JP2009049343A - Thermoelectric conversion material composed of composite oxide - Google Patents

Thermoelectric conversion material composed of composite oxide Download PDF

Info

Publication number
JP2009049343A
JP2009049343A JP2007216804A JP2007216804A JP2009049343A JP 2009049343 A JP2009049343 A JP 2009049343A JP 2007216804 A JP2007216804 A JP 2007216804A JP 2007216804 A JP2007216804 A JP 2007216804A JP 2009049343 A JP2009049343 A JP 2009049343A
Authority
JP
Japan
Prior art keywords
composite oxide
thermoelectric conversion
conversion material
conductivity
material composed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007216804A
Other languages
Japanese (ja)
Inventor
Kota Iwasaki
航太 岩崎
Tsuneo Matsui
恒雄 松井
Akihisa Yamamoto
晃久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP2007216804A priority Critical patent/JP2009049343A/en
Publication of JP2009049343A publication Critical patent/JP2009049343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new thermoelectric conversion material capable of satisfying conditions of high thermoelectric conversion efficiency, high heat resistance, high chemical durability, low toxicity, safety, and inexpensiveness. <P>SOLUTION: A composite oxide expressed by Ba<SB>3</SB>Co<SB>2</SB>O<SB>6</SB>(CO<SB>3</SB>)<SB>x</SB>shows metallic conductivity at a temperature range of 300-1,100 K, has thermoelectromotive force of 100 μVK<SP>-1</SP>or more, and includes a CO<SB>3</SB>group in crystal in pseudo one-dimensional structure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はp型熱電変換材料として優れた特性を有する複合酸化物に関するものである。   The present invention relates to a composite oxide having excellent properties as a p-type thermoelectric conversion material.

電気エネルギーや自動車の動力を得る手段として、我々は大量の化石燃料を消費している。発電やエンジン作動の過程においては、化石燃料のエネルギーの半分以上は未利用のまま廃熱として放出され、また、利用したエネルギーの大部分も最終的に熱として放出され大気中へ捨てられている。   We consume large amounts of fossil fuels as a means of obtaining electrical energy and vehicle power. In the process of power generation and engine operation, more than half of the energy of fossil fuels is released as waste heat without being used, and most of the energy used is finally released as heat and discarded into the atmosphere. .

資源の枯渇化や地球温暖化が問題となっている現代において、エネルギーの有効利用は持続可能な社会を構築する上での大きな課題であり、そのための有効な手段の一つが廃熱エネルギーの再利用である。熱電発電は廃熱のような希薄な熱エネルギーから直接電気エネルギーを得るための実現可能な唯一の手段であり、地球環境保護の観点からも大きな注目を集めている。ここで、熱電発電とは、材料の両端に温度差を与えることでゼーベック効果を利用して電力を得るエネルギー変換方法のことであり、
1.発電による排出物がない
2.機械的な稼働部がなくメンテナンスフリーである
3.発電時に振動・騒音が発生しない
4.形状の制約がなくシステムの小型化も可能
などの特徴を合わせ持つ。
In the present age when resource depletion and global warming are a problem, the effective use of energy is a major issue in building a sustainable society, and one of the effective means for this is the reuse of waste heat energy. It is use. Thermoelectric power generation is the only feasible means for directly obtaining electric energy from dilute thermal energy such as waste heat, and has attracted much attention from the viewpoint of protecting the global environment. Here, thermoelectric power generation is an energy conversion method that obtains electric power using the Seebeck effect by giving a temperature difference to both ends of a material.
1. No emissions from power generation 2. 2. No mechanical working part and maintenance free. 3. Vibration and noise do not occur during power generation. It has all the features that can reduce the size of the system without restrictions on the shape.

現行の熱電材料はBi−Te系に代表される金属間化合物が主流であるが、これらの多くは、
1.人体や環境への負荷が大きい重金属が主成分
2.大気中高温雰囲気下で容易に酸化・分解する
3.希少金属であり高価
等のデメリットを有している。このため、廃熱を利用する熱電発電は特殊用途を除いて未だ実用化されるまでには至っておらず、高効率、高耐熱性、高化学的耐久性、低毒性、安全、安価、の条件を満たす材料の開発が熱望されている。
Current thermoelectric materials are mainly intermetallic compounds represented by Bi-Te, but many of these are
1. 1. Heavy metals that have a heavy impact on the human body and the environment are the main components. 2. Oxidation and decomposition easily under high temperature atmosphere. It is a rare metal and has disadvantages such as high cost. For this reason, thermoelectric power generation that uses waste heat has not yet been put into practical use except for special applications. The development of materials that satisfy these requirements is eagerly desired.

近年、熱電特性を示す材料として擬一次元構造を有するCaCo(非特許文献1)及びSrCo15(非特許文献2)が報告されたが、その性能は実用の観点からは依然低く、実用材として使用するにはさらなる性能の向上が必要である。CaCoの問題点は低い導電率にある。一般的に、導電率向上の手段として元素置換によるキャリア濃度の増加が有効とされる。しかしながら、CaCoでは他元素の置換量を増加させることが難しく、その結果、キャリア濃度を自由に制御することが困難となっている。 Recently, Ca 3 Co 2 O 6 (Non-Patent Document 1) and Sr 6 Co 5 O 15 (Non-Patent Document 2) having a quasi-one-dimensional structure have been reported as materials exhibiting thermoelectric properties. From the viewpoint, it is still low, and further improvement in performance is necessary to use it as a practical material. The problem with Ca 3 Co 2 O 6 is its low conductivity. Generally, an increase in carrier concentration by element substitution is effective as a means for improving conductivity. However, in Ca 3 Co 2 O 6 , it is difficult to increase the substitution amount of other elements, and as a result, it is difficult to freely control the carrier concentration.

Mikamiら、Journal of Applied Physics, vol.94, pp.6579−6582 (2003)Mikami et al., Journal of Applied Physics, vol. 94, pp. 6579-6582 (2003) Iwasakiら、Japanese Journal of Applied Physics, vol.46, pp.256−260 (2007)Iwasaki et al., Japan Journal of Applied Physics, vol. 46, pp. 256-260 (2007)

以上に述べたように、熱電変換材料はエネルギー問題解決の手段の一つとして期待されているものの、熱電発電を一般社会で普及させるには、高い熱電変換効率、耐熱性、化学的耐久性、安全性を有した材料を大量に供給することが必要である。   As mentioned above, although thermoelectric conversion materials are expected as one of the means for solving energy problems, in order to spread thermoelectric power generation in the general society, high thermoelectric conversion efficiency, heat resistance, chemical durability, It is necessary to supply a large amount of material having safety.

本発明の主な目的は、高効率、高耐熱性、高化学的耐久性、低毒性、安全、安価、の条件を満たす新規熱電変換材料を提供することである。   The main object of the present invention is to provide a novel thermoelectric conversion material that satisfies the conditions of high efficiency, high heat resistance, high chemical durability, low toxicity, safety and low cost.

本発明では、上記目的を達成するために、擬一次元構造を維持させつつキャリア濃度に直結するCoイオンの原子価を制御した材料の開発を進めてきた。その過程で、BaとCoを含み結晶内にCO基を有する複合酸化物が、1100K以下の広い温度域において高熱起電力を有し、高導電率を示し、高い熱電変換効率を有することを見出した。 In the present invention, in order to achieve the above-mentioned object, development of a material in which the valence of Co ions directly controlling the carrier concentration is controlled while maintaining the quasi-one-dimensional structure has been promoted. In the process, the composite oxide containing Ba and Co and having a CO 3 group in the crystal has high thermoelectromotive force in a wide temperature range of 1100 K or less, high conductivity, and high thermoelectric conversion efficiency. I found it.

本発明では、下記の複合酸化物及びp型熱電変換材料を提供するものである。
1. 一般式:BaCo(CO(式中xは0≦x≦1である)で表される組成を有する複合酸化物。
2. 上記項1に記載の複合酸化物からなるp型熱電変換材料。
In the present invention, the following composite oxide and p-type thermoelectric conversion material are provided.
1. A composite oxide having a composition represented by the general formula: Ba 3 Co 2 O 6 (CO 3 ) x (where x is 0 ≦ x ≦ 1).
2. A p-type thermoelectric conversion material comprising the composite oxide according to Item 1.

上記複合酸化物の中で、BaCo(CO0.7が300−1100Kの温度域でCaCo及びSrCo15を母体とした材料をはるかに凌ぐ熱電特性を発現することを見出した。 Among the above complex oxides, a material based on Ca 3 Co 2 O 6 and Sr 6 Co 5 O 15 in the temperature range of Ba 3 Co 2 O 6 (CO 3 ) 0.7 of 300 to 1100 K is much more It was found that the thermoelectric properties surpassed.

本発明の複合酸化物は一般式:BaCo(CO(式中xは0≦x≦1である)で表されるものである。CO基を含むことでキャリア濃度に直結するCoの原子価を制御することができ、高導電率(σ)を示すことが可能となる。 The composite oxide of the present invention is represented by the general formula: Ba 3 Co 2 O 6 (CO 3 ) x (where x is 0 ≦ x ≦ 1). By including the CO 3 group, the Co valence directly linked to the carrier concentration can be controlled, and a high conductivity (σ) can be exhibited.

上記一般式で表される複合酸化物は正の熱起電力(ゼーベック係数;S)を示し、正孔が支配的なキャリアであるp型熱電変換材料としての特性を示すものである。   The composite oxide represented by the above general formula exhibits a positive thermoelectromotive force (Seebeck coefficient; S), and exhibits characteristics as a p-type thermoelectric conversion material in which holes are dominant carriers.

該複合酸化物は擬一次元構造を有する。その構造を模式的に図1に示す。BaCo(COで表される複合酸化物においては、CoO八面体(6個の酸素を頂点とした八面体の中心付近にCoが位置するユニット)が面共有でc軸方向に配列し、各Co−O鎖の間にBaが位置する。また、CO基はBaで囲まれたサイトに位置する。 The composite oxide has a quasi-one-dimensional structure. The structure is schematically shown in FIG. In the composite oxide represented by Ba 3 Co 2 O 6 (CO 3 ) x , the CoO 8 octahedron (the unit in which Co is located near the center of the octahedron with six oxygens as vertices) is shared. Ba is located between the Co-O chains arranged in the c-axis direction. Further, the CO 3 group is located at a site surrounded by Ba.

単結晶の育成をフラックス法により行った。KCO、BaClをフラックスとして用い、これにCoとBaCOを加え、アルミナ坩堝を反応容器とした。大気中において1273Kで2時間加熱後、4K/hの速度で873Kまで冷却し、図2に示すような黒色、棒状の単結晶を得た。KCO、またはBaClフラックス単独では該複合酸化物の単結晶は得られず、KCOとBaClを組み合わせたフラックスを用いることで12×0.5×0.5mm程度の単結晶が効率的に育成できる。 Single crystals were grown by the flux method. K 2 CO 3 and BaCl 2 were used as fluxes, Co 3 O 4 and BaCO 3 were added thereto, and an alumina crucible was used as a reaction vessel. After heating in air at 1273 K for 2 hours, it was cooled to 873 K at a rate of 4 K / h to obtain a black, rod-shaped single crystal as shown in FIG. A single crystal of the composite oxide cannot be obtained with K 2 CO 3 or BaCl 2 flux alone. By using a flux in which K 2 CO 3 and BaCl 2 are combined, it is about 12 × 0.5 × 0.5 mm 3 . Single crystals can be grown efficiently.

図3にXRDによる回折強度図を示す。単結晶を粉末状にした試料のXRDパターンは六方晶系で指数付けでき(a=0.96782(9)nm、c=0.95157(9)nm)、また、BaCo(COの構造を用いて説明することが可能であった。また、単結晶の側面へX線を入射させたXRDパターンにおいては、(h00)、(hh0)面のピークのみが現れ、結晶がCo−O鎖(c軸)方向に成長していることが示された。赤外吸収スペクトルからは1450cm−1付近に吸収ピークが確認され、Co基の存在が示された。組成分析より求めたBa:Co:O比は3:2:8.1であり、試料組成はBaCo(CO0.7と考えられる。xの値は合成条件により制御できるものと推察され、Co量を調整することでキャリア濃度の制御が可能であると考えられる。 FIG. 3 shows a diffraction intensity diagram by XRD. The XRD pattern of a single crystal powder sample can be indexed in a hexagonal system (a = 0.96782 (9) nm, c = 0.95157 (9) nm), and Ba 3 Co 2 O 6 ( It was possible to explain using the structure of CO 3 ) x . Further, in the XRD pattern in which X-rays are incident on the side surface of the single crystal, only the (h00) and (hh0) plane peaks appear, and the crystal grows in the Co-O chain (c-axis) direction. Indicated. From the infrared absorption spectrum, an absorption peak was confirmed around 1450 cm −1 , indicating the presence of a Co 3 group. The Ba: Co: O ratio obtained from the composition analysis is 3: 2: 8.1, and the sample composition is considered to be Ba 3 Co 2 O 6 (CO 3 ) 0.7 . It is presumed that the value of x can be controlled by the synthesis conditions, and it is considered that the carrier concentration can be controlled by adjusting the amount of Co 3 .

BaCo(CO0.7のCo−O鎖方向(c軸方向)の導電率(σ)の温度依存性を図4に示す。σの挙動は金属的であった。BaCo(CO0.7の導電率(σ)は773Kまでの温度域では繰り返しの測定においても良好な再現性を有する。また、大気中1073Kで加熱処理した場合では、未処理の場合に比べ導電率の減少が示されたが、減少はある程度進んだ段階で止まり、その後の繰り返しの測定においては良好な再現性が得られた。 FIG. 4 shows the temperature dependence of the conductivity (σ) in the Co—O chain direction (c-axis direction) of Ba 3 Co 2 O 6 (CO 3 ) 0.7 . The behavior of σ was metallic. The conductivity (σ) of Ba 3 Co 2 O 6 (CO 3 ) 0.7 has good reproducibility even in repeated measurements in the temperature range up to 773K. In addition, when the heat treatment was performed at 1073K in the atmosphere, the conductivity decreased as compared with the case where it was not treated, but the decrease stopped at a certain stage, and good reproducibility was obtained in subsequent repeated measurements. It was.

導電率(σ)の減少についてはCo量や構造のわずかな変化に起因するものと考えられるが、熱重量分析や粉末X線回折からは、加熱処理前後で試料の明確な変化は示されなかった。擬一次元構造を有するCo系酸化物としては、これまでにいくつかの物質において導電率が報告されているが、BaCo(CO0.7の導電率はいずれの物質よりも大きな値を示した。図4には比較としてCaCo及びSrCo15単結晶のc軸方向の導電率を掲載したが、特に室温付近での導電率の改善が著しいことがわかる。 The decrease in conductivity (σ) is thought to be due to slight changes in the amount of Co 3 and the structure, but thermogravimetric analysis and powder X-ray diffraction show clear changes in the sample before and after heat treatment. There wasn't. As Co-based oxides having a quasi-one-dimensional structure, conductivity has been reported in several materials so far, but the conductivity of Ba 3 Co 2 O 6 (CO 3 ) 0.7 is any material. It showed a larger value. FIG. 4 shows the conductivity in the c-axis direction of Ca 3 Co 2 O 6 and Sr 6 Co 5 O 15 single crystals as a comparison, and it can be seen that the improvement in conductivity is particularly remarkable near room temperature.

また、擬一次元構造を有するCo系酸化物の導電率に関してはこれまでに半導体的な温度依存性のみが報告されているが、BaCo(CO0.7はこの材料群の中で金属的な挙動を示す初めての化合物である。 In addition, regarding the conductivity of Co-based oxides having a quasi-one-dimensional structure, only semiconductor temperature dependence has been reported so far, but Ba 3 Co 2 O 6 (CO 3 ) 0.7 is used for this material. It is the first compound that shows metallic behavior in the group.

BaCo(CO0.7のc軸方向のゼーベック係数(S)の温度依存性を図5に示す。Sの値は測定温度域において正の値を示し、ホールが支配的なキャリアであることが明らかとなった。また、300−1100Kの温度域において100 μV K−1以上の高い値を示した。 FIG. 5 shows the temperature dependence of the Seebeck coefficient (S) in the c-axis direction of Ba 3 Co 2 O 6 (CO 3 ) 0.7 . The value of S showed a positive value in the measured temperature range, and it became clear that holes were dominant carriers. Moreover, the high value of 100 microvolt K- 1 or more was shown in the 300-1100K temperature range.

熱電特性の指標となる出力因子はσSで表される。BaCo(CO0.7のc軸方向の出力因子(σS)の温度依存性を図6に示す。σSは300−1100Kの温度域においてCaCoを上回る値を示し、最大で1.05×10−3Wm−1−2であった。また、加熱処理後の出力因子(σS)の最大値は9×10−4Wm−1−2であった。実用材としての出力因子の目安は1×10−3Wm−1−2であることから、BaCo(CO0.7は熱電材料として非常に有望と考えられる。 An output factor serving as an index of thermoelectric characteristics is represented by σS 2 . FIG. 6 shows the temperature dependency of the output factor (σS 2 ) in the c-axis direction of Ba 3 Co 2 O 6 (CO 3 ) 0.7 . σS 2 showed a value exceeding Ca 3 Co 2 O 6 in the temperature range of 300-1100 K, and was 1.05 × 10 −3 Wm −1 K −2 at the maximum. Moreover, the maximum value of the output factor (σS 2 ) after the heat treatment was 9 × 10 −4 Wm −1 K −2 . Since the standard of the output factor as a practical material is 1 × 10 −3 Wm −1 K −2 , Ba 3 Co 2 O 6 (CO 3 ) 0.7 is considered very promising as a thermoelectric material.

BaCo(COの結晶構造の模式図。Schematic diagram of the crystal structure of Ba 3 Co 2 O 6 (CO 3) x. BaCo(CO0.7の単結晶の形状を示す図面代用写真。Drawing-substitute photograph showing a Ba 3 Co 2 O 6 (CO 3) 0.7 of monocrystalline shape. BaCo(CO0.7のXRDによる回折強度図。 Ba 3 Co 2 O 6 (CO 3) diffraction intensity diagram according to XRD of 0.7. BaCo(CO0.7のc軸方向に測定した導電率(σ)の温度依存性を示すグラフ。Graph showing the temperature dependence of Ba 3 Co 2 O 6 (CO 3) 0.7 Conductivity measured in the c-axis direction (sigma). BaCo(CO0.7のc軸方向に測定したゼーベック係数(S)の温度依存性を示すグラフ。Graph showing the temperature dependence of Ba 3 Co 2 O 6 (CO 3) 0.7 Seebeck coefficient measured in the c-axis direction (S). BaCo(CO0.7の熱電特性を表す出力因子(σS)の温度依存性を示すグラフ。Graph showing the temperature dependency of the output factor (.sigma.s 2) representing the thermoelectric properties of Ba 3 Co 2 O 6 (CO 3) 0.7.

Claims (2)

一般式:BaCo(CO(式中xは0≦x≦1である)で表される組成を有する複合酸化物。 A composite oxide having a composition represented by the general formula: Ba 3 Co 2 O 6 (CO 3 ) x (where x is 0 ≦ x ≦ 1). 請求項1に記載の複合酸化物からなるp型熱電変換材料。 A p-type thermoelectric conversion material comprising the composite oxide according to claim 1.
JP2007216804A 2007-08-23 2007-08-23 Thermoelectric conversion material composed of composite oxide Pending JP2009049343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007216804A JP2009049343A (en) 2007-08-23 2007-08-23 Thermoelectric conversion material composed of composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007216804A JP2009049343A (en) 2007-08-23 2007-08-23 Thermoelectric conversion material composed of composite oxide

Publications (1)

Publication Number Publication Date
JP2009049343A true JP2009049343A (en) 2009-03-05

Family

ID=40501262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007216804A Pending JP2009049343A (en) 2007-08-23 2007-08-23 Thermoelectric conversion material composed of composite oxide

Country Status (1)

Country Link
JP (1) JP2009049343A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356476A (en) * 2003-05-30 2004-12-16 Japan Science & Technology Agency Composite oxide with outstanding thermoelectric transformation performance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356476A (en) * 2003-05-30 2004-12-16 Japan Science & Technology Agency Composite oxide with outstanding thermoelectric transformation performance

Similar Documents

Publication Publication Date Title
Liu et al. Carrier concentration optimization for thermoelectric performance enhancement in n-type Bi2O2Se
Gao et al. Effect of Sb doping on the thermoelectric properties of Mg 2 Si 0.7 Sn 0.3 solid solutions
Mohanraman et al. Enhanced thermoelectric performance in Bi-doped p-type AgSbTe2 compounds
JP6256895B2 (en) New compound semiconductors and their utilization
Funahashi et al. Thermoelectric materials for middle and high temperature ranges
Park et al. Thermoelectric properties of Ca 0.8 Dy 0.2 MnO 3 synthesized by solution combustion process
JP6315357B2 (en) Thermoelectric material manufacturing method and thermoelectric element
JP2007005544A (en) n-TYPE THERMOELECTRIC CONVERSION MATERIAL
JP2008159680A (en) Yb-ae-fe-co-sb (ae:ca, sr, ba, cu, ag, au)-based thermoelectric conversion material
JP4320422B2 (en) Composite oxide with excellent thermoelectric conversion performance
JP5201691B2 (en) Oxygen-containing intermetallic compound thermoelectric conversion material and thermoelectric conversion element to thermoelectric conversion module
JP5051412B2 (en) Rare earth polyboride-based high-temperature acid-resistant n-type thermoelectric material doped with carbon and nitrogen and method for producing the same
JP2009049343A (en) Thermoelectric conversion material composed of composite oxide
JP4164652B2 (en) Thermoelectric conversion material and method for producing the same
KR101151696B1 (en) NaCo,Ag2O4-BASED THERMOELECTRIC MATERIALS AND PREPARING METHOD OF THE SAME USING SOLUTION COMBUSTION
JP4840755B2 (en) Rare earth polyboride-based thermoelectric conversion material doped with metal low boride and its production method
JP2004186572A (en) Thermoelectric transduction material and thermoelectric transducer
JPWO2006082926A1 (en) Thallium compound thermoelectric conversion material and method for producing the same
Zhang et al. Thermoelectric properties of CNTs/Mn0. 7Zn0. 3Fe2O4 composite fabricated by spark plasma sintering
JP4143724B2 (en) Method for producing complex oxide single crystal
JP2014501036A (en) Tin oxide-based thermoelectric materials
Bayata Enhancement of high temperature thermoelectric performance of cobaltite based materials for automotive exhaust thermoelectric generators
US9444025B2 (en) Method of manufacturing thermoelectric material and thermoelectric material prepared by the method and thermoelectric generator
JP4193940B2 (en) Composite oxide with excellent thermoelectric conversion performance
Bui et al. Synthesis of Cu2ZnSnS4 by mechanical alloying method for thermoelectric application

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828