JP2009041390A - Pipe structural body made of synthetic resin - Google Patents

Pipe structural body made of synthetic resin Download PDF

Info

Publication number
JP2009041390A
JP2009041390A JP2007205238A JP2007205238A JP2009041390A JP 2009041390 A JP2009041390 A JP 2009041390A JP 2007205238 A JP2007205238 A JP 2007205238A JP 2007205238 A JP2007205238 A JP 2007205238A JP 2009041390 A JP2009041390 A JP 2009041390A
Authority
JP
Japan
Prior art keywords
pipe
pipes
welding
intake
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007205238A
Other languages
Japanese (ja)
Other versions
JP4953972B2 (en
Inventor
Hiroyuki Kawarai
博幸 瓦井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP2007205238A priority Critical patent/JP4953972B2/en
Publication of JP2009041390A publication Critical patent/JP2009041390A/en
Application granted granted Critical
Publication of JP4953972B2 publication Critical patent/JP4953972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pipe structural body made of a synthetic resin in which a linear tightening means reaches a bolt inserting hole at a specific position, wherein a tightening operation of a bolt inserted in the bolt inserting hole at the specific position is made easy, and the tightening force of the bolt is made strong. <P>SOLUTION: When two pipes 14b and 14c are arranged in the vicinity of an extension line of an axis 18 of a bolt inserting hole 16A at a specific position among a plurality of bolt inserting holes 16 of a flange 12, one pipe 14b is arranged so as to be spaced from the other pipe 14b in an approximately perpendicular direction to a melt-and-adhere vibrating direction line G-G, and further, the pipes 14b and 14c are not overlapped in a direction perpendicular to the melt-and-adhere vibrating direction line G-G. Thus, a gap space 38 is formed for inserting a tightening means 40 for tightening a bolt 58 in the vicinity of the extension line of the axis 18 of the bolt inserting hole 16A at the specific position. As a result, the bolt 58 inserted in the inserting hole 16A at the specific position is tightened by using the linear tightening means 40. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、2個の合成樹脂部材を溶着して3個以上の管を形成する合成樹脂製管構造体に関するものである。   The present invention relates to a synthetic resin pipe structure in which two synthetic resin members are welded to form three or more pipes.

従来から、エンジンに大気を導入させるものとして、インテークマニホールドが知られている。インテークマニホールドは一般に、エンジンに接合するためのフランジと3個以上の異なる形状の吸気管とを有しており、吸気管の形状形成の容易さや軽量化やコスト削減の観点から、合成樹脂を素材としている(特許文献1)。   Conventionally, an intake manifold has been known as a device for introducing air into an engine. The intake manifold generally has a flange for joining to the engine and three or more intake pipes with different shapes. From the viewpoint of ease of forming the intake pipe, weight reduction, and cost reduction, it is made of synthetic resin. (Patent Document 1).

ここで、従来のインテークマニホールドの一例を図7に示す。インテークマニホールド50には、フランジ52と、そのフランジ52に一体に形成される3個以上の吸気管54とを有する。この図7では、吸気管は3個の吸気管54a,54b,54cから成るものとして説明する。フランジ52には例えば4個のボルト挿通穴56が設けられており、このボルト挿通穴56に固定手段としてのボルト58を挿通させて、ボルト58を被固定部材であるエンジン60に形成した雌螺子(図示せず)に螺合させる。このボルト58の締め付けによって、インテークマニホールド50をエンジン60に固定している。   An example of a conventional intake manifold is shown in FIG. The intake manifold 50 includes a flange 52 and three or more intake pipes 54 formed integrally with the flange 52. In FIG. 7, the description will be made assuming that the intake pipe is composed of three intake pipes 54a, 54b and 54c. For example, four bolt insertion holes 56 are provided in the flange 52, and a bolt 58 as a fixing means is inserted into the bolt insertion hole 56, so that the bolt 58 is formed in the engine 60 that is a fixed member. (Not shown). The intake manifold 50 is fixed to the engine 60 by tightening the bolts 58.

3個の吸気管54a,54b,54cは、互いに近接して、例えばエンジンルーム内の壁62に近い位置に配置される。3個の近接した吸気管54a,54b,54cは、4個のボルト挿通穴56のうちの1箇所の特定位置のボルト挿通穴56Aの軸方向の上位に配置される。図7における3個の吸気管54a,54b,54cの断面は、特定位置のボルト挿通穴56Aの軸64を含んでフランジ52の長手方向に平行な面66で切断したものである。吸気管54a,54b,54cの吸気通路68a,68b,68cの通路断面の中心70a,70b,70cは面66上で同一の溶着振動方向線E−E(溶着振動方向は線E−Eに平行であり、線E−Eに直角方向に2つの部材が溶着される)上に配置され、しかも線E−Eはフランジ52の表面にほぼ平行に設定される。更に、面66上での3個の近接した吸気管54a,54b,54cの端から端までの長さ(フランジ52の表面とほぼ平行な長さ)はL0となる。   The three intake pipes 54a, 54b, 54c are arranged close to each other, for example, at a position close to the wall 62 in the engine room. The three adjacent intake pipes 54 a, 54 b, 54 c are arranged at a higher position in the axial direction of the bolt insertion hole 56 </ b> A at one specific position in the four bolt insertion holes 56. The cross-sections of the three intake pipes 54a, 54b, 54c in FIG. 7 are cut by a plane 66 parallel to the longitudinal direction of the flange 52 including the shaft 64 of the bolt insertion hole 56A at a specific position. Centers 70a, 70b, 70c of the passage sections of the intake passages 68a, 68b, 68c of the intake pipes 54a, 54b, 54c are the same welding vibration direction line EE on the surface 66 (the welding vibration direction is parallel to the line EE). And two members are welded in a direction perpendicular to the line EE), and the line EE is set substantially parallel to the surface of the flange 52. Furthermore, the length from end to end of three adjacent intake pipes 54a, 54b, 54c on the surface 66 (length approximately parallel to the surface of the flange 52) is L0.

エンジンルーム内では、インテークマニホールドの容積を減らすために、3個の吸気管54a,54b,54cの端から端までの長さL0を、より短くするよう要求されている。この長さL0を短く改良したインテークマニホールドの例を図8に示す。図8においては、吸気管54a,54b,54cの吸気通路68a,68b,68cの通路断面の中心70a,70b,70cは、図7と同様に、面66上で直線状に配置されているが、中心70a,70b,70cは面66上で同一の溶着振動方向線F−F(溶着振動方向は線F−Fに平行であり、線F−Fに直角方向に2つの部材が溶着される)上に配置され、その線F−Fはフランジ52の表面に対して角度β(β<90°)で傾斜している。3個の吸気管54a,54b,54cがフランジ52の表面に対して角度βで傾斜していることから、3個の吸気管54a,54b,54cの端から端までの長さ(フランジ52の表面とほぼ平行な長さ)をL1とすれば、L1はL0より小さくすることができる。   In the engine room, in order to reduce the volume of the intake manifold, the length L0 from end to end of the three intake pipes 54a, 54b, 54c is required to be shorter. FIG. 8 shows an example of an intake manifold in which the length L0 is shortened. In FIG. 8, the centers 70a, 70b, and 70c of the passage sections of the intake passages 68a, 68b, and 68c of the intake pipes 54a, 54b, and 54c are linearly arranged on the surface 66 as in FIG. The centers 70a, 70b, and 70c are the same welding vibration direction line FF on the surface 66 (the welding vibration direction is parallel to the line FF, and two members are welded in a direction perpendicular to the line FF. The line FF is inclined with respect to the surface of the flange 52 at an angle β (β <90 °). Since the three intake pipes 54a, 54b, 54c are inclined at an angle β with respect to the surface of the flange 52, the lengths of the three intake pipes 54a, 54b, 54c from end to end (of the flange 52) If L1 is a length substantially parallel to the surface, L1 can be made smaller than L0.

ここで、図8に示す吸気管54a,54b,54cの形成について、図9に基づいて説明する。図9に示すように、吸気管54aは、第一分割管72aと第二分割管74aとを溶着して成るものであり、吸気管14bは、第一分割管72bと第二分割管74bとを溶着して成るものであり、吸気管14cは、第一分割管72cと第二分割管74cとを溶着して成るものである。第一分割管72aと、第一分割管72bと、第一分割管72cは、一つの型で一体に形成される第一合成樹脂部材76に含まれるものである。同様に、第二分割管74aと、第二分割管74bと、第二分割管74は、一つの型で一体に形成される第二合成樹脂部材78に含まれるものである。なお、第一合成樹脂部材76と第二合成樹脂部材78とを溶着して、インテークマニホールド50を形成するものである。   Here, the formation of the intake pipes 54a, 54b, 54c shown in FIG. 8 will be described with reference to FIG. As shown in FIG. 9, the intake pipe 54a is formed by welding a first divided pipe 72a and a second divided pipe 74a, and the intake pipe 14b includes a first divided pipe 72b and a second divided pipe 74b. The intake pipe 14c is formed by welding the first divided pipe 72c and the second divided pipe 74c. The first divided pipe 72a, the first divided pipe 72b, and the first divided pipe 72c are included in the first synthetic resin member 76 that is integrally formed with one mold. Similarly, the 2nd division pipe 74a, the 2nd division pipe 74b, and the 2nd division pipe 74 are contained in the 2nd synthetic resin member 78 formed integrally by one type. The first synthetic resin member 76 and the second synthetic resin member 78 are welded to form the intake manifold 50.

第一分割管72aと第二分割管74aとを溶着するために、第一分割管72aの第一溶着面80aと、第二分割管74aの第二溶着面82aとは、溶着振動方向線F−Fと平行になるように設定する。同様に、第一分割管72bの第一溶着面80bと、第二分割管74bの第二溶着面82bとは、溶着振動方向線F−Fと平行になるように設定し、更に、第一分割管72cの第一溶着面80cと、第二分割管74cの第二溶着面82cとは、溶着振動方向線F−Fと平行になるように設定する。第一分割管72aと第二分割管74aとを溶着することで吸気管54aが形成され、第一分割管72bと第二分割管74bとを溶着することで吸気管54bが形成され、第一分割管72cと第二分割管74cとを溶着することで吸気管54cが形成される。即ち、3個の吸気管54a,54b,54cは、同一の溶着振動方向線F−F上で溶着されている。   In order to weld the first divided pipe 72a and the second divided pipe 74a, the first welding surface 80a of the first divided pipe 72a and the second welding surface 82a of the second divided pipe 74a are welded vibration direction lines F. Set to be parallel to -F. Similarly, the first welding surface 80b of the first divided pipe 72b and the second welding surface 82b of the second divided pipe 74b are set to be parallel to the welding vibration direction line FF, and further, The first welding surface 80c of the dividing pipe 72c and the second welding surface 82c of the second dividing pipe 74c are set so as to be parallel to the welding vibration direction line FF. The intake pipe 54a is formed by welding the first divided pipe 72a and the second divided pipe 74a, and the intake pipe 54b is formed by welding the first divided pipe 72b and the second divided pipe 74b. The intake pipe 54c is formed by welding the divided pipe 72c and the second divided pipe 74c. That is, the three intake pipes 54a, 54b, 54c are welded on the same welding vibration direction line FF.

特開2003−254178JP 2003-254178 A

図7及び図8に示すように、3個の吸気管54a,54b,54cは互いに近接して配置されている。3個の近接配置される吸気管54a,54b,54cは、フランジ52に形成された複数のボルト挿通穴56のうちの1箇所の特定位置のボルト挿通穴56Aの上方に位置することがある。即ち、1箇所の特定位置のボルト挿通穴56Aの軸64の延長線上に、3個の近接した吸気管54a,54b,54cが位置する。このため、特定位置のボルト挿通穴56Aの軸64の延長線上に3個の吸気管54a,54b,54cのいずれかが存在して、図7や図8の上方から(Y方向から)特定位置のボルト挿通穴56Aを直接見ることができない。この結果、特定位置のボルト挿通穴56Aに挿通したボルト58を締め付ける場合に、直線方向に作用するインパクトレンチ等の締付け工具を用いることができないものであった。   As shown in FIGS. 7 and 8, the three intake pipes 54a, 54b, 54c are arranged close to each other. The three intake pipes 54 a, 54 b, 54 c that are arranged close to each other may be positioned above the bolt insertion hole 56 </ b> A at a specific position in one of the plurality of bolt insertion holes 56 formed in the flange 52. That is, three adjacent intake pipes 54a, 54b, 54c are positioned on the extension line of the shaft 64 of the bolt insertion hole 56A at one specific position. For this reason, any one of the three intake pipes 54a, 54b, 54c exists on the extension line of the shaft 64 of the bolt insertion hole 56A at the specific position, and the specific position from above (from the Y direction) in FIGS. The bolt insertion hole 56A cannot be seen directly. As a result, when tightening the bolt 58 inserted through the bolt insertion hole 56A at a specific position, a tightening tool such as an impact wrench acting in a linear direction cannot be used.

このため、特殊な締付け工具(例えばボールジョイント式インパクトツール)を用いて、特定位置のボルト挿通穴56Aに挿通させたボルトの締付け作業を行っている。ボールジョイント式インパクトツールは、長さの途中にボールジョイントを用いるもので、力の発生点とボールジョイントとを連結する部材と、ボールジョイントと力の終着点とを連結する部材とが同一直線上にないものであり、始発点で加えられる力がボールジョイントで方向を変えて終着点に加わるようにしたものである。   For this reason, using a special tightening tool (for example, a ball joint type impact tool), the bolt inserted through the bolt insertion hole 56A at a specific position is tightened. The ball joint type impact tool uses a ball joint in the middle of its length, and the member that connects the force generation point and the ball joint and the member that connects the ball joint and the end point of the force are on the same straight line. The force applied at the starting point changes the direction at the ball joint and is applied to the end point.

このようなボールジョイント式インパクトツール等の特殊な工具を用いて、特定位置のボルト挿通穴56Aをその軸64の延長線上から見ることができないボルト58の締付け作業は、締付け作業に時間がかかるという欠点と、ボルト58の締付け力が弱いという欠点とがあった。   Using such a special tool such as a ball joint type impact tool, the bolt 58 in which the bolt insertion hole 56A at a specific position cannot be seen from the extension line of the shaft 64 is time-consuming. There existed a fault and the fault that the clamping force of the volt | bolt 58 was weak.

本発明は上記の点に鑑みてなされたものであり、特定位置のボルト挿通穴に直線状の締付け手段が届くようにしたものであり、特定位置のボルト挿通穴に挿通するボルトの締付け作業を容易にし、かつボルトの締付け力を強くするようにした合成樹脂製管構造体を提供することを目的とするものである。   The present invention has been made in view of the above points, and is configured so that a linear tightening means reaches a bolt insertion hole at a specific position, and performs a tightening operation of a bolt inserted into the bolt insertion hole at a specific position. It is an object of the present invention to provide a synthetic resin pipe structure that facilitates the tightening force of bolts.

本発明の合成樹脂製管構造体は、3個以上の第一分割管を有する第一合成樹脂部材と3個以上の第二分割管を有する第二合成樹脂部材とを溶着して成るものであって、前記3個以上の第一分割管と前記3個以上の第二分割管との溶着によって形成される3個以上の管と、それらの3個以上の管と連結するフランジと、被固定部材と連結するための固定手段を挿通するために前記フランジに形成した複数の挿通穴とを有し、特定位置の前記挿通穴の軸の延長線上付近に隣り合う2個の前記管が位置する合成樹脂製管構造体において、特定位置の前記挿通穴の軸延長線付近に位置する前記2個の隣り合う管において一方の管の中心を通る溶着振動方向線に対して他方の菅は前記溶着振動方向線G−Gに対して略直角方向に離間した位置に配置し、前記溶着振動方向線G−Gに対して直角方向に前記2個の管が重ならないようにし、前記特定位置の挿通穴の軸の延長線上付近で前記2個の管の間に前記締付け工具を挿通できる隙間空間を形成したことを特徴とするものである。本発明は、前記溶着振動方向線G−Gが前記フランジの表面とのなす角度αを25°≦α≦65°の範囲としたことを特徴とするものである。本発明は、前記特定位置の挿通穴の軸と前記隙間空間を挿通する前記締付け工具の挿入方向とのなす角度θをθ≦15°としたことを特徴とするものである。本発明は、前記特定位置の挿通穴の軸延長線が前記隙間空間に合致するようにしたことを特徴とするものである。本発明は、内燃機関用インテークマニホールドとして使用することを特徴とするものである。   The synthetic resin pipe structure of the present invention is formed by welding a first synthetic resin member having three or more first divided pipes and a second synthetic resin member having three or more second divided pipes. And three or more pipes formed by welding the three or more first divided pipes and the three or more second divided pipes, flanges connected to the three or more pipes, A plurality of insertion holes formed in the flange for inserting a fixing means for connecting with a fixing member, and the two adjacent pipes are positioned in the vicinity of an extension line of the shaft of the insertion hole at a specific position. In the synthetic resin pipe structure, in the two adjacent pipes located in the vicinity of the axial extension line of the insertion hole at a specific position, the other flange is in the welding vibration direction line passing through the center of one pipe. Arranged at a position spaced substantially perpendicular to the welding vibration direction line GG, The two pipes do not overlap in a direction perpendicular to the welding vibration direction line GG, and the clamping tool is placed between the two pipes in the vicinity of the extension line of the shaft of the insertion hole at the specific position. A gap space that can be inserted is formed. The present invention is characterized in that an angle α formed by the welding vibration direction line GG with the surface of the flange is in a range of 25 ° ≦ α ≦ 65 °. The present invention is characterized in that an angle θ formed by an insertion hole axis at the specific position and an insertion direction of the tightening tool passing through the gap space is set to θ ≦ 15 °. The present invention is characterized in that an axial extension line of the insertion hole at the specific position matches the gap space. The present invention is characterized by being used as an intake manifold for an internal combustion engine.

本発明に係る合成樹脂製管構造体は、フランジの特定位置のボルト挿通穴の軸の延長線付近に位置する隣り合う2個の管において、他方の菅は一方の管の溶着振動方向線G−Gに対して略直角方向に離間した位置に配置することで、2個の管の間に前記締付け工具を挿通できる隙間空間を形成することができる。この隙間空間を介して、特定位置のボルト挿通穴の軸のほぼ延長方向から特定位置のボルト挿通穴を目視することができる。よって、この隙間空間から直線状の締付け手段を挿入して、特定位置のボルト挿通穴に挿通させたボルトを締付けることができる。この結果、締付け手段にかかる回転力を直接ボルトに伝えることができ、ボルトの締付け作業を容易にすることができると共に、強い締付け力でボルトを締付けることができる。   The synthetic resin pipe structure according to the present invention includes two adjacent pipes located near the extension line of the bolt insertion hole shaft at a specific position of the flange, and the other flange is a welding vibration direction line G of one pipe. By disposing at a position spaced substantially perpendicular to −G, it is possible to form a gap space in which the tightening tool can be inserted between the two pipes. Through this gap space, the bolt insertion hole at the specific position can be visually observed from the substantially extending direction of the shaft of the bolt insertion hole at the specific position. Therefore, it is possible to insert a linear tightening means from the gap space and tighten the bolt inserted through the bolt insertion hole at a specific position. As a result, the rotational force applied to the tightening means can be directly transmitted to the bolt, the bolt tightening operation can be facilitated, and the bolt can be tightened with a strong tightening force.

次に、本発明を図面に基づいて説明する。
図1は本発明に係る合成樹脂製管構造体の要部断面斜視図、図2は図1の平面方向からの斜視図、図3は図1に示す管の溶着状態を示す構成図である。図1及び図2において、図7及び図8と同一部号は同一部材を示す。ここでは、合成樹脂製管構造体を内燃機関用マニホールドとして説明する。本発明に係るインテークマニホールド(合成樹脂製管構造体)10は、合成樹脂を素材とし、フランジ12と、そのフランジ12に一体に形成される3個以上の管14とを有するものである。図1並びに図2においては、管14は3個の吸気管、即ち、第一吸気管14a,第二吸気管14b,第三吸気管14cから成るものとして説明する。フランジ12には例えば4個のボルト挿通穴16が設けられており、このボルト挿通穴16に固定手段としてのボルト58を挿通させて、ボルト58を被固定部材としてのエンジン60に形成した雌螺子61(図5参照)螺合させることで、インテークマニホールド10をエンジン60に固定する。4個のボルト挿通穴16において、その軸18の延長線上に2個の吸気管が密集して配置される特定位置のボルト挿通穴を、ボルト挿通穴16Aとする。なお、ボルト挿通穴16の数は4個に限るものではない。
Next, the present invention will be described with reference to the drawings.
1 is a cross-sectional perspective view of a principal part of a synthetic resin pipe structure according to the present invention, FIG. 2 is a perspective view from the plane direction of FIG. 1, and FIG. 3 is a configuration diagram showing a welded state of the pipe shown in FIG. . 1 and 2, the same reference numerals as those in FIGS. 7 and 8 denote the same members. Here, the synthetic resin pipe structure will be described as a manifold for an internal combustion engine. An intake manifold (synthetic resin pipe structure) 10 according to the present invention is made of synthetic resin, and has a flange 12 and three or more pipes 14 formed integrally with the flange 12. 1 and 2, the pipe 14 will be described as having three intake pipes, that is, a first intake pipe 14a, a second intake pipe 14b, and a third intake pipe 14c. For example, four bolt insertion holes 16 are provided in the flange 12, and a bolt 58 as a fixing means is inserted into the bolt insertion hole 16 so that the bolt 58 is formed in the engine 60 as a fixed member. The intake manifold 10 is fixed to the engine 60 by screwing 61 (see FIG. 5). In the four bolt insertion holes 16, a bolt insertion hole at a specific position where two intake pipes are densely arranged on the extension line of the shaft 18 is defined as a bolt insertion hole 16A. The number of bolt insertion holes 16 is not limited to four.

3個の吸気管14は、例えばエンジンルーム内の壁62に一番近接して配置されるものを第一吸気管14aとし、壁62から離れるものを順に第二吸気管14b,第三吸気管14cとする。図1に示す第一吸気管14a,第二吸気管14b,第三吸気管14cの断面位置は、特定位置のボルト挿通穴16Aの軸18の延長線を含む面であり、しかもフランジ12の長手方向に平行な面20での切断位置とする。第一吸気管14aの吸気通路22aの断面中心を中心24aとし、第二吸気管14bの吸気通路22bの断面の中心を中心24bとし、第三吸気管14cの吸気通路22cの断面の中心を中心24cとする。   The three intake pipes 14 are, for example, the first intake pipe 14a disposed closest to the wall 62 in the engine room, and the ones separated from the wall 62 in order are the second intake pipe 14b and the third intake pipe. 14c. The cross-sectional positions of the first intake pipe 14a, the second intake pipe 14b, and the third intake pipe 14c shown in FIG. 1 are surfaces including the extension line of the shaft 18 of the bolt insertion hole 16A at a specific position, and the longitudinal direction of the flange 12 The cutting position is a plane 20 parallel to the direction. The center of the cross section of the intake passage 22a of the first intake pipe 14a is the center 24a, the center of the cross section of the intake passage 22b of the second intake pipe 14b is the center 24b, and the center of the cross section of the intake passage 22c of the third intake pipe 14c is the center 24c.

ここで、第一吸気管14aと、第二吸気管14bと、第三吸気管14cとについて、図3について説明する。第一吸気管14aは、第一分割管26aと第二分割管28aとを溶着して成るものであり、第二吸気管14bは、第一分割管26bと第二分割管28bとを溶着して成るものであり、第三吸気管14cは、第一分割管26cと第二分割管28cとを溶着して成るものである。第一分割管26aと、第一分割管26bと、第一分割管26cは、一つの型で一体に形成される第一合成樹脂部材30に含まれるものである。同様に、同様に、第二分割管28aと、第二分割管28bと、第二分割管28cは、一つの型で一体に形成される第二合成樹脂部材32に含まれるものである。なお、第一合成樹脂部材30と第二合成樹脂部材32とを溶着して、インテークマニホールド10を形成するものである。   Here, FIG. 3 will be described with respect to the first intake pipe 14a, the second intake pipe 14b, and the third intake pipe 14c. The first intake pipe 14a is formed by welding a first divided pipe 26a and a second divided pipe 28a, and the second intake pipe 14b is formed by welding the first divided pipe 26b and the second divided pipe 28b. The third intake pipe 14c is formed by welding a first divided pipe 26c and a second divided pipe 28c. The first divided pipe 26a, the first divided pipe 26b, and the first divided pipe 26c are included in the first synthetic resin member 30 that is integrally formed with one mold. Similarly, the second divided pipe 28a, the second divided pipe 28b, and the second divided pipe 28c are included in the second synthetic resin member 32 that is integrally formed with one mold. The first synthetic resin member 30 and the second synthetic resin member 32 are welded to form the intake manifold 10.

第一分割管26aと第二分割管28aとを溶着するために、第一分割管26aは2箇所の第一溶着面34aを有し、第二分割管28aは2箇所の第二溶着面36aを有する。第一分割管26aの第一溶着面34aと第二分割管28aの第二溶着面36aとを溶着して、第一吸気管14aを形成する。ここで、第一吸気管14aの2箇所の溶着箇所を含む溶着振動方向線を線G−Gとすると、溶着振動方向線G−Gに対して直角方向に第一分割管26aと第二分割管28aとが溶着される。第一分割管26bと第二分割管28bとを溶着するために、第一分割管26bは2箇所の第一溶着面34bを有し、第二分割管28bは2箇所の第二溶着面36bを有する。第一分割管26bの第一溶着面34bと第二分割管28bの第二溶着面36bとを溶着して、第二吸気管14bを形成する。ここで、第二吸気管14bの2箇所の溶着箇所を含む溶着振動方向線を線H−Hとすると、溶着振動方向線H−Hに対して直角方向に第一分割管26bと第二分割管28bとが溶着される。この溶着振動方向線H−Hは溶着振動方向線G−Gと平行ではあるが、同一ではない。第一分割管26cと第二分割管28cとを溶着するために、第一分割管26cは2箇所の第一溶着面34cを有し、第二分割管28cは2箇所の第二溶着面36cを有する。第一分割管26cの第一溶着面34cと第二分割管28cの第二溶着面36cとを溶着して、第三吸気管14cを形成する。ここで、第三吸気管14cの2箇所の溶着箇所を含む溶着振動方向線を線G−Gとする(第一吸気管14aの溶着振動方向線G−Gと一致する)と、溶着振動方向線G−Gに対して直角方向に第三分割管26cと第三分割管28cとが溶着される。   In order to weld the first divided tube 26a and the second divided tube 28a, the first divided tube 26a has two first welding surfaces 34a, and the second divided tube 28a has two second welding surfaces 36a. Have The first intake pipe 14a is formed by welding the first weld surface 34a of the first split pipe 26a and the second weld face 36a of the second split pipe 28a. Here, if a welding vibration direction line including two welding locations of the first intake pipe 14a is a line GG, the first split pipe 26a and the second division are perpendicular to the welding vibration direction line GG. The tube 28a is welded. In order to weld the first divided pipe 26b and the second divided pipe 28b, the first divided pipe 26b has two first welding surfaces 34b, and the second divided pipe 28b has two second welding surfaces 36b. Have The first inlet pipe 14b is formed by welding the first welding surface 34b of the first divided pipe 26b and the second welding surface 36b of the second divided pipe 28b. Here, if a welding vibration direction line including two welding locations of the second intake pipe 14b is a line H-H, the first divided pipe 26b and the second division are perpendicular to the welding vibration direction line H-H. The tube 28b is welded. Although this welding vibration direction line HH is parallel to the welding vibration direction line GG, it is not the same. In order to weld the first dividing pipe 26c and the second dividing pipe 28c, the first dividing pipe 26c has two first welding surfaces 34c, and the second dividing pipe 28c has two second welding surfaces 36c. Have The first intake pipe 14c is formed by welding the first weld surface 34c of the first split pipe 26c and the second weld face 36c of the second split pipe 28c. Here, if a welding vibration direction line including two welding locations of the third intake pipe 14c is defined as a line GG (corresponding to the welding vibration direction line GG of the first intake pipe 14a), the welding vibration direction. The third divided tube 26c and the third divided tube 28c are welded in a direction perpendicular to the line GG.

ここで、特定位置のボルト挿通穴16Aの軸18のほぼ延長線上に位置する隣り合う2個の吸気管を、第二吸気管14bと第三吸気管14cとして説明する。第二吸気管14bの溶着振動方向線H−Hは、第三吸気管14cの溶着振動方向線G−Gとは平行であるが、溶着振動方向線G−Gとは異なる位置になるように設定する。また、一方の管である第三吸気管14cの溶着振動方向線G−Gに対して他方の菅である第二吸気管14bの吸気通路24bの中心22bは、溶着振動方向線G−Gに対して略直角方向に離間した位置に配置する。更に、溶着振動方向線G−Gに対して直角方向に2個の管(第二吸気管14bと第三吸気管14c)が重ならないようにする。なお、他方の菅である第二吸気管14bの溶着振動方向線H−Hに対して一方の管である第三吸気管14cの吸気通路24cの中心22cは、溶着振動方向線H−Hに対して略直角方向に離間した位置に配置するようにしても、考え方としては同じである。   Here, two adjacent intake pipes located on substantially the extension line of the shaft 18 of the bolt insertion hole 16A at a specific position will be described as a second intake pipe 14b and a third intake pipe 14c. The welding vibration direction line HH of the second intake pipe 14b is parallel to the welding vibration direction line GG of the third intake pipe 14c, but is located at a position different from the welding vibration direction line GG. Set. In addition, the center 22b of the intake passage 24b of the second intake pipe 14b, which is the other flange, with respect to the welding vibration direction line GG of the third intake pipe 14c, which is one pipe, is aligned with the welding vibration direction line GG. It arrange | positions in the position spaced apart in the substantially right angle direction. Further, the two pipes (second intake pipe 14b and third intake pipe 14c) are prevented from overlapping in a direction perpendicular to the welding vibration direction line GG. The center 22c of the intake passage 24c of the third intake pipe 14c, which is one of the pipes, is aligned with the weld vibration direction line H-H with respect to the welding vibration direction line H-H of the second intake pipe 14b, which is the other flange. However, the concept is the same even if they are arranged at positions separated in a substantially perpendicular direction.

第三吸気管14cの溶着振動方向線G−Gに対して第二吸気管14bを略直角方向に離間させることによって、図3に示すように、第三吸気管14cと第二吸気管14bとの間に隙間空間38を形成することができる。この隙間空間38は、特定位置のボルト挿通穴16Aの軸18のほぼ延長線上に形成する。第三吸気管14cの溶着振動方向線G−Gに対して第二吸気管14bを略直角方向に離間させるとした場合、その第二吸気管14bの離間方向としては、フランジ12から離れる方向(図1や図3で上方)に離間距離を大きくするよう移動させる(第三吸気管14cの溶着振動方向線G−Gと第二吸気管14bの溶着振動方向線H−Hとの間隔が広がる)と、隙間空間38を大きくすることができる。   By separating the second intake pipe 14b in a substantially perpendicular direction with respect to the welding vibration direction line GG of the third intake pipe 14c, as shown in FIG. 3, the third intake pipe 14c, the second intake pipe 14b, A gap space 38 can be formed between them. The gap space 38 is formed on a substantially extended line of the shaft 18 of the bolt insertion hole 16A at a specific position. When the second intake pipe 14b is separated in a substantially perpendicular direction with respect to the welding vibration direction line GG of the third intake pipe 14c, the separation direction of the second intake pipe 14b is a direction away from the flange 12 ( The distance between the welding vibration direction line GG of the third intake pipe 14c and the welding vibration direction line H-H of the second intake pipe 14b is increased so as to increase the separation distance upward (in FIG. 1 and FIG. 3). ) And the gap space 38 can be enlarged.

ここで、図1や図3に示した本発明の内容を、図8や図9と比較しながら説明する。図8や図9に示す従来例では、3個の吸気管(吸気管54a,吸気管54b,吸気管54c)の全ての溶着面(溶着面80a,溶着面82a,溶着面80b,溶着面82b,溶着面80c,溶着面82c)は、同一の溶着振動方向線F−F上に位置する。このため、特定位置のボルト挿通穴56Aの軸の延長線方向に、必ずどれかの吸気管(吸気管54a,吸気管54b,吸気管54)が位置する。   Here, the contents of the present invention shown in FIG. 1 and FIG. 3 will be described in comparison with FIG. 8 and FIG. In the conventional example shown in FIGS. 8 and 9, all the welding surfaces (welding surface 80a, welding surface 82a, welding surface 80b, welding surface 82b) of the three intake pipes (intake pipe 54a, intake pipe 54b, intake pipe 54c). , Welding surface 80c, welding surface 82c) are located on the same welding vibration direction line FF. For this reason, any one of the intake pipes (the intake pipe 54a, the intake pipe 54b, and the intake pipe 54) is always positioned in the extension line direction of the shaft of the bolt insertion hole 56A at the specific position.

これに対して図3に示す本発明では、例えば第三吸気管14cの溶着面(溶着面34c,溶着面36c)の溶着振動方向線G−G上に対し、第二吸気管14bの溶着面(溶着面34b,溶着面36b)を溶着振動方向線G−G上から異なる位置とする。この際、第二吸気管14bの溶着面(溶着面34b,溶着面36b)は溶着振動方向線G−Gと平行とする。更に、第二吸気管14bは、溶着振動方向線G−Gに対して、ほぼ直角方向に移動した位置に配置する。その上、溶着振動方向線G−Gに対して直角方向に2個の管(第二吸気管14bと第三吸気管14c)が重ならないようにする。   On the other hand, in the present invention shown in FIG. 3, for example, the welding surface of the second intake pipe 14b with respect to the welding vibration direction line GG of the welding surface (welding surface 34c, welding surface 36c) of the third intake pipe 14c. (Welding surface 34b, welding surface 36b) are set at different positions from the welding vibration direction line GG. At this time, the welding surfaces (welding surface 34b, welding surface 36b) of the second intake pipe 14b are parallel to the welding vibration direction line GG. Further, the second intake pipe 14b is disposed at a position moved in a direction substantially perpendicular to the welding vibration direction line GG. In addition, the two pipes (second intake pipe 14b and third intake pipe 14c) are prevented from overlapping in a direction perpendicular to the welding vibration direction line GG.

第三吸気管14cの溶着振動方向線G−Gに対して第二吸気管14bをほぼ直角方向に離間した位置に配置するのは、第三吸気管14cと第二吸気管14bとの間に隙間空間38を形成するためである。また、溶着振動方向線G−Gに対して直角方向に第二吸気管14bと第三吸気管14cとが重ならないようにするのは、第一合成樹脂部材30の型成形の際に、第二吸気管14bを構成する第一分割管26bが、第一分割管26aや第一分割管26cと共に形成できるようにするためである。同様に、第二合成樹脂部材32の型成形の際に、第二吸気管14bを構成する第二分割管28bが、第二分割管28aや第二分割管28cと共に形成できるようにするためである。なお、「ほぼ直角方向」としたが、直角方向から若干ずれていても、型成形によって第一分割管26bや第二分割管28bが形成できることがあることから、「ほぼ」という表現を用いた。   The second intake pipe 14b is disposed at a position substantially perpendicular to the welding vibration direction line GG of the third intake pipe 14c between the third intake pipe 14c and the second intake pipe 14b. This is to form the gap space 38. Further, the second intake pipe 14b and the third intake pipe 14c are not overlapped in the direction perpendicular to the welding vibration direction line GG when the first synthetic resin member 30 is molded. This is because the first divided pipe 26b constituting the two intake pipes 14b can be formed together with the first divided pipe 26a and the first divided pipe 26c. Similarly, when the second synthetic resin member 32 is molded, the second divided pipe 28b constituting the second intake pipe 14b can be formed together with the second divided pipe 28a and the second divided pipe 28c. is there. In addition, although “substantially perpendicular direction” is used, the expression “almost” is used because the first divided tube 26b and the second divided tube 28b may be formed by molding even if slightly deviated from the perpendicular direction. .

溶着振動方向線G−G(溶着振動方向線H−H)は、フランジ12の外表面に対して、角度αで傾斜するように設定する。本発明では、溶着振動方向線G−Gをフランジ12の表面に対して角度αで傾斜させ、しかも、第二吸気管14bの吸気通路22bの中心24bを第三吸気管14cの溶着振動方向線G−Gに対して直角方向(図1で上方)に離間して配置する。この結果、図1及び図3に示すように、第二吸気管14bの断面位置を第一吸気管14aの断面位置の上方または斜め上方(図1では、フランジ12を下方とし、吸気管14a,14b,14cを上方とする)に位置させることができる。これによって、図9では第二吸気管54bが存在していた箇所に、図3では第二吸気管14bと第三吸気管14cとの間に隙間空間38を形成することができる。   The welding vibration direction line GG (the welding vibration direction line HH) is set to be inclined at an angle α with respect to the outer surface of the flange 12. In the present invention, the welding vibration direction line GG is inclined at an angle α with respect to the surface of the flange 12, and the center 24b of the intake passage 22b of the second intake pipe 14b is connected to the welding vibration direction line of the third intake pipe 14c. They are spaced apart in the direction perpendicular to GG (upward in FIG. 1). As a result, as shown in FIGS. 1 and 3, the cross-sectional position of the second intake pipe 14b is set above or obliquely above the cross-sectional position of the first intake pipe 14a (in FIG. 1, the flange 12 is set downward, and the intake pipe 14a, 14b and 14c may be positioned upward). As a result, a gap space 38 can be formed between the second intake pipe 14b and the third intake pipe 14c in FIG. 3 where the second intake pipe 54b was present in FIG.

この隙間空間38は、ボルト挿通穴16Aの軸18の延長線が合致するのが望ましい。この隙間空間38は、更に、直線状のインパクトレンチ等の締付け手段40が挿通できる広さとし、かつ、締付け手段40の先端とボルト58の頭部58a(図5)との係合位置を見ることができるような大きさとする。図2は図1の上方(B方向)から見たものであり、この図2において、第二吸気管14bと第三吸気管14cとの間に隙間空間36を通して、ボルト挿通穴16Aを直接見ることができる。   It is desirable that the clearance space 38 is aligned with the extension line of the shaft 18 of the bolt insertion hole 16A. The gap space 38 is further wide enough to allow the fastening means 40 such as a linear impact wrench to be inserted, and the engagement position between the tip of the fastening means 40 and the head 58a (FIG. 5) of the bolt 58 can be seen. The size should be such that 2 is viewed from above (direction B) of FIG. 1. In FIG. 2, the bolt insertion hole 16A is directly seen through the gap space 36 between the second intake pipe 14b and the third intake pipe 14c. be able to.

本発明では、隙間空間38を通して直線状の締付け手段40を挿入することができ、その締付け手段40によって、特定位置のボルト挿通穴16Aに挿通させたボルト58を直接回転させることができる。この結果、締付け手段40にかかる回転力をそのままボルト58に伝えることができるので、従来のようなボールジョイント式インパクトツール等の工具を使用しなくても良くなり、ボルト58の締付け作業を容易にし、ボルト58の締付け力を強くすることができる。   In the present invention, the linear tightening means 40 can be inserted through the gap space 38, and the bolt 58 inserted through the bolt insertion hole 16 </ b> A at a specific position can be directly rotated by the tightening means 40. As a result, the rotational force applied to the tightening means 40 can be transmitted to the bolt 58 as it is, so that it is not necessary to use a conventional tool such as a ball joint type impact tool, and the bolt 58 can be easily tightened. The tightening force of the bolt 58 can be increased.

図3においては、隙間空間38を形成するために、第二吸気管14bを第三吸気管14c(第一吸気管14a)の溶着振動方向線G−Gに対して直角方向に離間させた例を示した。ここで、図3に示した隙間空間38の面積をより広くする例を図4に基づいて説明する。図4においては、図3における第一吸気管14aと第二吸気管14bとの位置をそのまま保持し、第二吸気管14bの溶着振動方向線H−Hに対して、第三吸気管14c(溶着振動方向線G−G)をほぼ直角下方(図4で下方)に離間させたものである。この際、溶着振動方向線G−G(溶着振動方向線H−H)に対して直角方向に2個の管(第二吸気管14bと第三吸気管14c)が重ならないようにする。この結果、図4では、溶着振動方向線H−Hと溶着振動方向線G−Gとの間隔が、図3のそれより大きくなり、図4の隙間空間38の断面積を図3の隙間空間38の断面積より広くすることができる。図4の説明を言い換えると、第三吸気管14cの溶着振動方向線G−Gに対して、ほぼ直角方向に第二吸気管14bを大幅に移動して配置したことと同じことになる。   In FIG. 3, in order to form the clearance space 38, the second intake pipe 14b is separated in the direction perpendicular to the welding vibration direction line GG of the third intake pipe 14c (first intake pipe 14a). showed that. Here, an example in which the area of the gap space 38 shown in FIG. 3 is made larger will be described with reference to FIG. 4, the positions of the first intake pipe 14a and the second intake pipe 14b in FIG. 3 are maintained as they are, and the third intake pipe 14c ( The welding vibration direction line GG) is spaced substantially perpendicularly downward (downward in FIG. 4). At this time, the two pipes (second intake pipe 14b and third intake pipe 14c) are prevented from overlapping in a direction perpendicular to the welding vibration direction line GG (welding vibration direction line HH). As a result, in FIG. 4, the interval between the welding vibration direction line HH and the welding vibration direction line GG is larger than that in FIG. 3, and the cross-sectional area of the gap space 38 in FIG. The cross-sectional area can be larger than 38. In other words, the explanation of FIG. 4 is the same as that the second intake pipe 14b is moved substantially in a direction substantially perpendicular to the welding vibration direction line GG of the third intake pipe 14c.

ここで、溶着振動方向線G−Gとフランジ12の上面とのなす角度α(図1)は、25°≦α≦65°とする。角度αが25°以下になると、第一吸気管14aと第三吸気管14cとの間の距離Lが長くなり、エンジンルーム内の横方向に占める吸気管14の体積が大きくなりすぎる。一方、角度αが65°以上になると、図2に示す第二吸気管14bと第三吸気管14cとの間の隙間空間38が小さくなり、第二吸気管14bと第三吸気管14cとの間の隙間空間38からボルト挿通穴16Aが見えなくなると共に、ボルト58を挿入できなくなる。   Here, an angle α (FIG. 1) formed by the welding vibration direction line GG and the upper surface of the flange 12 is 25 ° ≦ α ≦ 65 °. When the angle α is 25 ° or less, the distance L between the first intake pipe 14a and the third intake pipe 14c becomes long, and the volume of the intake pipe 14 occupying in the lateral direction in the engine room becomes too large. On the other hand, when the angle α is 65 ° or more, the gap space 38 between the second intake pipe 14b and the third intake pipe 14c shown in FIG. 2 is reduced, and the second intake pipe 14b and the third intake pipe 14c are separated from each other. The bolt insertion hole 16A cannot be seen from the gap space 38 therebetween, and the bolt 58 cannot be inserted.

なお、前述の説明においては、3個の吸気管14a,14b,14cについて説明したが、4個以上の吸気管14を有するインテークマニホールド10においても適用することができる。即ち、4個以上の吸気管14を有するインテークマニホールド10においても、特定位置のボルト挿通穴16Aの軸18の延長線に近い2個の吸気管14を特定し、一方の吸気管(例えば吸気管14c)に対して他方の吸気管(吸気管14b)を溶着振動方向線(例えば溶着振動方向線G−G)からほぼ直角方向に離間した位置に配置することにより、隙間空間38を形成することができる。   In the above description, the three intake pipes 14a, 14b, and 14c have been described. However, the present invention can also be applied to the intake manifold 10 having four or more intake pipes 14. That is, also in the intake manifold 10 having four or more intake pipes 14, two intake pipes 14 that are close to the extension line of the shaft 18 of the bolt insertion hole 16A at a specific position are specified, and one intake pipe (for example, the intake pipe) 14c), the other intake pipe (intake pipe 14b) is disposed at a position spaced substantially perpendicular to the welding vibration direction line (for example, the welding vibration direction line GG), thereby forming the gap space 38. Can do.

図1や図2に示すように、特定位置のボルト挿通穴16Aの軸18の延長線上に隙間空間38を形成し、特定位置のボルト挿通穴16Aの軸線と、締付け手段の軸線とが一致することが最も望ましい。しかし、図5に示すように、ボルト58の回転中心軸(特定位置のボルト挿通穴16Aの軸18)と締付け手段40の回転中心軸42が同一直線上にない場合でも(互いの軸の角度が若干ずれていても)、締付け手段40でボルト58を締付けることができる。例えば、特定位置のボルト挿通穴16Aの軸18の軸線上に隙間空間38が存在しない場合でも、締付け手段40でボルト58を締付けることができることがある。即ち、図5において、ボルト58の回転中心軸(ボルト挿通穴16Aの軸18)と締付け手段40の回転中心軸42が角度θ以内の場合であれば、締付け手段40の回転力がボルト58に伝達される場合がある。この図5において、ボルト58の頭部58aがフランジ12の上方に距離hだけ突出しているが、この距離hを無視して角度θを考えるものとする。   As shown in FIGS. 1 and 2, a clearance space 38 is formed on the extension line of the shaft 18 of the bolt insertion hole 16A at a specific position, and the axis line of the bolt insertion hole 16A at the specific position matches the axis line of the tightening means. It is most desirable. However, as shown in FIG. 5, even when the rotation center axis of the bolt 58 (the axis 18 of the bolt insertion hole 16A at a specific position) and the rotation center axis 42 of the tightening means 40 are not on the same straight line (the angle between the axes). The bolt 58 can be tightened by the tightening means 40. For example, the bolt 58 may be tightened by the tightening means 40 even when the gap space 38 does not exist on the axis of the shaft 18 of the bolt insertion hole 16A at a specific position. That is, in FIG. 5, if the rotation center axis of the bolt 58 (the axis 18 of the bolt insertion hole 16A) and the rotation center axis 42 of the tightening means 40 are within an angle θ, the rotational force of the tightening means 40 is applied to the bolt 58. May be transmitted. In FIG. 5, the head 58a of the bolt 58 protrudes above the flange 12 by a distance h, and the angle θ is considered ignoring this distance h.

図6に示すように、特定位置のボルト挿通穴16Aの出口を頂点として、特定位置のボルト挿通穴16Aの軸18を中心軸として、頂角2θの円錐44を描いた場合を仮定する。第二吸気管14bと第三吸気管14cとの間の隙間空間38が、頂角2θの円錐44の体積の中に位置していれば、特定位置のボルト挿通穴16Aの軸18の軸線上に隙間空間38が無くても、プラス締付け手段40でボルト58をエンジン60の雌螺子部36に螺合させることができる。図5や図6に示す角度θは、θ≦15°が望ましい。θが15°を越えると、締付け手段40がボルト58の頭部58aに係合しなくなる。なお、図5において、ボルト58の回転中心軸(ボルト挿通穴16Aの軸18)と、締付け手段40の回転中心軸42とのなす角度θは、15°より小さい角度であれば、締付け手段によるボルト58の締め付けが可能であり、締付け力も所望の力を得ることができる。   As shown in FIG. 6, it is assumed that a cone 44 having an apex angle 2θ is drawn with the exit of the bolt insertion hole 16A at a specific position as a vertex and the axis 18 of the bolt insertion hole 16A at a specific position as a central axis. If the gap space 38 between the second intake pipe 14b and the third intake pipe 14c is located within the volume of the cone 44 having the apex angle 2θ, the axial line of the shaft 18 of the bolt insertion hole 16A at a specific position will be described. Even if there is no gap space 38, the bolt 58 can be screwed into the female screw portion 36 of the engine 60 by the plus tightening means 40. The angle θ shown in FIGS. 5 and 6 is preferably θ ≦ 15 °. When θ exceeds 15 °, the tightening means 40 does not engage with the head portion 58a of the bolt 58. In FIG. 5, if the angle θ formed between the rotation center axis of the bolt 58 (the axis 18 of the bolt insertion hole 16A) and the rotation center axis 42 of the tightening means 40 is less than 15 °, the tightening means The bolt 58 can be tightened, and a desired force can be obtained.

なお、図1において、第二吸気管14bの断面位置を第一吸気管14aの断面位置のほぼ上方に位置させることから、図1における第一吸気管14aの長さは、第二吸気管14bや第三吸気管14cの長さより短く描かれている。しかし、図2に示すように、フランジ12からサージタンク46までの第一吸気管14aの長さは、第二吸気管14bや第三吸気管14cの長さとほぼ同一の長さになるように各吸気管14a,14b,14cの長さが設定されている。   In FIG. 1, since the sectional position of the second intake pipe 14b is positioned substantially above the sectional position of the first intake pipe 14a, the length of the first intake pipe 14a in FIG. Or is drawn shorter than the length of the third intake pipe 14c. However, as shown in FIG. 2, the length of the first intake pipe 14a from the flange 12 to the surge tank 46 is substantially the same as the length of the second intake pipe 14b and the third intake pipe 14c. The length of each intake pipe 14a, 14b, 14c is set.

なお、前述の説明では、合成樹脂製管構造体を内燃機関用インテークマニホールドとして説明したが、2つの合成樹脂部材を溶着するものであって、複数個の管を形成するものであれば、内燃機関用インテークマニホールドに限るものではない。また、第一合成樹脂部材30に3個の第一分割管26a,28b,28cを備え、第二合成樹脂部材32に3個の第二分割管26a,28b,28cを備える例を示したが、第一分割管や第二分割管の数は3個に限るものではない。   In the above description, the synthetic resin pipe structure has been described as an intake manifold for an internal combustion engine. However, as long as two synthetic resin members are welded and a plurality of pipes are formed, an internal combustion engine can be used. It is not limited to the intake manifold for engines. Moreover, although the 1st synthetic resin member 30 is provided with the three 1st division pipes 26a, 28b, and 28c, the 2nd synthetic resin member 32 showed the example provided with the 3rd 2nd division pipes 26a, 28b, and 28c. The number of the first divided pipe and the second divided pipe is not limited to three.

本発明に係る合成樹脂製管構造体の要部断面斜視図である。It is a principal part section perspective view of the synthetic resin pipe structure concerning the present invention. 図1をB方向から見た斜視図である。It is the perspective view which looked at FIG. 1 from the B direction. 図1に示す管の断面の溶着状態を示す構成図である。It is a block diagram which shows the welding state of the cross section of the pipe | tube shown in FIG. 管の断面の溶着状態を示す他の構成図である。It is another block diagram which shows the welding state of the cross section of a pipe | tube. ボルトの回転中心軸と締付け手段の回転中心軸とが傾斜した状態における締付け手段によるボルトの締付け状態を示す断面図である。It is sectional drawing which shows the bolting state of the volt | bolt by the clamping means in the state which the rotation center axis | shaft of the volt | bolt and the rotation center axis | shaft of the clamping means inclined. 特定位置のボルト挿通穴からの傾斜角2θの円錐形を示す斜視図である。It is a perspective view which shows the cone shape of inclination-angle 2theta from the bolt insertion hole of a specific position. 従来のインテークマニホールドの要部斜視図である。It is a principal part perspective view of the conventional intake manifold. 従来の他のインテークマニホールドの要部斜視図である。It is a principal part perspective view of the other conventional intake manifold. 図8に示す吸気管の断面の溶着状態を示す構成図である。It is a block diagram which shows the welding state of the cross section of the intake pipe shown in FIG.

符号の説明Explanation of symbols

10 インテークマニホールド
12 フランジ
14a 第一吸気管
14b 第二吸気管
14c 第三吸気管
16 ボルト挿通穴
16A 特定位置のボルト挿通穴
18 軸
22a 吸気通路
22b 吸気通路
22c 吸気通路
24a 中心
24b 中心
24c 中心
26a 第一分割管
26b 第一分割管
26c 第一分割管
28a 第二分割管
28b 第二分割管
28c 第二分割管
30 第一合成樹脂部材
32 第二合成樹脂部材
38 隙間空間
40 締付け手段
58 ボルト
10 intake manifold 12 flange 14a first intake pipe 14b second intake pipe 14c third intake pipe 16 bolt insertion hole 16A bolt insertion hole 18 at a specific position shaft 22a intake passage 22b intake passage 22c intake passage 24a center 24b center 24c center 26a first One divided pipe 26b First divided pipe 26c First divided pipe 28a Second divided pipe 28b Second divided pipe 28c Second divided pipe 30 First synthetic resin member 32 Second synthetic resin member 38 Gap space 40 Tightening means 58 Bolt

Claims (5)

3個以上の第一分割管を有する第一合成樹脂部材と3個以上の第二分割管を有する第二合成樹脂部材とを溶着して成るものであって、前記3個以上の第一分割管と前記3個以上の第二分割管との溶着によって形成される3個以上の管と、それらの3個以上の管と連結するフランジと、被固定部材と連結するための固定手段を挿通するために前記フランジに形成した複数の挿通穴とを有し、特定位置の前記挿通穴の軸の延長線上付近に隣り合う2個の前記管が位置する合成樹脂製管構造体において、特定位置の前記挿通穴の軸延長線付近に位置する前記2個の隣り合う管において一方の管の中心を通る溶着振動方向線に対して他方の菅は前記溶着振動方向線G−Gに対して略直角方向に離間した位置に配置し、前記溶着振動方向線G−Gに対して直角方向に前記2個の管が重ならないようにし、前記特定位置の挿通穴の軸の延長線上付近で前記2個の管の間に前記締付け工具を挿通できる隙間空間を形成したことを特徴とする合成樹脂製管構造体。   The first synthetic resin member having three or more first divided pipes and the second synthetic resin member having three or more second divided pipes are welded, and the three or more first divided pipes are welded. Three or more pipes formed by welding the pipe and the three or more second divided pipes, a flange connected to the three or more pipes, and a fixing means for connecting to the fixed member are inserted. A synthetic resin pipe structure in which two adjacent pipes are located in the vicinity of the extension line of the shaft of the insertion hole at a specific position. In the two adjacent pipes located near the axial extension line of the insertion hole, the other flange is substantially the same as the welding vibration direction line GG with respect to the welding vibration direction line passing through the center of one of the pipes. It is arranged at a position separated in the perpendicular direction, and with respect to the welding vibration direction line GG The two pipes do not overlap in a perpendicular direction, and a gap space is formed between the two pipes so that the tightening tool can be inserted in the vicinity of the extension line of the shaft of the insertion hole at the specific position. Synthetic resin tube structure. 前記溶着振動方向線G−Gが前記フランジの表面とのなす角度αを25°≦α≦65°の範囲としたことを特徴とする請求項1記載の合成樹脂製管構造体。   2. The synthetic resin pipe structure according to claim 1, wherein an angle α formed by the welding vibration direction line GG with the surface of the flange is in a range of 25 ° ≦ α ≦ 65 °. 前記特定位置の挿通穴の軸と前記隙間空間を挿通する前記締付け工具の挿入方向とのなす角度θをθ≦15°としたことを特徴とする請求項1または2記載の合成樹脂製管構造体。   3. The synthetic resin pipe structure according to claim 1, wherein an angle θ formed between an axis of the insertion hole at the specific position and an insertion direction of the tightening tool passing through the gap space is set to θ ≦ 15 °. body. 前記特定位置の挿通穴の軸延長線が前記隙間空間に合致するようにしたことを特徴とする請求項3記載の合成樹脂製管構造体。   The synthetic resin pipe structure according to claim 3, wherein an axial extension line of the insertion hole at the specific position matches the gap space. 内燃機関用インテークマニホールドとして使用することを特徴とする請求項1乃至4記載の合成樹脂製管構造体。   5. The synthetic resin pipe structure according to claim 1, wherein the synthetic resin pipe structure is used as an intake manifold for an internal combustion engine.
JP2007205238A 2007-08-07 2007-08-07 Intake manifold Active JP4953972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007205238A JP4953972B2 (en) 2007-08-07 2007-08-07 Intake manifold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007205238A JP4953972B2 (en) 2007-08-07 2007-08-07 Intake manifold

Publications (2)

Publication Number Publication Date
JP2009041390A true JP2009041390A (en) 2009-02-26
JP4953972B2 JP4953972B2 (en) 2012-06-13

Family

ID=40442401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007205238A Active JP4953972B2 (en) 2007-08-07 2007-08-07 Intake manifold

Country Status (1)

Country Link
JP (1) JP4953972B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140892A (en) * 2010-12-28 2012-07-26 Mikuni Corp Intake manifold made of resin
JP2012246893A (en) * 2011-05-31 2012-12-13 Daihatsu Motor Co Ltd Resin intake manifold

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036131A (en) * 2000-07-21 2002-02-05 Fuji Heavy Ind Ltd Screw tightening device and screw tightening method
JP2003254178A (en) * 2002-02-28 2003-09-10 Denso Corp Intake device of internal combustion engine
JP2004308585A (en) * 2003-04-08 2004-11-04 Aisan Ind Co Ltd Resin-made intake manifold
JP2005069118A (en) * 2003-08-26 2005-03-17 Mahle Tennex Corp Synthetic resin-made manifold of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036131A (en) * 2000-07-21 2002-02-05 Fuji Heavy Ind Ltd Screw tightening device and screw tightening method
JP2003254178A (en) * 2002-02-28 2003-09-10 Denso Corp Intake device of internal combustion engine
JP2004308585A (en) * 2003-04-08 2004-11-04 Aisan Ind Co Ltd Resin-made intake manifold
JP2005069118A (en) * 2003-08-26 2005-03-17 Mahle Tennex Corp Synthetic resin-made manifold of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140892A (en) * 2010-12-28 2012-07-26 Mikuni Corp Intake manifold made of resin
JP2012246893A (en) * 2011-05-31 2012-12-13 Daihatsu Motor Co Ltd Resin intake manifold

Also Published As

Publication number Publication date
JP4953972B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
US7673457B2 (en) Turbine engine combustion chamber with tangential slots
KR101257190B1 (en) Cylinder head
WO2017213263A1 (en) Joint for structural material and structure
US7252177B2 (en) Exhaust system for engine
JP5529411B2 (en) Flange separation prevention device
JP4953972B2 (en) Intake manifold
KR20150112025A (en) Gas discharge duct
JP4357362B2 (en) Joint structure of branch connection for common rail
JP2008525745A (en) Flange
JP2012197643A (en) Steel pipe combined holed steel plate dowel
CN103016863A (en) Pipeline connecting structure and hydraulic pipeline
JP2007192176A (en) Four-cycle engine
JP2012041900A (en) Fastening structure of intake system component
JP5425645B2 (en) Intake manifold fixing structure
JP2009014092A (en) Lining structure of pipleline
JP2010090862A (en) Fastening structure of exhaust manifold
JP3002092B2 (en) Segment joint structure
JP2009243376A (en) Egr cooler pipe mounting structure
JP5839842B2 (en) Resin intake manifold
JP2009030441A (en) Synthetic resin pipe
JP4854607B2 (en) Segment joint structure
JP5510245B2 (en) Engine intake system
WO2019131539A1 (en) Fuel delivery pipe
JP3942919B2 (en) Segment bonded structure and its segments
JP6842710B2 (en) Fuel supply system for automobiles and automobiles using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

R150 Certificate of patent or registration of utility model

Ref document number: 4953972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250