JP2009039669A - Settling method and apparatus of slurry, and waste incineration facility - Google Patents

Settling method and apparatus of slurry, and waste incineration facility Download PDF

Info

Publication number
JP2009039669A
JP2009039669A JP2007208692A JP2007208692A JP2009039669A JP 2009039669 A JP2009039669 A JP 2009039669A JP 2007208692 A JP2007208692 A JP 2007208692A JP 2007208692 A JP2007208692 A JP 2007208692A JP 2009039669 A JP2009039669 A JP 2009039669A
Authority
JP
Japan
Prior art keywords
slag
sludge
cooling water
bottom plate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007208692A
Other languages
Japanese (ja)
Other versions
JP4901637B2 (en
Inventor
Toshio Hama
利雄 濱
Makoto Katsuki
誠 勝木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2007208692A priority Critical patent/JP4901637B2/en
Publication of JP2009039669A publication Critical patent/JP2009039669A/en
Application granted granted Critical
Publication of JP4901637B2 publication Critical patent/JP4901637B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To fluidize slag sludge settled from slag cooling water containing slag sludge of relatively large specific gravity, to collect the slag sludge in a collection basin, and to continuously take it out. <P>SOLUTION: The apparatus is provided with a settling tank 52 having a tilted bottom plate 53 tilted from the upstream upper position toward the downstream lower position at an angle less than the angle of repose of the slag sludge in water, a water supply port 56a disposed at the upstream of the settling tank 52 and supplying slag cooling water, a partition plate 55 disposed at the intermediate position of the settling tank 52 and forming an orifice 55a between itself and the tilted bottom plate 53, the collection basin 54 provided to the downstream end of the tilted bottom plate 53, a slag sludge discharge port 57a continuously discharging the slag sludge from the collection basin 54, and a water discharge port 60a discharging only supernatant from the downstream upper part of the settling tank 52. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、たとえばスラグ冷却水などのスラリーからスラグ汚泥などのスラリーを沈降分離して連続して取り出すスラリーの沈降分離方法および装置ならびにそのスラリーの沈降分離装置を備えた廃棄物焼却処理設備に関する。   The present invention relates to a method and apparatus for settling and separating a slurry such as slag sludge from a slurry such as slag cooling water and continuously taking it out, and a waste incineration treatment facility equipped with the settling and separating apparatus for the slurry.

図6に示すように、汚水槽1の小型化を図るために、下流側に垂下されて底部近傍に開口された吸込み管2から吸い込んだ汚泥を、分配器3により移送水と戻り水とに分けて、戻り水を戻り管4から汚水槽1の上流側の底部に戻し、戻り水のエネルギーにより底部に沈殿した汚泥を流動化して吸込み管2から吸引排出するものが特許文献1に開示されている。   As shown in FIG. 6, in order to reduce the size of the sewage tank 1, sludge sucked from a suction pipe 2 that is suspended downstream and opened in the vicinity of the bottom is converted into transfer water and return water by a distributor 3. Separately, Patent Document 1 discloses that the return water is returned from the return pipe 4 to the bottom of the upstream side of the sewage tank 1, and sludge settled on the bottom is fluidized by the energy of the return water and sucked and discharged from the suction pipe 2. ing.

また前記汚水槽1は、左右の側壁1aの下部に、上位外側から下位中央側に傾斜する傾斜壁1bがそれぞれ設けられて、底部1cが上下流方向に細長い形状に形成されている。
特開2003−334579
Further, the sewage tank 1 is provided with inclined walls 1b inclined from the upper outer side to the lower central side at the lower portions of the left and right side walls 1a, respectively, and the bottom 1c is formed in an elongated shape in the upstream and downstream directions.
JP2003-334579

しかしながら、沈降分離される汚泥スラリーが、比重の小さい下水汚泥の場合には、小さいエネルギー(流速)で汚泥を流動化させることができるが、たとえば比重の大きいスラグ汚泥(微粒状物)の場合は、極めて大きいエネルギーでないとスラグ汚泥を流動化して吸込み管まで流送することができない。また水中のスラグ汚泥の安息角が約40乃至45°であることから、傾斜壁1bの傾斜角が大きく、汚水槽1の深さが深くなるという問題があった。   However, when the sludge slurry to be settled is sewage sludge with a small specific gravity, the sludge can be fluidized with a small energy (flow velocity). For example, in the case of a slag sludge (fine particulate matter) with a large specific gravity Unless the energy is extremely large, the slag sludge cannot be fluidized and sent to the suction pipe. Further, since the repose angle of the slag sludge in water is about 40 to 45 °, there is a problem that the inclination angle of the inclined wall 1b is large and the depth of the sewage tank 1 becomes deep.

本発明は上記問題点を解決して、スラリー中で沈降される微粒状物を良好に流下して連続的に取り出すことができ、比較的比重の大きいスラグ汚泥であっても良好に分離可能なスラリーの沈降分離方法および装置と、この沈降分離装置を利用して連続的に取り出されたスラグ汚泥を良好に処理できる焼却処理設備を提供することを目的とする。   The present invention solves the above-mentioned problems, allows fine particles settled in the slurry to flow down and continuously take out, and even slag sludge having a relatively large specific gravity can be separated satisfactorily. An object of the present invention is to provide a method and apparatus for sedimentation and separation of slurry, and an incineration treatment facility that can satisfactorily treat slag sludge taken out continuously using the sedimentation and separation apparatus.

上記問題点を解決するために、請求項1記載のスラリーの沈降分離方法は、スラリーに含まれる微粒状物の水中の安息角未満で上流側上位から下流側下位に傾斜する傾斜底板を有する沈降槽に、スラリーを上流側から供給し、スラリーを、沈降槽の上下流方向の中間位置に配置されて沈降槽を横断方向に仕切る仕切り板と傾斜底板との間に形成されたオリフィスを通過させて傾斜底板上に沿って流送することにより、傾斜底板上に沈降した沈降微粒状物を下流側に流下して、傾斜底板の下流端に設けられた集合枡に集め、沈降槽の下流側から上層の上澄み水を排出し、前記集合枡の沈降微粒状物を吸引して連続的に抜き出すものである。   In order to solve the above-mentioned problem, the method for sedimentation and separation of slurry according to claim 1 is a sedimentation method including an inclined bottom plate that is inclined from the upstream upper side to the downstream lower side at less than the angle of repose of the fine particles contained in the slurry. Slurry is supplied to the tank from the upstream side, and the slurry is passed through an orifice formed between a partition plate and an inclined bottom plate that are arranged at an intermediate position in the upstream and downstream directions of the settling tank and partition the settling tank in the transverse direction. By flowing along the inclined bottom plate, the settled fine particles settled on the inclined bottom plate flow down to the downstream side, and are collected in a collecting tub provided at the downstream end of the inclined bottom plate, and downstream of the settling tank. The supernatant water of the upper layer is discharged from the slag, and the settled fine particles of the aggregate are sucked out continuously.

請求項2記載のスラリーの沈降分離方法は、請求項1記載の方法において、スラリーを、溶融スラグを冷却して水砕スラグを生成した後のスラグ冷却水とするとともに、微粒状物をスラグ汚泥とし、傾斜底板の傾斜角を10°以上とし、オリフィスにおけるスラグ冷却水の流速を15cm/秒以上とし、沈降槽の下流側で上澄み水を排出する排水速度を、上澄み水の上昇速度がスラグ汚泥の沈降速度未満となるように設定したものである。   The method for settling and separating slurry according to claim 2 is the method according to claim 1, wherein the slurry is slag cooling water after cooling the molten slag to produce granulated slag, and the particulate matter is slag sludge. The inclination angle of the inclined bottom plate is set to 10 ° or more, the flow rate of the slag cooling water at the orifice is set to 15 cm / second or more, the drainage speed at which the supernatant water is discharged downstream of the settling tank, and the rising speed of the supernatant water is slag sludge Is set to be less than the settling velocity of

請求項3記載のスラリーの沈降分離装置は、スラリーに含まれる微粒状物の水中の安息角未満で上流側上位から下流側下位に傾斜する傾斜底板を有する沈降槽と、沈降槽の上流側に配置されてスラリーを供給する給水口と、沈降槽の上下流方向の中間位置で配置されて沈降槽を横断方向に仕切るとともに傾斜底板との間にオリフィスを形成する仕切り板と、前記傾斜底板の下流端に設けられた集合枡と、前記集合枡に集められた沈降微粒状物を連続して排出する微粒状物排出口と、沈殿槽の下流側上部から上澄み水を排出する排水口とを具備したものである。   The settling apparatus for slurry according to claim 3 has a settling tank having an inclined bottom plate that is inclined from the upper upstream side to the lower downstream side at an angle of repose of the fine particulate matter contained in the slurry, and upstream of the settling tank. A water supply port arranged to supply the slurry, a partition plate arranged at an intermediate position in the upstream and downstream direction of the settling tank to partition the settling tank in the transverse direction and form an orifice between the inclined bottom plate, and the inclined bottom plate Collecting soot provided at the downstream end, fine particulate discharge port for continuously discharging the settled fine particulate matter collected in the collective soot, and drainage port for discharging the supernatant water from the upper downstream side of the settling tank It is equipped.

請求項4記載のスラリーの沈降分離装置は、請求項3記載の構成において、スラリーを、溶融スラグを冷却して水砕スラグを生成した後のスラグ冷却水とするとともに、微粒状物をスラグ汚泥とし、傾斜底板の傾斜角を10°以上とし、オリフィスにおけるスラグ冷却水の流速を15cm/秒以上としたものである。   According to a fourth aspect of the present invention, there is provided the slurry settling / separation apparatus according to the third aspect, wherein the slurry is slag cooling water after the molten slag is cooled to produce the granulated slag, and the fine particulate matter is slag sludge. The inclination angle of the inclined bottom plate is 10 ° or more, and the flow rate of the slag cooling water at the orifice is 15 cm / second or more.

請求項5記載のスラリーの沈降分離装置は、請求項4記載の構成において、給水口を傾斜底板に沿って下流側にスラグ冷却水を送り出すように配置し、下流側で排水口より下位のスラグ冷却水中に、スラグ汚泥の浮上を防止する浮上防止部材を配置したものである。   According to a fifth aspect of the present invention, there is provided the slurry settling / separating device according to the fourth aspect, wherein the water supply port is arranged so as to send the slag cooling water downstream along the inclined bottom plate, and the slag lower than the drain port on the downstream side. In the cooling water, a levitation preventing member for preventing the slag sludge from floating is disposed.

請求項6記載の廃棄物焼却処理設備は、廃棄物を焼却する廃棄物焼却炉と、当該廃棄物焼却炉から排出される飛灰と焼却灰とを溶融する灰溶融炉と、当該灰溶融炉から排出された溶融スラグを冷却水により冷却して水砕スラグを生成する水砕スラグ生成装置と、当該水砕スラグ生成装置から排出されたスラグ冷却水からスラグ汚泥を沈降分離する請求項4記載のスラリーの沈降分離装置とを具備し、前記水砕スラグ生成装置から前記沈降分離装置に送られてスラグ汚泥を分離した上澄み水を、上澄み水槽を介して前記水砕スラグ生成装置に冷却水として循環させる冷却水循環ラインと、前記沈降分離装置から排出されたスラグ汚泥を、透水性を有する脱水収納袋に貯留して脱水する汚泥回収タンクに送るスラグ汚泥回収ラインと、前記脱水収納袋から排水された脱水後の冷却水を冷却水循環ラインに戻して再循環させる冷却水回収ラインと、脱水後のスラグ汚泥を廃棄物焼却炉に供給して再焼却するスラグ汚泥再処理ラインとを有するものである。   The waste incineration treatment facility according to claim 6 includes a waste incinerator for incinerating waste, an ash melting furnace for melting fly ash and incinerated ash discharged from the waste incinerator, and the ash melting furnace. The granulated slag production | generation apparatus which cools the molten slag discharged | emitted from the cooling water with a cooling water and produces | generates granulated slag, and slag sludge is settled and separated from the slag cooling water discharged | emitted from the said granulated slag production | generation apparatus. The supernatant water separated from the slag sludge by being sent from the granulated slag generator to the sedimentation separator is supplied to the granulated slag generator via the supernatant water tank as cooling water. A cooling water circulation line for circulation, a slag sludge recovery line for sending slag sludge discharged from the settling separator to a sludge recovery tank for storing and dewatering in a water-permeable dewatering storage bag; A cooling water recovery line that recirculates the dewatered cooling water drained from the bag back to the cooling water circulation line, and a slag sludge reprocessing line that supplies the dewatered slag sludge to the waste incinerator and reincinerates it. It is what you have.

請求項1または3記載の発明によれば、傾斜底板の傾斜角による滑落作用と、冷却水による搬送作用とにより、傾斜底板上に沈降する微粒状物を沈殿、堆積させることなく、スラリーにより良好に集合枡に流下させることができ、集合枡から連続的に沈降微粒状物を取り出すことができる。また傾斜底板の傾斜角を安息角未満にできることから、沈降槽の深さを小さくすることができる。   According to the invention described in claim 1 or 3, it is better for the slurry without causing precipitation and accumulation of fine particles settled on the inclined bottom plate by the sliding action due to the inclination angle of the inclined bottom plate and the conveying action by the cooling water. It is possible to flow down to the aggregate soot, and the settled fine particles can be continuously taken out from the aggregate soot. Moreover, since the inclination angle of the inclined bottom plate can be less than the repose angle, the depth of the sedimentation tank can be reduced.

請求項2記載の発明によれば、オリフィスにおけるスラグ冷却水の流速を15cm/秒以上とすることにより、比重の大きいスラグ汚泥を傾斜底板に沿って確実に下流側に押し流し、傾斜底板上に沈殿、堆積するのを防止することができる。また下流側においてスラグ冷却水を排水する排水速度を、スラグ冷却水の上昇速度がスラグ汚泥の沈降速度未満になるように設定することによって、上澄み水に同伴されるスラグ微粒状物を少なくすることができ、スラグ冷却水とスラグ汚泥とを良好に分離することができる。   According to the invention of claim 2, by setting the flow rate of the slag cooling water at the orifice to 15 cm / second or more, the slag sludge having a large specific gravity is surely pushed downstream along the inclined bottom plate and settled on the inclined bottom plate. , Can prevent deposition. Also, by setting the drainage speed for draining slag cooling water on the downstream side so that the rising speed of slag cooling water is less than the settling speed of slag sludge, the amount of fine slag particles entrained in the supernatant water should be reduced. And slag cooling water and slag sludge can be separated well.

請求項4記載の発明によれば、オリフィスにおけるスラグ冷却水の流速を15cm/秒以上とすることにより、比重の大きいスラグ汚泥を傾斜底板に沿って確実に下流側に押し流し、傾斜底板上に沈殿、堆積するのを防止することができる。   According to the invention of claim 4, by setting the flow rate of the slag cooling water at the orifice to 15 cm / second or more, the slag sludge having a large specific gravity is surely pushed downstream along the inclined bottom plate and settled on the inclined bottom plate. , Can prevent deposition.

請求項5記載の発明によれば、給水口からスラグ冷却水をオリフィスに向かって供給することにより、給水口の流速から減速されない状態でスラグ冷却水をオリフィスに到達させて流速を保持することができ、スラグ汚泥の沈殿、堆積防止に寄与することができる。   According to the fifth aspect of the present invention, by supplying slag cooling water from the water supply port toward the orifice, the slag cooling water can reach the orifice without being decelerated from the flow rate of the water supply port, and the flow rate can be maintained. Can contribute to the prevention of sedimentation and accumulation of slag sludge.

請求項6記載の発明によれば、冷却水循環ラインにより、水砕スラグ生成装置のスラグ冷却水を、沈降分離装置と上澄み水槽を介して循環させるとともに、冷却水回収ラインにより、脱水収納袋を使用して汚泥スラグから脱水された水を冷却水循環ラインに戻すことで、スラグ冷却水の有効利用を図ることができる。さらに沈降槽から連続して排出されるスラグ汚泥を脱水収納袋に入れて脱水した後、スラグ汚泥再処理ラインにより、脱水後のスラグ汚泥を脱水収納袋を介して容易に廃棄物焼却炉に供給して再焼却処理することができる。また脱水収納袋を使用することで、廃棄物焼却炉への搬入を容易に行うことができ、さらに底部に堆積されたスラグ汚泥層がフィルタの役割をして、スラグ汚泥の微細粒の排出を効果的に防止することができ、スラグ汚泥とスラグ冷却水とを効果的に分離することができる。   According to the sixth aspect of the present invention, the slag cooling water of the granulated slag generation device is circulated through the settling separator and the supernatant water tank by the cooling water circulation line, and the dewatering storage bag is used by the cooling water recovery line. By returning the water dehydrated from the sludge slag to the cooling water circulation line, the slag cooling water can be effectively used. Furthermore, after the slag sludge discharged continuously from the settling tank is put in a dewatering storage bag and dehydrated, the slag sludge reprocessing line easily supplies the dewatered slag sludge to the waste incinerator through the dewatering storage bag. And can be re-incinerated. In addition, by using a dewatering storage bag, it can be easily carried into a waste incinerator, and the slag sludge layer deposited on the bottom acts as a filter to discharge fine particles of slag sludge. It can prevent effectively and can isolate | separate slag sludge and slag cooling water effectively.

以下、本発明の実施の形態を図1〜図5に基づいて説明する。
[実施の形態1]
スラリーの沈降分離装置を備えた廃棄物焼却処理設備の実施の形態1を図1〜図3を参照して説明する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[Embodiment 1]
Embodiment 1 of a waste incineration processing facility equipped with a slurry sedimentation separator will be described with reference to FIGS.

この廃棄物焼却処理設備は、図3に示すように、廃棄物を焼却する廃棄物焼却炉11と、廃棄物焼却炉11から排出される焼却灰および飛灰を加熱溶融する灰溶融炉21と、灰溶融炉21から排出される溶融スラグを水冷して水砕スラグを生成する水砕スラグ生成装置31とを具備し、前記水砕スラグ生成装置31の冷却水循環ライン34に本発明に係る沈降分離装置51が設置されている。   As shown in FIG. 3, this waste incineration treatment facility includes a waste incinerator 11 that incinerates waste, an ash melting furnace 21 that heats and melts incineration ash and fly ash discharged from the waste incinerator 11, and And a granulated slag generating device 31 for generating a granulated slag by water-cooling the molten slag discharged from the ash melting furnace 21, and settling in the cooling water circulation line 34 of the granulated slag generating device 31 according to the present invention. A separation device 51 is installed.

廃棄物焼却炉11は、たとえばストーカ式焼却炉で、ごみピット13に貯留された廃棄物をごみホッパ12aから順次炉本体12内に供給し、火格子12b上で廃棄物の乾燥・燃焼・後燃焼を順次行うものである。そして焼却炉本体12で発生する排ガスを処理する排ガスライン14では、排ガスがガス冷却塔15や集塵用のバグフィルタ16などにより処理された後、煙突17から放出される。また焼却炉本体12から排出される焼却灰は、粉砕や金属除去などの処理を行った後、灰貯留ホッパ18に溜められ、さらにバグフィルタ16で捕集された飛灰はダスト貯留ホッパ19に溜められる。   The waste incinerator 11 is, for example, a stoker-type incinerator, and sequentially supplies waste stored in the garbage pits 13 from the waste hopper 12a into the furnace body 12, and the waste is dried, burned, and post-treated on the grate 12b. Combustion is performed sequentially. In the exhaust gas line 14 for processing the exhaust gas generated in the incinerator main body 12, the exhaust gas is discharged from the chimney 17 after being processed by the gas cooling tower 15, the dust collecting bag filter 16, and the like. The incinerated ash discharged from the incinerator main body 12 is subjected to processing such as pulverization and metal removal, and then stored in the ash storage hopper 18, and the fly ash collected by the bag filter 16 is stored in the dust storage hopper 19. Can be stored.

灰溶融炉21は、たとえば炉本体22の底部に収容されたベースメタル23と、天井部から昇降自在に垂下された陽電極24および陰電極25との間で形成したアークプラズマにより、灰ホッパ22aから供給された灰を加熱溶融し、オーバーフローした溶融スラグを水砕スラグ生成装置31に供給するものである。   The ash melting furnace 21 is formed of, for example, an ash hopper 22a by an arc plasma formed between a base metal 23 accommodated at the bottom of the furnace body 22 and a positive electrode 24 and a negative electrode 25 that are suspended from the ceiling. The ash supplied from is heated and melted, and the overflowed molten slag is supplied to the granulated slag generating device 31.

水砕スラグ生成装置31は、冷却水を貯留した水冷槽32に溶融スラグを投下して急冷することにより、たとえばアスファルトなどの骨材に利用可能な粒度と強度を有する水砕スラグを生成するもので、スクレーパコンベヤ等からなるスラグ取出し装置33により、水冷槽32から水砕スラグが取り出される。   The granulated slag production | generation apparatus 31 produces | generates the granulated slag which has the particle size and intensity | strength which can be utilized for aggregates, such as asphalt, by dropping molten slag into the water cooling tank 32 which stored the cooling water, and quenching rapidly, for example Then, the granulated slag is taken out from the water-cooled tank 32 by the slag take-out device 33 composed of a scraper conveyor or the like.

水冷槽32において、溶融スラグを冷却した後のスラグ汚泥を含むスラリーであるスラグ冷却水(以下、冷却水という)を循環して再利用する冷却水循環ライン34が設けられており、この冷却水循環ライン34には、冷却水に同伴された比較的大きい粒状水砕スラグを分離する水砕スラグ分離装置41と、冷却水からスラグ汚泥(微粒状物)を沈降分離する沈降槽52を備えた沈降分離装置51と、沈降槽52から取り出された上澄み水をさらに沈殿させて微粒状物を分離する上澄み水槽42と、冷却水を循環させる循環ポンプ43と、冷却水から熱回収する熱交換器44とが順に介在されている。この冷却水循環ライン34は、水冷槽32から水砕スラグ分離装置41を介して沈降槽52に至る回収ライン部34aと、上澄み水槽42から循環ポンプ43および熱交換器44を介して水冷槽32に至る戻しライン部34bとからなり、沈降槽52と上澄み水槽42との間に上澄み水排水管60が接続されている。   The water cooling tank 32 is provided with a cooling water circulation line 34 for circulating and reusing slag cooling water (hereinafter referred to as cooling water) that is a slurry containing slag sludge after cooling the molten slag. 34 includes a granulated slag separation device 41 that separates relatively large granular granulated slag accompanied by cooling water, and a sedimentation separation that includes a sedimentation tank 52 that settles and separates slag sludge (fine particulate matter) from the cooling water. An apparatus 51; a supernatant water tank 42 that further precipitates the supernatant water taken out from the settling tank 52 to separate fine particles; a circulation pump 43 that circulates cooling water; and a heat exchanger 44 that recovers heat from the cooling water. Are in turn. The cooling water circulation line 34 is supplied from the water cooling tank 32 to the sedimentation tank 52 via the granulated slag separation device 41 and from the supernatant water tank 42 to the water cooling tank 32 via the circulation pump 43 and the heat exchanger 44. A supernatant water drain pipe 60 is connected between the settling tank 52 and the supernatant water tank 42.

また沈降槽52で分離されたスラグ汚泥を排出するスラグ汚泥回収ライン37には、集合枡54内のスラグ汚泥を吸引回収し搬送するスラリーポンプ71と、スラグ汚泥を脱水処理する複数の汚泥回収タンク72が設置されている。各汚泥回収タンク72は、スラグ汚泥を収容する透水性の脱水収納袋(フレキシブルコンテナ)73と、この脱水収納袋73からろ過されて汚泥回収タンク72に溜まった脱水ろ過水を汲み上げる回収ポンプ74とを具備し、スラグ汚泥を脱水収納袋73に入れて所定時間を保持することにより、スラグ汚泥を脱水するように構成されている。この脱水収納袋73では、底部に堆積されたスラグ汚泥層がフィルタの役割をして、スラグ汚泥の微細粒の排出を防止し、スラグ汚泥と冷却水とを効果的に分離することができる。さらに回収ポンプ74と上澄み水槽42とを接続する冷却水回収ライン35が設けられており、脱水収納袋73により汚泥スラグから脱水されたろ過水を上澄み水槽42に戻して冷却水循環ライン34に回収することができる。   The slag sludge recovery line 37 that discharges the slag sludge separated in the settling tank 52 includes a slurry pump 71 that sucks and collects and transfers the slag sludge in the collecting tank 54, and a plurality of sludge recovery tanks that dehydrate the slag sludge. 72 is installed. Each sludge recovery tank 72 includes a water-permeable dewatering storage bag (flexible container) 73 that stores slag sludge, and a recovery pump 74 that pumps up the dewatered filtered water that has been filtered from the dewatering storage bag 73 and accumulated in the sludge recovery tank 72. The slag sludge is dehydrated by putting the slag sludge in the dewatering storage bag 73 and holding it for a predetermined time. In the dewatering storage bag 73, the slag sludge layer deposited on the bottom serves as a filter, prevents discharge of fine particles of the slag sludge, and can effectively separate the slag sludge from the cooling water. Further, a cooling water recovery line 35 connecting the recovery pump 74 and the supernatant water tank 42 is provided, and the filtered water dehydrated from the sludge slag by the dewatering storage bag 73 is returned to the supernatant water tank 42 and recovered in the cooling water circulation line 34. be able to.

さらに各汚泥回収タンク72とごみピット13の間にスラグ汚泥再処理ライン36が設けられて、各汚泥回収タンク72で脱水収納袋73内で脱水された後のスラグ汚泥が脱水収納袋73を介してごみピット13に搬送され、脱水収納袋73からスラグ汚泥がごみピット13に投入されて廃棄物焼却炉11で再焼却される。   Further, a slag sludge reprocessing line 36 is provided between each sludge collection tank 72 and the waste pit 13, and the slag sludge after being dehydrated in the dewatering storage bag 73 in each sludge collection tank 72 is passed through the dewatering storage bag 73. The slag sludge is transferred from the dewatering storage bag 73 to the garbage pit 13 and reincinerated in the waste incinerator 11.

上記構成において、ごみピット13に貯留された廃棄物が廃棄物焼却炉11に供給されて焼却され、焼却炉本体12から排出され灰貯留ホッパ18に溜められた焼却灰と、バグフィルタ16で捕集されてダスト貯留ホッパ19に溜められた飛灰とが灰溶融炉21に供給される。灰溶融炉21に投入された灰は、陽電極24および陰電極25とベースメタル23との間で形成されたアークプラズマにより加熱溶融されて溶融スラグとなり、オーバーフローした溶融スラグが水砕スラグ生成装置31の水冷槽32に排出する。   In the above configuration, the waste stored in the garbage pit 13 is supplied to the waste incinerator 11 and incinerated. The incinerated ash discharged from the incinerator main body 12 and stored in the ash storage hopper 18 is collected by the bag filter 16. The fly ash collected and stored in the dust storage hopper 19 is supplied to the ash melting furnace 21. The ash charged into the ash melting furnace 21 is heated and melted by the arc plasma formed between the positive electrode 24 and the negative electrode 25 and the base metal 23 to form molten slag, and the overflowed molten slag is converted into a granulated slag generation device. It discharges to 31 water-cooled tank 32.

水砕スラグ生成装置31では、水冷槽32の冷却水に投入されて溶融スラグが急冷されることにより水砕スラグが生成され、この水砕スラグはスラグ取出し装置33により水冷槽32から取り出される。   In the granulated slag generation device 31, the granulated slag is generated by being poured into the cooling water of the water-cooled tank 32 and rapidly cooling the molten slag, and this granulated slag is taken out from the water-cooled tank 32 by the slag take-out device 33.

水冷槽32の冷却水は、冷却水循環ライン34により水砕スラグ分離装置41を介して沈降分離装置51の沈降槽52に送られ、上澄み水とスラグ汚泥とに分離される。そして沈降槽52から取り出された上澄み水は、上澄み水槽42でさらに沈殿されてスラグ汚泥の微粒状物が分離された後、循環ポンプ43により熱交換器44を介して水冷槽32に循環される。また沈降槽52で分離されたスラグ汚泥は、スラグ汚泥回収ライン37により、スラリーポンプ71を介して各汚泥回収タンク72の脱水収納袋73に送られ、脱水収納袋73により脱水処理される。脱水された水は、回収ポンプ74により冷却水回収ライン35を介して上澄み水槽42に送られる。またスラグ汚泥は、スラグ汚泥再処理ライン36を介してごみピット13に搬入され廃棄物焼却炉11で再焼却される。   The cooling water in the water cooling tank 32 is sent to the sedimentation tank 52 of the sedimentation separation apparatus 51 via the granulated slag separation apparatus 41 by the cooling water circulation line 34 and separated into supernatant water and slag sludge. The supernatant water taken out from the sedimentation tank 52 is further precipitated in the supernatant water tank 42 to separate fine particles of slag sludge, and then circulated to the water cooling tank 32 through the heat exchanger 44 by the circulation pump 43. . The slag sludge separated in the settling tank 52 is sent to the dewatering storage bags 73 of the sludge recovery tanks 72 via the slurry pump 71 by the slag sludge recovery line 37 and dehydrated by the dewatering storage bags 73. The dehydrated water is sent to the supernatant water tank 42 by the recovery pump 74 through the cooling water recovery line 35. Further, the slag sludge is carried into the waste pit 13 via the slag sludge reprocessing line 36 and reincinerated in the waste incinerator 11.

次に沈降分離装置51について説明する。
図1,図2に示すように、沈降槽52が前後板52a,52bと左右の側板52c,52dと底板52eと上面カバー板52fとで箱体形に形成され、沈降槽52内に上流側上位から下流側下位に所定の傾斜角α(図では20°)で傾斜する傾斜底板53が配置され、また傾斜底板53の下流端にスラグ汚泥を集める集合枡54が設けられている。そして上下流方向の中間位置、たとえば沈降槽52の長さ:Lの0.3×L〜0.7×Lの範囲から選択された所定位置に1枚の仕切り板55が横断方向に配置され、沈降槽52を上流室52Uと下流室52Dとに分離するとともに、仕切り板55と傾斜底板53との間に、たとえば所定高さのオリフィス55aが全幅方向に形成されている。なお、この沈降槽52において、たとえば冷却水量:104m/h、仕切り板55の幅3000mm、オリフィス55aでの必要流速:15cm/秒とした場合のオリフィス55aの高さ:dは6.4cmである。
Next, the sedimentation separator 51 will be described.
As shown in FIGS. 1 and 2, a settling tank 52 is formed in a box shape by front and rear plates 52a and 52b, left and right side plates 52c and 52d, a bottom plate 52e, and an upper cover plate 52f. An inclined bottom plate 53 that is inclined at a predetermined inclination angle α (20 ° in the figure) is arranged downstream from the bottom, and a collecting rod 54 that collects slag sludge is provided at the downstream end of the inclined bottom plate 53. Then, one partition plate 55 is arranged in the transverse direction at a predetermined position selected from an intermediate position in the upstream / downstream direction, for example, a length of the sedimentation tank 52: 0.3 × L to 0.7 × L. The sedimentation tank 52 is separated into an upstream chamber 52U and a downstream chamber 52D, and an orifice 55a having a predetermined height, for example, is formed in the entire width direction between the partition plate 55 and the inclined bottom plate 53. In this settling tank 52, for example, when the cooling water amount is 104 m 3 / h, the partition plate 55 has a width of 3000 mm, and the required flow velocity at the orifice 55 a is 15 cm / second, the height of the orifice 55 a is d 6.4 cm. is there.

ところで、スラグ汚泥の水中での安息角は約40°〜45°であり、傾斜底板53の傾斜角αが41度を越えると、沈降したスラグ汚泥は、傾斜底板53上に沿って自重で滑落し集合枡54に集められることになるが、傾斜底板53の傾斜角αが大きいため、深い沈降槽が必要となり、また沈降に必要な時間も考慮すると、上下流方向に十分な長さが必要で、設置スペースの確保が困難になる。   By the way, the angle of repose of slag sludge in water is about 40 ° to 45 °, and when the inclination angle α of the inclined bottom plate 53 exceeds 41 degrees, the settled slag sludge slides under its own weight along the inclined bottom plate 53. However, since the inclination angle α of the inclined bottom plate 53 is large, a deep sedimentation tank is required, and considering the time required for sedimentation, a sufficient length in the upstream and downstream directions is necessary. This makes it difficult to secure the installation space.

ここで発明者等は、仕切り板によりオリフィスを形成した実験水槽に、スラグ汚泥入りの冷却水を入れ、この冷却水を上流側から下流側に10〜20cm/秒程度の流速で所定時間循環させる実験を行い、実験水槽の傾斜角:α=0°,5°,10°,15°と変化させた。この結果、傾斜角:α=0°および5°の場合、実験水槽の底面に沈降したスラグ汚泥層の厚みが上流側と下流側とでほとんど同じで、スラグ汚泥がほとんど流下されないことが確認された。また傾斜角:α=10°および15°では、上流室の堆積スラグ汚泥の厚みが、下流室に比較して薄くなっているのが観察され、傾斜角:α=10°を越えると、沈降したスラグ汚泥を流下させる効果があることが認められた。したがって、傾斜底板53の傾斜角αは、10°以上が必要であり、設置スペースなどを考慮すれば、スラグ汚泥の水中での安息角である40°〜45°未満が適正範囲であり、さらに好適には傾斜角α=15°〜30°の範囲となる。   Here, the inventors put cooling water containing slag sludge into an experimental water tank having an orifice formed by a partition plate, and circulates the cooling water from the upstream side to the downstream side at a flow rate of about 10 to 20 cm / second for a predetermined time. Experiments were performed, and the inclination angle of the experimental water tank was changed to α = 0 °, 5 °, 10 °, and 15 °. As a result, when the inclination angle is α = 0 ° and 5 °, it is confirmed that the thickness of the slag sludge layer settled on the bottom surface of the experimental water tank is almost the same between the upstream side and the downstream side, and almost no slag sludge flows down. It was. In addition, when the inclination angle is α = 10 ° and 15 °, it is observed that the thickness of the accumulated slag sludge in the upstream chamber is thinner than that in the downstream chamber, and when the inclination angle exceeds α = 10 °, the sedimentation occurs. It was confirmed that the slag sludge was effective in flowing down. Therefore, the inclination angle α of the inclined bottom plate 53 needs to be 10 ° or more, and considering the installation space and the like, the repose angle of slag sludge in water is less than 40 ° to less than 45 °, and further, The inclination angle α is preferably in the range of 15 ° to 30 °.

また沈降槽52では、沈降するスラグ汚泥を傾斜底板53上に堆積させないことが重要であり、傾斜底板53を傾斜角αだけ傾斜させただけでは堆積を防ぐことができない。このため、傾斜底板53に沿って流動する冷却水の流速を所定値以上に保持するオリフィス55aが設けられている。冷却水の流速について、発明者等は、後述の実施の形態2に示す沈殿槽を用いて数々の実験を行った結果、傾斜角α=10°で流速が15cm/秒未満では、傾斜底板53上にスラグ汚泥が幾分残り、傾斜角α=10°で流速が15cm/秒以上となると、スラグ汚泥がほぼ完全に集合枡の54に流下させることができることをつきとめた。したがって、冷却水の流速は、15cm/秒〜30cm/秒の範囲が適正であり、15cm/秒以下では、沈降スラグ汚泥が傾斜底板53上に堆積し、30cm/秒を越える流速では、スラグ汚泥沈降が阻害されて分離精度が低下するとともに、動力コストが増大するためである。   In the sedimentation tank 52, it is important not to deposit the slag sludge that settles on the inclined bottom plate 53, and the deposition cannot be prevented only by inclining the inclined bottom plate 53 by the inclination angle α. For this reason, an orifice 55a is provided that maintains the flow rate of the cooling water flowing along the inclined bottom plate 53 at a predetermined value or more. Regarding the flow rate of the cooling water, the inventors conducted a number of experiments using the sedimentation tank shown in the second embodiment described later. As a result, when the tilt angle α = 10 ° and the flow rate is less than 15 cm / sec, the tilted bottom plate 53 is used. It has been found that when slag sludge remains somewhat on the upper surface and the flow rate is 15 cm / second or more at an inclination angle α = 10 °, the slag sludge can be almost completely allowed to flow down to the aggregate 54. Accordingly, the flow rate of the cooling water is appropriately in the range of 15 cm / sec to 30 cm / sec. When the flow rate is 15 cm / sec or less, the settled slag sludge is deposited on the inclined bottom plate 53, and when the flow velocity exceeds 30 cm / sec, the slag sludge is obtained. This is because sedimentation is inhibited and the separation accuracy is lowered, and the power cost is increased.

前記上流室52Uの上流端には、冷却水循環ライン34の回収ライン部34aの先端部が接続された給水管56が上面カバー板52fを貫通して配置され、給水管56の給水口56aが、オリフィス55aに向かって全幅方向に向かってほぼ均等に冷却水を送り出すことができるように配置されている。   At the upstream end of the upstream chamber 52U, a water supply pipe 56 connected to the tip of the recovery line portion 34a of the cooling water circulation line 34 is disposed through the upper surface cover plate 52f, and a water supply port 56a of the water supply pipe 56 is provided. It arrange | positions so that cooling water can be sent out substantially uniformly toward the full width direction toward the orifice 55a.

前記下流室52Dには、後板52bの下部に複数のスラグ汚泥排出管57が貫通されて集合枡54に臨んでスラグ汚泥排出口(微粒成物排出口)57aが開口され、スラグ汚泥排出管57にはスラリーポンプ71を有するスラグ汚泥回収ライン37が接続されている。また集合枡54の上部には、集合枡54内に流下されたスラグ汚泥を流動化してスラリー排出口57aへの吸引を促す複数の攪拌ノズル58aを有する攪拌水ヘッダー58が配置され、後板52bを貫通する給水管59が攪拌水ヘッダー58に接続されている。   In the downstream chamber 52D, a plurality of slag sludge discharge pipes 57 are penetrated in the lower part of the rear plate 52b and face the collecting rod 54, and a slag sludge discharge port (fine product discharge port) 57a is opened, and a slag sludge discharge pipe is formed. A slag sludge recovery line 37 having a slurry pump 71 is connected to 57. In addition, an agitation water header 58 having a plurality of agitation nozzles 58a for fluidizing the slag sludge flowing down into the agglomerate 54 and facilitating suction to the slurry discharge port 57a is disposed on the upper side of the agglomeration 54, and a rear plate 52b. A water supply pipe 59 is connected to the stirring water header 58.

さらに下流室52Dの上部の左側板52cには、同一水平レベルに複数の排水口60aが開口され、各排水口60aにそれぞれ上澄み水排水管60が接続されて、オーバーフローした上澄み水を上澄み水槽42に送り出すことができる。また下流室52Dの排水口60aの下方位置には、下流室52Dの平面視の全断面を覆う例えば網目状や繊維状あるいはパンチングメタルなどからなる浮上防止部材61が配置され、排水される上澄み水にスラグ汚泥が同伴されるのを防止している。またここで、スラグ汚泥の水中での沈降速度は、1.61cm/秒であることが実験により判明しており、上澄み水排水管60の上澄み冷却水の排出量がスラグ汚泥の冷却水中での沈降速度の1.61cm/秒未満となるように、下流室52Dの容積と平面視の断面積と、給水口56aの給水量および攪拌水ヘッダー58から供給される攪拌用給水量と、スラグ汚泥排出口57aからスラグ汚泥に同伴される冷却水排水量とに基づいて設定されている。   Further, the left side plate 52c in the upper part of the downstream chamber 52D has a plurality of drain ports 60a opened at the same horizontal level, and a supernatant water drain pipe 60 is connected to each drain port 60a, and the overflowed supernatant water is removed from the supernatant water tank 42. Can be sent out. In addition, a floating prevention member 61 made of, for example, a mesh shape, a fiber shape, or a punching metal that covers the entire cross section of the downstream chamber 52D in a plan view is disposed at a position below the drain port 60a of the downstream chamber 52D. Slag sludge is prevented from being accompanied. Here, it has been experimentally determined that the sedimentation rate of slag sludge in water is 1.61 cm / second, and the amount of supernatant cooling water discharged from the supernatant water drain pipe 60 is less than that in the cooling water of slag sludge. The volume of the downstream chamber 52D and the cross-sectional area in plan view, the amount of water supplied from the water supply port 56a and the amount of water supplied for stirring supplied from the stirring water header 58, and the slag sludge so that the settling speed is less than 1.61 cm / second. It is set based on the cooling water drainage amount accompanying the slag sludge from the discharge port 57a.

またオリフィス55aにおける流速が15cm/秒以上となるように、オリフィス55aの開口面積と、給水口56aの給水量および攪拌水ヘッダー58から供給される攪拌用給水量と、排水口60aから排出される上澄み水排水量およびスラグ汚泥排出口57aからスラグ汚泥に同伴される冷却排水とに基づいて設定されている。   Further, the opening area of the orifice 55a, the amount of water supplied from the water supply port 56a, the amount of water supplied for stirring supplied from the stirring water header 58, and the drain port 60a are discharged so that the flow velocity at the orifice 55a is 15 cm / second or more. It is set based on the amount of supernatant water drainage and the cooling drainage accompanying the slag sludge from the slag sludge discharge port 57a.

上記構成において、給水口56aから上流室52Uに供給されたスラグ汚泥を含む冷却水は、左右両側に広がりつつオリフィス55aに至り、流速約15cm/秒以上でオリフィス55aを通過して下流室52Dに入る。そして沈降したスラグ汚泥を傾斜底板53に沿って流下させて集合枡54に送り込む。集合枡54に集められたスラグ汚泥は、攪拌水ヘッダー58から攪拌ノズル58aを介して噴き込まれた攪拌水により流動化され、スラリーポンプ71によりスラグ汚泥排出口57aを介してスラグ汚泥排出管57に吸引排出される。そしてこれらスラグ汚泥がスラグ汚泥回収ライン37を介して汚泥回収タンク72に送られる。また下流室52Dの上部では、浮上防止部材61を通過した上澄み水が排水口60aから上澄み水排出管60を介して上澄み水槽42に排出される。   In the above configuration, the cooling water containing slag sludge supplied to the upstream chamber 52U from the water supply port 56a reaches the orifice 55a while spreading on both the left and right sides, passes through the orifice 55a at a flow velocity of about 15 cm / second or more, and enters the downstream chamber 52D. enter. Then, the settled slag sludge is caused to flow down along the inclined bottom plate 53 and sent to the collecting trough 54. The slag sludge collected in the collecting tank 54 is fluidized by the agitation water injected from the agitation water header 58 via the agitation nozzle 58a, and is slag sludge discharge pipe 57 via the slag sludge discharge port 57a by the slurry pump 71. Is sucked out. These slag sludge is sent to a sludge recovery tank 72 via a slag sludge recovery line 37. In the upper part of the downstream chamber 52D, the supernatant water that has passed through the anti-floating member 61 is discharged from the drain port 60a to the supernatant water tank 42 through the supernatant water discharge pipe 60.

上記実施の形態1によれば、傾斜底板53の傾斜角:αによる滑落作用と、冷却水による搬送作用とにより、傾斜底板53上に沈降するスラグ汚泥を沈殿、堆積させることなく、良好に下流側の集合枡54に流下させることができ、集合枡54から連続的にスラグ汚泥を取り出すことができる。また傾斜底板53の傾斜角を安息角未満にできることから、沈降槽52の深さを低くすることができる。   According to the first embodiment, the sloping bottom plate 53 can be satisfactorily downstream without the slag sludge settling on the sloping bottom plate 53 being settled and deposited by the sliding action due to the slant angle: α and the conveying action by the cooling water. The slag sludge can be continuously taken out from the collecting rod 54. Further, since the inclination angle of the inclined bottom plate 53 can be less than the repose angle, the depth of the sedimentation tank 52 can be reduced.

さらに、傾斜底板53の傾斜角:α=10°〜30°の範囲とし、オリフィス55aにおける冷却水の流速を15cm/秒〜30cm/秒とすることにより、比重の大きいスラグ汚泥であっても、沈降するスラグ汚泥を傾斜底板53に沿って確実に下流側に押し流して集合枡54に集めることができ、傾斜底板53上に沈殿、堆積するのを確実に防止することができる。さらに下流室52Dにおいて、上澄み水を排水するための上昇速度をスラグ汚泥の沈降速度未満とすることで、上澄み水に同伴されて排出されるスラグ汚泥の微粒状物の量を少なくすることができ、また下流室52Dに設けた浮上防止部材61により、さらに冷却水とスラグ汚泥とを良好に分離することができる。さらにまた、給水口56aから冷却水をオリフィス55aに向かって供給することにより、給水口56aの吐出流速から少ない減速でオリフィス55aに到達させて流速を十分に保持することができ、沈降するスラグ汚泥を良好に搬送して沈殿、堆積を確実に防止することができる。   Furthermore, by making the inclination angle of the inclined bottom plate 53: α = 10 ° to 30 ° and the flow rate of the cooling water in the orifice 55a to be 15 cm / second to 30 cm / second, The slag sludge that settles down can be surely swept downstream along the inclined bottom plate 53 and collected in the collecting basin 54, and can be reliably prevented from being settled and deposited on the inclined bottom plate 53. Furthermore, in the downstream chamber 52D, the amount of fine particles of slag sludge discharged along with the supernatant water can be reduced by setting the rising speed for draining the supernatant water to be less than the sedimentation speed of the slag sludge. Moreover, the cooling water and the slag sludge can be further satisfactorily separated by the rising prevention member 61 provided in the downstream chamber 52D. Furthermore, by supplying cooling water from the water supply port 56a toward the orifice 55a, the flow rate can be sufficiently maintained by reaching the orifice 55a with a small reduction from the discharge flow rate of the water supply port 56a. It is possible to reliably prevent sedimentation and accumulation by conveying the material.

[実施の形態2]
2枚の仕切り板を配置した沈降分離装置の実施の形態2を図4および図5を参照して説明する。なお、実施の形態1と同一部材には同一符号を付して説明を省略する。
[Embodiment 2]
A second embodiment of a sedimentation / separation apparatus in which two partition plates are arranged will be described with reference to FIG. 4 and FIG. The same members as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図4に示すように、沈降分離装置80の沈降槽52には、上流側に第1仕切り板81が配置され、この第1仕切り板81と傾斜底板53との間に、高さd1=1.6cmの第1オリフィス81aが形成されるとともに、上流室52Uが形成される。また上流室52Uの上部に給水口56aが開口されて冷却水を下方の傾斜底板53に向かって放出する。また上流室52Uで水面より下位に、給水口56aから供給された冷却水を分散させるメッシュ材などからなる整流部材83が設けられている。   As shown in FIG. 4, the first partition plate 81 is disposed on the upstream side in the sedimentation tank 52 of the sedimentation separator 80, and the height d <b> 1 = 1 between the first partition plate 81 and the inclined bottom plate 53. A .6 cm first orifice 81a is formed, and an upstream chamber 52U is formed. Further, a water supply port 56a is opened at the upper part of the upstream chamber 52U, and the cooling water is discharged toward the lower inclined bottom plate 53. In the upstream chamber 52U, a rectifying member 83 made of a mesh material or the like for dispersing the cooling water supplied from the water supply port 56a is provided below the water surface.

さらに沈降槽52の上下流方向の中央部下流側に第2仕切り板82が配置され、この第2仕切り板82と傾斜底板53との間に高さd2=1.6cmの第2オリフィス82aが形成され、第2仕切り板82により中間室52Mと下流室52Dが形成される。   Further, a second partition plate 82 is disposed on the downstream side of the central portion in the upstream / downstream direction of the sedimentation tank 52, and a second orifice 82a having a height d2 = 1.6 cm is provided between the second partition plate 82 and the inclined bottom plate 53. The intermediate chamber 52M and the downstream chamber 52D are formed by the second partition plate 82.

また給水管56は、上面カバー52fを貫通して給水口56aが下方の傾斜底板53に向かって開口されている。さらに傾斜底板53の傾斜角:α=20°で、給水口56aの給水量および攪拌水ヘッダー58から供給される攪拌用給水量と、排水口60aから排出される上澄み水排水量およびスラグ汚泥排出口57aからスラグ汚泥に同伴される冷却排水に基づいて、第1,第2オリフィス81a,82aにおける流速が15〜30cm/秒の範囲となるように設定される。   Further, the water supply pipe 56 passes through the upper surface cover 52f and the water supply port 56a is opened toward the lower inclined bottom plate 53. Further, the inclination angle of the inclined bottom plate 53: α = 20 °, the amount of water supplied from the water supply port 56a and the amount of water supplied for stirring supplied from the stirring water header 58, the amount of supernatant water discharged from the drain port 60a, and the slag sludge discharge port Based on the cooling drainage accompanying the slag sludge from 57a, the flow velocity in the first and second orifices 81a and 82a is set to be in the range of 15 to 30 cm / second.

ここで、中間室52Mの傾斜底板53の長さ:Lmと、下流室52Dの傾斜底板53の長さ:Ldは、実験により求められている。すなわち、中間室52Mにおける傾斜底板53の長さ:Lmは、第1オリフィス81aを通過する冷却水により、沈降スラグ汚泥が中間室52Mの傾斜底板53上に堆積しない長さである。   Here, the length: Lm of the inclined bottom plate 53 of the intermediate chamber 52M and the length: Ld of the inclined bottom plate 53 of the downstream chamber 52D are obtained by experiments. In other words, the length Lm of the inclined bottom plate 53 in the intermediate chamber 52M is such a length that the settled slag sludge is not deposited on the inclined bottom plate 53 of the intermediate chamber 52M by the cooling water passing through the first orifice 81a.

すなわち、図5に示すように、実験水槽91にスラグ汚泥を含む冷却水(含水率90%)を入れ、仕切り板92により区画された下流室91Dから上流室91Uに上澄み水を、ポンプ93と循環パイプ94により循環させ、仕切り板92の下部に形成された高さ:H=24mmのオリフィス92aにおける流速が3.18cm/秒となるように設定した。   That is, as shown in FIG. 5, cooling water (water content 90%) containing slag sludge is placed in the experimental water tank 91, and the supernatant water is supplied from the downstream chamber 91 </ b> D partitioned by the partition plate 92 to the upstream chamber 91 </ b> U, It was circulated by the circulation pipe 94 and set so that the flow velocity at the orifice 92a with a height: H = 24 mm formed at the lower part of the partition plate 92 was 3.18 cm / sec.

この結果、オリフィス92aに堆積したスラグ汚泥Sの高さ:h=20mmであった。この結果、このオリフィス92aで実際に冷却水が通過した実高さH=4mmであり、したがって冷却水の流速が19cm/秒となっていたことが分かった。   As a result, the height of the slag sludge S deposited on the orifice 92a was h = 20 mm. As a result, it was found that the actual height H through which the cooling water actually passed through the orifice 92a was 4 mm, and therefore the flow rate of the cooling water was 19 cm / second.

さらに傾斜角:α=0°で、オリフィス92aから下流側に続くスラグ汚泥Sの堆積高さhが均一に続く距離L1=75mmであり、距離L1と実高さHとの比:L1/H≒19であることから、中間室52Mの長さ:Lm<(L1/H)×d1=20×d1を満足する範囲とすれば、中間室52Mの傾斜底板53上にスラグ汚泥がほぼ堆積することがない。   Furthermore, when the inclination angle is α = 0 °, the accumulated height h of the slag sludge S continuing downstream from the orifice 92a is a distance L1 = 75 mm, and the ratio between the distance L1 and the actual height H is L1 / H. Since ≈19, if the length of the intermediate chamber 52M: Lm <(L1 / H) × d1 = 20 × d1 is satisfied, slag sludge is almost accumulated on the inclined bottom plate 53 of the intermediate chamber 52M. There is nothing.

また上記実験では、オリフィス92aから下流側に続くスラグ汚泥Sの堆積高さhが、冷却水により影響される距離:L2=180mmであり、距離L2と実高さHとの比:L2/H=45であることから、下流室52Dにおける第2仕切り板82から集合枡54までの傾斜底板53の長さ:Ld=(L2/H)×d2=45×d2以下とすれば、下流室52Dの傾斜底板53上にスラグ汚泥が堆積することがない。   Moreover, in the said experiment, the deposition height h of the slag sludge S continuing downstream from the orifice 92a is the distance affected by the cooling water: L2 = 180 mm, and the ratio between the distance L2 and the actual height H: L2 / H = 45, so if the length of the inclined bottom plate 53 from the second partition plate 82 to the collecting wall 54 in the downstream chamber 52D: Ld = (L2 / H) × d2 = 45 × d2 or less, the downstream chamber 52D Slag sludge does not accumulate on the inclined bottom plate 53.

もちろん、実施の形態1の下流室52Dにおける傾斜底板53の長さも、同様にして求めることができる。
上記実施の形態2によれば、実施の形態1の効果に加えて、第1,第2オリフィス81a,82aを設けることにより、傾斜底板53の長さを十分に確保して、沈降槽52における冷却水の滞留時間を長く確保し、スラグ汚泥の沈降による分離効果を促進することができるとともに、傾斜底板53上を流れる冷却水の流速を15〜30cm/秒の範囲に保持して、沈降するスラグ汚泥を確実に集合枡54に流下させることができる。
Of course, the length of the inclined bottom plate 53 in the downstream chamber 52D of the first embodiment can be obtained in the same manner.
According to the second embodiment, in addition to the effects of the first embodiment, by providing the first and second orifices 81a and 82a, the length of the inclined bottom plate 53 is sufficiently ensured, and in the sedimentation tank 52 The cooling water staying time is ensured for a long time, and the separation effect by the settling of the slag sludge can be promoted, and the flow rate of the cooling water flowing on the inclined bottom plate 53 is maintained in the range of 15 to 30 cm / second to settle. The slag sludge can be surely allowed to flow down to the collecting pool 54.

なお、スラリーをスラグ冷却水としたが、これに限るものではない。   Although the slurry is slag cooling water, it is not limited to this.

本発明に係る沈降分離装置の実施の形態1を示す縦断面図である。It is a longitudinal cross-sectional view which shows Embodiment 1 of the sedimentation-separation apparatus which concerns on this invention. 図1に示すA−A断面図である。It is AA sectional drawing shown in FIG. 沈降分離装置を備えた廃棄物処理設備の構成図である。It is a block diagram of the waste treatment facility provided with the sedimentation separator. 本発明に係る沈降分離装置の実施の形態2を示す縦断面図である。It is a longitudinal cross-sectional view which shows Embodiment 2 of the sedimentation separator based on this invention. 実験水槽を示す縦断面図である。It is a longitudinal cross-sectional view which shows an experimental water tank. 従来の汚泥槽を示す斜視図である。It is a perspective view which shows the conventional sludge tank.

符号の説明Explanation of symbols

11 廃棄物焼却炉
16 バグフィルタ
18 灰貯留ホッパ
19 ダスト貯留ホッパ
21 灰溶融炉
31 水砕スラグ生成装置
34 冷却水循環ライン
34a 回収ライン部
34b 戻しライン部
35 冷却水回収ライン
36 スラグ汚泥再処理ライン
37 スラグ汚泥回収ライン
42 上澄み水槽
43 循環ポンプ
44 熱交換器
51 沈降分離装置
52 沈降槽
52U 上流室
52D 下流室
53 傾斜底板
54 集合枡
55 仕切り板
55a オリフィス
56 給水管
56a 給水口
57 スラグ汚泥排出管
57a スラグ汚泥排出口
58 攪拌水ヘッダー
58a 攪拌ノズル
59 給水管
60 上澄み水排水管
60a 排水口
61 浮上防止部材
71 スラリーポンプ
72 汚泥回収タンク
73 脱水収納袋
74 回収ポンプ
80 沈降分離装置
81 第1仕切り板
81a 第1オリフィス
82 第2仕切り板
82a 第2オリフィス
11 Waste incinerator 16 Bag filter 18 Ash storage hopper 19 Dust storage hopper 21 Ash melting furnace 31 Granulated slag generator 34 Cooling water circulation line 34a Recovery line section 34b Return line section 35 Cooling water recovery line 36 Slag sludge reprocessing line 37 Slag sludge recovery line 42 Supernatant water tank 43 Circulation pump 44 Heat exchanger 51 Sedimentation separator 52 Sedimentation tank 52U Upstream chamber 52D Downstream chamber 53 Inclined bottom plate 54 Collecting bowl 55 Partition plate 55a Orifice 56 Water supply pipe 56a Water supply port 57 Slag sludge discharge pipe 57a Slag sludge discharge port 58 Stirring water header 58a Stirring nozzle 59 Water supply pipe 60 Supernatant water drain pipe 60a Drain port 61 Lifting prevention member 71 Slurry pump 72 Sludge recovery tank
73 Dehydration storage bag 74 Recovery pump 80 Sedimentation separator 81 First partition plate 81a First orifice 82 Second partition plate 82a Second orifice

Claims (6)

スラリーに含まれる微粒状物の水中の安息角未満で上流側上位から下流側下位に傾斜する傾斜底板を有する沈降槽に、スラリーを上流側から供給し、
スラリーを、沈降槽の上下流方向の中間位置に配置されて沈降槽を横断方向に仕切る仕切り板と傾斜底板との間に形成されたオリフィスを通過させて傾斜底板上に沿って流送することにより、傾斜底板上に沈降した沈降微粒状物を下流側に流下して、傾斜底板の下流端に設けられた集合枡に集め、
沈降槽の下流側から上層の上澄み水を排出し、
前記集合枡の沈降微粒状物を吸引して連続的に抜き出す
ことを特徴とするスラリーの沈降分離方法。
The slurry is supplied from the upstream side to the sedimentation tank having an inclined bottom plate that is inclined from the upper upstream side to the lower downstream side with an angle of repose of the fine particulate matter contained in the slurry below the repose angle,
Slurry is passed along an inclined bottom plate through an orifice formed between a partition plate and an inclined bottom plate that are arranged at an intermediate position in the upstream and downstream direction of the settling tank and partition the settling tank in the transverse direction. By flowing down the settled fine particles settled on the inclined bottom plate to the downstream side, gathered in a collecting tub provided at the downstream end of the inclined bottom plate,
Drain the supernatant water from the downstream of the settling tank,
A method for settling and separating a slurry, wherein the settling fine particles of the aggregate are sucked out continuously.
スラリーを、溶融スラグを冷却して水砕スラグを生成した後のスラグ冷却水とするとともに、微粒状物をスラグ汚泥とし、
傾斜底板の傾斜角を10°以上とし、
オリフィスにおけるスラグ冷却水の流速を15cm/秒以上とし、
沈降槽の下流側で上澄み水を排出する排水速度を、上澄み水の上昇速度がスラグ汚泥の沈降速度未満となるように設定した
ことを特徴とする請求項1記載のスラリーの沈降分離方法。
The slurry is slag cooling water after the molten slag is cooled to produce granulated slag, and the fine particulate matter is slag sludge.
The inclination angle of the inclined bottom plate is 10 ° or more,
The flow rate of the slag cooling water at the orifice is 15 cm / second or more,
The method for settling and separating slurry according to claim 1, wherein the drainage speed for discharging the supernatant water downstream of the settling tank is set so that the rising speed of the supernatant water is less than the settling speed of the slag sludge.
スラリーに含まれる微粒状物の水中の安息角未満で上流側上位から下流側下位に傾斜する傾斜底板を有する沈降槽と、
沈降槽の上流側に配置されてスラリーを供給する給水口と、
沈降槽の上下流方向の中間位置で配置されて沈降槽を横断方向に仕切るとともに傾斜底板との間にオリフィスを形成する仕切り板と、
前記傾斜底板の下流端に設けられた集合枡と、
前記集合枡に集められた沈降微粒状物を連続して排出する微粒状物排出口と、
沈殿槽の下流側上部から上澄み水を排出する排水口とを具備した
ことを特徴とするスラリーの沈降分離装置。
A sedimentation tank having an inclined bottom plate that is inclined from the upper upstream side to the lower downstream side at a repose angle less than the angle of repose of the fine particles contained in the slurry;
A water supply port arranged on the upstream side of the settling tank to supply slurry;
A partition plate which is arranged at an intermediate position in the upstream and downstream direction of the settling tank and partitions the settling tank in the transverse direction and forms an orifice between the inclined bottom plate;
A collecting rod provided at the downstream end of the inclined bottom plate;
A fine particulate discharge port for continuously discharging the settled fine particulate matter collected in the collecting bowl;
A slurry settling / separation apparatus comprising: a drain port for discharging supernatant water from an upper part on the downstream side of the settling tank.
スラリーを、溶融スラグを冷却して水砕スラグを生成した後のスラグ冷却水とするとともに、微粒状物をスラグ汚泥とし、
傾斜底板の傾斜角を10°以上とし、
オリフィスにおけるスラグ冷却水の流速を15cm/秒以上とした
ことを特徴とする請求項3記載のスラリーの沈降分離装置。
The slurry is slag cooling water after the molten slag is cooled to produce granulated slag, and the fine particulate matter is slag sludge.
The inclination angle of the inclined bottom plate is 10 ° or more,
The apparatus for settling and separating slurry according to claim 3, wherein the flow rate of the slag cooling water in the orifice is 15 cm / second or more.
給水口を傾斜底板に沿って下流側にスラグ冷却水を送り出すように配置し、
下流側で排水口より下位のスラグ冷却水中に、スラグ汚泥の浮上を防止する浮上防止部材を配置した
ことを特徴とする請求項4記載のスラリーの沈降分離装置。
The water supply port is arranged to send slag cooling water downstream along the inclined bottom plate,
The apparatus for settling and separating slurry according to claim 4, wherein a levitation preventing member for preventing the slag sludge from rising is disposed in the slag cooling water below the drain outlet on the downstream side.
廃棄物を焼却する廃棄物焼却炉と、当該廃棄物焼却炉から排出される飛灰と焼却灰とを溶融する灰溶融炉と、当該灰溶融炉から排出された溶融スラグを冷却水により冷却して水砕スラグを生成する水砕スラグ生成装置と、当該水砕スラグ生成装置から排出されたスラグ冷却水からスラグ汚泥を沈降分離する請求項4記載のスラリーの沈降分離装置とを具備し、
前記水砕スラグ生成装置から前記沈降分離装置に送られてスラグ汚泥を分離した上澄み水を、上澄み水槽を介して前記水砕スラグ生成装置に冷却水として循環させる冷却水循環ラインと、
前記沈降分離装置から排出されたスラグ汚泥を、透水性を有する脱水収納袋に貯留して脱水する汚泥回収タンクに送るスラグ汚泥回収ラインと、
前記脱水収納袋から排水された脱水後の冷却水を冷却水循環ラインに戻して再循環させる冷却水回収ラインと、
脱水後のスラグ汚泥を廃棄物焼却炉に供給して再焼却するスラグ汚泥再処理ラインとを有する
ことを特徴とする廃棄物焼却処理設備。
A waste incinerator for incinerating waste, an ash melting furnace for melting fly ash and incinerated ash discharged from the waste incinerator, and a molten slag discharged from the ash melting furnace are cooled with cooling water. And a granulated slag generating device for generating granulated slag, and a slurry sedimentation separation device according to claim 4, wherein the slag sludge is settled and separated from the slag cooling water discharged from the granulated slag generating device,
A cooling water circulation line that circulates the supernatant water, which is sent from the granulated slag generator to the sedimentation separator and separated slag sludge, as cooling water through the supernatant water tank to the granulated slag generator;
A slag sludge recovery line that sends the slag sludge discharged from the settling separator to a sludge recovery tank that stores and dehydrates in a water-permeable dewatering storage bag;
A cooling water recovery line that recirculates the dewatered cooling water drained from the dewatering storage bag back to the cooling water circulation line;
A waste incineration treatment facility comprising a slag sludge reprocessing line that supplies dewatered slag sludge to a waste incinerator and reincinerates it.
JP2007208692A 2007-08-10 2007-08-10 Method and apparatus for settling and separating slurry and waste incineration equipment Expired - Fee Related JP4901637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007208692A JP4901637B2 (en) 2007-08-10 2007-08-10 Method and apparatus for settling and separating slurry and waste incineration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007208692A JP4901637B2 (en) 2007-08-10 2007-08-10 Method and apparatus for settling and separating slurry and waste incineration equipment

Publications (2)

Publication Number Publication Date
JP2009039669A true JP2009039669A (en) 2009-02-26
JP4901637B2 JP4901637B2 (en) 2012-03-21

Family

ID=40441012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007208692A Expired - Fee Related JP4901637B2 (en) 2007-08-10 2007-08-10 Method and apparatus for settling and separating slurry and waste incineration equipment

Country Status (1)

Country Link
JP (1) JP4901637B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016710A (en) * 2009-06-08 2011-01-27 Kobe Steel Ltd Carbonation treatment method and apparatus of steel slag powder
JP2012024721A (en) * 2010-07-26 2012-02-09 Sumitomo Metal Ind Ltd Method for recovering scale, and heat treatment furnace of steel using the same
CN102095616B (en) * 2009-12-15 2012-12-12 全友电脑股份有限公司 Inspected body separation device
CN103189120A (en) * 2010-11-05 2013-07-03 许钟亨 Sludge discharging apparatus for a settling pond
CN107013930A (en) * 2017-06-01 2017-08-04 深圳市能源环保有限公司 A kind of anti-blocking water replanishing device of garbage incinerating power plant dragveyer
CN107252575A (en) * 2017-06-20 2017-10-17 浦华环保股份有限公司 One kind folding umbrella-type activated sludge settling vessel
JP2020028878A (en) * 2018-08-21 2020-02-27 中外炉工業株式会社 Scale recovery device
CN112777686A (en) * 2021-02-23 2021-05-11 昆山三一环保科技有限公司 Circulating cooling water supply system
JP2021076328A (en) * 2019-11-12 2021-05-20 株式会社Ihi Clinker treatment system and clinker treatment method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136858A (en) * 1974-04-18 1975-10-30
JPS51125952A (en) * 1975-04-25 1976-11-02 Denso:Kk Apparatus for collecting precipitates of sewage etc.
JPS546894A (en) * 1977-06-17 1979-01-19 Kobe Steel Ltd Slurried granulated slag dehydrating equipment
JPS59169514A (en) * 1983-03-15 1984-09-25 Gou Tekkosho:Kk Method and apparatus for purifying sewage
JPS6193586A (en) * 1984-10-15 1986-05-12 松下電器産業株式会社 Electric floor heater
JPS62199104A (en) * 1986-02-27 1987-09-02 Nec Corp Array antenna
JPH07305971A (en) * 1994-05-09 1995-11-21 Daido Steel Co Ltd Device for processing molten slag-cooling water
JPH09243047A (en) * 1996-03-05 1997-09-16 Takuma Co Ltd Waste fusing facility equipped with slag cleaner, and manufacture of granulated slag
JPH09248403A (en) * 1996-03-18 1997-09-22 Asahi Chem Ind Co Ltd Apparatus for continuous separation of liquid component
JPH10306A (en) * 1996-06-14 1998-01-06 Hitachi Kiden Kogyo Ltd Transporting device for precipitate
JP2002058914A (en) * 2000-08-22 2002-02-26 Nishihara Environ Sanit Res Corp Solid-liquid separator
JP2002239305A (en) * 2001-02-14 2002-08-27 Toyota Motor Corp Coolant filtering method and apparatus therefor
JP2003038984A (en) * 2001-07-30 2003-02-12 Japan Science & Technology Corp Magnetic material-used purifying apparatus
JP2003103113A (en) * 2001-09-28 2003-04-08 Seiko Kogyo Kk Device for removing sand included in pumped up ground water

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136858A (en) * 1974-04-18 1975-10-30
JPS51125952A (en) * 1975-04-25 1976-11-02 Denso:Kk Apparatus for collecting precipitates of sewage etc.
JPS546894A (en) * 1977-06-17 1979-01-19 Kobe Steel Ltd Slurried granulated slag dehydrating equipment
JPS59169514A (en) * 1983-03-15 1984-09-25 Gou Tekkosho:Kk Method and apparatus for purifying sewage
JPS6193586A (en) * 1984-10-15 1986-05-12 松下電器産業株式会社 Electric floor heater
JPS62199104A (en) * 1986-02-27 1987-09-02 Nec Corp Array antenna
JPH07305971A (en) * 1994-05-09 1995-11-21 Daido Steel Co Ltd Device for processing molten slag-cooling water
JPH09243047A (en) * 1996-03-05 1997-09-16 Takuma Co Ltd Waste fusing facility equipped with slag cleaner, and manufacture of granulated slag
JPH09248403A (en) * 1996-03-18 1997-09-22 Asahi Chem Ind Co Ltd Apparatus for continuous separation of liquid component
JPH10306A (en) * 1996-06-14 1998-01-06 Hitachi Kiden Kogyo Ltd Transporting device for precipitate
JP2002058914A (en) * 2000-08-22 2002-02-26 Nishihara Environ Sanit Res Corp Solid-liquid separator
JP2002239305A (en) * 2001-02-14 2002-08-27 Toyota Motor Corp Coolant filtering method and apparatus therefor
JP2003038984A (en) * 2001-07-30 2003-02-12 Japan Science & Technology Corp Magnetic material-used purifying apparatus
JP2003103113A (en) * 2001-09-28 2003-04-08 Seiko Kogyo Kk Device for removing sand included in pumped up ground water

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016710A (en) * 2009-06-08 2011-01-27 Kobe Steel Ltd Carbonation treatment method and apparatus of steel slag powder
CN102095616B (en) * 2009-12-15 2012-12-12 全友电脑股份有限公司 Inspected body separation device
JP2012024721A (en) * 2010-07-26 2012-02-09 Sumitomo Metal Ind Ltd Method for recovering scale, and heat treatment furnace of steel using the same
CN103189120A (en) * 2010-11-05 2013-07-03 许钟亨 Sludge discharging apparatus for a settling pond
CN107013930A (en) * 2017-06-01 2017-08-04 深圳市能源环保有限公司 A kind of anti-blocking water replanishing device of garbage incinerating power plant dragveyer
CN107252575A (en) * 2017-06-20 2017-10-17 浦华环保股份有限公司 One kind folding umbrella-type activated sludge settling vessel
JP2020028878A (en) * 2018-08-21 2020-02-27 中外炉工業株式会社 Scale recovery device
JP2021076328A (en) * 2019-11-12 2021-05-20 株式会社Ihi Clinker treatment system and clinker treatment method
JP7356647B2 (en) 2019-11-12 2023-10-05 株式会社Ihi Clinker treatment system and clinker treatment method
CN112777686A (en) * 2021-02-23 2021-05-11 昆山三一环保科技有限公司 Circulating cooling water supply system

Also Published As

Publication number Publication date
JP4901637B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4901637B2 (en) Method and apparatus for settling and separating slurry and waste incineration equipment
CN102549369A (en) Slag discharge system
US3615329A (en) A recirculatory system for the granulation of molten slag
EP0856492B1 (en) Plant for upgrading urban waste and the like
JP4678627B2 (en) Cleaning processing method and cleaning processing apparatus
CN1985009B (en) Process and apparatus for granulating a melt
RU2451089C2 (en) Method of processing solid wastes in molten slag
JPH08261438A (en) Method and equipment for treating solid combustion residue of combustion facility,particularly garbage incinerating facility
NL8902935A (en) METHOD FOR PROCESSING ASH RESIDENCE AND GLAZING OVEN TO BE USED THEREIN
JP2008178802A (en) Method for treating water-granulated substance of waste-melting furnace and facility therefor
CN2589466Y (en) Coal water purification and coal mud reclaiming machine
KR101147876B1 (en) Process and apparatus for granulating a melt
JPH0527035B2 (en)
CN109690017B (en) Gas hydrate recovery device and gas hydrate recovery method
JP2004181361A (en) Melt treatment facility in waste melt treatment
CN109690018B (en) Gas hydrate recovery device and gas hydrate recovery method
KR100462506B1 (en) Ash treatment apparatus for coal-fired power plant
JP3734373B2 (en) Metal recovery method and apparatus
JP2005279516A (en) Flocculation and precipitation treatment device
JP2004066004A (en) Waste treating facility
JP2007003041A (en) Method and device for treating noncombustible of fluidized bed gasification furnace
JP2006297316A (en) Wet crushing method and crushing device for incinerated ash
JP4438360B2 (en) Heat medium consumption reduction method in metal composite plastic waste separation facility
JP3809039B2 (en) Method of granulating molten metal in melting furnace
JP2004225981A (en) Pyrolytic melting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees