JP2009050148A - Permanent-magnet electric motor with constant output in wide range - Google Patents

Permanent-magnet electric motor with constant output in wide range Download PDF

Info

Publication number
JP2009050148A
JP2009050148A JP2008179021A JP2008179021A JP2009050148A JP 2009050148 A JP2009050148 A JP 2009050148A JP 2008179021 A JP2008179021 A JP 2008179021A JP 2008179021 A JP2008179021 A JP 2008179021A JP 2009050148 A JP2009050148 A JP 2009050148A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet
outer peripheral
constant output
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008179021A
Other languages
Japanese (ja)
Inventor
Daiki Matsuhashi
大器 松橋
Hiroyuki Nakaura
裕之 中浦
Kenji Kawakubo
憲次 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2008179021A priority Critical patent/JP2009050148A/en
Priority to PCT/JP2008/063271 priority patent/WO2009014172A1/en
Publication of JP2009050148A publication Critical patent/JP2009050148A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent-magnet electric motor capable of reducing torque ripple, vibration and noise by smoothly distributing a density of magnetic flux in a gap, in addition to property with constant output in a wide range. <P>SOLUTION: A permanent magnet 10 with an arcuate outer peripheral surface is embedded in an iron core 20. Accordingly, no disturbance of magnetic flux occurs in a gap, any possibility of increase can be suppressed in torque ripple and voltage ripple, and an advantage is materialized for downsizing a rotor. Further, a vacancy 40 is formed in the lower part of the permanent magnet 10, in other words, at the side of an inner radius in the radial direction. Therefore, a d-axis inductance L<SB>d</SB>can be reduced in comparison with the case having no vacancy 40, resulting in enlarging a salient-pole ratio (L<SB>d</SB>-L<SB>q</SB>), that is, in increasing reluctance torque T<SB>r</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、広範囲定出力永久磁石式モータに関する。詳しくは、広い可変速範囲が必要とされる用途に適用される永久磁石式モータに関する。   The present invention relates to a wide range constant output permanent magnet motor. More specifically, the present invention relates to a permanent magnet motor that is used in applications that require a wide variable speed range.

永久磁石式モータ(PMモータ)は、直流機やインダクションモータ(IM)、リラクタンスモータ(RM)に比べ、小型高効率を可能とする高性能なモータであるが、回転子に永久磁石を使用しているため、回転数の増加に伴い誘起電圧が増大する。
従って、永久磁石式モータを高速回転機に適用する際は、ギャップを広くするなどの適切な起磁力に設計している。
Permanent magnet motors (PM motors) are high-performance motors that are smaller and more efficient than direct current machines, induction motors (IM), and reluctance motors (RM), but use permanent magnets for the rotor. Therefore, the induced voltage increases as the rotational speed increases.
Therefore, when applying a permanent magnet motor to a high-speed rotating machine, an appropriate magnetomotive force such as widening the gap is designed.

一般的な永久磁石式モータの回転子を図9に示す。図9は、回転子の軸方向に垂直な断面図である。図9に示す回転子は、中心部にシャフト30の貫通する鉄心20の外周部分に永久磁石10を埋め込んだ形式である。鉄心20の外周面は、シャフト30の中心から一定距離の円形をなすものである。また、永久磁石11は、鉄心20の外周面からの距離が一定な円弧状をなすものである。従って、永久磁石11の曲率と鉄心20の外周面の曲率はほぼ等しくなっている。   FIG. 9 shows a rotor of a general permanent magnet motor. FIG. 9 is a cross-sectional view perpendicular to the axial direction of the rotor. The rotor shown in FIG. 9 has a form in which the permanent magnet 10 is embedded in the outer peripheral portion of the iron core 20 through which the shaft 30 penetrates at the center. The outer peripheral surface of the iron core 20 has a circular shape with a certain distance from the center of the shaft 30. Further, the permanent magnet 11 has an arc shape with a constant distance from the outer peripheral surface of the iron core 20. Therefore, the curvature of the permanent magnet 11 and the curvature of the outer peripheral surface of the iron core 20 are substantially equal.

永久磁石式モータにおいては、起磁力を弱めると磁石トルクが低下し、最大トルクが低下してしまうため、永久磁石式モータで定出力範囲を広くすることは困難であった。
そのため、起磁力を調節可能な直流機やインダクションモータが定出力範囲の広いモータとして採用され続けている。
一方、小型化が可能な永久磁石式モータで、磁石トルクの低下分をリラクタンストルクの活用により最大トルクを稼ぎ、広範囲定出力を確保する種々の永久磁石式モータが提案されている。
In the permanent magnet motor, if the magnetomotive force is weakened, the magnet torque is lowered and the maximum torque is lowered. Therefore, it has been difficult to widen the constant output range with the permanent magnet motor.
Therefore, DC machines and induction motors that can adjust the magnetomotive force continue to be adopted as motors with a wide constant output range.
On the other hand, various permanent magnet motors have been proposed that are permanent magnet motors that can be reduced in size, and that make use of reluctance torque to obtain the maximum torque by reducing the decrease in magnet torque and ensure a wide range of constant output.

例えば、特許文献1,2では、永久磁石式モータ(永久磁石を補助的に採用した永久磁石式リラクタンス型回転電機を含む)で定出力範囲を広く取るように、d軸磁路に対向して磁石をV字型に配置し、q軸磁路を妨げないようにした磁石配置としている。また、特許文献1では、V字型に配置した磁石の上側、つまり、半径方向外周側に空孔を配置し、特許文献2では、V字型に配置した磁石の上側、つまり、半径方向外周側における鉄心外周面を直線状にカットして空隙を形成したものである。   For example, in Patent Documents 1 and 2, a permanent magnet type motor (including a permanent magnet type reluctance type rotating electrical machine that uses a permanent magnet as a supplement) is opposed to the d-axis magnetic path so as to have a wide constant output range. The magnet is arranged in a V shape so that the q-axis magnetic path is not obstructed. In Patent Document 1, holes are arranged on the upper side of the magnet arranged in a V shape, that is, on the outer peripheral side in the radial direction. In Patent Document 2, the upper side of the magnet arranged in a V shape, that is, on the outer periphery in the radial direction. The outer peripheral surface of the iron core on the side is cut linearly to form a gap.

そのため、特許文献1,2では、下式(1)に示すように、d軸インダクタンスLdを小さく、q軸インダクタンスLqを大きくして突極比(Ld−Lq)を大きく取ることができる。即ち、リラクタンストルクTrを大きく取ることができる。
T=Tm+Tr=PnΨaq+Pn(Ld−Lq)idq …(1)
Therefore, in Patent Documents 1 and 2, as shown in the following formula (1), the d-axis inductance L d is decreased, the q-axis inductance L q is increased, and the salient pole ratio (L d −L q ) is increased. Can do. That is, the reluctance torque Tr can be increased.
T = T m + T r = P n Ψ a i q + P n (L d -L q) i d i q ... (1)

しかしながら、特許文献1,2のように、V字型の磁石や、磁石上部の空孔、空隙を配置すると、ギャップ磁束分布の乱れを生じさせ、トルクリップル、電圧リップルの増大を招くなど弊害があり、また、磁石をV字型に配置することから、ロータの小型化にも限界が有る。
なお、図9に示すように、鉄心20の外周面までの埋込深さが一定となるように円弧状の永久磁石11を回転子に埋め込んだ永久磁石型モータは、ギャップ磁束分布が乱れず、トルクリップル、電圧リップルの増大を招く虞もなく、また、ロータの小型化にも有利なものである。
特開2001−339922 特開2001−95184
However, as in Patent Documents 1 and 2, if a V-shaped magnet, a hole or a gap above the magnet are arranged, the gap magnetic flux distribution is disturbed, and torque ripple and voltage ripple are increased. In addition, since the magnets are arranged in a V shape, there is a limit to miniaturization of the rotor.
As shown in FIG. 9, in the permanent magnet motor in which the arc-shaped permanent magnet 11 is embedded in the rotor so that the embedded depth to the outer peripheral surface of the iron core 20 is constant, the gap magnetic flux distribution is not disturbed. In addition, there is no fear of increasing torque ripple and voltage ripple, and it is advantageous for downsizing of the rotor.
JP 2001-339922 A JP 2001-95184 A

上述した通り、永久磁石式モータは、起磁力を持つ永久磁石をロータ内に有するため、回転速度に比例して誘起電圧が高くなる。永久磁石式モータの回転速度限界は、ロータに掛かる遠心力の耐機械強度や、無負荷誘起電圧とインバータなどのモータ駆動装置の電圧制限値により決まる。
また、トルク上限はシャフトの強度など機械構造あるいはモータ体格によって制限が掛かる。そこで、一定出力で可変速運転を行う定出力範囲を広げるには、回転速度上限における無負荷誘起電圧をモータ駆動装置の電圧制限値に抑え、かつ、低速域での最大トルクが十分に得られるような構造にする必要がある。
As described above, since the permanent magnet motor has a permanent magnet having a magnetomotive force in the rotor, the induced voltage increases in proportion to the rotational speed. The rotational speed limit of the permanent magnet motor is determined by the mechanical strength of the centrifugal force applied to the rotor, the no-load induced voltage, and the voltage limit value of the motor drive device such as an inverter.
The upper limit of the torque is limited by the mechanical structure such as the strength of the shaft or the motor size. Therefore, in order to expand the constant output range for variable speed operation at a constant output, the no-load induced voltage at the upper limit of the rotation speed is suppressed to the voltage limit value of the motor drive device, and the maximum torque in the low speed range can be sufficiently obtained. It is necessary to make such a structure.

このため、回転速度上限における無負荷誘起電圧を抑えるためには、(2)式で決まるように、永久磁石の持つ起磁力によってステータコイルを鎖交する磁束を低減する必要がある。
V=dφ/dt …(2)
通常、磁石によるステータ鎖交磁束が低下すると、(1)式に示す磁石トルクTmが低下し、高速回転は可能となるものの、最大トルクが減少してしまう。
しかしながら、(1)式中のリラクタンストルクTrを有効に活用し、磁石トルクTmの低下分を補うことができれば、定出力範囲の広いPMモータが可能となる。
For this reason, in order to suppress the no-load induced voltage at the upper limit of the rotational speed, it is necessary to reduce the magnetic flux interlinking the stator coils by the magnetomotive force of the permanent magnet as determined by the equation (2).
V = dφ / dt (2)
Normally, the stator flux linkage by the magnet decreases, and decreases the magnet torque T m as shown in equation (1), although the high-speed rotation is allowed, the maximum torque is reduced.
However, if the reluctance torque T r in the equation (1) can be effectively utilized to compensate for the decrease in the magnet torque T m, a PM motor with a wide constant output range becomes possible.

このリラクタンストルクを有効に活用する構造として、特許文献1や特許文献2のような構造が既に考案されている。
特許文献1,2は、磁石極の上部、すなわち、半径方向外径側に空孔や空隙を設け、d軸上のモータ磁気回路における磁気抵抗を増加させることで、磁石起磁力によるステータコイル鎖交磁束を低減させ、q軸インダクタンスを維持しつつ、d軸インダクタンスの低減を図り、リラクタンストルクを有効に得るための構造である。
なお、ここでは磁石磁極の中心をd軸とし、磁石極問の鉄心部の中心をq軸としているが、特許文献1は、“リラクタンスモータ”に関するものであり、鉄心の凸部分をd軸,凹部分をq軸としてこの凹部分に磁石を配置しているので、磁石磁極の中心がq軸となっている。
As structures for effectively utilizing the reluctance torque, structures such as Patent Document 1 and Patent Document 2 have already been devised.
In Patent Documents 1 and 2, a stator coil chain by a magnet magnetomotive force is provided by providing a hole or a gap in the upper part of the magnet pole, that is, on the radially outer diameter side, and increasing the magnetic resistance in the motor magnetic circuit on the d axis. In this structure, the reluctance torque is effectively obtained by reducing the d-axis inductance while reducing the magnetic flux and maintaining the q-axis inductance.
Here, the center of the magnet magnetic pole is the d-axis, and the center of the iron core portion of the magnet pole is the q-axis. However, Patent Document 1 relates to a “reluctance motor”, and the convex portion of the iron core is the d-axis. Since the magnet is arranged in the concave portion with the concave portion as the q axis, the center of the magnet magnetic pole is the q axis.

しかしながら、特許文献1,2は、図6(a)に示すように、鉄心20中に磁石100,101をV字型に配置し、磁石上部に空孔や空隙を設けているため、ステータ−ロータ間のギャップ磁束密度分布は図6(b)に示すように、正弦波からは程遠いものとなってしまい、トルクリップルの増大、引いては振動−騒音の増加という問題を抱えていた。   However, in Patent Documents 1 and 2, as shown in FIG. 6 (a), the magnets 100 and 101 are arranged in a V shape in the iron core 20, and holes or gaps are provided in the upper part of the magnet. As shown in FIG. 6 (b), the gap magnetic flux density distribution between the rotors is far from the sine wave, and there is a problem that torque ripple is increased and vibration-noise is increased.

本発明は、特許文献1,2のように磁気抵抗となる空孔や空隙を磁石上部に設けるのではなく、磁石下部に設けることによって、同様な広範囲定出力特性を得ながら、ギャップ磁束密度分布を図7に示すように表面磁石型同期電動機(SPMモータ)並のなだらかな分布とする事でトルクリップルの低減、振動−騒音の低減を図れる永久磁石式モータを提供せんとするものである。   In the present invention, the gap magnetic flux density distribution is obtained while obtaining the same wide-range constant output characteristics by providing holes or gaps serving as magnetic resistance in the upper part of the magnet instead of providing them in the upper part of the magnet as in Patent Documents 1 and 2. 7 is intended to provide a permanent magnet motor capable of reducing torque ripple and vibration-noise by making the distribution as smooth as a surface magnet type synchronous motor (SPM motor) as shown in FIG.

上記課題を解決する本発明の請求項1に係る広範囲定出力永久磁石式モータは、鉄心中に円弧形状の外周面を有する永久磁石を埋め込んだ永久磁石式モータにおいて、前記永久磁石の下部に空孔を設けて、該空孔がない場合に比較してd軸インダクタンスLdを小さくしたことを特徴とする。 The wide-range constant-power permanent magnet motor according to claim 1 of the present invention for solving the above-mentioned problems is a permanent magnet motor in which a permanent magnet having an arc-shaped outer peripheral surface is embedded in an iron core. A hole is provided, and the d-axis inductance L d is reduced as compared with the case where the hole is not provided.

上記課題を解決する本発明の請求項2に係る広範囲定出力永久磁石式モータは、請求項1において前記空孔は、該空孔がない場合に比較してq軸インダクタンスLqを維持するようにq軸磁路を妨げない形状であることを特徴とする。 A wide-range constant-power permanent magnet motor according to a second aspect of the present invention that solves the above-mentioned problems is that, in the first aspect, the hole maintains a q-axis inductance L q as compared with a case where the hole is not present. The shape is such that the q-axis magnetic path is not obstructed.

上記課題を解決する本発明の請求項3に係る広範囲定出力永久磁石式モータは、請求項1又は2において前記永久磁石の外周面は、鉄心外周面までの距離が一定となる円弧形状又は鉄心外周面までの距離が中央ほど短く両側に行くに従って長くなる凸型円弧形状としたことを特徴とする。   A wide-range constant output permanent magnet motor according to a third aspect of the present invention that solves the above-described problems is that the outer peripheral surface of the permanent magnet according to the first or second aspect is an arc shape or an iron core having a constant distance to the outer peripheral surface of the core. The distance from the outer peripheral surface is shorter in the center, and is a convex arc shape that becomes longer as it goes to both sides.

上記課題を解決する本発明の請求項4に係る広範囲定出力永久磁石式モータは、請求項1,2又は3において前記永久磁石の内側面は、磁極の中心を通る径方向に対して垂直な平面であることを特徴とする。   A wide-range constant-power permanent magnet motor according to a fourth aspect of the present invention for solving the above-mentioned problems is that the inner surface of the permanent magnet is perpendicular to the radial direction passing through the center of the magnetic pole. It is a flat surface.

本発明の広範囲定出力永久磁石式モータは、鉄心中に円弧形状の外周面を有する永久磁石を埋め込んだので、ギャップ磁束分布が乱れず、トルクリップル、電圧リップルの増大を招く虞もなく、また、ロータの小型化にも有利なものである他、永久磁石の下部、つまり、半径方向内径側に空孔を設けたので、その空孔がない場合に比較してd軸インダクタンスLdを小さくできるという効果を奏する。 Since the permanent magnet having the arc-shaped outer peripheral surface is embedded in the iron core, the wide-range constant output permanent magnet motor of the present invention does not disturb the gap magnetic flux distribution, and does not cause an increase in torque ripple and voltage ripple. In addition to being advantageous for downsizing of the rotor, since a hole is provided in the lower part of the permanent magnet, that is, on the radially inner side, the d-axis inductance L d is reduced as compared with the case where there is no hole. There is an effect that can be done.

また、永久磁石の下部に設ける空孔の形状として、q軸磁路を妨げない形状とすれば、空孔がない場合に比較して、q軸インダクタンスLqを維持できるという効果も奏する。 Further, if the shape of the hole provided in the lower portion of the permanent magnet is a shape that does not obstruct the q-axis magnetic path, the effect of maintaining the q-axis inductance L q can be achieved as compared with the case where there is no hole.

そのため、本発明においては、上式(1)に示すように、d軸インダクタンスLdを小さくでき、また、q軸インダクタンスLqが維持されるため、突極比(Ld−Lq)を大きく取ることができ、つまり、リラクタンストルクTrを大きく取ることができる。 Therefore, in the present invention, as shown in the above formula (1), the d-axis inductance L d can be reduced and the q-axis inductance L q is maintained, so that the salient pole ratio (L d −L q ) is The reluctance torque Tr can be increased.

更に、永久磁石の外周面として、鉄心外周面までの距離が一定となる円弧形状とする場合に比較し、鉄心外周面までの距離が中央ほど短く両側に行くに従って長くなる凸型円弧形状とすると、磁石磁極の中心とステータとの距離を最小とすることが出来る。そのため、磁石磁極の中心が最も磁束が通り易く磁束密度分布が最大となり、中心から両側に向かうに従い磁石磁極とステータとの距離が大きくなるので磁束密度分布が減少する。このため、より一層正弦波に近い磁束密度分布となり、より一層の振動と騒音の低減を図ることが出来る。   Furthermore, when the outer peripheral surface of the permanent magnet is a circular arc shape in which the distance to the iron core outer peripheral surface is constant, the distance to the iron core outer peripheral surface is shorter toward the center and longer toward the both sides. The distance between the center of the magnetic pole and the stator can be minimized. For this reason, the magnetic flux easily passes through the center of the magnetic pole most easily, and the magnetic flux density distribution becomes maximum. The distance between the magnetic pole and the stator increases from the center toward both sides, so the magnetic flux density distribution decreases. For this reason, the magnetic flux density distribution becomes closer to a sine wave, and vibration and noise can be further reduced.

更に、永久磁石の内側面として、磁極の中心を通る径方向に対し垂直な平面とすると、磁石磁極中心の磁石厚が厚くなり、磁石磁極中心の磁束密度分布が増えるので、磁石厚が一定の場合に比較し、正弦波に近い磁束密度分布となる利点がある。   Furthermore, if the inner surface of the permanent magnet is a plane perpendicular to the radial direction passing through the center of the magnetic pole, the magnet thickness at the magnet magnetic pole center is increased, and the magnetic flux density distribution at the magnet magnetic pole center is increased. Compared to the case, there is an advantage that the magnetic flux density distribution is close to a sine wave.

高回転時の誘起電圧を低減させるためには、図5(a)の点線のように磁束密度分布を低減させる必要がある。
そのため、従来は、特許文献1及び2のように磁石極の上部に空孔や空隙を設け、誘起電圧の低減により電圧制限値での高回転化(図5(b)の点線)による広範囲出力(図5(c)の点線)を実現するものであった。
しかし、図6(a)に示すロータ形状では、図6(b)に示すように、ギャップ磁束密度分布が正弦波とならずに、振動や騒音の原因となっていた。
In order to reduce the induced voltage during high rotation, it is necessary to reduce the magnetic flux density distribution as indicated by the dotted line in FIG.
For this reason, conventionally, as in Patent Documents 1 and 2, a hole or gap is provided above the magnet pole, and a wide range of output is achieved by increasing the rotation speed at the voltage limit value by reducing the induced voltage (dotted line in FIG. 5B). (Dotted line in FIG. 5C) was realized.
However, in the rotor shape shown in FIG. 6A, as shown in FIG. 6B, the gap magnetic flux density distribution does not become a sine wave but causes vibration and noise.

これに対し、本発明は、図7に示すように鉄心20に埋め込む磁石10を円弧形状とし、磁石10の下部に空孔40を設けることで、誘起電圧の低減により電圧制限値での高回転化(図5(b)の点線)による広範囲出力(図5(c)の点線)を実現すると共に、図7(b)に示すように、表面磁石型同期電動機並みに磁石密度分布がなだらかになり、振動や騒音を低減することができるロータ形状である。   On the other hand, in the present invention, as shown in FIG. 7, the magnet 10 embedded in the iron core 20 has an arc shape, and a hole 40 is provided in the lower part of the magnet 10, thereby reducing the induced voltage and increasing the rotation speed at the voltage limit value. (Dotted line in FIG. 5B) provides a wide range output (dotted line in FIG. 5C), and as shown in FIG. 7B, the magnet density distribution is as gentle as the surface magnet type synchronous motor. Thus, the rotor shape can reduce vibration and noise.

また、本発明と同様に磁石を円弧形状とし、かつ磁石厚みを薄くすることでd軸の磁束密度分布を低減させる方法もあるが、磁石を薄くすると減磁し易くなるという問題がある。
なお、本発明は、円弧形状の磁石下部(内径側)に空孔を設けるという点に特徴があり、空孔の形状は特に限定するものではない。
As in the present invention, there is a method of reducing the d-axis magnetic flux density distribution by making the magnet arc-shaped and reducing the magnet thickness, but there is a problem that demagnetization becomes easier when the magnet is made thinner.
The present invention is characterized in that holes are provided in the lower part (inner diameter side) of the arc-shaped magnet, and the shape of the holes is not particularly limited.

本発明の第1の実施例に係る広範囲定出力永久磁石式モータを図1に示す。図1は、回転子の軸方向に垂直な断面図である。
図1に示すように、本実施例においては、中心部にシャフト30の貫通する鉄心20の外周部分に、円弧状の永久磁石10を埋め込んでいる。
鉄心20の外周面は、シャフト30の中心から一定距離の円形をなすものであり、鉄心外周面を直線状にカットしている特許文献2とは異なる。
FIG. 1 shows a wide range constant output permanent magnet motor according to a first embodiment of the present invention. FIG. 1 is a cross-sectional view perpendicular to the axial direction of the rotor.
As shown in FIG. 1, in this embodiment, an arc-shaped permanent magnet 10 is embedded in the outer peripheral portion of the iron core 20 through which the shaft 30 penetrates at the center.
The outer peripheral surface of the iron core 20 has a circular shape with a constant distance from the center of the shaft 30 and is different from Patent Document 2 in which the outer peripheral surface of the iron core is cut linearly.

永久磁石10は、鉄心外周面からの距離が一定な円弧形状の外周面を有し、そのため、永久磁石11の外周面の曲率と鉄心20の外周面の曲率はほぼ等しい。また、永久磁石10の磁石厚は一定となっている。
そのため、本実施例の永久磁石型モータは、前述した特許文献1,2に比較し、ギャップ磁束分布が乱れず、トルクリップル、電圧リップルの増大を招く虞もなく、また、ロータの小型化にも有利なものである。
The permanent magnet 10 has an arc-shaped outer peripheral surface with a constant distance from the outer peripheral surface of the iron core. Therefore, the curvature of the outer peripheral surface of the permanent magnet 11 and the curvature of the outer peripheral surface of the iron core 20 are substantially equal. Further, the magnet thickness of the permanent magnet 10 is constant.
For this reason, the permanent magnet type motor of the present embodiment does not disturb the gap magnetic flux distribution, increase the torque ripple and voltage ripple, and reduce the size of the rotor. Is also advantageous.

更に、本実施例では、円弧状の永久磁石10の下部、つまり、半径方向内径側に空孔40を設けて、この空孔40がない場合に比較してd軸インダクタンスLdを小さくしたものである。
即ち、鉄心20中においては、永久磁石10が存在する箇所は磁束の通り難いd軸磁路であるところ、永久磁石10の下部に空孔40を配置することにより、更に磁束が通り難くなることから、この空孔40がない場合に比較してd軸インダクタンスLdが更に小さくなるのである。
Furthermore, in this embodiment, a hole 40 is provided in the lower part of the arc-shaped permanent magnet 10, that is, on the radially inner side, and the d-axis inductance L d is reduced as compared with the case where there is no hole 40. It is.
That is, in the iron core 20, the location where the permanent magnet 10 exists is a d-axis magnetic path through which the magnetic flux is difficult to pass. However, by arranging the hole 40 below the permanent magnet 10, the magnetic flux is further difficult to pass. Therefore, the d-axis inductance L d is further reduced as compared with the case where the hole 40 is not provided.

しかも、鉄心20中において、永久磁石10と永久磁石10との間、つまり、永久磁石の存在しない箇所は磁束の通り易いq軸磁路であるところ、空孔40の形状はq軸磁路を妨げないように、永久磁石10の中心から両側に行くに従って隙間が小さくなる紡錘形状となっている。言い換えると、永久磁石10の両側ほど、磁路となる鉄心20の領域が広く確保されている。   Moreover, in the iron core 20, between the permanent magnet 10 and the permanent magnet 10, that is, a portion where no permanent magnet exists is a q-axis magnetic path through which magnetic flux easily passes, but the shape of the hole 40 is a q-axis magnetic path. In order not to disturb, the spindle has a spindle shape in which the gap decreases from the center of the permanent magnet 10 toward both sides. In other words, the area of the iron core 20 serving as a magnetic path is secured wider on both sides of the permanent magnet 10.

そのため、本実施例においては、上式(1)に示すように、d軸インダクタンスLdを小さくでき、また、q軸インダクタンスLqが維持されるため、突極比(Ld−Lq)を大きく取ることができ、つまり、リラクタンストルクTrを大きく取ることができる。
その結果、磁石磁束が低減することから、高速回転時における誘起電圧を抑えることができ、高速回転が可能となるという利点がある。
Therefore, in this embodiment, as shown in the above formula (1), the d-axis inductance L d can be reduced and the q-axis inductance L q is maintained, so that the salient pole ratio (L d −L q ). Can be increased, that is, the reluctance torque Tr can be increased.
As a result, since the magnetic flux of the magnet is reduced, the induced voltage at the time of high-speed rotation can be suppressed, and there is an advantage that high-speed rotation is possible.

本発明の第2の実施例に係る広範囲定出力永久磁石式モータを図2に示す。図2は、回転子の軸方向に垂直な断面図である。
本実施例は、実施例1に比較して更に磁石磁束を低減し、高速回転を可能とした構造である。
A wide range constant output permanent magnet motor according to a second embodiment of the present invention is shown in FIG. FIG. 2 is a cross-sectional view perpendicular to the axial direction of the rotor.
The present embodiment has a structure in which the magnet magnetic flux is further reduced and high-speed rotation is possible as compared with the first embodiment.

即ち、磁石磁束を低減するためには、磁石を薄くする方法があるが、磁石が薄くなると減磁耐力が低下し、広範囲定出力運転を行う場合は弱め界磁制御を多用するため、減磁の可能性が高くなり、得策ではない。
そこで、本実施例では、磁石厚を確保しつつ、磁石幅で磁束量を低減するべく、実施例1の永久磁石10よりも幅の短い、つまり、周方向の長さの小さい永久磁石11を鉄心20内に埋め込むものである。永久磁石11の厚さ、つまり、半径方向の長さは、実施例1の永久磁石10と等しい。
In other words, to reduce the magnetic flux, there is a method to make the magnet thinner. It ’s not a good idea.
Therefore, in the present embodiment, in order to reduce the amount of magnetic flux by the magnet width while securing the magnet thickness, the permanent magnet 11 having a shorter width than the permanent magnet 10 of the first embodiment, that is, having a smaller circumferential length, is used. It is embedded in the iron core 20. The thickness of the permanent magnet 11, that is, the length in the radial direction is equal to that of the permanent magnet 10 of the first embodiment.

一方、実施例1に比較して、d軸インダクタンスLdを同程度に確保するため、永久磁石11の周方向両側にもそれぞれ空孔41を設けたのである。そのため、永久磁石11の下方に空孔40、その横方向の2つの空孔41、合計3つの空孔が配置されることになる。
但し、永久磁石11の固定が不安定とならないよう、永久磁石11の下端両角部を支える磁石押さえ部21を設けている。
On the other hand, in order to ensure the d-axis inductance L d at the same level as in the first embodiment, the holes 41 are provided on both sides of the permanent magnet 11 in the circumferential direction. Therefore, a total of three holes, that is, a hole 40 and two holes 41 in the lateral direction are arranged below the permanent magnet 11.
However, the magnet pressing part 21 that supports the lower corners of the permanent magnet 11 is provided so that the fixation of the permanent magnet 11 does not become unstable.

このように、本実施例は、実施例1の永久磁石10よりも幅が短く厚さが等しい永久磁石11を鉄心20内に埋め込むので、減磁耐力の低下を回避しつつ、磁石幅で磁束量を低減することができる。そのため、図8に破線で示す通り、実施例1に比較して磁束密度分布の幅が狭くなるので、総磁束量が抑えられ無負荷誘起電圧が実施例1より低減するという効果を奏する。
本実施例においても、その他の構成は、前述した実施例1と同様であり、同様な効果を奏する。
Thus, in this embodiment, the permanent magnet 11 having a shorter width and the same thickness as that of the permanent magnet 10 of the first embodiment is embedded in the iron core 20, so that the magnetic flux can be reduced with the magnet width while avoiding a decrease in demagnetization resistance. The amount can be reduced. Therefore, as shown by a broken line in FIG. 8, the width of the magnetic flux density distribution is narrower than that of the first embodiment, so that the total amount of magnetic flux is suppressed and the no-load induced voltage is reduced compared to the first embodiment.
Also in the present embodiment, other configurations are the same as those of the first embodiment described above, and the same effects are achieved.

本発明の第3の実施例に係る広範囲定出力永久磁石式モータを図3に示す。図3は、回転子の軸方向に垂直な断面図である。
本実施例は、実施例2において磁石押さえ部21で永久磁石11の下端両角部を支えるのに代えて、磁石11の上部を左右から挟み込むガイド状の凸部22を設けたものである。
A wide-range constant output permanent magnet motor according to a third embodiment of the present invention is shown in FIG. FIG. 3 is a cross-sectional view perpendicular to the axial direction of the rotor.
In the present embodiment, instead of supporting the lower end corners of the permanent magnet 11 with the magnet pressing portion 21 in the second embodiment, a guide-like convex portion 22 that sandwiches the upper portion of the magnet 11 from the left and right is provided.

実施例2では磁石押さえ部21が図2中に太線で示すように、狭小ではあるが磁石上部から磁石下端角部を通り、d軸磁路上に磁束が通り易い磁路を形成するものであるが、本実施例では、磁石押さえ部21を廃止するので、d軸インダクタンスLdの増大を抑えられる利点がある。
なお、本実施例では、磁石押さえ部21の廃止に伴い、永久磁石11の下方から横方向に連なる広い空孔40が形成される。
In the second embodiment, as shown by a thick line in FIG. 2, the magnet pressing portion 21 forms a magnetic path that is narrow but passes from the upper part of the magnet through the lower edge of the magnet and through which the magnetic flux easily passes on the d-axis magnetic path. However, in this embodiment, since the magnet pressing portion 21 is eliminated, there is an advantage that an increase in the d-axis inductance L d can be suppressed.
In the present embodiment, with the abolition of the magnet pressing portion 21, a wide hole 40 that is continuous in the lateral direction from below the permanent magnet 11 is formed.

このように、本実施例では、磁石11の上部を左右から挟み込むガイド状の凸部22を設けて、磁石押さえ部21を廃止するので、d軸磁路上の磁束が通り難くなり、実施例2よりd軸インダクタンスLdを低減する、すなわち、リラクタンストルクTrを有効に活用できるという効果を奏する。
本実施例においても、その他の構成は、前述した実施例1と同様であり、同様な効果を奏する。
As described above, in this embodiment, the guide-shaped convex portion 22 that sandwiches the upper portion of the magnet 11 from the left and right is provided, and the magnet pressing portion 21 is abolished, so that the magnetic flux on the d-axis magnetic path becomes difficult to pass. The d-axis inductance L d is further reduced, that is, the reluctance torque Tr can be effectively utilized.
Also in the present embodiment, other configurations are the same as those of the first embodiment described above, and the same effects are achieved.

本発明の第4の実施例に係る広範囲定出力永久磁石式モータを図4に示す。図4は、回転子の軸方向に垂直な断面図である。
本実施例は、実施例3において磁石11の上部を左右から挟み込むガイド状の凸部22を設けることに加え、磁石11の下部を全面的に支える弧状支持部材23を設けたものである。従って、永久磁石11の左右両側の鉄心20は弧状支持部材23により繋がることになる。
FIG. 4 shows a wide-range constant output permanent magnet motor according to the fourth embodiment of the present invention. FIG. 4 is a cross-sectional view perpendicular to the axial direction of the rotor.
In this embodiment, in addition to providing the guide-like convex portion 22 that sandwiches the upper portion of the magnet 11 from the left and right in the third embodiment, an arc-shaped support member 23 that supports the lower portion of the magnet 11 is provided. Therefore, the left and right iron cores 20 of the permanent magnet 11 are connected by the arc-shaped support member 23.

このようにすると、実施例1に比較して、図4中に太線で示すように、狭小ではあるが磁石上部、すなわち、半径方向外径側から弧状支持部材23に戻るd軸磁路を形成するため、d軸インダクタンスLdが若干増大するが、弧状支持部材23を縦断するq軸磁路を形成するため、q軸インダクタンスLqの増大を促す効果がある。
なお、磁石11の上部を左右から挟み込むガイド状の凸部22を設けるのに代えて、磁石11の下部を全面的に支える弧状支持部材23上に磁石11の下部を左右から挟み込むガイド状の凸部(図示省略)を設けても良いし、磁石11の左右方向の空孔41を省略した設計とすることも可能である。
In this manner, as shown by a thick line in FIG. 4, compared with the first embodiment, a narrower but upper portion of the magnet, that is, a d-axis magnetic path returning from the radially outer diameter side to the arc-shaped support member 23 is formed. Therefore, the d-axis inductance L d slightly increases, but since the q-axis magnetic path that cuts the arc-shaped support member 23 is formed, there is an effect of promoting the increase of the q-axis inductance L q .
Instead of providing the guide-shaped convex portion 22 that sandwiches the upper portion of the magnet 11 from the left and right, the guide-shaped convex portion that sandwiches the lower portion of the magnet 11 from the left and right on the arc-shaped support member 23 that supports the lower portion of the magnet 11 in its entirety. A portion (not shown) may be provided, or the left and right air holes 41 of the magnet 11 may be omitted.

このように本実施例4は、弧状支持部材23によりd軸インダクタンスLdも増加するが、同時にq軸インダクタンスLqも増加するので、前記実施例と同様に突極比(Ld−Lq)を大きくでき広範囲定出力特性を保ちつつ、高回転時の誘起電圧を低減でき、かつ磁石11の固定が確実な形状となる利点がある。
本実施例においても、その他の構成は、前述した実施例1と同様であり、同様な効果を奏する。
As described above, in the fourth embodiment, the d-axis inductance L d is also increased by the arc-shaped support member 23, but at the same time, the q-axis inductance L q is also increased, so that the salient pole ratio (L d −L q is the same as the previous embodiment. ) Can be increased, while maintaining a wide range of constant output characteristics, the induced voltage at high rotation can be reduced, and the magnet 11 can be securely fixed.
Also in the present embodiment, other configurations are the same as those of the first embodiment described above, and the same effects are achieved.

本発明の第5の実施例に係る広範囲定出力永久磁石式モータを図10(a)(b)に示す。図10(a)は回転子の軸方向に垂直な断面図、図10(b)はステータ−ロータ間のギャップ磁束密度分布を示すグラフである。   10A and 10B show a wide-range constant output permanent magnet motor according to a fifth embodiment of the present invention. FIG. 10A is a cross-sectional view perpendicular to the axial direction of the rotor, and FIG. 10B is a graph showing a gap magnetic flux density distribution between the stator and the rotor.

図10(a)に示すように、鉄心20に埋め込まれる永久磁石10の外周面は、鉄心外周面までの距離が中央ほど短く、両側に行くに従って長くなる凸型円弧形状としたものである。つまり、ロータ外径より磁石円弧の曲率が小さく、ロータ外径より磁石10の外周面の方が凸形状になっている。また、永久磁石10の磁石厚は一定となっている。   As shown in FIG. 10A, the outer peripheral surface of the permanent magnet 10 embedded in the iron core 20 has a convex arc shape whose distance to the iron core outer peripheral surface is shorter toward the center and becomes longer toward both sides. That is, the curvature of the magnet arc is smaller than the outer diameter of the rotor, and the outer peripheral surface of the magnet 10 is more convex than the outer diameter of the rotor. Further, the magnet thickness of the permanent magnet 10 is constant.

このように本実施例では、永久磁石10の外周面を鉄心外周面よりも凸型とした円弧形状としたため、磁石磁極の中心とステータとの距離が最小となり、磁石磁極中心の磁束密度を最大とすることができ、中心から両端部に向かうに従い磁石上部の鉄心が厚くなり、この厚い部分の漏れ磁束の増加により磁石磁極の中心に比べて両端部の磁束密度が減少する。   As described above, in this embodiment, the outer peripheral surface of the permanent magnet 10 has an arc shape that is more convex than the outer peripheral surface of the iron core. Therefore, the distance between the center of the magnetic pole and the stator is minimized, and the magnetic flux density at the center of the magnetic pole is maximized. The iron core at the top of the magnet becomes thicker from the center toward both ends, and the magnetic flux density at both ends decreases compared to the center of the magnet magnetic pole due to the increase in leakage flux of this thick portion.

このため、図10(b)に示すように、実施例1に比べて正弦波に近い磁束密度分布となり、より一層の振動と騒音の低減を図ることが出来る。
さらに、本実施例の構造は、磁石上部の両端部の鉄心が厚くなるので、耐遠心力も増大し、より一層の高速回転による広範囲定出力を実現するものである。
本実施例においても、その他の構成は、前述した実施例1と同様であり、同様な効果を奏する。
For this reason, as shown in FIG. 10B, the magnetic flux density distribution is closer to a sine wave than in the first embodiment, and vibration and noise can be further reduced.
Further, the structure of the present embodiment increases the anti-centrifugal force because the iron cores at both ends of the upper part of the magnet are thick, and realizes a wide range constant output by further high-speed rotation.
Also in the present embodiment, other configurations are the same as those of the first embodiment described above, and the same effects are achieved.

本発明の第6の実施例に係る広範囲定出力永久磁石式モータを図11(a)(b)に示す。図11(a)は回転子の軸方向に垂直な断面図、図11(b)はステータ−ロータ間のギャップ磁束密度分布を示すグラフである。   FIGS. 11A and 11B show a wide-range constant output permanent magnet motor according to the sixth embodiment of the present invention. FIG. 11A is a cross-sectional view perpendicular to the axial direction of the rotor, and FIG. 11B is a graph showing a gap magnetic flux density distribution between the stator and the rotor.

図11(a)に示すように、鉄心20に埋め込まれる永久磁石10の外周面は、鉄心外周面までの距離が中央ほど短く、両側に行くに従って長くなる凸型円弧形状としたものである。永久磁石10の外周面については、実施例5と同様である。
本実施例においては、更に、永久磁石10の内側面を径方向に対して垂直な平面としたものである。言い換えると、永久磁石10を“かまぼこ”形状のように磁石の下辺を平らにして、磁石磁極中心の磁石厚を厚くしたものである。
As shown in FIG. 11A, the outer peripheral surface of the permanent magnet 10 embedded in the iron core 20 has a convex arc shape in which the distance to the iron core outer peripheral surface is shorter toward the center and becomes longer toward both sides. The outer peripheral surface of the permanent magnet 10 is the same as that of the fifth embodiment.
In the present embodiment, the inner surface of the permanent magnet 10 is a plane perpendicular to the radial direction. In other words, the permanent magnet 10 has a “kamaboko” shape in which the bottom side of the magnet is flattened and the magnet thickness at the center of the magnet magnetic pole is increased.

そのため、本実施例においては、磁石磁極中心の磁束密度分布が増えるので、実施例5よりも正弦波に近い磁束密度分布となる利点がある。
本実施例においても、その他の構成は、前述した実施例5と同様であり、同様な効果を奏する。
For this reason, in this embodiment, the magnetic flux density distribution at the center of the magnetic pole increases, so there is an advantage that the magnetic flux density distribution is closer to a sine wave than in the fifth embodiment.
Also in the present embodiment, the other configuration is the same as that of the above-described embodiment 5, and the same effect is obtained.

本発明の第7の実施例に係る広範囲定出力永久磁石式モータを図12に示す。図12は、回転子の軸方向に垂直な断面図である。
本実施例は、極毎に永久磁石10を周方向に2分割以上に分割し、分割した永久磁石10a,10b,10c間に積層鋼板のブリッジ52,53を設けて遠心力への耐力を向上させる事で、広い定出力範囲を確保するだけでなく高速回転時の遠心力への耐力をも向上させた構造である。
即ち、中心部にシャフト30の貫通する鉄心20の外周部分に、永久磁石10を周方向に三つに分割して、永久磁石10a,10b,10cとして埋め込むと共にこれら永久磁石10a,10b,10cの間には積層鋼板よりなるブリッジ52,53を介装したものである。
FIG. 12 shows a wide-range constant output permanent magnet motor according to the seventh embodiment of the present invention. FIG. 12 is a cross-sectional view perpendicular to the axial direction of the rotor.
In this embodiment, the permanent magnet 10 is divided into two or more in the circumferential direction for each pole, and laminated steel bridges 52 and 53 are provided between the divided permanent magnets 10a, 10b, and 10c to improve the resistance to centrifugal force. In this way, not only a wide constant output range is ensured, but also the resistance to centrifugal force during high-speed rotation is improved.
That is, the permanent magnet 10 is divided into three in the circumferential direction on the outer peripheral portion of the iron core 20 through which the shaft 30 penetrates in the center, and embedded as permanent magnets 10a, 10b, 10c and the permanent magnets 10a, 10b, 10c. In between, bridges 52 and 53 made of laminated steel plates are interposed.

また、本実施例は、d軸の磁気抵抗を大きく保つため、磁石下部には空孔を設けている。
即ち、永久磁石10a,10b,10cの下部、つまり、半径方向内径側には空孔40a,40b,40cを各々設けて、これら空孔40a,40b,40cがない場合に比較してd軸インダクタンスLdを小さくしたものである。
更に、永久磁石10a,10b,10cの周方向両側にもブリッジ51,54を間に挟んでそれぞれ空孔41を設けたのである。
In this embodiment, a hole is provided in the lower part of the magnet in order to keep the d-axis magnetic resistance large.
That is, holes 40a, 40b, and 40c are provided below the permanent magnets 10a, 10b, and 10c, that is, on the radially inner side, respectively, and the d-axis inductance is compared to the case where these holes 40a, 40b, and 40c are not provided. L d is made smaller.
Furthermore, holes 41 are provided on both sides of the permanent magnets 10a, 10b, and 10c in the circumferential direction with the bridges 51 and 54 interposed therebetween.

上述した実施例1〜6は、極毎の磁石10,11を埋め込む挿入孔が1つのため、回転時に磁石10,11に働く遠心力を支えるのは磁石上部の鋼板のみとなる。従って、広範囲定出力の特性を有しながら、磁石上部鋼板の角部の応力限界が高速回転の性能の制約となってしまう。
これに対し、本実施例は、永久磁石10を周方向に三つの永久磁石10a,10b,10cに分割して遠心力を分散させ、これらの永久磁石10a,10b,10cの間及び両側にブリッジ51,52,53,54を設け、高速回転の際の遠心力に耐える構造としている。
In Examples 1 to 6 described above, since there is one insertion hole for embedding the magnets 10 and 11 for each pole, only the steel plate above the magnets supports the centrifugal force acting on the magnets 10 and 11 during rotation. Therefore, the stress limit at the corner of the upper steel plate of the magnet becomes a restriction on the performance of high-speed rotation while having the characteristics of wide-range constant output.
In contrast, in this embodiment, the permanent magnet 10 is divided into three permanent magnets 10a, 10b, and 10c in the circumferential direction to disperse the centrifugal force, and bridges are formed between these permanent magnets 10a, 10b, and 10c and on both sides. 51, 52, 53, 54 are provided to withstand centrifugal force during high-speed rotation.

本実施例のように、ブリッジ51,52,53,54を設けると、d軸の磁気抵抗が小さくなってしまうが、ここで設けるブリッジは遠心力に耐えるための物であるので細くする事が可能で磁気飽和させて磁束を通りにくくする事ができる。
即ち、磁石間のブリッジ52,53は、磁石間で磁気的に短絡状態にあるので、磁気飽和によって比透磁率は低くなり、d軸の磁束が通りにくくなり、d軸インダクタンスLdの増加を最小限におさえる事ができる。従って、実施例3に近い大きな突極比を保つことが出来るので、広範囲定出力特性となる。
When the bridges 51, 52, 53, and 54 are provided as in this embodiment, the d-axis magnetic resistance is reduced. However, the bridge provided here is a material that can withstand centrifugal force, so that it can be made thinner. Possible to magnetically saturate and make it difficult for magnetic flux to pass.
That is, since the bridges 52 and 53 between the magnets are magnetically short-circuited between the magnets, the magnetic permeability lowers the relative permeability, makes it difficult for the d-axis magnetic flux to pass through, and increases the d-axis inductance L d . Can be kept to a minimum. Accordingly, a large salient pole ratio close to that of the third embodiment can be maintained, and a wide range constant output characteristic is obtained.

本発明は、広い可変速範囲が必要とされる用途に適用される永久磁石式モータとして広く産業上利用可能なものである。   INDUSTRIAL APPLICABILITY The present invention can be widely used industrially as a permanent magnet motor that is applied to applications that require a wide variable speed range.

本発明の第1の実施例に係る広範囲定出力永久磁石式モータの断面図である。1 is a cross-sectional view of a wide-range constant output permanent magnet motor according to a first embodiment of the present invention. 本発明の第2の実施例に係る広範囲定出力永久磁石式モータの断面図である。It is sectional drawing of the wide-range constant output permanent magnet type motor which concerns on the 2nd Example of this invention. 本発明の第3の実施例に係る広範囲定出力永久磁石式モータの断面図である。It is sectional drawing of the wide-range constant output permanent magnet type motor which concerns on the 3rd Example of this invention. 本発明の第4の実施例に係る広範囲定出力永久磁石式モータの断面図である。It is sectional drawing of the wide-range constant output permanent magnet type motor which concerns on the 4th Example of this invention. 図5(a)はステータ−ロータ間のギャップ磁束密度分布を示すグラフ、図5(b)は無負荷誘導電圧を示すグラフ、図5(c)はトルク特性を示すグラフである。FIG. 5A is a graph showing the distribution of the gap magnetic flux density between the stator and the rotor, FIG. 5B is a graph showing the no-load induced voltage, and FIG. 5C is a graph showing the torque characteristics. 図6(a)は鉄心中に磁石をV字型に配置した回転子の断面図、図6(b)はそのステータ−ロータ間のギャップ磁束密度分布を示すグラフである。FIG. 6A is a cross-sectional view of a rotor in which magnets are arranged in a V shape in an iron core, and FIG. 6B is a graph showing a gap magnetic flux density distribution between the stator and the rotor. 図7(a)は本発明の広範囲定出力永久磁石式モータに係る回転子の断面図、図7(b)はそのステータ−ロータ間のギャップ磁束密度分布を示すグラフである。FIG. 7A is a cross-sectional view of a rotor according to the wide-range constant output permanent magnet motor of the present invention, and FIG. 7B is a graph showing a gap magnetic flux density distribution between the stator and the rotor. 実施例1,2を対比してステータ−ロータ間のギャップ磁束密度分布を示すグラフである。It is a graph which shows the gap magnetic flux density distribution between stators and rotors by contrasting Examples 1 and 2. 従来の一般的な永久磁石式モータの断面図である。It is sectional drawing of the conventional common permanent magnet type motor. 図10(a)は本発明の第5の実施例に係る広範囲定出力永久磁石式モータの断面図、図10(b)はそのステータ−ロータ間のギャップ磁束密度分布を示すグラフである。FIG. 10A is a cross-sectional view of a wide-range constant output permanent magnet motor according to a fifth embodiment of the present invention, and FIG. 10B is a graph showing a gap magnetic flux density distribution between the stator and the rotor. 図11(a)は本発明の第6の実施例に係る広範囲定出力永久磁石式モータの断面図、図11(b)はそのステータ−ロータ間のギャップ磁束密度分布を示すグラフである。FIG. 11A is a sectional view of a wide-range constant output permanent magnet motor according to the sixth embodiment of the present invention, and FIG. 11B is a graph showing a gap magnetic flux density distribution between the stator and the rotor. 本発明の第7の実施例に係る広範囲定出力永久磁石式モータの断面図である。It is sectional drawing of the wide-range constant output permanent magnet type motor which concerns on the 7th Example of this invention.

符号の説明Explanation of symbols

10,10a,10b,10c,11 永久磁石
20 鉄心
21 磁石押さえ部
22 ガイド状の凸部
23 弧状支持部材
30 シャフト
40,40a,40b,40c,41,42 空孔
51,52,53,54 ブリッジ
10, 10a, 10b, 10c, 11 Permanent magnet 20 Iron core 21 Magnet holding part 22 Guide-shaped convex part 23 Arc-shaped support member 30 Shaft 40, 40a, 40b, 40c, 41, 42 Hole 51, 52, 53, 54 Bridge

Claims (4)

鉄心中に円弧形状の外周面を有する永久磁石を埋め込んだ永久磁石式モータにおいて、前記永久磁石の下部に空孔を設けて、該空孔がない場合に比較してd軸インダクタンスLdを小さくしたことを特徴とする広範囲定出力永久磁石式モータ。 In a permanent magnet motor in which a permanent magnet having an arc-shaped outer peripheral surface is embedded in an iron core, a hole is provided in the lower portion of the permanent magnet, and the d-axis inductance L d is reduced as compared with the case where there is no hole. Wide-range constant output permanent magnet motor characterized by 請求項1において前記空孔は、該空孔がない場合に比較してq軸インダクタンスLqを維持するようにq軸磁路を妨げない形状であることを特徴とする広範囲定出力永久磁石式モータ。 The holes in claim 1, a wide range constant output permanent magnet, characterized in that as compared to when there is no spatial hole a shape that does not interfere with the q-axis magnetic path so as to maintain the q-axis inductance L q motor. 請求項1又は2において前記永久磁石の外周面は、鉄心外周面までの距離が一定となる円弧形状又は鉄心外周面までの距離が中央ほど短く両側に行くに従って長くなる凸型円弧形状としたことを特徴とする広範囲定出力永久磁石式モータ。 3. The outer peripheral surface of the permanent magnet according to claim 1, wherein the outer peripheral surface of the permanent magnet has an arc shape in which the distance to the outer peripheral surface of the iron core is constant or a convex arc shape in which the distance to the outer peripheral surface of the iron core becomes shorter as it goes to the both sides Wide-range constant output permanent magnet motor characterized by 請求項1,2又は3において前記永久磁石の内側面は、磁極の中心を通る径方向に対して垂直な平面であることを特徴とする広範囲定出力永久磁石式モータ。 4. A wide-range constant output permanent magnet motor according to claim 1, wherein the inner surface of the permanent magnet is a plane perpendicular to the radial direction passing through the center of the magnetic pole.
JP2008179021A 2007-07-26 2008-07-09 Permanent-magnet electric motor with constant output in wide range Pending JP2009050148A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008179021A JP2009050148A (en) 2007-07-26 2008-07-09 Permanent-magnet electric motor with constant output in wide range
PCT/JP2008/063271 WO2009014172A1 (en) 2007-07-26 2008-07-24 Wide range constant output permanent magnet motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007194014 2007-07-26
JP2008179021A JP2009050148A (en) 2007-07-26 2008-07-09 Permanent-magnet electric motor with constant output in wide range

Publications (1)

Publication Number Publication Date
JP2009050148A true JP2009050148A (en) 2009-03-05

Family

ID=40501830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179021A Pending JP2009050148A (en) 2007-07-26 2008-07-09 Permanent-magnet electric motor with constant output in wide range

Country Status (1)

Country Link
JP (1) JP2009050148A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182595B1 (en) 2011-03-17 2012-09-18 (주) 코모텍 Interior permanent magnet motor
JP2012217278A (en) * 2011-04-01 2012-11-08 Mitsubishi Electric Corp Permanent magnet type rotary electric machine and manufacturing method therefor
CN102868245A (en) * 2011-07-08 2013-01-09 株式会社安川电机 Rotary electric machine
JP2013051760A (en) * 2011-08-30 2013-03-14 Toshiba Corp Permanent magnet type rotating electrical machine
JP2013090556A (en) * 2011-10-21 2013-05-13 Hokkaido Univ Ipm bearingless motor
CN103633760A (en) * 2012-08-23 2014-03-12 山洋电气株式会社 Permanent magnet type motor and method for manufacturing permanent magnet type motor
CN106165259A (en) * 2014-04-08 2016-11-23 三菱电机株式会社 Permanent magnet submerged type electric rotating machine
CN111384801A (en) * 2018-12-27 2020-07-07 本田技研工业株式会社 Rotor of rotating electric machine
CN113541355A (en) * 2021-06-04 2021-10-22 安徽华驰动能科技有限公司 Square wave rotor designed based on outer rotor core eccentric structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304737A (en) * 1992-02-26 1993-11-16 Toshiba Corp Permanent magnet type motor
JPH11285184A (en) * 1998-03-27 1999-10-15 Fujitsu General Ltd Permanent-magnet motor
JP2002345188A (en) * 2001-05-14 2002-11-29 Nissan Motor Co Ltd Dynamo-electric rotating machine
JP2003061283A (en) * 2001-08-17 2003-02-28 Mitsubishi Electric Corp Rotor and stator of dynamo-electric machine, and motor, compressor, and freezing cycle, and method of manufacturing rotor of dynamo-electric machine
JP2004357489A (en) * 2003-05-28 2004-12-16 Akira Chiba Unidirectionally magnetized permanent magnet motor
JP2005006484A (en) * 2003-05-21 2005-01-06 Mitsubishi Heavy Ind Ltd Ipm rotary electric machine
JP2006187189A (en) * 2004-11-30 2006-07-13 Hitachi Ltd Permanent magnet type rotary electric machine and apparatus
JP2006271057A (en) * 2005-03-23 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp Rotor of permanent magnet synchronous motor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304737A (en) * 1992-02-26 1993-11-16 Toshiba Corp Permanent magnet type motor
JPH11285184A (en) * 1998-03-27 1999-10-15 Fujitsu General Ltd Permanent-magnet motor
JP2002345188A (en) * 2001-05-14 2002-11-29 Nissan Motor Co Ltd Dynamo-electric rotating machine
JP2003061283A (en) * 2001-08-17 2003-02-28 Mitsubishi Electric Corp Rotor and stator of dynamo-electric machine, and motor, compressor, and freezing cycle, and method of manufacturing rotor of dynamo-electric machine
JP2005006484A (en) * 2003-05-21 2005-01-06 Mitsubishi Heavy Ind Ltd Ipm rotary electric machine
JP2004357489A (en) * 2003-05-28 2004-12-16 Akira Chiba Unidirectionally magnetized permanent magnet motor
JP2006187189A (en) * 2004-11-30 2006-07-13 Hitachi Ltd Permanent magnet type rotary electric machine and apparatus
JP2006271057A (en) * 2005-03-23 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp Rotor of permanent magnet synchronous motor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182595B1 (en) 2011-03-17 2012-09-18 (주) 코모텍 Interior permanent magnet motor
JP2012217278A (en) * 2011-04-01 2012-11-08 Mitsubishi Electric Corp Permanent magnet type rotary electric machine and manufacturing method therefor
US9281723B2 (en) 2011-07-08 2016-03-08 Kabushiki Kaisha Yaskawa Denki Rotary electric machine with tapered permanent magnet
CN102868245A (en) * 2011-07-08 2013-01-09 株式会社安川电机 Rotary electric machine
JP2013021776A (en) * 2011-07-08 2013-01-31 Yaskawa Electric Corp Rotary electric machine
JP2013051760A (en) * 2011-08-30 2013-03-14 Toshiba Corp Permanent magnet type rotating electrical machine
JP2013090556A (en) * 2011-10-21 2013-05-13 Hokkaido Univ Ipm bearingless motor
CN103633760A (en) * 2012-08-23 2014-03-12 山洋电气株式会社 Permanent magnet type motor and method for manufacturing permanent magnet type motor
CN106165259A (en) * 2014-04-08 2016-11-23 三菱电机株式会社 Permanent magnet submerged type electric rotating machine
CN106165259B (en) * 2014-04-08 2018-07-03 三菱电机株式会社 Permanent magnet submerged type electric rotating machine
CN111384801A (en) * 2018-12-27 2020-07-07 本田技研工业株式会社 Rotor of rotating electric machine
CN111384801B (en) * 2018-12-27 2022-06-10 本田技研工业株式会社 Rotor of rotating electric machine
CN113541355A (en) * 2021-06-04 2021-10-22 安徽华驰动能科技有限公司 Square wave rotor designed based on outer rotor core eccentric structure

Similar Documents

Publication Publication Date Title
JP6508168B2 (en) Electric rotating machine
US7417346B2 (en) Permanent magnet rotating electric machine
JP2009050148A (en) Permanent-magnet electric motor with constant output in wide range
JP5259927B2 (en) Permanent magnet rotating electric machine
JP5813254B2 (en) Permanent magnet rotating electric machine
JP2008206308A (en) Permanent-magnet rotating electric machine
JP5045067B2 (en) Forward salient pole motor applied to bearingless motor
JP2006223052A (en) Permanent-magnet motor
JP2011050216A (en) Motor
JP2006304546A (en) Permanent magnet reluctance type rotary electric machine
JP2007060755A (en) Rotor structure for dynamo-electric machine
WO2015097767A1 (en) Permanent magnet type rotating electrical machine
JP2010178471A (en) Rotating electrical machine
JP4491260B2 (en) Rotor for bearingless motor and bearingless motor
JP4580683B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP6782000B2 (en) motor
JPH1189133A (en) Permanent magnet type motor
JP2012139068A (en) Rotor for embedded magnet type motor
JP2000316241A (en) Motor with embedded permanent magnet
JP6760014B2 (en) Rotating electric machine
JP2008283806A (en) Buried-magnet motor
JP2007097290A (en) Permanent magnet type reluctance dynamo-electric machine
JP2004135375A (en) Rotor structure of coaxial motor
JP2003088019A (en) Permanent-magnet motor
JPH11136892A (en) Permanent magnet motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701