, the pump 15 is operated. By operating the pump 15, groundwater is forcibly passed through the purification material 7 in the cylindrical container, and when the groundwater comes into contact with the purification material 7, the organic halogen compound is decomposed and the contamination concentration of the groundwater is reduced. To do.
The groundwater whose concentration of contamination has decreased is permeated from the peripheral wall of the well 1 to the aquifer, and new contaminated water flows into the well 1. By repeating such circulation, the contaminated soil and groundwater around the well 1 are purified.

汚染土壌及び地下水の汚染が低減して有機ハロゲン化合物の濃度が所定の値以下になると、浄化材7を収容した容器を井戸1から引き上げ、浄化を完了する。   When the contamination of the contaminated soil and groundwater is reduced and the concentration of the organic halogen compound falls below a predetermined value, the container containing the purification material 7 is pulled up from the well 1 to complete the purification.

本実施の形態によれば、極めて小規模で簡易な構成で効果的な汚染土壌及び地下水の浄化が実現できる。
穿孔する井戸1の径が40mm〜100mmという極めて小径であり、穿孔による地盤への悪影響も極めて少ない。このような小径の井戸でありながら、効果的な浄化が実現できるのは、浄化材7に強制的に地下水を通水するようにしていること及び/又は強制的に通水した地下水を効率的に浄化する浄化材7の浄化能力の高さによるものである。
浄化材7に強制的に地下水を通水する手段として本実施の形態においては、筒状容器11の下端部に小型のポンプ15を設ける例を示したが、ポンプ15を設ける位置は特に限定されるものではなく、筒状容器11の上端側に設けてもよい。もっとも、ポンプ15を水中に配置することは、揚程が不要となり、小型のポンプを使用できるので、好ましい。
According to the present embodiment, effective purification of contaminated soil and groundwater can be realized with a very small and simple configuration.
The diameter of the well 1 to be drilled is an extremely small diameter of 40 mm to 100 mm, and the adverse effect on the ground due to drilling is extremely small. Even though such a small-diameter well, effective purification can be realized because ground water is forced to flow through the purification material 7 and / or ground water that is forced to flow efficiently. This is because of the high purification capacity of the purification material 7 to be purified.
In the present embodiment, the small pump 15 is provided at the lower end of the cylindrical container 11 as means for forcibly passing groundwater through the purification material 7. However, the position where the pump 15 is provided is particularly limited. It may be provided not on the upper end side of the cylindrical container 11. However, it is preferable to dispose the pump 15 in water because a lift is unnecessary and a small pump can be used.

なお、穿孔する井戸の数やその配置は浄化対象とする土壌の汚染度合いや広さによって適宜決定すればよい。   In addition, what is necessary is just to determine suitably the number and arrangement | positioning of the well drilled according to the contamination degree and the area of the soil made into purification | cleaning object.

[実施の形態2]
図2、図3は本実施の形態に係る汚染土壌および汚染地下水の浄化方法の説明図であり、図3は図2における矢視A−A断面図である。
本実施の形態に係る汚染土壌および汚染地下水の浄化方法は、実施の形態1で説明した浄化器具9を設置する井戸(以下本実施の形態において、「揚水井戸21」という)の周囲に、揚水井戸21から地下水を注水する複数の井戸(以下本実施の形態において、「注水井戸23」という)を穿孔し、揚水井戸21の浄化後の地下水を注水井戸23に移送するようにしたものである。
[Embodiment 2]
2 and 3 are explanatory views of the method for purifying contaminated soil and contaminated groundwater according to the present embodiment, and FIG. 3 is a cross-sectional view taken along line AA in FIG.
In the method for purifying contaminated soil and contaminated groundwater according to the present embodiment, pumping water is provided around a well (hereinafter referred to as “pumping well 21”) in which the purification device 9 described in the first embodiment is installed. A plurality of wells (hereinafter referred to as “water injection wells 23” in the present embodiment) for injecting groundwater from the wells 21 are drilled, and the groundwater after purification of the pumping wells 21 is transferred to the water injection wells 23. .

本実施の形態においては、図3に示すように、筒状容器11の上端部に地下水を移送するためのホース連結部22を設け、このホース連結部22に連結したホース24によって注水井戸23に地下水を移送している。なお、本実施の形態のように、複数の注水井戸23に地下水を移送する場合には、連結部に注水井戸23の数だけの枝管を設けて、ホース24を連結する。
この例では、地下水を移送するためのポンプとして、筒状容器内へ地下水を通水させるポンプを共用しているが、移送用のポンプを別途設置するようにしてもよい。
In the present embodiment, as shown in FIG. 3, a hose connecting portion 22 for transferring groundwater is provided at the upper end portion of the cylindrical container 11, and the hose 24 connected to the hose connecting portion 22 is used for the water injection well 23. Transporting groundwater. In addition, like this Embodiment, when transferring groundwater to the some water injection well 23, the branch pipe of the number of the water injection wells 23 is provided in a connection part, and the hose 24 is connected.
In this example, a pump for passing groundwater into the cylindrical container is shared as a pump for transferring groundwater. However, a pump for transfer may be separately installed.

本実施の形態によれば、注水井戸23を設けた領域の土壌全体の浄化を効率よく行なうことができる。
なお、浄化対象となる領域が広い場合には、図2に示した揚水井戸21と注水井戸23の組合せのものを別途施工するようにすればよい。
According to the present embodiment, it is possible to efficiently purify the entire soil in the region where the water injection well 23 is provided.
When the region to be purified is wide, a combination of the pumping well 21 and the water injection well 23 shown in FIG. 2 may be separately constructed.

[実施例1]
実施例1は実施の形態1の効果を確認するための実験例を示すものであり、図4はこの実験例を説明する図である。この実験例は、仕上口径5cmの井戸に浄化器具9を設置し、井戸内の有機ハロゲン化合物濃度(cis-1,2-DCE)を定期的に観測したものである。また、浄化器具9を設置した井戸(実施例において、「浄化井戸25」という。)の周囲に約1m離れた南北東に観測用の井戸A,B,Cを設け、この観測用の井戸内の有機ハロゲン化合物濃度も合わせて定期的に観測したものである。
[Example 1]
Example 1 shows an experimental example for confirming the effect of the first embodiment, and FIG. 4 is a diagram for explaining this experimental example. In this experimental example, a purifier 9 is installed in a well having a finishing diameter of 5 cm, and the organic halogen compound concentration (cis-1,2-DCE) in the well is periodically observed. In addition, observation wells A, B, and C are provided around the well where the purification device 9 is installed (referred to as “purification well 25” in the embodiment) about 1 m away from the south-northeast. The organohalogen compound concentrations of were also regularly observed.

用いた浄化材は、普通鋼をショットブラストした時に発生する鋼粉(以下、「普通鋼粉」)にオーステナイト系SUS304をショットブラストした時に発生する鋼粉(以下、「ステンレス鋼粉」)を混合した混合粉を用いた。
また、浄化材と共に浄化器具9に充填する充填材としては、アンスラサイト(有効系:0.7mm)を用いた。
アンスラサイトと浄化材との割合は、アンスラサイト100重量部に対し、普通鋼粉にステンレス鋼粉5質量%混合した混合粉を20重量部とした。
The purification material used is a mixture of steel powder generated when shot blasting austenitic SUS304 (hereinafter referred to as “stainless steel powder”) to steel powder generated when shot steel is shot blasted (hereinafter referred to as “normal steel powder”). The mixed powder was used.
Anthracite (effective system: 0.7 mm) was used as a filler to be filled in the purifier 9 together with the purifier.
The ratio of the anthracite to the purification material was 20 parts by weight of mixed powder obtained by mixing 5% by mass of stainless steel powder with normal steel powder with respect to 100 parts by weight of anthracite.

浄化器具9の筒状容器11としては、口径4cm、長さ1mの円筒アクリルパイプを用い、パイプ両端を径0.1mmのフィルタで塞ぎ浄化材がこぼれないようにした。
また、通水用のポンプは流量が5L/分の能力のものを用い、10秒運転し、100秒停止を繰り返した。
As the cylindrical container 11 of the purification device 9, a cylindrical acrylic pipe having a diameter of 4 cm and a length of 1 m was used, and both ends of the pipe were closed with a filter having a diameter of 0.1 mm so that the purification material was not spilled.
Further, a water pump having a flow rate of 5 L / min was used, operated for 10 seconds, and repeatedly stopped for 100 seconds.

観測結果を図5のグラフに示す。図5は縦軸がcis-1,2-DCEの濃度(mg/l)、横軸が経過日数を示している。
図5に示すように、浄化井戸25の有機ハロゲン化合物濃度は急激に減少している。また、浄化井戸25の上流側に位置する観測井戸A以外の観測井戸B,Cにおいても有機ハロゲン化合物濃度の減少が見られる。
The observation results are shown in the graph of FIG. In FIG. 5, the vertical axis represents the cis-1,2-DCE concentration (mg / l) and the horizontal axis represents the number of days elapsed.
As shown in FIG. 5, the concentration of the organic halogen compound in the purification well 25 decreases rapidly. Further, in the observation wells B and C other than the observation well A located on the upstream side of the purification well 25, a decrease in the organic halogen compound concentration is also observed.

図5の結果から、実施の形態1で示したように、井戸内に浄化器具9を設置して浄化材7への通水を行なうことで、浄化井戸25及びその周辺の井戸での地下水を浄化できることが確認できた。   From the results of FIG. 5, as shown in the first embodiment, by installing the purifying device 9 in the well and passing water to the purifying material 7, the groundwater in the purifying well 25 and the surrounding wells can be obtained. It was confirmed that it could be purified.

[実施例2]
実施例2は実施の形態2の効果を確認するための実験例を示すものであり、図6はこの実験例を説明する図である。
本実験例では、浄化井戸25の上流側約1.5mに注水井戸23を設け、浄化井戸25で浄化材を通過した地下水を注水井戸23に移送するようにした。
そして、浄化井戸25の東西南北約1mの位置に観測井戸A,B,C,Dを設け、浄化井戸25、注水井戸23および観測井戸A,B,C,Dにおける有機ハロゲン化合物濃度(cis-1,2-DCE)を定期的に観測した。
[Example 2]
Example 2 shows an experimental example for confirming the effect of the second embodiment, and FIG. 6 is a diagram for explaining this experimental example.
In this experimental example, a water injection well 23 is provided about 1.5 m upstream of the purification well 25, and the groundwater that has passed through the purification material in the purification well 25 is transferred to the water injection well 23.
Then, observation wells A, B, C, and D are provided at a position of about 1 m in the east, west, south, and north of the purification well 25, and the organic halogen compound concentration (cis− 1,2-DCE) was regularly observed.

本実験例で用いた浄化器具は実施例1のものと同様のものである。また、用いたポンプの能力も実施例1のものと同じであり流量が5L/分のものである。ただし、ポンプの運転を、60秒運転し、300秒停止を繰り返す運転とした。   The purification instrument used in this experimental example is the same as that of Example 1. Further, the capacity of the pump used is the same as that of the first embodiment, and the flow rate is 5 L / min. However, the pump was operated for 60 seconds and repeated for 300 seconds.

観測結果を図7のグラフに示す。
図7に示すように、浄化井戸25および注水井戸23の有機ハロゲン化合物濃度は急激に減少している。また、観測井戸A,B,C,Dにおいても有機ハロゲン化合物濃度が急減に減少している。
The observation results are shown in the graph of FIG.
As shown in FIG. 7, the organic halogen compound concentrations in the purification well 25 and the water injection well 23 are drastically reduced. In addition, in the observation wells A, B, C, and D, the concentration of the organic halogen compound is rapidly decreased.

図7に示す結果から、実施の形態2で示したように、井戸内に浄化器具を設置して浄化材への通水を行なうと共に上流側に注水井戸23を設け、注水井戸23に浄化井戸25の浄化水を移送することで、浄化井戸25及びその周辺の井戸での地下水の浄化を効果的にできることが確認できた。   From the results shown in FIG. 7, as shown in the second embodiment, a purifier is installed in the well to pass water to the purifier, and a water injection well 23 is provided on the upstream side. It was confirmed that the purification of groundwater in the purification well 25 and its surrounding wells can be effectively performed by transferring 25 purified water.

[比較例]
比較例は実施の形態1、2の効果の顕著性を示すための実験例であり、図8はこの実験例を説明する図である。
本実験例は、浄化井戸25には実施例1、2と同じ浄化器具を設置するものの、ポンプによる通水を行なわない場合における浄化作用を確認するものである。
浄化井戸25の東西南北約1mの位置に観測井戸A,B,C,Dを設け、浄化井戸25および観測井戸A,B,C,Dにおける有機ハロゲン化合物濃度(cis-1,2-DCE)を定期的に観測した。
[Comparative example]
The comparative example is an experimental example for showing the saliency of the effects of the first and second embodiments, and FIG. 8 is a diagram for explaining this experimental example.
In this experimental example, although the same purification device as in Examples 1 and 2 is installed in the purification well 25, the purification action in the case where water is not passed by the pump is confirmed.
Observation wells A, B, C, and D are provided approximately 1 m from the east, west, south, and north of the purification well 25, and the concentration of organic halogen compounds in the purification well 25 and the observation wells A, B, C, and D (cis-1,2-DCE) Were observed regularly.

観測結果を図9のグラフに示す。
図9に示すように、浄化井戸25の有機ハロゲン化合物濃度は急激に減少しているものの、観測井戸A,B,C,Dにおいては有機ハロゲン化合物濃度の減少は緩やかである。
The observation results are shown in the graph of FIG.
As shown in FIG. 9, the organic halogen compound concentration in the purification well 25 is drastically decreased, but in the observation wells A, B, C, and D, the decrease in the organic halogen compound concentration is gradual.

図9に示す結果から、実施の形態1、2で示したように、井戸内に浄化器具を設置して浄化材への通水を行なうことが汚染土壌及び汚染地下水の効率的な浄化に効果的であることが確認できた。   From the results shown in FIG. 9, as shown in the first and second embodiments, it is effective to efficiently purify contaminated soil and contaminated groundwater by installing a purifier in the well and passing water to the purifier. It was confirmed that

もっとも、比較例で用いた浄化材は実施例1、2のものと同じであり、この浄化材が有機ハロゲン化合物の浄化に効果的であることは、比較例における浄化井戸25の有機ハロゲン化合物濃度の減少をみればわかる。   However, the purification material used in the comparative example is the same as that of Examples 1 and 2, and this purification material is effective for the purification of the organic halogen compound. The concentration of the organic halogen compound in the purification well 25 in the comparative example is This can be seen by looking at the decrease.

なお、上記の実施の形態、実施例においては汚染源として有機ハロゲン化合物の例を挙げ、浄化材として鉄粉とステンレス鋼粉の混合粉を用いる場合について説明したが、汚染源が他の化学物質の場合には対象となる化学物質に対して浄化作用のある浄化材を用いればよい。   In the above embodiments and examples, an example of an organic halogen compound is given as a pollution source, and a case where a mixed powder of iron powder and stainless steel powder is used as a purification material has been described. However, when the pollution source is another chemical substance In this case, a purifying material having a purifying action on the target chemical substance may be used.

例えば、ヒ素、セレン、六価クロム、鉛、カドミウムなどの重金属類には鉄粉を浄化材として用いることができる。これらの重金属類に対する鉄粉の浄化作用を概説すると以下の通りである。
鉄粉は水中で酸化され酸化鉄の皮膜が生成される。ヒ素は水中でAsO4 3-、AsO3 3-などの酸素酸イオンとして溶解しており、酸化鉄に共沈またはヒ酸鉄FeAsO4として鉄酸化皮膜上に捕捉される。
また、セレンは水中でSeO4 2-、SeO3 2-などの酸素酸イオンとして溶解し、六価のSeO4 2-は鉄の酸化により4価のSeO3 2-に還元され、4価の亜セレン酸イオンは酸化鉄に共沈捕捉される。
また、六価クロムは水中でCrO4 2-、Cr2O7 2-などの酸素酸として溶解し、鉄の酸化により3価に還元されCr(OH)3として沈殿分離される。
また、鉛やカドミウムも同様に酸化鉄皮膜上に共沈捕捉される。
For example, iron powder can be used as a purification material for heavy metals such as arsenic, selenium, hexavalent chromium, lead, and cadmium. An outline of the purification effect of iron powder on these heavy metals is as follows.
Iron powder is oxidized in water to form a film of iron oxide. Arsenic is dissolved in water as oxyacid ions such as AsO 4 3− and AsO 3 3−, and is coprecipitated in iron oxide or trapped on the iron oxide film as iron arsenate FeAsO 4 .
Selenium dissolves in water as oxygenate ions such as SeO 4 2- and SeO 3 2-, and hexavalent SeO 4 2- is reduced to tetravalent SeO 3 2- by oxidation of iron. Selenite ions are co-precipitated and trapped in iron oxide.
Hexavalent chromium is dissolved in water as oxygen acids such as CrO 4 2− and Cr 2 O 7 2− , reduced to trivalent by oxidation of iron, and precipitated and separated as Cr (OH) 3 .
Similarly, lead and cadmium are co-precipitated on the iron oxide film.

本発明の一実施の形態に係る汚染土壌および汚染地下水の浄化方法を説明する説明図である。It is explanatory drawing explaining the purification method of the contaminated soil and contaminated groundwater which concern on one embodiment of this invention. 本発明の他の実施の形態に係る汚染土壌および汚染地下水の浄化方法の説明図である。It is explanatory drawing of the purification method of the contaminated soil and contaminated groundwater which concern on other embodiment of this invention. 図2における矢視A−A断面図である。It is arrow AA sectional drawing in FIG. 実施例1の説明図である。2 is an explanatory diagram of Embodiment 1. FIG. 実施例1の結果を示すグラフである。3 is a graph showing the results of Example 1. 実施例2の説明図である。FIG. 6 is an explanatory diagram of Example 2. 実施例2の結果を示すグラフである。10 is a graph showing the results of Example 2. 比較例の説明図である。It is explanatory drawing of a comparative example. 比較例の結果を示すグラフである。It is a graph which shows the result of a comparative example.

符号の説明Explanation of symbols

1 井戸
3 遮水層
5 フィルタ・充填材
7 浄化材
9 浄化器具
11 筒状容器
15 ポンプ
21 揚水井戸
23 注水井戸
25 浄化井戸
DESCRIPTION OF SYMBOLS 1 Well 3 Water-impervious layer 5 Filter / filler 7 Purifier 9 Purifier 11 Tubular container 15 Pump 21 Pumping well 23 Injection well 25 Purified well

Claims (6)

化学物質で汚染された土壌に井戸を穿孔し、浄化材を容器内に収容してなる浄化器具を前記井戸の地下水内に設置し、前記浄化材に井戸内の地下水を強制的に通水させることを特徴とする汚染土壌および汚染地下水の浄化方法。 A well is drilled in the soil contaminated with chemical substances, and a purification device containing the purification material in the container is installed in the groundwater of the well, and the groundwater in the well is forced to flow through the purification material. A method for purifying contaminated soil and contaminated groundwater. 化学物質で汚染された土壌に複数の井戸を穿孔し、浄化材を容器内に収容してなる浄化器具を前記複数の井戸のうち少なくとも一つの井戸の地下水内に設置し、前記浄化材に井戸内の地下水を強制的に通水させ、該通水させた地下水を前複数の井戸の他の井戸に移送することを特徴とする汚染土壌および汚染地下水の浄化方法。 A plurality of wells are drilled in soil contaminated with a chemical substance, and a purification device comprising a purification material contained in a container is installed in the groundwater of at least one of the plurality of wells, and the purification material is provided with a well. A method for purifying contaminated soil and contaminated groundwater, wherein the groundwater in the interior is forcibly passed, and the passed groundwater is transferred to other wells of the plurality of previous wells. 浄化器具は、浄化材を収容する筒状容器と、該筒状容器に設けられて該筒状容器内の浄化材に地下水を強制的に通水するポンプとを備えてなることを特徴とする請求項1又は2に記載の汚染土壌および汚染地下水の浄化方法。 The purification apparatus includes a cylindrical container that stores the purification material, and a pump that is provided in the cylindrical container and forcibly passes ground water through the purification material in the cylindrical container. The method for purifying contaminated soil and contaminated groundwater according to claim 1 or 2. 汚染源である化学物質が有機ハロゲン化合物の場合において、浄化材は、ステンレス鋼粉と鉄粉との混合粉を含み、混合粉におけるステンレス鋼粉の割合が0.5質量%〜50質量%であることを特徴とする請求項1〜3のいずれか一項に記載の汚染土壌および汚染地下水の浄化方法。 In the case where the chemical substance that is the contamination source is an organic halogen compound, the purification material contains a mixed powder of stainless steel powder and iron powder, and the ratio of the stainless steel powder in the mixed powder is 0.5 mass% to 50 mass%. The method for purifying contaminated soil and contaminated groundwater according to any one of claims 1 to 3. 粒子径が0.1〜10mmの粒状の充填材を浄化材と共に容器に収容していることを特徴とする請求項1〜4のいずれか一項に記載の汚染土壌および汚染地下水の浄化方法。 The method for purifying contaminated soil and contaminated groundwater according to any one of claims 1 to 4, wherein a granular filler having a particle diameter of 0.1 to 10 mm is contained in a container together with a purifier. 井戸の内径が40mm〜100mmであることを特徴とする請求項1〜5のいずれか一項に記載の汚染土壌および汚染地下水の浄化方法。 The internal diameter of a well is 40 mm-100 mm, The purification method of the contaminated soil and contaminated groundwater as described in any one of Claims 1-5 characterized by the above-mentioned.
JP2007221920A 2007-08-29 2007-08-29 Method for purifying contaminated soil and contaminated ground water Pending JP2009050818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007221920A JP2009050818A (en) 2007-08-29 2007-08-29 Method for purifying contaminated soil and contaminated ground water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007221920A JP2009050818A (en) 2007-08-29 2007-08-29 Method for purifying contaminated soil and contaminated ground water

Publications (1)

Publication Number Publication Date
JP2009050818A true JP2009050818A (en) 2009-03-12

Family

ID=40502386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007221920A Pending JP2009050818A (en) 2007-08-29 2007-08-29 Method for purifying contaminated soil and contaminated ground water

Country Status (1)

Country Link
JP (1) JP2009050818A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061431A (en) * 2010-09-16 2012-03-29 Panasonic Corp Apparatus and method for cleaning ground water
JP2012125713A (en) * 2010-12-16 2012-07-05 Kajima Corp System and method for cleaning ground water
JP2013116468A (en) * 2011-10-31 2013-06-13 Jfe Steel Corp Material for decreasing selenium, and method for decreasing selenium
JP2014168744A (en) * 2013-03-04 2014-09-18 Dowa Eco-System Co Ltd Method for purifying selenium-containing matter
JP2016137417A (en) * 2015-01-26 2016-08-04 清水建設株式会社 Groundwater decontamination system and groundwater decontamination method
WO2024106300A1 (en) * 2022-11-17 2024-05-23 有限会社彩孔技研 Auger bit and connection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347280A (en) * 2000-06-08 2001-12-18 Ebara Corp Method for cleaning ground water polluted with halogenated organic compound
JP2005118755A (en) * 2003-10-20 2005-05-12 Jfe Engineering Kk Organic halogen compound decomposer
JP2005161124A (en) * 2003-11-28 2005-06-23 Jfe Engineering Kk System and method for purifying contaminated ground water
JP2006043602A (en) * 2004-08-05 2006-02-16 Ohbayashi Corp Treatment system for contaminated soil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347280A (en) * 2000-06-08 2001-12-18 Ebara Corp Method for cleaning ground water polluted with halogenated organic compound
JP2005118755A (en) * 2003-10-20 2005-05-12 Jfe Engineering Kk Organic halogen compound decomposer
JP2005161124A (en) * 2003-11-28 2005-06-23 Jfe Engineering Kk System and method for purifying contaminated ground water
JP2006043602A (en) * 2004-08-05 2006-02-16 Ohbayashi Corp Treatment system for contaminated soil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061431A (en) * 2010-09-16 2012-03-29 Panasonic Corp Apparatus and method for cleaning ground water
JP2012125713A (en) * 2010-12-16 2012-07-05 Kajima Corp System and method for cleaning ground water
JP2013116468A (en) * 2011-10-31 2013-06-13 Jfe Steel Corp Material for decreasing selenium, and method for decreasing selenium
JP2014168744A (en) * 2013-03-04 2014-09-18 Dowa Eco-System Co Ltd Method for purifying selenium-containing matter
JP2016137417A (en) * 2015-01-26 2016-08-04 清水建設株式会社 Groundwater decontamination system and groundwater decontamination method
WO2024106300A1 (en) * 2022-11-17 2024-05-23 有限会社彩孔技研 Auger bit and connection method

Similar Documents

Publication Publication Date Title
JP2009050818A (en) Method for purifying contaminated soil and contaminated ground water
JP2012161768A (en) Apparatus for cleaning contaminated soil and method for cleaning soil
JP2007260610A (en) Cleaning method of contaminated soil
CN212954583U (en) System for repairing hexavalent chromium polluted groundwater
JP2004202357A (en) Method for purifying organic compound-polluted object
JP3716998B2 (en) Soil purification method and apparatus
JP6359891B2 (en) Soil purification agent and method for purification of contaminated soil
JP3516613B2 (en) Contaminated groundwater purification method
JP3725749B2 (en) Iron fine particle slurry and production method thereof, soil purification agent, and soil purification method
JP2006130419A (en) Contaminated stratum cleaning system and contaminated stratum cleaning method using it
JP4218564B2 (en) Method for purification of contaminated aquifer using purification agent for water containing pollutant
TWI335950B (en)
JP3764741B2 (en) Soil restoration method and soil restoration agent
KR102098338B1 (en) Ventilation system for removing ozone gas of activated carbon adsorber
JP2004261738A (en) Purification method for underground water polluted by cyanogen
JP5322185B2 (en) In-situ purification method
JP4353412B2 (en) Method for treating volatile organic compounds using iron oxide
JP5208599B2 (en) Purification of groundwater containing nitrate nitrogen
JP4530824B2 (en) Soil purification agent and soil purification method
JP2005000788A (en) Method of restoring soil
JP4027209B2 (en) Purification method for contamination by chemical substances
JP4272551B2 (en) Method for producing iron powder for soil repair agent
JP6243171B2 (en) Construction sludge treatment method
JP2004305963A (en) Method for purifying contaminated ground
JP2005111312A (en) Soil cleaning agent and soil cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110803

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110824

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111028