JP2009035100A - Automatic brake control device - Google Patents

Automatic brake control device Download PDF

Info

Publication number
JP2009035100A
JP2009035100A JP2007200545A JP2007200545A JP2009035100A JP 2009035100 A JP2009035100 A JP 2009035100A JP 2007200545 A JP2007200545 A JP 2007200545A JP 2007200545 A JP2007200545 A JP 2007200545A JP 2009035100 A JP2009035100 A JP 2009035100A
Authority
JP
Japan
Prior art keywords
braking
friction coefficient
idling
braking control
automatic braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007200545A
Other languages
Japanese (ja)
Inventor
Toshiki Ezoe
俊樹 江副
Shuji Narata
修治 奈良田
Sunao Ichinose
直 一ノ瀬
Koichi Okamoto
浩一 岡本
Hirokazu Okuyama
宏和 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2007200545A priority Critical patent/JP2009035100A/en
Publication of JP2009035100A publication Critical patent/JP2009035100A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To presume a state of a friction coefficient between a road surface and a tire before starting automatic brake control. <P>SOLUTION: Slip of a driving wheel in accelerator operation is detected, acceleration of the driving wheel at the time of detecting the slip is detected, the state of the friction coefficient between the road surface and the tire is presumed in accordance with the detected acceleration, and braking force or braking deceleration is adjusted in accordance with a presumption result. The presumption result is divided into a plurality of stages in correspondence with a degree of the friction coefficient and output, and the braking force or the braking deceleration is divided into a plurality of stages in correspondence with the presumption result divided into a plurality of the stages and reduced. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、トラックやバスなどの大型車に利用する。特に、衝突の際の衝撃を緩和する装置に関する。   The present invention is used for large vehicles such as trucks and buses. In particular, the present invention relates to a device that reduces the impact of a collision.

自車と先行車との間の距離(車間距離)をレーダによって監視し、車間距離が異常に接近した場合には、自動的に適切な制動制御を行い、万が一の衝突時に、その被害を小さく抑えるという自動制動制御装置が知られている(例えば、特許文献1参照)。   The distance between the vehicle and the preceding vehicle (inter-vehicle distance) is monitored by radar, and if the inter-vehicle distance approaches abnormally, appropriate braking control is automatically performed to reduce the damage in the event of a collision. There is known an automatic braking control device for suppressing (see, for example, Patent Document 1).

特許文献1の自動制動制御装置は、トラックやバスなどの大型車に適用することを前提に開発された装置であり、路面とタイヤとの間の摩擦係数の状態を推定し、その推定結果に応じて制動力または制動減速度を調整することができる。   The automatic braking control device of Patent Document 1 is a device developed on the assumption that it is applied to large vehicles such as trucks and buses, and estimates the state of the coefficient of friction between the road surface and the tire. The braking force or braking deceleration can be adjusted accordingly.

この自動制動制御装置では、きわめて摩擦係数が低い状態においては、自動制動制御を禁止している。その理由は、そのようなきわめて摩擦係数の低い路面においては、自動制動制御を行っても充分な効果が得られないためと、車両の姿勢を安定させるための制御と自動制動制御とは併用できず、このような状況下では車両の姿勢を安定させる制御が自動制動制御よりも優先されるためである。   In this automatic braking control device, automatic braking control is prohibited when the friction coefficient is extremely low. The reason is that, on such a road surface with a very low coefficient of friction, sufficient effect cannot be obtained even if automatic braking control is performed, and control for stabilizing the posture of the vehicle and automatic braking control can be used in combination. This is because, in such a situation, control for stabilizing the attitude of the vehicle has priority over automatic braking control.

特開2007−84048号公報JP 2007-84048 A

特許文献1の自動制動制御装置は、制動をかけたときの前輪の空転発生時における加速度を検出することにより、路面とタイヤとの間の摩擦係数の状態を推定している。したがって、自動制動制御が働いた後でなければ、路面とタイヤとの間の摩擦係数の状態を推定することができない。   The automatic braking control device of Patent Document 1 estimates the state of the friction coefficient between the road surface and the tire by detecting the acceleration at the time of occurrence of idling of the front wheels when braking is applied. Therefore, the state of the friction coefficient between the road surface and the tire cannot be estimated unless automatic braking control is activated.

しかしながら、路面とタイヤとの間の摩擦係数が低い場合には、当初より自動制動制御を行わないことが望ましい。したがって、制動による前輪の空転発生以外にも摩擦係数の状態を推定できることが望ましい。   However, when the coefficient of friction between the road surface and the tire is low, it is desirable not to perform automatic braking control from the beginning. Therefore, it is desirable that the state of the friction coefficient can be estimated in addition to the occurrence of idling of the front wheels due to braking.

本発明は、このような課題を解決するために行われたものであって、自動制動制御の開始以前に路面とタイヤとの間の摩擦係数の状態を推定することができる自動制動制御装置を提供することを目的とする。   The present invention has been made to solve such a problem, and provides an automatic braking control device capable of estimating a state of a friction coefficient between a road surface and a tire before the start of automatic braking control. The purpose is to provide.

本発明は、走行状態における自車と先行車との間の距離を測定する車間距離測定手段と、この車間距離測定手段が測定した距離が所定の値以下となるまでに要する時間を推定する時間推定手段と、この時間推定手段が推定した時間が所定の時間以下である場合には所定の手順に従って自動的に制動制御を実行する自動制動制御手段とを備えた車両の自動制動制御装置である。   The present invention provides an inter-vehicle distance measuring means for measuring a distance between the host vehicle and a preceding vehicle in a traveling state, and a time for estimating a time required for the distance measured by the inter-vehicle distance measuring means to be a predetermined value or less. An automatic braking control device for a vehicle comprising: an estimation unit; and an automatic braking control unit that automatically executes braking control according to a predetermined procedure when the time estimated by the time estimation unit is equal to or less than a predetermined time. .

ここで、本発明の特徴とするところは、アクセル操作時における駆動輪の空転を検出する駆動輪空転検出手段と、この駆動輪空転検出手段が空転を検出したときの駆動輪の加速度を検出する空転時加速度検出手段と、この空転時加速度検出手段が検出した加速度に基づき路面とタイヤとの間の摩擦係数の状態を推定する摩擦係数推定手段と、この摩擦係数推定手段の推定結果に基づいて前記自動制動制御手段による制動力または制動減速度を調整する制動力または制動減速度調整手段とを備えたところにある。   Here, the feature of the present invention is that the driving wheel idling detection means for detecting idling of the driving wheel at the time of the accelerator operation and the acceleration of the driving wheel when the idling detection detecting means detects idling. Based on the estimation result of the friction coefficient estimating means, the friction coefficient estimating means for estimating the state of the friction coefficient between the road surface and the tire based on the acceleration detected by the idling acceleration detecting means, and the friction coefficient estimating means And a braking force or braking deceleration adjusting means for adjusting a braking force or braking deceleration by the automatic braking control means.

前記推定結果は、摩擦係数の程度に応じて複数の段階に分けられて出力され、前記制動力または制動減速度調整手段は、当該複数の段階に分けられた推定結果に応じて制動力または制動減速度を複数の段階に分けて低減させる手段を備えることができる。   The estimation result is output divided into a plurality of stages according to the degree of the friction coefficient, and the braking force or braking deceleration adjusting means outputs the braking force or braking according to the estimation result divided into the plurality of stages. Means for reducing the deceleration in a plurality of stages can be provided.

これによれば、自動制動制御を行っているか否かに係わらず、運転者によるアクセル操作が有るときに、路面とタイヤとの間の摩擦係数の状態を推定することができるため、路面とタイヤとの間の摩擦係数に適応した自動制動制御を実行することができる。   According to this, since the state of the friction coefficient between the road surface and the tire can be estimated when there is an accelerator operation by the driver regardless of whether automatic braking control is performed or not, the road surface and the tire Automatic braking control adapted to the coefficient of friction between the two can be executed.

本発明によれば、自動制動制御を実行する以前に路面とタイヤとの間の摩擦係数の状態を推定することができるので、自動制動制御の当初から摩擦係数に適応した自動制動制御を実行することができる。   According to the present invention, since the state of the friction coefficient between the road surface and the tire can be estimated before executing the automatic braking control, the automatic braking control adapted to the friction coefficient is executed from the beginning of the automatic braking control. be able to.

本発明の実施例の自動制動制御装置を図1から図10を参照して説明する。図1は本実施例の自動制動制御装置のブロック構成図である。図2および図3は本実施例の自動制動制御装置の車載状況を示す図であり、図2は側面から見た状態を示し、図3は上面から見た状態を示す。   An automatic braking control apparatus according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram of the automatic braking control device of this embodiment. 2 and 3 are diagrams showing the in-vehicle situation of the automatic braking control device of this embodiment. FIG. 2 shows a state seen from the side, and FIG. 3 shows a state seen from the top.

本実施例は、図1〜図3に示すように、走行状態における自車と先行車との間の距離をレーダ装置8を用いて測定する車間距離測定部1と、この車間距離測定部1が測定した距離が所定の値以下となるまでに要する時間を推定する時間推定部2と、この時間推定部2が推定した時間が所定の時間以下である場合には所定の手順に従って自動的に制動制御を実行する自動制動制御部3とを備えた車両の自動制動制御装置9である。   In the present embodiment, as shown in FIGS. 1 to 3, an inter-vehicle distance measuring unit 1 that measures a distance between the host vehicle and a preceding vehicle in a traveling state using a radar device 8, and the inter-vehicle distance measuring unit 1 The time estimation unit 2 that estimates the time required for the measured distance to be less than or equal to a predetermined value, and when the time estimated by the time estimation unit 2 is less than or equal to the predetermined time, automatically according to a predetermined procedure This is an automatic braking control device 9 for a vehicle including an automatic braking control unit 3 that executes braking control.

なお、制動制御には、制動減速度(制動G)を制御(調整)する方法と制動力を制御(調整)する方法とがあるが、本実施例では制動減速度を制御(調整)する方法について説明する。また、一般的に、自動制動制御は、自車速が所定値以上(例えば、60km/h以上)でほぼ直進状態(例えば、−30°≦操舵角≦+30°)の場合に適用する。   The braking control includes a method of controlling (adjusting) the braking deceleration (braking G) and a method of controlling (adjusting) the braking force. In this embodiment, a method of controlling (adjusting) the braking deceleration. Will be described. In general, the automatic braking control is applied when the vehicle speed is a predetermined value or more (for example, 60 km / h or more) and the vehicle is running straight (for example, −30 ° ≦ steering angle ≦ + 30 °).

ここで、特徴とするところは、アクセル操作時における駆動輪の空転を検出する駆動輪空転検出部4と、この駆動輪空転検出部4が空転を検出したときの駆動輪の加速度を検出する空転時加速度計算部5と、この空転時加速度計算部5が検出した加速度に基づき路面とタイヤとの間の摩擦係数の状態を推定する摩擦係数推定部6と、この摩擦係数推定部6の推定結果に基づいて自動制動制御部3による制動減速度を調整する制動減速度調整部7とを備えたところにある。   Here, the feature is that the driving wheel idling detection unit 4 that detects idling of the driving wheel at the time of the accelerator operation, and the idling detection that detects acceleration of the driving wheel when the driving wheel idling detection unit 4 detects idling. Acceleration calculation unit 5, friction coefficient estimation unit 6 that estimates the state of the friction coefficient between the road surface and the tire based on the acceleration detected by the idling acceleration calculation unit 5, and the estimation result of the friction coefficient estimation unit 6 And a braking deceleration adjusting unit 7 for adjusting the braking deceleration by the automatic braking control unit 3 based on the above.

前記推定結果は、摩擦係数の程度に応じて複数の段階に分けられて出力され、制動減速度調整部7は、当該複数の段階に分けられた推定結果に応じて制動減速度を複数の段階に分けて低減させる。   The estimation result is output in a plurality of stages according to the degree of the friction coefficient, and the braking deceleration adjusting unit 7 sets the braking deceleration in a plurality of stages according to the estimation result divided in the plurality of stages. Reduce it in two.

自動制動制御部3は、ブレーキアクチュエータ10に対して制動制御出力を送出する。ブレーキアクチュエータ10は、自動制動制御部3からの制動制御出力に応じて制動減速度を発生する。また、駆動輪空転検出部4は、回転速度計11から右前輪回転速度情報、左前輪回転速度情報、右後輪回転速度情報、左後輪回転速度情報をそれぞれ取り込む。また、アクセル操作センサ12からアクセル操作情報を取り込む。   The automatic braking control unit 3 sends a braking control output to the brake actuator 10. The brake actuator 10 generates a braking deceleration according to the braking control output from the automatic braking control unit 3. The drive wheel idling detection unit 4 takes in the right front wheel rotation speed information, the left front wheel rotation speed information, the right rear wheel rotation speed information, and the left rear wheel rotation speed information from the tachometer 11. In addition, accelerator operation information is fetched from the accelerator operation sensor 12.

次に、駆動輪空転検出部4における駆動輪空転検出の手順を図4のフローチャートを参照して説明する。駆動輪空転検出部4は、回転速度計11からの右前輪回転速度情報、左前輪回転速度情報、右後輪回転速度情報、左後輪回転速度情報をそれぞれ監視し(S1)、右前輪と右後輪あるいは左前輪と左後輪との回転速度差が所定値α以上であり(S2)、このときアクセル操作センサ12からのアクセル操作情報によりアクセル操作中であれば(S3)、駆動輪の空転が発生したと判断できるので駆動輪の空転を検出する(S4)。   Next, the procedure for detecting the driving wheel idling in the driving wheel idling detection unit 4 will be described with reference to the flowchart of FIG. The drive wheel idling detection unit 4 monitors the right front wheel rotation speed information, the left front wheel rotation speed information, the right rear wheel rotation speed information, and the left rear wheel rotation speed information from the tachometer 11 (S1). If the rotational speed difference between the right rear wheel or the left front wheel and the left rear wheel is greater than or equal to a predetermined value α (S2), and if the accelerator is being operated according to the accelerator operation information from the accelerator operation sensor 12 (S3), the drive wheel Therefore, it is determined that the idling of the driving wheel has occurred (S4).

すなわち、運転者がアクセル操作中であれば同時にブレーキ操作を行うことは通常無い。この状態では、前輪(非駆動輪)は自由回転状態になっている。一般的に、自由回転状態においては、路面の摩擦係数が低い状態であっても空転が発生することはないと考えられる。これに対し、駆動輪には、アクセル操作に応じて駆動力がかかっており、路面の摩擦係数が低い状態においては空転が発生する場合がある。一方、空転が発生していない場合のほぼ直進状態では、前輪と後輪の回転速度はほぼ等しくなる。したがって、ほぼ直進状態におけるアクセル操作中に前後輪の回転速度差が所定値α以上となった場合には、後輪の空転が発生したと判断できる。   That is, when the driver is operating the accelerator, there is usually no simultaneous brake operation. In this state, the front wheels (non-driving wheels) are in a freely rotating state. In general, it is considered that idling does not occur in the free rotation state even when the friction coefficient of the road surface is low. On the other hand, a driving force is applied to the driving wheel according to the accelerator operation, and idling may occur in a state where the friction coefficient of the road surface is low. On the other hand, in a substantially straight traveling state when no idling occurs, the rotational speeds of the front wheels and the rear wheels are substantially equal. Therefore, if the difference in rotational speed between the front and rear wheels becomes greater than or equal to the predetermined value α during the accelerator operation in a substantially straight traveling state, it can be determined that the rear wheel has idled.

なお、所定値αは、無舗装道路などを走行中などで振動や揺れによって前後輪の回転速度差が微妙に変化する場合にその変化を吸収するために利用する定数である。あるいは、前輪と後輪とでタイヤの直径が異なる場合などにその差分を吸収するために利用することもできる。   The predetermined value α is a constant used to absorb the change when the rotational speed difference between the front and rear wheels slightly changes due to vibration or shaking while traveling on an unpaved road or the like. Alternatively, it can be used to absorb the difference when the tire diameter is different between the front wheel and the rear wheel.

次に、空転時加速度計算部5および摩擦係数推定部6における処理手順を図5のフローチャートを参照して説明する。空転時加速度計算部5は、駆動輪空転検出部4による駆動輪空転検出を監視し(S5)、空転が検出された場合には(S6)、そのときの後輪の回転する加速度を回転速度計11の回転速度情報に基づき計算する(S7)。摩擦係数推定部6は、空転時加速度計算部5による加速度の計算結果を受け取ると、その計算結果に基づいて摩擦係数を推定する(S8)。   Next, processing procedures in the idling acceleration calculation unit 5 and the friction coefficient estimation unit 6 will be described with reference to the flowchart of FIG. The idling acceleration calculation unit 5 monitors driving wheel idling detection by the driving wheel idling detection unit 4 (S5), and when idling is detected (S6), the rotation acceleration of the rear wheel at that time is determined as the rotational speed. Calculation is made based on the total 11 rotational speed information (S7). When receiving the calculation result of the acceleration by the idling acceleration calculation unit 5, the friction coefficient estimation unit 6 estimates the friction coefficient based on the calculation result (S8).

摩擦係数推定部6における摩擦係数推定に用いるテーブルの一例を図6に示す。図6に示すテーブルは、横軸に摩擦係数をとり、縦軸に加速度をとったテーブルであり、例えば、加速度がb(m/S2)であれば、摩擦係数は0.2μであると推定し、加速度がa(m/S2)であれば、摩擦係数は0.4μであると推定する。 An example of the table used for the friction coefficient estimation in the friction coefficient estimation part 6 is shown in FIG. The table shown in FIG. 6 is a table in which the horizontal axis represents the friction coefficient and the vertical axis represents the acceleration. For example, if the acceleration is b (m / S 2 ), the friction coefficient is 0.2 μm. If the acceleration is a (m / S 2 ), the friction coefficient is estimated to be 0.4 μ.

次に、自動制動制御部3が行う自動制動制御について図7を参照して説明する。図7は自動制動制御の制動パターンを示す図である。図7におけるTTC(Time To Collision)とは、自車と先行車との間の車間距離、自車速その他の情報に基づき推定された自車が先行車に衝突するまでに要する推定時間である。一般的には、自車速が所定値以上(例えば、60km/h以上)でほぼ直進状態(例えば、−30°≦操舵角≦+30°)の場合に適用する。   Next, automatic braking control performed by the automatic braking control unit 3 will be described with reference to FIG. FIG. 7 is a diagram showing a braking pattern of automatic braking control. In FIG. 7, TTC (Time To Collision) is an estimated time required for the own vehicle to collide with the preceding vehicle estimated based on the inter-vehicle distance between the own vehicle and the preceding vehicle, the own vehicle speed, and other information. In general, the present invention is applied when the vehicle speed is a predetermined value or more (for example, 60 km / h or more) and the vehicle is traveling straight (for example, −30 ° ≦ steering angle ≦ + 30 °).

自動制動制御部3は、TTCが2.4秒の段階♯1では約0.1Gの制動減速度(制動G)を用いて比較的弱い制動を行う。続いて、TTCが1.6秒の段階♯2では約0.3Gの制動減速度を用いて中程度の制動を行う。最後に、TTCが0.8秒の段階♯3では最大の制動減速度(約0.5G)を用いて制動を行う。   The automatic braking control unit 3 performs relatively weak braking using a braking deceleration (braking G) of about 0.1 G at the stage # 1 where TTC is 2.4 seconds. Subsequently, at a stage # 2 where the TTC is 1.6 seconds, moderate braking is performed using a braking deceleration of about 0.3 G. Finally, in the step # 3 where the TTC is 0.8 seconds, braking is performed using the maximum braking deceleration (about 0.5 G).

次に、制動減速度調整部7における制動減速度調整手順を図8のフローチャートを参照して説明する。制動減速度調整部7は、摩擦係数推定部6により推定された摩擦係数を監視する(S9)と共に自動制動制御を監視する(S10)。   Next, the braking deceleration adjusting procedure in the braking deceleration adjusting unit 7 will be described with reference to the flowchart of FIG. The braking deceleration adjusting unit 7 monitors the friction coefficient estimated by the friction coefficient estimating unit 6 (S9) and monitors automatic braking control (S10).

自動制動制御が開始されたとき(S11)、推定された摩擦係数が0.2μよりも低ければ(S12)、路面はかなり滑り易い状態であるので自動制動制御は禁止する(S15)。また、推定された摩擦係数が0.2μ以上であるが0.4μよりは低い場合には(S13)、段階♯3の制動減速度を段階♯2の制動力まで低減して自動制動制御を実行する(S16)。また、推定された摩擦係数が0.4μ以上であれば、通常の自動制動制御を実行する(S14)。なお、ステップS9とS10とは順番が入れ替わってもよいし、並列に処理してもよい。   When the automatic braking control is started (S11), if the estimated friction coefficient is lower than 0.2μ (S12), the road surface is considerably slippery and the automatic braking control is prohibited (S15). If the estimated friction coefficient is 0.2μ or more but lower than 0.4μ (S13), the braking deceleration in step # 3 is reduced to the braking force in step # 2 to perform automatic braking control. Execute (S16). If the estimated friction coefficient is 0.4 μm or more, normal automatic braking control is executed (S14). Steps S9 and S10 may be switched in order or may be processed in parallel.

制動減速度調整部7が制動力を調整した場合の制動パターンを図9に示す。図9に示すように、段階♯3の制動力を段階♯2の制動力まで低減させた結果、実質的には、2段階の制動制御となる。   FIG. 9 shows a braking pattern when the braking deceleration adjusting unit 7 adjusts the braking force. As shown in FIG. 9, as a result of reducing the braking force at the step # 3 to the braking force at the step # 2, the braking control is substantially two steps.

また、図10は、TTCの設定値を長めに変更した制動パターン(一点鎖線で示した分TTCの設定値が長くなる)を示す図であるが、推定された摩擦係数が0.2μ以上であり0.4μ未満であるような路面が滑り易い状況下では、図9の制動パターンと比べてTTCの設定値を長めに変更した制動パターンを用いることにより、図9の制動パターンと比べて制動距離を長くとることができるようになるため、摩擦係数が低い路面に対して有効である。   FIG. 10 is a diagram showing a braking pattern in which the set value of TTC is changed to be longer (the set value of TTC becomes longer by the one-dot chain line), but the estimated friction coefficient is 0.2 μm or more. If the road surface is less than 0.4μ and the road surface is slippery, the braking pattern in which the TTC setting value is changed to be longer than that in the braking pattern in FIG. Since the distance can be increased, it is effective for a road surface having a low friction coefficient.

この場合には、ステップS16において、段階♯3の制動減速度を段階♯2の制動減速度まで低減して自動制動制御を実行するのに加え、TTCの設定値を長めに変更した図10の制御パターンを用いるようにする。   In this case, in step S16, the braking deceleration in step # 3 is reduced to the braking deceleration in step # 2 and automatic braking control is executed, and the set value of TTC is changed to be longer in FIG. Use control patterns.

本発明によれば、自動制動制御の当初から路面とタイヤとの間の摩擦係数に適応した自動制動制御を実行することができるため、交通安全に寄与することができる。   According to the present invention, since the automatic braking control adapted to the friction coefficient between the road surface and the tire can be executed from the beginning of the automatic braking control, it is possible to contribute to traffic safety.

本実施例の自動制動制御装置のブロック構成図。The block block diagram of the automatic braking control apparatus of a present Example. 本実施例の自動制動制御装置を車両に搭載した状態を示す側面図。The side view which shows the state which mounted the automatic braking control apparatus of a present Example in the vehicle. 本実施例の自動制動制御装置を車両に搭載した状態を示す上面図。The top view which shows the state which mounted the automatic braking control apparatus of a present Example in the vehicle. 駆動輪空転検出部の駆動輪空転検出の手順を示すフローチャート。The flowchart which shows the procedure of the driving wheel idling detection of a driving wheel idling detection part. 空転時加速度計算部および摩擦係数推定部の処理手順を示すフローチャート。The flowchart which shows the process sequence of the acceleration calculation part at the time of idling, and a friction coefficient estimation part. 摩擦係数と加速度との関係を示すテーブルの一例を示す図。The figure which shows an example of the table which shows the relationship between a friction coefficient and acceleration. 自動制動制御の制御パターンを示す図。The figure which shows the control pattern of automatic braking control. 制動減速度調整部の制動減速度調整手順を示すフローチャート。The flowchart which shows the braking deceleration adjustment procedure of a braking deceleration adjustment part. 制動減速度が調整された制動パターンを示す図。The figure which shows the braking pattern in which the braking deceleration was adjusted. TTCが長めに設定された制動パターンを示す図。The figure which shows the braking pattern in which TTC was set long.

符号の説明Explanation of symbols

1 車間距離測定部
2 時間推定部
3 自動制動制御部
4 駆動輪空転検出部
5 空転時加速度計算部
6 摩擦係数推定部
7 制動減速度調整部
8 レーダ装置
9 自動制動制御装置
10 ブレーキアクチュエータ
11 回転速度計
12 アクセル操作センサ
DESCRIPTION OF SYMBOLS 1 Inter-vehicle distance measurement part 2 Time estimation part 3 Automatic braking control part 4 Drive wheel idling detection part 5 Acceleration calculation part 6 Friction coefficient estimation part 7 Braking deceleration adjustment part 8 Radar apparatus 9 Automatic braking control apparatus 10 Brake actuator 11 Rotation Speedometer 12 Accelerator operation sensor

Claims (2)

走行状態における自車と先行車との間の距離を測定する車間距離測定手段と、
この車間距離測定手段が測定した距離が所定の値以下となるまでに要する時間を推定する時間推定手段と、
この時間推定手段が推定した時間が所定の時間以下である場合には所定の手順に従って自動的に制動制御を実行する自動制動制御手段と
を備えた車両の自動制動制御装置において、
アクセル操作時における駆動輪の空転を検出する駆動輪空転検出手段と、
この駆動輪空転検出手段が空転を検出したときの駆動輪の加速度を検出する空転時加速度検出手段と、
この空転時加速度検出手段が検出した加速度に基づき路面とタイヤとの間の摩擦係数の状態を推定する摩擦係数推定手段と、
この摩擦係数推定手段の推定結果に基づいて前記自動制動制御手段による制動力または制動減速度を調整する制動力または制動減速度調整手段と
を備えたことを特徴とする自動制動制御装置。
An inter-vehicle distance measuring means for measuring a distance between the host vehicle and the preceding vehicle in a running state;
Time estimation means for estimating the time required for the distance measured by the inter-vehicle distance measurement means to be a predetermined value or less;
In an automatic braking control device for a vehicle comprising: automatic braking control means for automatically executing braking control according to a predetermined procedure when the time estimated by the time estimation means is less than or equal to a predetermined time;
Driving wheel idling detection means for detecting idling of the driving wheel during accelerator operation;
An idling acceleration detecting means for detecting the acceleration of the driving wheel when the driving wheel idling detecting means detects idling,
Friction coefficient estimating means for estimating the state of the friction coefficient between the road surface and the tire based on the acceleration detected by the idling acceleration detecting means;
An automatic braking control device comprising: braking force or braking deceleration adjusting means for adjusting braking force or braking deceleration by the automatic braking control means based on an estimation result of the friction coefficient estimating means.
前記推定結果は、摩擦係数の程度に応じて複数の段階に分けられて出力され、
前記制動力または制動減速度調整手段は、当該複数の段階に分けられた推定結果に応じて制動力または制動減速度を複数の段階に分けて低減させる手段を備えた
請求項1記載の自動制動制御装置。
The estimation result is output divided into a plurality of stages according to the degree of the friction coefficient,
The automatic braking according to claim 1, wherein the braking force or braking deceleration adjusting means includes means for reducing the braking force or braking deceleration in a plurality of stages in accordance with the estimation result divided in the plurality of stages. Control device.
JP2007200545A 2007-08-01 2007-08-01 Automatic brake control device Pending JP2009035100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007200545A JP2009035100A (en) 2007-08-01 2007-08-01 Automatic brake control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007200545A JP2009035100A (en) 2007-08-01 2007-08-01 Automatic brake control device

Publications (1)

Publication Number Publication Date
JP2009035100A true JP2009035100A (en) 2009-02-19

Family

ID=40437422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007200545A Pending JP2009035100A (en) 2007-08-01 2007-08-01 Automatic brake control device

Country Status (1)

Country Link
JP (1) JP2009035100A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285147A (en) * 2009-06-15 2010-12-24 Robert Bosch Gmbh Method for controlling brake system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238748A (en) * 1991-01-09 1992-08-26 Japan Electron Control Syst Co Ltd Road surface friction coefficient detector, and engine torque controller and vehicle speed change controller in which this detector is used
JPH0599014A (en) * 1991-10-09 1993-04-20 Japan Electron Control Syst Co Ltd Detection method for frictional factor on road surface
JPH106953A (en) * 1996-06-27 1998-01-13 Unisia Jecs Corp Brake controller
JPH1134840A (en) * 1997-07-16 1999-02-09 Toyota Motor Corp Acceleration slip control device
JP2001247027A (en) * 2000-03-03 2001-09-11 Sumitomo Rubber Ind Ltd Road surface friction coefficient deciding device and method therefor
JP2007084048A (en) * 2005-08-24 2007-04-05 Hino Motors Ltd Automatic brake control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238748A (en) * 1991-01-09 1992-08-26 Japan Electron Control Syst Co Ltd Road surface friction coefficient detector, and engine torque controller and vehicle speed change controller in which this detector is used
JPH0599014A (en) * 1991-10-09 1993-04-20 Japan Electron Control Syst Co Ltd Detection method for frictional factor on road surface
JPH106953A (en) * 1996-06-27 1998-01-13 Unisia Jecs Corp Brake controller
JPH1134840A (en) * 1997-07-16 1999-02-09 Toyota Motor Corp Acceleration slip control device
JP2001247027A (en) * 2000-03-03 2001-09-11 Sumitomo Rubber Ind Ltd Road surface friction coefficient deciding device and method therefor
JP2007084048A (en) * 2005-08-24 2007-04-05 Hino Motors Ltd Automatic brake control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285147A (en) * 2009-06-15 2010-12-24 Robert Bosch Gmbh Method for controlling brake system

Similar Documents

Publication Publication Date Title
JP5225833B2 (en) Method and apparatus for stabilizing vehicle after collision
JP4174334B2 (en) Collision prevention support device for vehicle
JP2007276540A (en) Occupant restraint system for vehicle
JP5475020B2 (en) Stabilization method for automobiles, especially motorcycles
JP2007161225A (en) Method for controlling inter-vehicle distance, and system therefor
JP2005149021A (en) Device for assessing possibility of collision
JP2003206780A (en) Travel control device, and parking support device
CN108844758B (en) Four-wheel positioning deviation warning method and system
JP2007253861A (en) Vehicle controller
JP2014088067A (en) Drive control device
US10919533B2 (en) Vehicle control system and control method thereof
US20210291822A1 (en) Vehicle control apparatus and vehicle
JP2007001423A (en) Occupant constraining control device for vehicle
JP2007271606A (en) Acceleration estimation device and vehicle
JP2009061905A5 (en)
WO2019098324A1 (en) Vehicle travel assistance device
JP2009035100A (en) Automatic brake control device
KR20200046275A (en) regenerative braking control method of vehicle
JP2014069679A (en) Braking control system of vehicle
JP2002168620A (en) Device for detecting roll angle of vehicle, and device for preventing roll-over
JP2020032778A (en) Vehicle travel control device
KR101165118B1 (en) Method for Preventing Rollover of Vehicle
JP2015003686A (en) Vehicle stabilizer
US11377107B2 (en) Vehicle speed control device
US20200231161A1 (en) Method and apparatus for controlling vehicle stability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106