JP2009048960A - Electrode cleaning treatment method - Google Patents

Electrode cleaning treatment method Download PDF

Info

Publication number
JP2009048960A
JP2009048960A JP2007216639A JP2007216639A JP2009048960A JP 2009048960 A JP2009048960 A JP 2009048960A JP 2007216639 A JP2007216639 A JP 2007216639A JP 2007216639 A JP2007216639 A JP 2007216639A JP 2009048960 A JP2009048960 A JP 2009048960A
Authority
JP
Japan
Prior art keywords
electrode
organic
substrate
treatment method
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007216639A
Other languages
Japanese (ja)
Inventor
Shinichi Nakamura
真一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007216639A priority Critical patent/JP2009048960A/en
Publication of JP2009048960A publication Critical patent/JP2009048960A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode cleaning treatment method capable of efficiently purifying the surface of the electrode in an organic electronic device, especially in an organic light-emitting element. <P>SOLUTION: This is the electrode cleaning treatment method used for the organic electronic device. When an organic material on the surface of the electrode is removed, a process of removing atoms cut from the surface of the electrode is carried out after a process of cutting bonding between the atoms constituting the organic material is carried out. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は有機発光素子、有機トランジスタ、有機太陽電池等の有機エレクトロニクスデバイスに用いられる電極の洗浄処理方法に関するものである。   The present invention relates to a method for cleaning electrodes used in organic electronic devices such as organic light-emitting elements, organic transistors, and organic solar cells.

近年、シリコンデバイスに代わる有機材料を用いた有機エレクトロニクスデバイスの開発が急速に進んでいる。有機エレクトロニクスデバイスを実現させるためには電極と有機膜との界面を制御することが重要であり、その為には清浄な電極表面を得ることが必須である。   In recent years, organic electronics devices using organic materials instead of silicon devices have been rapidly developed. In order to realize an organic electronic device, it is important to control the interface between the electrode and the organic film. For this purpose, it is essential to obtain a clean electrode surface.

有機発光素子においては特許文献1に示すプラズマ洗浄またはUVオゾン洗浄等が通常利用され、それらを組み合わせた洗浄手法が特許文献2に開示されている。   For organic light-emitting devices, plasma cleaning or UV ozone cleaning shown in Patent Document 1 is usually used, and a cleaning technique combining them is disclosed in Patent Document 2.

特開平7−142168号公報JP-A-7-142168 特開2005−158393号公報JP 2005-158393 A

しかしながら、洗浄する基板上に電極と有機化合物とが共存する場合には清浄な電極表面を得ることが難しい。これは有機化合物の分解物が汚染源となり清浄化した電極表面を再汚染するからであると推測される。   However, when the electrode and the organic compound coexist on the substrate to be cleaned, it is difficult to obtain a clean electrode surface. This is presumed to be because the decomposed product of the organic compound becomes a contamination source and recontaminates the cleaned electrode surface.

例えば有機発光素子の場合、電極間のショート等を回避する為に素子分離膜としてポリイミド等の有機化合物が電極間に設置されている。公知のプラズマ洗浄またはUVオゾン洗浄においては、有機物を分解する工程と除去する工程とが同時に進行する為に前記の理由から電極の表面を効率よく清浄化することは難しい。その為に十分な素子寿命が得られていないのが現状である。   For example, in the case of an organic light-emitting element, an organic compound such as polyimide is provided between the electrodes as an element separation film in order to avoid a short circuit between the electrodes. In the known plasma cleaning or UV ozone cleaning, it is difficult to efficiently clean the surface of the electrode for the above reasons because the step of decomposing and removing the organic matter proceed simultaneously. For this reason, a sufficient element lifetime is not obtained at present.

本発明は、上記従来の技術の有する未解決の課題に鑑みてなされたものであり、有機エレクトロニクスデバイス、特に有機発光素子において電極の表面を効率よく清浄化することができる電極洗浄処理方法を提供することを目的とするものである。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and provides an electrode cleaning treatment method capable of efficiently cleaning the surface of an electrode in an organic electronic device, particularly an organic light emitting device. It is intended to do.

上記課題を解決するための手段として、本発明は、
有機エレクトロニクスデバイスに用いられる電極の洗浄処理方法であって、
電極表面上の有機物を除去する際に、前記有機物を構成する原子間の結合を切断する工程を行った後に、切断された原子を電極表面上から除去する工程を行うことを特徴とする。
As means for solving the above problems, the present invention provides:
A method for cleaning an electrode used in an organic electronic device,
When removing the organic substance on the electrode surface, a step of cutting the bonds between atoms constituting the organic substance is performed, and then a step of removing the cut atoms from the electrode surface is performed.

本発明により電極表面を効果的に清浄化することが可能となる。これによって有機エレクトロニクスデバイスの性能向上、特に有機発光素子の寿命改善に貢献できる。   According to the present invention, the electrode surface can be effectively cleaned. This can contribute to improving the performance of the organic electronic device, particularly improving the lifetime of the organic light emitting device.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1(a)は本発明の電極洗浄処理方法により処理される基板の断面模式図の一例を示したものである。基板11上に電極12と、素子分離膜13として有機化合物とが配置されている。電極12の表面には有機汚染物14が存在している。有機汚染の原因として環境、人間、装置、部材からくる場合と、素子分離膜13のパターン形成後の残渣とがある。   FIG. 1 (a) shows an example of a schematic cross-sectional view of a substrate processed by the electrode cleaning method of the present invention. An electrode 12 and an organic compound as an element isolation film 13 are disposed on the substrate 11. Organic contaminants 14 are present on the surface of the electrode 12. The causes of organic contamination include the case of coming from the environment, people, devices, and members, and the residue after pattern formation of the element isolation film 13.

先ず、有機物を構成する原子間の結合を切断する工程を行う。すなわち、有機汚染物14と素子分離膜13の表面に存在する原子との結合を切断する。   First, the process of cutting | disconnecting the coupling | bonding between the atoms which comprise organic substance is performed. That is, the bond between the organic contaminant 14 and the atoms present on the surface of the element isolation film 13 is cut.

有機物を構成する原子間の結合とは特に限定はされないが、例えばC−C結合、C=C結合、C−H結合、C−O結合、C=O結合、C−N結合、C−F結合、C−Cl結合を示す。   The bond between atoms constituting the organic substance is not particularly limited, but for example, a C—C bond, C═C bond, C—H bond, C—O bond, C═O bond, C—N bond, C—F Bond, C—Cl bond is shown.

これらの結合を切断するのに好ましい手法として、紫外線を照射することによるものが好ましく、その紫外線の照射には波長185nmを含む低圧水銀ランプまたは波長172nmを含むキセノンエキシマランプを用いることが好ましい。   As a preferable method for breaking these bonds, a method by irradiating ultraviolet rays is preferable, and it is preferable to use a low-pressure mercury lamp having a wavelength of 185 nm or a xenon excimer lamp having a wavelength of 172 nm.

紫外線の照度は特に限定されないが5mW/cm2〜30mW/cm2の範囲が好ましい。周囲の雰囲気は空気、不活性ガス、特に限定されない。また、圧力に関しても特に限定されず、減圧下で行ってもよい。 Illuminance of the ultraviolet is not particularly limited, but preferably in the range of 5mW / cm 2 ~30mW / cm 2 . The ambient atmosphere is not particularly limited to air or an inert gas. Moreover, it does not specifically limit regarding a pressure, You may carry out under reduced pressure.

次に、切断された原子を電極表面上から除去する工程を行う。この場合、切断された原子を酸化反応によりCO、CO2、NO2といった酸化物あるいはH2Oとして除去することが好ましい。また、その酸化反応はオゾンに波長254nm以上の紫外線のみを照射することで発生する酸素ラジカルによる酸化反応であることが好ましい。これは前述したように、よりエネルギーの高い短波長の紫外線により素子分離膜13の表面が分解され、その分解物が電極表面を再汚染する可能性があるからである。具体的には、例えばオゾン存在下、波長185nmの紫外線を除去した低圧水銀ランプを用いる手法が挙げられる。 Next, a step of removing the cut atoms from the electrode surface is performed. In this case, it is preferable to remove the cleaved atoms as oxides such as CO, CO 2 , NO 2 or H 2 O by an oxidation reaction. The oxidation reaction is preferably an oxidation reaction by oxygen radicals generated by irradiating ozone only with ultraviolet rays having a wavelength of 254 nm or more. As described above, this is because the surface of the element isolation film 13 is decomposed by ultraviolet rays having higher energy and shorter wavelengths, and the decomposed product may re-contaminate the electrode surface. Specifically, for example, there is a method using a low-pressure mercury lamp from which ultraviolet rays having a wavelength of 185 nm are removed in the presence of ozone.

紫外線の照度は特に限定されないが5mW/cm2〜30mW/cm2の範囲が好ましい。また、オゾン濃度は10ppm以上であれば特に限定されないが、40ppm〜700ppmの範囲が好ましい。 Illuminance of the ultraviolet is not particularly limited, but preferably in the range of 5mW / cm 2 ~30mW / cm 2 . Moreover, although ozone concentration will not be specifically limited if it is 10 ppm or more, The range of 40 ppm-700 ppm is preferable.

したがって、本発明の電極洗浄処理方法を施すことで効果的に電極を清浄化し、高性能の有機エレクトロニクスデバイスを製造することが可能となる。   Therefore, by performing the electrode cleaning treatment method of the present invention, it is possible to effectively clean the electrode and manufacture a high-performance organic electronic device.

なお、これら2つの工程を数回繰り返してして行うことも有効である。それぞれの工程において、基板温度は特に限定されないが25℃〜150℃の範囲が好ましい。時間に関しても特に限定はされないが1分〜30分が好ましい。   It is also effective to repeat these two steps several times. In each step, the substrate temperature is not particularly limited, but a range of 25 ° C to 150 ° C is preferable. The time is not particularly limited, but 1 minute to 30 minutes is preferable.

本発明の電極表面の清浄化度を評価する指標として、接触角法、昇温脱離分析法(TDS)、飛行時間型2次イオン質量分析法(TOF−SIMS)、X線光電子分光法(XPS)等が挙げられる。特に定量評価できるXPSが有効である。   As an index for evaluating the degree of cleanness of the electrode surface of the present invention, contact angle method, temperature programmed desorption analysis (TDS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy ( XPS) and the like. In particular, XPS capable of quantitative evaluation is effective.

本発明で用いる基板11は、例えばガラス、石英、セラミック、シリコン、プラスチックである。また、基板11上にはTFT等のアクティブ素子を備えていてもよい。   The substrate 11 used in the present invention is, for example, glass, quartz, ceramic, silicon, or plastic. Further, an active element such as a TFT may be provided on the substrate 11.

本発明で用いる電極12は、例えばAl、Cu、Ti、Au、Pt、Ag、Cr、Pd、Se、Ir等の金属材料およびそれらの合金材料、ポリシリコン、シリサイド、ITO(Indium Tin Oxide);
ITZO(Indium Tin Zinc Oxide)、IZO(Indium Zinc Oxide)、SnO2等の無機材料である。
The electrode 12 used in the present invention is, for example, a metal material such as Al, Cu, Ti, Au, Pt, Ag, Cr, Pd, Se, or Ir, and an alloy material thereof, polysilicon, silicide, ITO (Indium Tin Oxide);
It is an inorganic material such as ITZO (Indium Tin Zinc Oxide), IZO (Indium Zinc Oxide), or SnO 2 .

本発明で用いる素子分離膜13は、例えばアクリル系、ビニル系、エステル系、イミド系、ウレタン系、ジアゾ系、シンナモイル系等の感光性高分子化合物、ポリフッ化ビニリデン、ポリエチレンテレフタレート;
ポリエチレン等の有機材料、SiO2、SiNx、Al2O3、Ta2O5等の無機材料、有機無機ハイブリッド材料である。
The element isolation film 13 used in the present invention is, for example, a photosensitive polymer compound such as acrylic, vinyl, ester, imide, urethane, diazo, cinnamoyl, polyvinylidene fluoride, polyethylene terephthalate;
Organic materials such as polyethylene, inorganic materials such as SiO2, SiNx, Al2O3, Ta2O5, and organic-inorganic hybrid materials.

図1(b)は本発明の電極洗浄処理方法を施した、上記基板を用いて製造した有機発光素子の断面模式図の一例である。本発明の電極洗浄処理方法を施した後、ホール輸送層15、発光層16、電子輸送層17、電子注入層18、陰極19を順次成膜することで有機発光素子を製造することができる。   FIG.1 (b) is an example of the cross-sectional schematic diagram of the organic light emitting element manufactured using the said board | substrate which performed the electrode cleaning processing method of this invention. After performing the electrode cleaning treatment method of the present invention, an organic light emitting device can be manufactured by sequentially forming a hole transport layer 15, a light emitting layer 16, an electron transport layer 17, an electron injection layer 18, and a cathode 19.

本発明の電極洗浄処理方法を施した基板を用いるので、有機発光素子の寿命改善に貢献できる。   Since the substrate subjected to the electrode cleaning treatment method of the present invention is used, it can contribute to the improvement of the lifetime of the organic light emitting device.

なお、上記実施形態は、有機発光素子を製造する際に電極表面上の有機物を除去するべく実施したが、有機トランジスタ、有機太陽電池等の有機エレクトロニクスデバイスを製造する際にも略同様に実施することができる。   In addition, although the said embodiment implemented in order to remove the organic substance on the electrode surface, when manufacturing an organic light emitting element, it implements also substantially the same also when manufacturing organic electronic devices, such as an organic transistor and an organic solar cell. be able to.

以下、実施例により本発明について更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

(実施例1)
図2は本発明の電極洗浄処理方法を施す基板の断面模式図である。基板21としてガラス、電極22としてIZO、素子分離膜23としてポリイミドを用いた。ガラス基板上にスパッタ法で膜厚50nmのIZOを成膜し、その上にスピナー法で膜厚800nmのポリイミドを成膜した。
(Example 1)
FIG. 2 is a schematic cross-sectional view of a substrate subjected to the electrode cleaning method of the present invention. Glass was used as the substrate 21, IZO was used as the electrode 22, and polyimide was used as the element isolation film 23. An IZO film having a thickness of 50 nm was formed on a glass substrate by a sputtering method, and a polyimide film having a thickness of 800 nm was formed thereon by a spinner method.

その後、エッチングにより直径2mmの円形にIZO表面が露出するようにポリイミドを取り除いた。この基板をイソプロピルアルコールで洗浄し真空乾燥した。それを密閉できるチャンバーに設置し、低圧水銀ランプを用い、照度15mW/cm2〜17mW/cm2の紫外線を10分間照射した。 Thereafter, the polyimide was removed by etching so that the IZO surface was exposed in a circle having a diameter of 2 mm. The substrate was washed with isopropyl alcohol and dried in vacuum. It was placed in a chamber capable of sealing it, using a low-pressure mercury lamp, and the UV intensity 15mW / cm 2 ~17mW / cm 2 was irradiated for 10 minutes.

その後、オゾン存在下、カットフィルターにより波長185nmの紫外線を除去し10分間照射し続けた。   Thereafter, in the presence of ozone, ultraviolet rays having a wavelength of 185 nm were removed by a cut filter and irradiation was continued for 10 minutes.

得られる基板を大気に暴露しないでXPS分析装置まで搬送し、電極表面の元素分析を行った。その結果を以下に示す。   The obtained substrate was transported to the XPS analyzer without being exposed to the atmosphere, and elemental analysis of the electrode surface was performed. The results are shown below.

In:39.8atom%、Zn:4.2atom%、O:55.5atom%、C:0.5atom%   In: 39.8 atom%, Zn: 4.2 atom%, O: 55.5 atom%, C: 0.5 atom%

(比較例1)
実施例1で使用したIZO、ポリイミド付きのガラス基板を実施例1と同様にチャンバーに設置し、低圧水銀ランプを用い、照度15mW/cm2〜17mW/cm2の紫外線を20分間照射した。
(Comparative Example 1)
IZO used in Example 1, a glass substrate with polyimide was placed in the same manner as the chamber as in Example 1, using a low-pressure mercury lamp, and the UV intensity 15mW / cm 2 ~17mW / cm 2 was irradiated for 20 minutes.

得られた基板の電極表面をXPSで元素分析を行った。その結果を以下に示す。   The electrode surface of the obtained substrate was subjected to elemental analysis by XPS. The results are shown below.

In:38.1atom%、Zn:3.7atom%、O:54.2atom%、C:4.0atom%   In: 38.1 atom%, Zn: 3.7 atom%, O: 54.2 atom%, C: 4.0 atom%

(実施例2)
図2は本発明の電極洗浄処理方法を施す基板の断面模式図である。基板21としてガラス、電極22としてIZO、素子分離膜23としてアクリル系ポリマーを用いた。ガラス基板上にスパッタ法で膜厚50nmのIZOを成膜し、その上にスピナー法で膜厚800nmのアクリル系ポリマーを成膜した。
(Example 2)
FIG. 2 is a schematic cross-sectional view of a substrate subjected to the electrode cleaning method of the present invention. Glass was used as the substrate 21, IZO was used as the electrode 22, and an acrylic polymer was used as the element isolation film 23. An IZO film having a thickness of 50 nm was formed on a glass substrate by a sputtering method, and an acrylic polymer film having a thickness of 800 nm was formed thereon by a spinner method.

その後、エッチングにより直径2mmの円形にIZO表面が露出するようにアクリル系ポリマーを取り除いた。この基板をイソプロピルアルコールで洗浄し真空乾燥した。それを密閉できるチャンバーに設置し、低圧水銀ランプを用い、照度15mW/cm2〜17mW/cm2の紫外線を10分間照射した。 Thereafter, the acrylic polymer was removed by etching so that the IZO surface was exposed in a circle having a diameter of 2 mm. The substrate was washed with isopropyl alcohol and dried in vacuum. It was placed in a chamber capable of sealing it, using a low-pressure mercury lamp, and the UV intensity 15mW / cm 2 ~17mW / cm 2 was irradiated for 10 minutes.

その後、オゾン存在下、カットフィルターにより波長185nmの紫外線を除去し10分間照射し続けた。   Thereafter, in the presence of ozone, ultraviolet rays having a wavelength of 185 nm were removed by a cut filter and irradiation was continued for 10 minutes.

得られた基板を大気に暴露しないでXPS分析装置まで搬送し、電極表面の元素分析を行った。その結果を以下に示す。   The obtained substrate was transported to the XPS analyzer without being exposed to the atmosphere, and elemental analysis of the electrode surface was performed. The results are shown below.

In:39.6atom%、Zn:4.3atom%、O:55.6atom%、C:0.5atom%   In: 39.6 atom%, Zn: 4.3 atom%, O: 55.6 atom%, C: 0.5 atom%

(比較例2)
実施例2で使用したIZO、アクリル系ポリマー付きのガラス基板を実施例2と同様にチャンバーに設置し、低圧水銀ランプを用い、照度15mW/cm2〜17mW/cm2の紫外線を20分間照射した。
(Comparative Example 2)
IZO used in Example 2, a glass substrate with an acrylic polymer placed in similarly chamber as in Example 2, using a low-pressure mercury lamp, and the UV intensity 15mW / cm 2 ~17mW / cm 2 was irradiated for 20 minutes .

得られた基板の電極表面をXPSで元素分析を行った。その結果を以下に示す。   The electrode surface of the obtained substrate was subjected to elemental analysis by XPS. The results are shown below.

In:37.8atom%、Zn:3.5atom%、O:54.4atom%、C:4.3atom%   In: 37.8 atom%, Zn: 3.5 atom%, O: 54.4 atom%, C: 4.3 atom%

(実施例3)
図2は本発明の電極洗浄処理方法を施す基板の断面模式図である。基板21としてガラス、電極22としてIZO、素子分離膜23としてポリイミドを用いた。ガラス基板上にスパッタ法で膜厚50nmのIZOを成膜し、その上にスピナー法で膜厚800nmのポリイミドを成膜した。
(Example 3)
FIG. 2 is a schematic cross-sectional view of a substrate subjected to the electrode cleaning method of the present invention. Glass was used as the substrate 21, IZO was used as the electrode 22, and polyimide was used as the element isolation film 23. An IZO film having a thickness of 50 nm was formed on a glass substrate by a sputtering method, and a polyimide film having a thickness of 800 nm was formed thereon by a spinner method.

その後、エッチングにより直径2mmの円形にIZO表面が露出するようにポリイミドを取り除いた。この基板をイソプロピルアルコールで洗浄し真空乾燥した。それを密閉されたチャンバーに設置し、キセノンエキシマランプを用い、照度10mW/cm2〜13mW/cm2の紫外線を10分間照射した。 Thereafter, the polyimide was removed by etching so that the IZO surface was exposed in a circle having a diameter of 2 mm. The substrate was washed with isopropyl alcohol and dried in vacuum. I placed it in sealed chambers, a xenon excimer lamp, and the UV illumination 10mW / cm 2 ~13mW / cm 2 was irradiated for 10 minutes.

その後、オゾン存在下、低圧水銀ランプを用い、カットフィルターにより波長185nmの紫外線を除去し10分間照射した。   Thereafter, ultraviolet light having a wavelength of 185 nm was removed by a cut filter using a low-pressure mercury lamp in the presence of ozone and irradiated for 10 minutes.

得られた基板を大気に暴露しないでXPS分析装置まで搬送し、電極表面の元素分析を行った。その結果を以下に示す。   The obtained substrate was transported to the XPS analyzer without being exposed to the atmosphere, and elemental analysis of the electrode surface was performed. The results are shown below.

In:39.9atom%、Zn:4.3atom%、O:55.4atom%、C:0.4atom%   In: 39.9 atom%, Zn: 4.3 atom%, O: 55.4 atom%, C: 0.4 atom%

(比較例3)
実施例3で使用したIZO、ポリイミド付きのガラス基板を実施例3と同様にチャンバーに設置し、キセノンエキシマランプを用い、照度10mW/cm2〜13mW/cm2の紫外線を20分間照射した。
(Comparative Example 3)
IZO used in Example 3, a glass substrate with polyimide was placed in the same manner as the chamber as in Example 3, using a xenon excimer lamp, and the UV illumination 10mW / cm 2 ~13mW / cm 2 was irradiated for 20 minutes.

得られた基板の電極表面をXPSで元素分析を行った。その結果を以下に示す。   The electrode surface of the obtained substrate was subjected to elemental analysis by XPS. The results are shown below.

In:37.4atom%、Zn:3.3atom%、O:54.5atom%、C:4.8atom%   In: 37.4 atom%, Zn: 3.3 atom%, O: 54.5 atom%, C: 4.8 atom%

(実施例4)
図2は本発明の電極洗浄処理方法を施す基板の断面模式図である。基板21としてガラス、電極22としてCr、素子分離膜23としてポリイミドを用いた。ガラス基板上にスパッタ法で膜厚50nmのCrを成膜し、その上にスピナー法で膜厚800nmのポリイミドを成膜した。
Example 4
FIG. 2 is a schematic cross-sectional view of a substrate subjected to the electrode cleaning method of the present invention. Glass was used as the substrate 21, Cr was used as the electrode 22, and polyimide was used as the element isolation film 23. A Cr film having a thickness of 50 nm was formed on a glass substrate by a sputtering method, and a polyimide film having a thickness of 800 nm was formed thereon by a spinner method.

その後、エッチングにより直径2mmの円形にCr表面が露出するようにポリイミドを取り除いた。この基板をイソプロピルアルコールで洗浄し真空乾燥した。それを密閉されたチャンバーに設置し、低圧水銀ランプを用い、照度15mW/cm2〜17mW/cm2の紫外線を10分間照射した。 Thereafter, the polyimide was removed by etching so that the Cr surface was exposed in a circle with a diameter of 2 mm. The substrate was washed with isopropyl alcohol and dried in vacuum. I placed it in sealed chambers, using a low-pressure mercury lamp, and the UV intensity 15mW / cm 2 ~17mW / cm 2 was irradiated for 10 minutes.

その後、オゾン存在下、カットフィルターにより波長185nmの紫外線を除去し10分間照射し続けた。   Thereafter, in the presence of ozone, ultraviolet rays having a wavelength of 185 nm were removed by a cut filter and irradiation was continued for 10 minutes.

得られた基板を大気に暴露しないでXPS分析装置まで搬送し、電極表面の元素分析を行った。その結果を以下に示す。   The obtained substrate was transported to the XPS analyzer without being exposed to the atmosphere, and elemental analysis of the electrode surface was performed. The results are shown below.

Cr:98.0atom%、O:1.2atom%、C:0.8atom%   Cr: 98.0 atom%, O: 1.2 atom%, C: 0.8 atom%

(比較例4)
実施例4で使用したCr、ポリイミド付きのガラス基板を実施例4と同様にチャンバーに設置し、低圧水銀ランプを用い、照度15mW/cm2〜17mW/cm2の紫外線を20分間照射した。
(Comparative Example 4)
Cr was used in Example 4, a glass substrate with polyimide was placed in the same manner as the chamber as in Example 4, using a low-pressure mercury lamp, and the UV intensity 15mW / cm 2 ~17mW / cm 2 was irradiated for 20 minutes.

得られた基板の電極表面をXPSで元素分析を行った。その結果を以下に示す。   The electrode surface of the obtained substrate was subjected to elemental analysis by XPS. The results are shown below.

Cr:83.5atom%、O:11.2atom%、C:5.3atom%   Cr: 83.5 atom%, O: 11.2 atom%, C: 5.3 atom%

(実施例5)
図3は本発明の電極洗浄処理方法を施した基板を用いて製造した有機発光素子の断面模式図である。基板31としてガラス、陽極32としてITO、素子分離膜33としてポリイミドを用いた。ホール輸送層34として、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(NPD)を用いた。発光層35として、トリス8−ヒドロキシキノリンアルミニウム(ALQ)を用いた。電子輸送層36として、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP)を用いた。電子注入層37として、BCPとセシウム化合物の混合物、陰極38としてIZOを用いた。
(Example 5)
FIG. 3 is a schematic cross-sectional view of an organic light emitting device manufactured using a substrate subjected to the electrode cleaning treatment method of the present invention. Glass was used as the substrate 31, ITO was used as the anode 32, and polyimide was used as the element isolation film 33. As the hole transport layer 34, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD) was used. As the light emitting layer 35, tris 8-hydroxyquinoline aluminum (ALQ) was used. As the electron transport layer 36, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) was used. A mixture of BCP and a cesium compound was used as the electron injection layer 37 and IZO was used as the cathode 38.

ガラス基板上にスパッタ法で膜厚50nmのITOを成膜し、その上にスピナー法で膜厚800nmのポリイミドを成膜した。   An ITO film having a thickness of 50 nm was formed on a glass substrate by a sputtering method, and a polyimide film having a thickness of 800 nm was formed thereon by a spinner method.

その後、エッチングにより直径2mmの円形にITO表面が露出するようにポリイミドを取り除いた。この基板をイソプロピルアルコールで洗浄し真空乾燥した。それを密閉できるチャンバーに設置し、低圧水銀ランプを用い、照度12mW/cm2〜15mW/cm2の紫外線を10分間照射した。 Thereafter, the polyimide was removed by etching so that the ITO surface was exposed in a circle having a diameter of 2 mm. The substrate was washed with isopropyl alcohol and dried in vacuum. It was placed in a chamber capable of sealing it, using a low-pressure mercury lamp, and the UV intensity 12mW / cm 2 ~15mW / cm 2 was irradiated for 10 minutes.

その後、オゾン存在下、カットフィルターにより波長185nmの紫外線を除去し10分間照射し続けた。   Thereafter, in the presence of ozone, ultraviolet rays having a wavelength of 185 nm were removed by a cut filter and irradiation was continued for 10 minutes.

次にNPDを成膜速度0.50nm/ses〜0.52nm/sesで膜厚50nm、ALQを成膜速度0.30nm/ses〜0.32nm/sesで膜厚30nmに成膜した。BCPを成膜速度0.30nm/ses〜0.32nm/sesで膜厚30nm、BCPと炭酸セシウムとを1:1の比率で共蒸着し膜厚40nmに成膜した。更にIZOを成膜速度1.0nm/ses〜1.2nm/sesで膜厚100nmに成膜した。最後に窒素雰囲気下、水分ゲッター剤を含むガラスキャップを用いて素子を封止し有機発光素子を得た。   Next, NPD was formed to a film thickness of 50 nm at a film formation rate of 0.50 nm / ses to 0.52 nm / ses, and ALQ was formed to a film thickness of 30 nm at a film formation speed of 0.30 nm / ses to 0.32 nm / ses. BCP was co-deposited at a film formation rate of 0.30 nm / ses to 0.32 nm / ses at a film thickness of 30 nm and BCP and cesium carbonate at a ratio of 1: 1 to form a film with a film thickness of 40 nm. Further, IZO was deposited to a thickness of 100 nm at a deposition rate of 1.0 nm / ses to 1.2 nm / ses. Finally, the device was sealed with a glass cap containing a moisture getter agent in a nitrogen atmosphere to obtain an organic light emitting device.

次に電流を20mA/cm2通電した時の発光強度と室温にて同電流値、1000時間連続発光させた後の発光強度の比[耐久後の発光強度/初期の発光強度]を算出することで寿命を評価した。以下に結果を示す。 Next, the ratio of the light emission intensity when the current is applied at 20 mA / cm 2 and the same current value at room temperature and the light emission intensity after continuous light emission for 1000 hours [light emission intensity after endurance / initial light emission intensity] is calculated. The life was evaluated. The results are shown below.

発光強度の比:0.85   Emission intensity ratio: 0.85

(比較例5)
実施例5で使用したITO、ポリイミド付きのガラス基板を実施例5と同様にチャンバーに設置し、低圧水銀ランプを用い、照度12mW/cm2〜15mW/cm2の紫外線を20分間照射した。
(Comparative Example 5)
ITO was used in Example 5, the glass substrate with polyimide was placed in the same manner as the chamber as in Example 5, using a low-pressure mercury lamp, and the UV intensity 12mW / cm 2 ~15mW / cm 2 was irradiated for 20 minutes.

実施例5と同様に順次成膜することで有機発光素子を得た。次に実施例5と同様の手法により寿命を評価した。その結果を以下に示す。   An organic light emitting device was obtained by sequentially forming a film in the same manner as in Example 5. Next, the lifetime was evaluated by the same method as in Example 5. The results are shown below.

発光強度の比:0.48   Emission intensity ratio: 0.48

<評価>
以上の結果から実施例1〜4と比較例1〜4のそれぞれを電極表面のCの濃度を比較することで明らかなように本発明の電極洗浄処理方法が施された電極表面は、これまでの処理法によるものに比べて効果的に清浄化されていることがわかる。
<Evaluation>
From the above results, the electrode surfaces on which the electrode cleaning treatment method of the present invention has been applied are apparent so far by comparing the concentrations of C on the electrode surfaces in Examples 1-4 and Comparative Examples 1-4. It can be seen that the cleaning is effectively performed as compared with the method of the above.

また、実施例5と比較例5を比較することで本発明の電極洗浄処理方法が施された基板を用いて製造した有機発光素子は寿命が優れていることがわかる。   Further, comparing Example 5 with Comparative Example 5, it can be seen that the organic light-emitting device manufactured using the substrate subjected to the electrode cleaning treatment method of the present invention has an excellent lifetime.

(a)は本発明の電極洗浄処理方法が施される基板の断面模式図の一例である。(b)は本発明の電極洗浄処理方法が施された基板を用いて製造した有機発光素子の断面模式図の一例である。(A) is an example of the cross-sectional schematic diagram of the board | substrate with which the electrode cleaning processing method of this invention is performed. (B) is an example of the cross-sectional schematic diagram of the organic light emitting element manufactured using the board | substrate with which the electrode cleaning method of this invention was given. 実施例1〜4で用いる基板の断面模式図である。It is a cross-sectional schematic diagram of the board | substrate used in Examples 1-4. 実施例5で製造した有機発光素子の断面模式図である。6 is a schematic cross-sectional view of an organic light-emitting device manufactured in Example 5. FIG.

符号の説明Explanation of symbols

11、21、31 基板
12、22 電極
12、32 陽極
13、23、33 素子分離膜
14 有機汚染物
15、34 正孔輸送層
16、35 発光層
17、36 電子輸送層
18、37 電子注入層
19、38 陰極
11, 21, 31 Substrate 12, 22 Electrode 12, 32 Anode 13, 23, 33 Element isolation film 14 Organic contaminant 15, 34 Hole transport layer 16, 35 Light emitting layer 17, 36 Electron transport layer 18, 37 Electron injection layer 19, 38 Cathode

Claims (5)

有機エレクトロニクスデバイスに用いられる電極の洗浄処理方法であって、
電極表面上の有機物を除去する際に、前記有機物を構成する原子間の結合を切断する工程を行った後に、切断された原子を電極表面上から除去する工程を行うことを特徴とする電極洗浄処理方法。
A method for cleaning an electrode used in an organic electronic device,
An electrode cleaning characterized by performing a step of removing the cut atoms from the electrode surface after performing a step of cutting bonds between atoms constituting the organic material when removing the organic material on the electrode surface Processing method.
前記有機物を構成する原子間の結合を切断する工程は紫外線を照射する工程を含むことを特徴とする請求項1に記載の電極洗浄処理方法。   The electrode cleaning treatment method according to claim 1, wherein the step of cutting bonds between atoms constituting the organic substance includes a step of irradiating ultraviolet rays. 前記紫外線を照射する工程は低圧水銀ランプまたはキセノンエキシマランプを用いて行うことを特徴とする請求項1または請求項2に記載の電極洗浄処理方法。   3. The electrode cleaning treatment method according to claim 1, wherein the step of irradiating the ultraviolet rays is performed using a low-pressure mercury lamp or a xenon excimer lamp. 前記切断された原子を電極表面上から除去する工程は、オゾンに波長254nm以上の紫外線のみを照射することで発生する酸素ラジカルによる酸化反応を含むことを特徴とする請求項1乃至請求項3のいずれか1項に記載の電極洗浄処理方法。   4. The step of removing the cut atoms from the electrode surface includes an oxidation reaction by oxygen radicals generated by irradiating ozone only with ultraviolet rays having a wavelength of 254 nm or more. The electrode cleaning treatment method according to any one of the above. 電極洗浄処理方法であって、
電極表面上に低圧水銀ランプまたはキセノンエキシマランプを用いて紫外線を照射した後に、オゾン存在下で、低圧水銀ランプを用いて波長254nm以上の紫外線のみを照射することを特徴とする電極洗浄処理方法。
An electrode cleaning method,
An electrode cleaning treatment method characterized by irradiating only ultraviolet rays having a wavelength of 254 nm or more using a low-pressure mercury lamp in the presence of ozone after irradiating the electrode surface with ultraviolet rays using a low-pressure mercury lamp or a xenon excimer lamp.
JP2007216639A 2007-08-23 2007-08-23 Electrode cleaning treatment method Withdrawn JP2009048960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007216639A JP2009048960A (en) 2007-08-23 2007-08-23 Electrode cleaning treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007216639A JP2009048960A (en) 2007-08-23 2007-08-23 Electrode cleaning treatment method

Publications (1)

Publication Number Publication Date
JP2009048960A true JP2009048960A (en) 2009-03-05

Family

ID=40500977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007216639A Withdrawn JP2009048960A (en) 2007-08-23 2007-08-23 Electrode cleaning treatment method

Country Status (1)

Country Link
JP (1) JP2009048960A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011161727A1 (en) * 2010-06-24 2011-12-29 パナソニック株式会社 Method for producing organic el element, display device, light-emitting device, and ultraviolet irradiation device
US8563994B2 (en) 2010-08-06 2013-10-22 Panasonic Corporation Light-emitting element, display device, and method for producing light-emitting element
US8664669B2 (en) 2010-06-24 2014-03-04 Panasonic Corporation Organic EL element, display apparatus, and light-emitting apparatus
US8822246B2 (en) 2009-02-10 2014-09-02 Panasonic Corporation Method for manufacturing a light-emitting element including a protective film for a charge injection layer
US8829510B2 (en) 2011-02-23 2014-09-09 Panasonic Corporation Organic electroluminescence display panel and organic electroluminescence display device
US8852977B2 (en) 2010-08-06 2014-10-07 Panasonic Corporation Method for producing light-emitting elements
US8866160B2 (en) 2009-02-10 2014-10-21 Panasonic Corporation Light-emitting element, device, and manufacturing method including a charge injection layer having a recess for suppressing uneven luminance
US8872164B2 (en) 2009-08-19 2014-10-28 Panasonic Corporation Organic el element
US8884281B2 (en) 2011-01-21 2014-11-11 Panasonic Corporation Organic EL element
US8884276B2 (en) 2011-05-11 2014-11-11 Panasonic Corporation Organic EL display panel and organic EL display apparatus
US8890173B2 (en) 2009-02-10 2014-11-18 Panasonic Corporation Light-emitting element including a charge injection transport layer having a recess portion for accumulating ink, and display device and method for manufacturing thereof
US8890129B2 (en) 2010-08-06 2014-11-18 Panasonic Corporation Light emitting device, light emitting apparatus provided with a light emitting device, and method of manufacturing a light emitting device
US8921838B2 (en) 2010-08-06 2014-12-30 Panasonic Corporation Light emitting element, method for manufacturing same, and light emitting device
US8927975B2 (en) 2010-08-06 2015-01-06 Panasonic Corporation Light emitting element, method for manufacturing same, and light emitting device
US8927976B2 (en) 2010-08-06 2015-01-06 Panasonic Corporation Organic EL element and production method for same
US8946693B2 (en) 2010-08-06 2015-02-03 Panasonic Corporation Organic EL element, display device, and light-emitting device
US8981361B2 (en) 2011-02-25 2015-03-17 Panasonic Corporation Organic electroluminescence display panel with tungsten oxide containing hole injection layer that electrically connects electrode to auxiliary wiring, and organic electroluminescence display device
US8999832B2 (en) 2010-08-06 2015-04-07 Panasonic Corporation Organic EL element
US9012897B2 (en) 2010-08-06 2015-04-21 Panasonic Corporation Organic EL element, display device, and light-emitting device
US9012896B2 (en) 2010-08-06 2015-04-21 Panasonic Corporation Organic EL element
US9029842B2 (en) 2010-08-06 2015-05-12 Joled Inc. Organic electroluminescence element and method of manufacturing thereof
US9029843B2 (en) 2010-08-06 2015-05-12 Joled Inc. Organic electroluminescence element
US9048448B2 (en) 2010-08-06 2015-06-02 Joled Inc. Organic electroluminescence element and method of manufacturing thereof
US9130187B2 (en) 2010-08-06 2015-09-08 Joled Inc. Organic EL element, display device, and light-emitting device
US9490445B2 (en) 2010-07-30 2016-11-08 Joled Inc. Organic el element, organic el panel, organic el light-emitting apparatus, organic el display apparatus, and method of manufacturing organic el element
US9843010B2 (en) 2010-08-06 2017-12-12 Joled Inc. Light-emitting element, light-emitting device provided with light-emitting element, and light-emitting element production method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8890173B2 (en) 2009-02-10 2014-11-18 Panasonic Corporation Light-emitting element including a charge injection transport layer having a recess portion for accumulating ink, and display device and method for manufacturing thereof
US8822246B2 (en) 2009-02-10 2014-09-02 Panasonic Corporation Method for manufacturing a light-emitting element including a protective film for a charge injection layer
US8890174B2 (en) 2009-02-10 2014-11-18 Panasonic Corporation Light-emitting element including a charge injection transport layer that includes a dissolvable metal compound, and display device and method for manufacturing thereof
US8866160B2 (en) 2009-02-10 2014-10-21 Panasonic Corporation Light-emitting element, device, and manufacturing method including a charge injection layer having a recess for suppressing uneven luminance
US8872164B2 (en) 2009-08-19 2014-10-28 Panasonic Corporation Organic el element
US8664669B2 (en) 2010-06-24 2014-03-04 Panasonic Corporation Organic EL element, display apparatus, and light-emitting apparatus
US8703530B2 (en) 2010-06-24 2014-04-22 Panasonic Corporation Method for producing organic EL element, display device, light-emitting apparatus, and ultraviolet irradiation device
WO2011161727A1 (en) * 2010-06-24 2011-12-29 パナソニック株式会社 Method for producing organic el element, display device, light-emitting device, and ultraviolet irradiation device
US9490445B2 (en) 2010-07-30 2016-11-08 Joled Inc. Organic el element, organic el panel, organic el light-emitting apparatus, organic el display apparatus, and method of manufacturing organic el element
US8921838B2 (en) 2010-08-06 2014-12-30 Panasonic Corporation Light emitting element, method for manufacturing same, and light emitting device
US8927976B2 (en) 2010-08-06 2015-01-06 Panasonic Corporation Organic EL element and production method for same
US9048448B2 (en) 2010-08-06 2015-06-02 Joled Inc. Organic electroluminescence element and method of manufacturing thereof
US8890129B2 (en) 2010-08-06 2014-11-18 Panasonic Corporation Light emitting device, light emitting apparatus provided with a light emitting device, and method of manufacturing a light emitting device
US8852977B2 (en) 2010-08-06 2014-10-07 Panasonic Corporation Method for producing light-emitting elements
US9843010B2 (en) 2010-08-06 2017-12-12 Joled Inc. Light-emitting element, light-emitting device provided with light-emitting element, and light-emitting element production method
US8927975B2 (en) 2010-08-06 2015-01-06 Panasonic Corporation Light emitting element, method for manufacturing same, and light emitting device
US9130187B2 (en) 2010-08-06 2015-09-08 Joled Inc. Organic EL element, display device, and light-emitting device
US8946693B2 (en) 2010-08-06 2015-02-03 Panasonic Corporation Organic EL element, display device, and light-emitting device
US8563994B2 (en) 2010-08-06 2013-10-22 Panasonic Corporation Light-emitting element, display device, and method for producing light-emitting element
US8999832B2 (en) 2010-08-06 2015-04-07 Panasonic Corporation Organic EL element
US9012897B2 (en) 2010-08-06 2015-04-21 Panasonic Corporation Organic EL element, display device, and light-emitting device
US9012896B2 (en) 2010-08-06 2015-04-21 Panasonic Corporation Organic EL element
US9029842B2 (en) 2010-08-06 2015-05-12 Joled Inc. Organic electroluminescence element and method of manufacturing thereof
US9029843B2 (en) 2010-08-06 2015-05-12 Joled Inc. Organic electroluminescence element
US8884281B2 (en) 2011-01-21 2014-11-11 Panasonic Corporation Organic EL element
US8829510B2 (en) 2011-02-23 2014-09-09 Panasonic Corporation Organic electroluminescence display panel and organic electroluminescence display device
US8981361B2 (en) 2011-02-25 2015-03-17 Panasonic Corporation Organic electroluminescence display panel with tungsten oxide containing hole injection layer that electrically connects electrode to auxiliary wiring, and organic electroluminescence display device
US8884276B2 (en) 2011-05-11 2014-11-11 Panasonic Corporation Organic EL display panel and organic EL display apparatus

Similar Documents

Publication Publication Date Title
JP2009048960A (en) Electrode cleaning treatment method
US10290833B2 (en) Functionalization of a substrate
US8853070B2 (en) Functionalization of a substrate
TW200305218A (en) Method of manufacturing a semiconductor device
JP2003007454A (en) Manufacturing method of organic electric field luminescence display element, and organic electric field luminescence display element
JP2014154382A (en) Method of manufacturing thin-film device
KR102074255B1 (en) Functionalization of a substrate
JP4094804B2 (en) Manufacturing method of organic EL device
JPS62272541A (en) Surface treating method for semiconductor substrate
JP2010040567A (en) Method and device for cleaning and protecting surface of oxide film
JPWO2004075277A1 (en) Etching method and semiconductor device manufacturing method
JP2008293957A (en) Manufacturing method of organic light emitting device
US20080302400A1 (en) System and Method for Removal of Materials from an Article
JPH09232075A (en) Manufacture of organic electroluminescence element and manufacturing device of organic electroluminescence element
JP2005158392A (en) Manufacturing method of organic electroluminescent element and manufacturing device using the same
JP4873736B2 (en) Manufacturing method of organic light emitting device
JP2003173873A (en) Manufacturing method of organic el element
JP2006140441A (en) Method and apparatus for manufacturing nitride semiconductor laser light source
JP2001313168A (en) Organic electroluminescent element and manufacturing method of the same
JP2003158135A (en) Manufacturing method of thin film transistor and manufacturing method of display device equipped with the same
WO2011161727A1 (en) Method for producing organic el element, display device, light-emitting device, and ultraviolet irradiation device
JP2003163082A (en) Method and device for manufacturing thin film for organic el
JP2010135097A (en) Organic el element, and manufacturing method thereof
CA2774591C (en) Functionalization of a substrate
JP2009004103A (en) Manufacturing method of organic light emitting device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101102