JP2009032955A - 半導体装置、およびその製造方法 - Google Patents

半導体装置、およびその製造方法 Download PDF

Info

Publication number
JP2009032955A
JP2009032955A JP2007196183A JP2007196183A JP2009032955A JP 2009032955 A JP2009032955 A JP 2009032955A JP 2007196183 A JP2007196183 A JP 2007196183A JP 2007196183 A JP2007196183 A JP 2007196183A JP 2009032955 A JP2009032955 A JP 2009032955A
Authority
JP
Japan
Prior art keywords
insulating film
gate
gate electrode
fin
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007196183A
Other languages
English (en)
Inventor
Oushiyun Okano
王俊 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007196183A priority Critical patent/JP2009032955A/ja
Priority to US12/179,995 priority patent/US7915693B2/en
Publication of JP2009032955A publication Critical patent/JP2009032955A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7851Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】表面にエクステンション層を形成したフィンを有し、十分に寄生抵抗を低減することのできる半導体装置、およびその製造方法を提供する。
【解決手段】本発明の一態様に係る半導体装置は、半導体基板と、前記半導体基板上に形成されたフィンと、ゲート絶縁膜を介して前記フィンの両側面を挟むように形成されたゲート電極と、前記ゲート電極の両側の前記フィンの側面に形成され、前記半導体基板の表面と鋭角に対向する面を有するエクステンション層と、前記半導体基板の表面と鋭角に対向する前記面の表面に形成されたシリサイド層と、を有する。
【選択図】図1

Description

本発明は、半導体装置、およびその製造方法に関する。
フィン型FET(Field Effect Transistor)の製造において、フィンの表面に結晶を選択エピタキシャル成長させてエクステンション層を形成し、ソース・ドレイン領域の寄生抵抗を低減する技術が知られている(例えば、特許文献1参照)。
特開2005−86024号
本発明の目的は、表面にエクステンション層を形成したフィンを有し、十分に寄生抵抗を低減することのできる半導体装置、およびその製造方法を提供することにある。
本発明の一態様は、半導体基板と、前記半導体基板上に形成されたフィンと、ゲート絶縁膜を介して前記フィンの両側面を挟むように形成されたゲート電極と、前記ゲート電極の両側の前記フィンの側面に形成され、前記半導体基板の表面と鋭角に対向する面を有するエクステンション層と、前記半導体基板の表面と鋭角に対向する前記面の表面に形成されたシリサイド層と、を有することを特徴とする半導体装置を提供する。
また、本発明の他の一態様は、フィンが設けられた半導体基板上に、フィンの少なくとも一部の側面を覆うように絶縁膜を形成する工程と、前記絶縁膜を加工して、前記フィンと隣接する領域に上端に開口部を有する溝を形成する工程と、前記溝を形成した前記絶縁膜上に、ゲート絶縁膜を介して前記フィンの両側面を挟むようにゲート電極を形成する工程と、前記ゲート電極を形成した後、前記フィンの側面を下地として、前記絶縁膜の前記溝の前記開口部を実質的に塞ぐように結晶をエピタキシャル成長させ、エクステンション層を形成する工程と、エクステンション層を形成した後、前記絶縁膜の高さを下げる工程と、前記絶縁膜の高さを下げた後、前記エクステンション層の表面にシリサイド層を形成する工程と、を有する半導体装置の製造方法を提供する。
本発明によれば、表面にエクステンション層を形成したフィンを有し、十分に寄生抵抗を低減することのできる半導体装置、およびその製造方法を提供することができる。
一般に、フィン型FETの製造においては、{100}面を主面とするSi基板上に、側面の面方位が{110}であるフィンを形成し、素子分離領域としての絶縁膜にSiOを用いることが多い。この場合、通常の気相エピタキシャル成長技術を用いてエクステンション層を形成すると、結晶成長速度の遅い面がファセットとなり、このエクステンション層のファセットと素子分離領域の間に隙間ができる。このため、後の工程において形成するゲート側壁等の材料がこの隙間に残り、エクステンション層をシリサイド化する際の障壁となる。その結果、エクステンション層のシリサイド化される面が上側の面のみとなり、ソース・ドレイン領域の寄生抵抗を十分に低減させることが難しくなる。なお、上記以外の条件であっても、エクステンション層にファセットが形成される場合には、同様の問題が生じる。
〔第1の実施の形態〕
(半導体装置の構成)
図1は、本発明の第1の実施の形態に係る半導体装置の斜視図である。また、図2は、図1の切断線II−IIにおける断面を矢印の方向に見た断面図である。また、図3は、図1の切断線III−IIIにおける断面を矢印の方向に見た断面図である。
半導体装置1は、半導体基板2と、半導体基板2上に形成されたフィン3と、素子分離領域としての機能を有する絶縁膜5と、ゲート絶縁膜6を介してフィン3の両側面を挟むように形成されたゲート電極7と、フィン3の上面とゲート電極7との間に形成されたキャップ層4と、ゲート電極7の側面に形成されたオフセットスペーサ8と、オフセットスペーサ8の側面に形成されたゲート側壁10と、フィン3の側面のゲート電極7およびオフセットスペーサ8に挟まれていない領域に形成されたエクステンション層9と、前記フィン3と前記エクステンション層9の表面に形成されたシリサイド層11と、ゲート電極7の上面および下面に形成されたゲートシリサイド層12と、を有して概略構成される。
半導体基板2には、{100}面を主面とするSi基板等を用いることができる。なお、{100}面は、(100)面、および(100)面と等価な面を表す。
フィン3は、例えば、側面の面方位が{110}となるように、半導体基板2と一体に形成される。なお、{110}面は、(110)面、および(110)面と等価な面を表す。また、フィン3は、ソース領域およびドレイン領域(図示しない)を含む。ゲート電極7に囲まれ、ソース領域とドレイン領域に挟まれたフィン3内の領域は、チャネル領域として働く。
絶縁膜5は、例えば、SiO等の絶縁材料からなる。また、絶縁膜5は、ゲート側壁10に対して高いエッチング選択比を有することが好ましい。
ゲート絶縁膜6は、例えば、SiO、SiN、SiONや、High−k材料(例えば、HfSiON、HfSiO、HfO等のHf系材料、ZrSiON、ZrSiO、ZrO等のZr系材料、Y等のY系材料)からなる。
ゲート電極7は、例えば、導電型不純物を含む多結晶シリコンや、多結晶シリコンゲルマニウムからなる。導電型不純物には、p型トランジスタの場合はB、BF等のp型不純物イオン、n型トランジスタの場合はAs、P等のn型不純物イオンが用いられる。また、ゲート電極7は、W、Ta、Ti、Hf、Zr、Ru、Pt、Ir、Mo、Al等やこれらの化合物等からなるメタルゲート電極であってもよい。メタルゲート電極が用いられる場合は、ゲートシリサイド層12は形成されない。また、ゲート電極7は、メタルゲート電極の一種である、導電型不純物を含む多結晶シリコンや多結晶シリコンゲルマニウムを完全にシリサイド化したフルシリサイドからなるものであってもよい。また、ゲート電極7は、メタルゲート電極の上に導電型不純物を含む多結晶シリコンや、多結晶シリコンゲルマニウムを形成した積層構造であってもよい。この場合は、導電型不純物を含む多結晶シリコンや、多結晶シリコンゲルマニウム上にゲートシリサイド層12を形成することができる。
また、ゲート電極7は、絶縁膜5との間に隙間を有する。ゲートシリサイド層12は、ゲート電極7の上面だけでなく、この隙間に面したゲート電極7の下面にも形成することができる。ゲートシリサイド層12は、例えば、Ni、Pt、Co、Er、Y、Yb、Ti、Pd、NiPt、CoNi等の金属とSiとの化合物からなる。なお、ゲート電極7の上面と下面のゲートシリサイド層12の厚さを増して、ゲート電極7をフルシリサイド化することも可能である。また、ゲート電極7と絶縁膜5との間の隙間には、絶縁性の部材が設けられてもよい。
キャップ層4は、フィン3形成のためのRIE(Reactive Ion Etching)に用いるマスクとしての役割や、絶縁膜5の成膜後に絶縁膜5を平坦化するためのCMP(Chemical Mechanical Polishing)に用いるストッパとしての役割を有する絶縁材料からなり、例えば、SiN等を用いることができる。なお、キャップ層4を設けず、フィン3の上層にゲート絶縁膜6を設け、フィン3の上面にもチャネルが形成されるような構成としてもよい。
オフセットスペーサ8は、例えば、SiO、SiN等からなる。
ゲート側壁10は、例えばSiN等の絶縁材料からなる。また、SiN、SiO、TEOS(Tetraethoxysilane)等の複数種の絶縁材料からなる2層構造、更には3層以上の構造であってもよい。
エクステンション層9は、気相エピタキシャル成長法、固相エピタキシャル成長法等のエピタキシャル成長法により形成されたSi、SiGe、SiC等の結晶からなる。なお、SiGe結晶、SiC結晶等の、Si結晶と異なる格子定数を有する結晶を用いた場合は、フィン3内のチャネル領域(図示しない)に歪みを与え、キャリア移動度を向上させることができる。半導体装置1がn型トランジスタである場合は、SiC結晶等のSi結晶よりも小さい格子定数を有し、チャネル領域に伸張歪みを与える結晶を用い、p型トランジスタである場合は、SiGe結晶等のSi結晶よりも大きい格子定数を有し、チャネル領域に圧縮歪みを与える結晶を用いる。
また、エクステンション層9は、エクステンション層9の下側に形成された、半導体基板2や絶縁膜5の表面に対して鋭角に対向するファセット9aと、エクステンション層9の上側に形成された、ファセット9bを有する。なお、半導体基板2や絶縁膜5の表面に対して鋭角に対向するとは、その面がファセット9bのように上側を向いていたり、半導体基板2の表面に平行な方向を向いていたりしないという意味である。ファセット9a、9bは、結晶のエピタキシャル成長の過程で現れる結晶成長速度の遅い面であり、例えば、エクステンション層9を構成する結晶の{111}面である。なお、{111}面は、(111)面、および(111)面と等価な面を表す。
シリサイド層11は、例えば、Ni、Pt、Co、Er、Y、Yb、Ti、Pd、NiPt、CoNi等の金属とSiとの化合物からなり、フィン3およびエクステンション層9のファセット9a、9bを含む表面に形成される。
以下に、本実施の形態に係る半導体装置1の製造方法の一例を示す。
(半導体装置の製造)
図4A(a)〜(c)、図4B(d)〜(f)、図4C(g)〜(i)、図4D(j)〜(k)は、本発明の第1の実施の形態に係る半導体装置の製造工程を示す斜視図である。
まず、図4A(a)に示すように、半導体基板2上にキャップ層4の材料膜を形成した後に、例えば、フォトリソグラフィ法とRIEにより半導体基板2とキャップ層4の材料膜をパターニングし、上面にキャップ層4を有するフィン3を形成する。
次に、図4A(b)に示すように、CVD(Chemical Vapor Deposition)法等により絶縁膜5を半導体基板2上にキャップ層4の上面の高さよりも高く堆積させた後に、キャップ層4の上面をストッパとしてこの絶縁膜5にCMP等の平坦化処理を施す。
次に、図4A(c)に示すように、キャップ層4に選択的にエッチングを施し、所定の高さまで高さを下げる。例えば、キャップ層がSiN膜、絶縁膜がSiO膜からなる場合は、ホットリン酸を用いたウェットエッチングにより、キャップ層4のみを選択的にエッチバックすることができる。ここで、キャップ層4の高さを調節することにより、キャップ層4の側面に面する絶縁膜5の側面が露出する面積を調節する。
次に、図4B(d)に示すように、絶縁膜5をエッチバックする。例えば、キャップ層がSiN膜、絶縁膜がSiO膜からなる場合は、フッ酸を用いたウェットエッチングにより、絶縁膜5のみを選択的にエッチバックすることができる。
エッチバックされた絶縁膜5は、フィン3に隣接する領域の上面から所定の深さまでの一部に溝5bを作る傾斜5aを有する。この傾斜5aの角度は、図4A(c)に示したキャップ層4をエッチバックする工程において調節した絶縁膜5の露出した側面の面積により決定される。これは、絶縁膜5をエッチバックする際に、絶縁膜5の露出した側面からもエッチングが進行するためである。絶縁膜5の露出した側面の面積が大きいほど、傾斜5aの角度が大きくなる。なお、傾斜5aの角度は、後の工程で形成されるエクステンション層9のファセット9aの角度と一致するように形成されることが好ましい。なお、傾斜5aは直線的なものに限られない。
また、絶縁膜5に傾斜5aを形成するための他の方法として、以下のような方法がある。図4A(b)に示した絶縁膜5に平坦化処理を施す工程の後、図4A(c)に示したキャップ層4の高さを下げる工程を行わずに、RIEにより絶縁膜5をエッチバックすると、絶縁膜5のフィン3に隣接する領域に溝5bが自然に形成され、絶縁膜5を図4B(d)に示したような形状に加工することができる。
次に、図4B(e)に示すように、露出したフィン3の側面にゲート絶縁膜6を形成する。例えば、ゲート絶縁膜6としてSiO膜を用いる場合は、フィン3の側面に酸化処理を施し、SiON膜を用いる場合は、フィン3の側面に酸化処理を施した後、窒化処理、または酸窒化処理を施すことによりゲート絶縁膜6を形成する。また、ゲート絶縁膜6としてSiN膜、High−k材料等を用いる場合は、CVD法等により半導体基板2上の全面にSiN膜、High−k材料膜等を堆積させた後、不要な部分を除去することによりゲート絶縁膜6を形成してもよい。
次に、図4B(f)に示すように、上面にゲートキャップ層14を有するゲート電極7を形成し、ゲート絶縁膜6のゲート電極7に接していない部分を除去する。
ゲート電極7、ゲートキャップ層14の形成、およびゲート絶縁膜6の加工は、例えば、以下のような工程で行われる。まず、半導体基板2上に、CVD法等を用いて多結晶Si膜等のゲート電極7の材料膜を堆積した後、CMP等により平坦化する。次に、平坦化したゲート電極7の材料膜上にSiN、SiO等のゲートキャップ層14の材料膜を堆積させる。次に、ゲート電極7の材料膜、ゲートキャップ層14の材料膜、およびゲート絶縁膜6を、例えばフォトリソグラフィ技術とRIE法を用いてパターニングすることにより、ゲート電極7、ゲートキャップ層14を形成し、ゲート絶縁膜6を加工する。
次に、図4C(g)に示すように、ゲート電極7、およびゲートキャップ層14の側面にオフセットスペーサ8を形成する。
オフセットスペーサ8の形成は、例えば、以下のような工程で行われる。まず、CVD法等を用いて半導体基板2上にオフセットスペーサ8の材料膜を堆積させる。次に、異方性エッチングを施すことによりオフセットスペーサ8の材料膜を加工して、ゲート電極7、およびゲートキャップ層14の側面にオフセットスペーサ8を形成する。このとき、エッチング条件を調節することにより、フィン3側面のオフセットスペーサ8の材料膜を完全に除去しつつ、ゲート電極7、およびゲートキャップ層14の側面にオフセットスペーサ8を形成することができる。なお、オフセットスペーサ8の加工時に、キャップ層4のゲート電極7およびオフセットスペーサ8に囲まれていない部分が同時に除去される。
その後、オフセットスペーサ8をマスクエッジとして用いて、イオン注入法、プラズマドーピング法等により導電型不純物をフィン3の両側面に鉛直方向から所定の角度をもって注入することにより、ソース・ドレイン領域のエクステンション領域(図示しない)を形成する。その後、アニールを施すことにより、エクステンション領域中の導電型不純物を活性化させる。
次に、図4C(h)に示すように、フィン3の露出した表面を下地として、エピタキシャル成長法により結晶を成長させ、エクステンション層9を形成する。このとき、エクステンション層9のファセット9aが絶縁膜5の傾斜5aとほぼ一致し、溝5bがエクステンション層9によって埋められる。なお、ファセット9aが絶縁膜5の傾斜5aと完全に一致しなくても、後の工程においてファセット9a下の隙間にゲート側壁10の材料膜が形成されることを防止する状態、または形成されたとしても僅かな量であるために容易に除去することができる状態、すなわち、エクステンション層9が溝5bの上端の開口部を実質的に塞ぐように形成されるため、隙間にゲート側壁10の材料膜が実質的に入り込まない状態であればよい。具体的には、以下のようなケースが考えられる。
図5(a)に示すように、傾斜5aとファセット9aの角度が一致しているものの、傾斜5aの上端の高さがファセット9aの上端の高さと異なる場合について説明する。同図に示すように、傾斜5aの上端の高さがファセット9aの上端の高さよりも高い場合は、ファセット9aと絶縁膜5との間に隙間が形成されないため、問題がない。一方、傾斜5aの上端の高さがファセット9aの上端の高さよりも低い場合は、ファセット9aの露出部分と絶縁膜5との間に隙間ができるが、後の工程においてゲート側壁10の材料が残らない程度の隙間であれば問題ない。
また、図5(b)に示すように、傾斜5aの半導体基板2の表面に対する角度が、ファセット9aのそれよりも大きい場合について説明する。この場合、ファセット9aと絶縁膜5との間に溝5bが残るが、溝5bの上端が閉じているため、後の工程においてゲート側壁10の材料が残ることがなく、問題は生じない。なお、溝5bの上端が完全に閉じていなくても、後の工程においてゲート側壁10の材料が入り込むことを実質的に防止できればよい。また、傾斜5aの上端の高さがファセット9aの上端の高さよりも低い場合は、ファセット9aの露出部分と絶縁膜5との間に隙間ができるが、後の工程においてゲート側壁10の材料が残らない程度の隙間であれば問題ない。
また、図5(c)に示すように、傾斜5aの半導体基板2の表面に対する角度が、ファセット9aのそれよりも小さい場合について説明する。この場合、傾斜5aの上端の高さにかかわらず、ファセット9aと絶縁膜5との間に上端が開口した溝5bが残る。しかし、この場合も、後の工程においてゲート側壁10の材料が実質的に入り込まない程度の大きさの隙間であればよい。
次に、図4C(i)に示すように、オフセットスペーサ8の側面にゲート側壁10を形成する。
ゲート側壁10の形成は、例えば、以下のような工程で行われる。まず、CVD法等を用いて半導体基板2上にゲート側壁10の材料膜を堆積させる。次に、異方性エッチングを施すことによりゲート側壁10の材料膜を加工して、オフセットスペーサ8の側面にゲート側壁10を形成する。ここで、エクステンション層9のファセット9aが絶縁膜5により覆われているため、ゲート側壁10の材料膜を加工する際に、ファセット9a下にゲート側壁10の材料膜が形成されない、または僅かに形成されても、ゲート側壁10の加工時に容易に除去することができるため残ることがない。
なお、ゲート側壁10を形成した後、さらにエピタキシャル成長法を用いてエクステンション層9を成長させてもよい。なお、このとき、下地となるエクステンション層9と異なる結晶を成長させてもよい。例えば、Si結晶からなるエクステンション層9の表面にSiGe結晶、SiC等を成長させることができる。
次に、図4D(j)に示すように、絶縁膜5をウェットエッチングによりエッチバックし、エクステンション層9のファセット9aを露出させる。この際、ゲート電極7下の絶縁膜5は残してもよいが、これを除去することにより、ゲート電極7下に隙間を形成し、ゲート電極7の下面をシリサイド化することが可能になる。また、絶縁膜5とゲート側壁10はエッチング選択比が大きいため、絶縁膜5をエッチバックする際にゲート側壁10はほとんどエッチングされない。
なお、絶縁膜5をエッチバックしてファセット9aを露出させた後、さらにエピタキシャル成長法を用いてエクステンション層9を成長させてもよい。なお、このとき、下地となるエクステンション層9と異なる結晶を成長させてもよい。例えば、Si結晶からなるエクステンション層9の表面にSiGe結晶、SiC等を成長させることができる。
その後、ゲート側壁10をマスクエッジとして、イオン注入法により導電型不純物をエクステンション層9を有するフィン3の両側面に鉛直方向から所定の角度をもって注入することにより、ソース・ドレイン領域(図示しない)を形成する。その後、アニールを施すことにより、ソース・ドレイン領域中の導電型不純物を活性化させる。
次に、図4D(k)に示すように、表面にエクステンション層9を有するフィン3、およびゲート電極7の上面および下面をシリサイド化し、それぞれシリサイド層11、およびゲートシリサイド層12を形成する。エクステンション層9のファセット9a、9bは、ともにシリサイド化される。
ここで、シリサイド層11、およびゲートシリサイド層12は、例えば、表面にエクステンション層9を有するフィン3の表面、およびゲート電極7の上面および下面を覆うようにNi等からなる金属膜をCVD、ALD(Atomic Layer Deposition)等により堆積させ、400〜500℃のRTA(Rapid Thermal Annealing)を行って金属膜と表面にエクステンション層9を有するフィン3の表面、およびゲート電極7の上面および下面をシリサイド化反応させることにより形成される。なお、金属膜の未反応部分は、硫酸と過酸化水素水の混合溶液でエッチングして除去する。
この後、ゲート電極7と絶縁膜5の間の隙間に絶縁性の部材を埋め込み、ゲート電極7を物理的に支持することができる。
(第1の実施の形態の効果)
本発明の第1の実施の形態によれば、ゲート側壁10を形成する工程において、エクステンション層9のファセット9aを絶縁膜5で保護することにより、ファセット9a下の隙間にゲート側壁10の材料が残ることを防ぎ、ファセット9aもシリサイド化することができる。これにより、ファセット9aをシリサイド化することができなかった従来の方法と比較して、シリサイド化する領域を増やすことができるため、寄生抵抗を十分に低減することが可能になる。
また、ゲート電極7下の絶縁膜5を除去して、ゲート電極7と絶縁膜5との間に隙間を形成することにより、ゲート電極7の上面だけでなく、下面もシリサイド化することができる。これにより、ゲート電極7の電気抵抗をより効果的に低減することができる。
さらに、ゲート電極7の上面と下面のゲートシリサイド層12の厚さを増して、ゲート電極7をフルシリサイド化することも可能である。この場合、シリサイド化反応がゲート電極7の上面と下面から進行するため、上面のみからシリサイド化反応を進行させる通常の方法と比較して、ゲート電極7中のシリサイドの組成の深さ方向の均一性を向上させることが可能となり、組成の不均一性に起因するトランジスタの閾値電圧のばらつきを低減させることができる。
また、ゲート電極7と絶縁膜5の間の隙間に絶縁性の部材を埋め込んだ場合、フィンの高さに対するゲート電極と半導体基板の間の絶縁膜の厚さが従来の構造と比較して大きいため、ゲート電極と半導体基板との間の寄生容量を低減することができる。
また、本実施例のゲート電極7の形状により、ソース・ドレインコンタクトと対向するゲート電極の面積が従来の構造よりも小さくなり、ゲート電極とソース・ドレインコンタクトとの間の寄生容量を低減することができる。
〔第2の実施の形態〕
本発明の第2の実施の形態に係る半導体装置1は、第1の実施の形態に係る半導体装置1に、チャネル領域に歪みを与える機能を有する歪み付与膜を付加した構造を有する。なお、他の部材の構成や製造工程等、第1の実施の形態と同様の点については、簡単のために説明を省略する。
(半導体装置の構成)
図6、および図7は、本発明の第2の実施の形態に係る半導体装置の断面図である。図6、図7に示した断面は、それぞれ第1の実施の形態に係る半導体装置1の図2、図3に示した断面に対応する。
図6、および図7に示すように、半導体装置1の全面に歪み付与層13が形成されている。歪み付与層13は、ゲート電極7下のゲート電極7と絶縁膜5との間の隙間にも形成される。
歪み付与膜13は、フィン3内のチャネル領域(図示しない)に歪みを与えて、キャリア移動度を向上させる機能を有する。半導体装置1がn型トランジスタである場合は、チャネル領域に伸張歪みを与える膜、p型トランジスタである場合は、チャネル領域に圧縮歪みを与える膜として形成される。
歪み付与膜13は、CVD法等により形成されるSiN膜を用いることができる。この場合、SiN膜中の水素濃度を制御することにより、圧縮歪みを与える膜と伸張歪みを与える膜を作り分けることができる。
また、歪み付与膜13は、歪み付与膜13上に形成される層間絶縁膜(図示しない)を、コンタクトプラグ(図示しない)を形成するためにエッチングする際に、エッチングストッパとして用いることができる。
(第2の実施の形態の効果)
本発明の第2の実施の形態によれば、ゲート電極7下のゲート電極7と絶縁膜5との間の隙間にも歪み付与層13を形成することにより、より効果的にチャネル領域に歪みを与え、キャリア移動度を向上させることができる。
〔第3の実施の形態〕
本発明の第3の実施の形態は、半導体装置1の製造方法において第1の実施の形態と異なる。なお、第1の実施の形態と同様の工程については、簡単のために説明を省略する。
図8A(a)〜(c)、図8B(d)〜(f)は、本発明の第3の実施の形態に係る半導体装置の製造工程を示す断面図である。図8A(a)〜(c)、図8B(d)〜(f)は、第1の実施の形態に係る半導体装置1の図2に示した断面に対応する。
まず、図4A(a)に示した上面にキャップ層4を有するフィン3を形成する工程を第1の実施の形態と同様に行う。
次に、図8A(a)に示すように、CVD法等により絶縁膜5を半導体基板2上にキャップ層4の上面の高さよりも高く堆積させる。
次に、図8A(b)に示すように、絶縁膜5を所定の高さまでエッチバックする。
次に、図8A(c)に示すように、例えば、フォトリソグラフィ法とRIEにより、絶縁膜5のフィン3に隣接した領域を選択的にエッチングし、溝5bを形成する。
続いて、図4B(e)に示したゲート絶縁膜6を形成する工程、図4B(f)に示したゲート電極7を形成し、ゲート絶縁膜6のゲート電極7に接していない部分を除去する工程、図4C(g)に示したオフセットスペーサ8を形成する工程、およびソース・ドレイン領域のエクステンション領域を形成する工程を第1の実施の形態と同様に行う。
次に、図8B(d)に示すように、フィン3の露出した表面を下地として、エピタキシャル成長法により結晶を成長させ、エクステンション層9を形成する。このとき、フィン3の側面から成長したエクステンション層9の成長方向の先端(図8B(d)に示すように断面がフィン3の側面に底辺が接する三角形となる場合は、その頂点)が溝5bの側面に接し、溝5bの上端の開口部が塞がれる。なお、後の工程においてファセット9a下の隙間にゲート側壁10の材料膜が実質的に入り込まない状態であれば、エクステンション層9と溝5bの側面が接していなくてもよい。
続いて、図4C(i)に示したゲート側壁10を形成する工程を第1の実施の形態と同様に行う。
次に、図8B(e)に示すように、絶縁膜5の溝5bが形成されていない領域をエッチバックし、エクステンション層9のファセット9aを露出させる。
続いて、ソース・ドレイン領域を形成する工程を第1の実施の形態と同様に行う。
次に、図8B(f)に示すように、表面にエクステンション層9を有するフィン3、およびゲート電極7の上面および下面をシリサイド化し、それぞれシリサイド層11、およびゲートシリサイド層12を形成する。エクステンション層9のファセット9a、9bは、ともにシリサイド化される。図9は、図3に対応する断面を示す断面図である。
この後、ゲート電極7と絶縁膜5の間の隙間にゲート電極7を物理的に支持するための絶縁性の部材や、第2の実施の形態に係る歪み付与膜13を埋め込むことができる。
(第3の実施の形態の効果)
本発明の第3の実施の形態によれば、第1の実施の形態と異なる方法を用いて、ファセット9a下の隙間にゲート側壁10の材料が残ることを防ぎ、ファセット9aをシリサイド化することができる。
〔他の実施の形態〕
本発明は、上記各実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。
例えば、上記各実施の形態においては、エクステンション層9が、ファセット9a、9bを有し、断面が三角形となる形状を有するが、実際はこの様な形状に限られない。例えば、エクステンション層9がファセット9a、9bと、フィン3の側面に平行な面を有し、断面が台形となる形状を有してもよい。
本発明の第1の実施の形態に係る半導体装置の斜視図。 本発明の第1の実施の形態に係る半導体装置の図1の切断線II−IIにおける断面を矢印の方向に見た断面図。 本発明の第1の実施の形態に係る半導体装置の図1の切断線III−IIIにおける断面を矢印の方向に見た断面図。 (a)〜(c)は、本発明の第1の実施の形態に係る半導体装置の製造工程を示す斜視図。 (d)〜(f)は、本発明の第1の実施の形態に係る半導体装置の製造工程を示す斜視図。 (g)〜(i)は、本発明の第1の実施の形態に係る半導体装置の製造工程を示す斜視図。 (j)〜(k)は、本発明の第1の実施の形態に係る半導体装置の製造工程を示す斜視図。 (a)〜(c)は、本発明の第1の実施の形態に係る半導体装置の製造工程を示す部分断面図。 本発明の第2の実施の形態に係る半導体装置の断面図。 本発明の第2の実施の形態に係る半導体装置の断面図。 (a)〜(c)は、本発明の第3の実施の形態に係る半導体装置の製造工程を示す断面図。 (d)〜(f)は、本発明の第3の実施の形態に係る半導体装置の製造工程を示す断面図。 本発明の第3の実施の形態に係る半導体装置の断面図。
符号の説明
1 半導体装置。2 半導体基板。3 フィン。5 絶縁膜。5b 溝。6 ゲート絶縁膜。7 ゲート電極。9 エクステンション層。10 ゲート側壁。11 シリサイド層。12 ゲートシリサイド層。13 歪み付与膜。

Claims (5)

  1. 半導体基板と、
    前記半導体基板上に形成されたフィンと、
    ゲート絶縁膜を介して前記フィンの両側面を挟むように形成されたゲート電極と、
    前記ゲート電極の両側の前記フィンの側面に形成され、前記半導体基板の表面と鋭角に対向する面を有するエクステンション層と、
    前記半導体基板の表面と鋭角に対向する前記面の表面に形成されたシリサイド層と、
    を有することを特徴とする半導体装置。
  2. 前記ゲート電極は、上面および下面にゲートシリサイド層を有することを特徴とする請求項1に記載の半導体装置。
  3. 前記フィンの前記ゲート電極に挟まれた領域に歪みを与える歪み付与膜が、前記ゲート電極下に形成されたことを特徴とする請求項1に記載の半導体装置。
  4. フィンが設けられた半導体基板上に、フィンの少なくとも一部の側面を覆うように絶縁膜を形成する工程と、
    前記絶縁膜を加工して、前記フィンと隣接する領域に上端に開口部を有する溝を形成する工程と、
    前記溝を形成した前記絶縁膜上に、ゲート絶縁膜を介して前記フィンの両側面を挟むようにゲート電極を形成する工程と、
    前記ゲート電極を形成した後、前記フィンの側面を下地として、前記絶縁膜の前記溝の前記開口部を実質的に塞ぐように結晶をエピタキシャル成長させ、エクステンション層を形成する工程と、
    エクステンション層を形成した後、前記絶縁膜の高さを下げる工程と、
    前記絶縁膜の高さを下げた後、前記エクステンション層の表面にシリサイド層を形成する工程と、
    を有する半導体装置の製造方法。
  5. 前記エクステンション層を形成した後、ゲート電極の側面にゲート側壁を形成する工程と、
    前記ゲート側壁を形成した後、前記絶縁膜の高さを下げる請求項4に記載の半導体装置の製造方法。
JP2007196183A 2007-07-27 2007-07-27 半導体装置、およびその製造方法 Pending JP2009032955A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007196183A JP2009032955A (ja) 2007-07-27 2007-07-27 半導体装置、およびその製造方法
US12/179,995 US7915693B2 (en) 2007-07-27 2008-07-25 Semiconductor device with fin and silicide structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007196183A JP2009032955A (ja) 2007-07-27 2007-07-27 半導体装置、およびその製造方法

Publications (1)

Publication Number Publication Date
JP2009032955A true JP2009032955A (ja) 2009-02-12

Family

ID=40294478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007196183A Pending JP2009032955A (ja) 2007-07-27 2007-07-27 半導体装置、およびその製造方法

Country Status (2)

Country Link
US (1) US7915693B2 (ja)
JP (1) JP2009032955A (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097057A (ja) * 2009-10-27 2011-05-12 Taiwan Semiconductor Manufacturing Co Ltd バルクFinFET中のSiフィンのフィン下部近くのSTI形状
WO2011067821A1 (ja) * 2009-12-04 2011-06-09 株式会社 東芝 半導体装置の製造方法
JP2011129825A (ja) * 2009-12-21 2011-06-30 Renesas Electronics Corp 半導体装置、および、半導体装置の製造方法
JP2011181931A (ja) * 2010-03-01 2011-09-15 Taiwan Semiconductor Manufacturing Co Ltd フィン型fetを有する半導体装置およびその製造方法
JP2011199287A (ja) * 2010-03-17 2011-10-06 Taiwan Semiconductor Manufacturing Co Ltd フィン型電界効果トランジスタおよびその製造方法
US8362574B2 (en) 2010-06-04 2013-01-29 Kabushiki Kaisha Toshiba Faceted EPI shape and half-wrap around silicide in S/D merged FinFET
JP2013175729A (ja) * 2012-02-27 2013-09-05 Samsung Electronics Co Ltd 電界効果トランジスタ及びその製造方法
JP2013191596A (ja) * 2012-03-12 2013-09-26 Toshiba Corp 半導体装置
JP2013197342A (ja) * 2012-03-21 2013-09-30 Toshiba Corp 半導体装置および半導体装置の製造方法
US8796156B2 (en) 2009-10-27 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Cross OD FinFET patterning
KR20150067297A (ko) * 2012-12-21 2015-06-17 인텔 코포레이션 격자 부정합된 헤테로-에피텍셜 막
KR101541614B1 (ko) 2013-08-09 2015-08-03 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 집적 회로 및 이의 제조 방법
US9130058B2 (en) 2010-07-26 2015-09-08 Taiwan Semiconductor Manufacturing Company, Ltd. Forming crown active regions for FinFETs
US9312274B1 (en) 2014-10-15 2016-04-12 Globalfoundries Inc. Merged fin structures for finFET devices
JP2017505986A (ja) * 2013-12-26 2017-02-23 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 半導体素子の製造方法、半導体素子、およびフィン型電界効果トランジスタ(FinFET)
US10424634B1 (en) 2018-03-09 2019-09-24 Toshiba Memory Corporation Semiconductor device

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8759943B2 (en) * 2010-10-08 2014-06-24 Taiwan Semiconductor Manufacturing Company, Ltd. Transistor having notched fin structure and method of making the same
US8362575B2 (en) 2009-09-29 2013-01-29 Taiwan Semiconductor Manufacturing Company, Ltd. Controlling the shape of source/drain regions in FinFETs
US8362572B2 (en) * 2010-02-09 2013-01-29 Taiwan Semiconductor Manufacturing Co., Ltd. Lower parasitic capacitance FinFET
US8263451B2 (en) * 2010-02-26 2012-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxy profile engineering for FinFETs
US20120199888A1 (en) * 2011-02-09 2012-08-09 United Microelectronics Corporation Fin field-effect transistor structure
US8420464B2 (en) * 2011-05-04 2013-04-16 International Business Machines Corporation Spacer as hard mask scheme for in-situ doping in CMOS finFETs
JP5713837B2 (ja) 2011-08-10 2015-05-07 株式会社東芝 半導体装置の製造方法
JP2013045901A (ja) * 2011-08-24 2013-03-04 Toshiba Corp 半導体装置および半導体装置の製造方法
US8841701B2 (en) * 2011-08-30 2014-09-23 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device having a channel defined in a diamond-like shape semiconductor structure
US9893163B2 (en) * 2011-11-04 2018-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. 3D capacitor and method of manufacturing same
KR101650416B1 (ko) * 2011-12-23 2016-08-23 인텔 코포레이션 비평면 게이트 올어라운드 장치 및 그의 제조 방법
US9147765B2 (en) 2012-01-19 2015-09-29 Globalfoundries Inc. FinFET semiconductor devices with improved source/drain resistance and methods of making same
KR101835655B1 (ko) 2012-03-06 2018-03-07 삼성전자주식회사 핀 전계 효과 트랜지스터 및 이의 제조 방법
US9105654B2 (en) 2012-03-21 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain profile for FinFET
US8987835B2 (en) 2012-03-27 2015-03-24 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET with a buried semiconductor material between two fins
US9559189B2 (en) 2012-04-16 2017-01-31 United Microelectronics Corp. Non-planar FET
US8912606B2 (en) * 2012-04-24 2014-12-16 Globalfoundries Inc. Integrated circuits having protruding source and drain regions and methods for forming integrated circuits
US8729607B2 (en) 2012-08-27 2014-05-20 Kabushiki Kaisha Toshiba Needle-shaped profile finFET device
US9287178B2 (en) * 2012-10-01 2016-03-15 Globalfoundries Inc. Multi-gate field effect transistor (FET) including isolated fin body
US8946029B2 (en) 2012-11-12 2015-02-03 GlobalFoundries, Inc. Methods of manufacturing integrated circuits having FinFET structures with epitaxially formed source/drain regions
KR102017616B1 (ko) 2013-01-02 2019-09-03 삼성전자주식회사 전계 효과 트랜지스터
KR102049774B1 (ko) 2013-01-24 2019-11-28 삼성전자 주식회사 반도체 장치 및 그 제조 방법
US8921191B2 (en) * 2013-02-05 2014-12-30 GlobalFoundries, Inc. Integrated circuits including FINFET devices with lower contact resistance and reduced parasitic capacitance and methods for fabricating the same
US9117842B2 (en) 2013-03-13 2015-08-25 Globalfoundries Inc. Methods of forming contacts to source/drain regions of FinFET devices
US20140273365A1 (en) * 2013-03-13 2014-09-18 Globalfoundries Inc. Methods of forming contacts to source/drain regions of finfet devices by forming a region that includes a schottky barrier lowering material
US9159834B2 (en) * 2013-03-14 2015-10-13 International Business Machines Corporation Faceted semiconductor nanowire
US8912063B2 (en) 2013-03-14 2014-12-16 Samsung Electronics Co., Ltd. Semiconductor device having blocking pattern and method for fabricating the same
US8796093B1 (en) * 2013-03-14 2014-08-05 International Business Machines Corporation Doping of FinFET structures
US8859379B2 (en) 2013-03-15 2014-10-14 International Business Machines Corporation Stress enhanced finFET devices
US9752251B2 (en) * 2013-04-15 2017-09-05 International Business Machines Corporation Self-limiting selective epitaxy process for preventing merger of semiconductor fins
US9034741B2 (en) 2013-05-31 2015-05-19 International Business Machines Corporation Halo region formation by epitaxial growth
CN105531797A (zh) * 2013-06-28 2016-04-27 英特尔公司 具有用于III-N外延的Si(100)晶片上的Si(111)平面的纳米结构和纳米特征
US8952420B1 (en) 2013-07-29 2015-02-10 Stmicroelectronics, Inc. Method to induce strain in 3-D microfabricated structures
KR102068980B1 (ko) * 2013-08-01 2020-01-22 삼성전자 주식회사 반도체 장치 및 그 제조 방법
JP5886802B2 (ja) * 2013-08-29 2016-03-16 株式会社東芝 半導体装置
US9099559B2 (en) 2013-09-16 2015-08-04 Stmicroelectronics, Inc. Method to induce strain in finFET channels from an adjacent region
KR102085525B1 (ko) 2013-11-27 2020-03-09 삼성전자 주식회사 반도체 장치 및 그 제조 방법
US9368626B2 (en) 2013-12-04 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with strained layer
KR102155181B1 (ko) 2014-01-28 2020-09-11 삼성전자주식회사 반도체 장치 및 그 제조 방법
US9837440B2 (en) 2014-02-07 2017-12-05 International Business Machines Corporation FinFET device with abrupt junctions
US10134759B2 (en) * 2014-02-18 2018-11-20 Stmicroelectronics, Inc. Semiconductor device including groups of nanowires of different semiconductor materials and related methods
US9425310B2 (en) 2014-03-04 2016-08-23 Taiwan Semiconductor Manufacturing Co., Ltd. Methods for forming wrap around contact
US9431537B2 (en) 2014-03-26 2016-08-30 Samsung Electronics Co., Ltd. Semiconductor devices and methods of fabricating the same
KR102236560B1 (ko) * 2014-03-26 2021-04-06 삼성전자주식회사 반도체 장치 및 이의 제조 방법
US9490174B2 (en) * 2014-05-16 2016-11-08 Globalfoundries Inc. Fabricating raised fins using ancillary fin structures
US9941406B2 (en) 2014-08-05 2018-04-10 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with source/drain cladding
KR102230198B1 (ko) 2014-09-23 2021-03-19 삼성전자주식회사 반도체 소자 및 이의 제조 방법
US9431534B2 (en) * 2014-12-02 2016-08-30 Globalfoundries Inc. Asymmetric field effect transistor cap layer
US9660059B2 (en) * 2014-12-12 2017-05-23 International Business Machines Corporation Fin replacement in a field-effect transistor
US9406529B1 (en) 2015-03-05 2016-08-02 International Business Machines Corporation Formation of FinFET junction
US9577099B2 (en) * 2015-03-09 2017-02-21 Globalfoundries Inc. Diamond shaped source drain epitaxy with underlying buffer layer
US9324656B1 (en) 2015-03-09 2016-04-26 Globalfoundries Inc. Methods of forming contacts on semiconductor devices and the resulting devices
KR102251060B1 (ko) 2015-04-06 2021-05-14 삼성전자주식회사 반도체 장치 및 반도체 장치의 제조 방법
KR102328564B1 (ko) 2015-04-14 2021-11-18 삼성전자주식회사 반도체 장치 및 그 제조 방법
KR102310082B1 (ko) 2015-04-27 2021-10-08 삼성전자주식회사 핀 바디 및 에피택시얼 막을 포함하는 반도체 소자
KR102387919B1 (ko) * 2015-05-21 2022-04-15 삼성전자주식회사 반도체 장치
US10084085B2 (en) 2015-06-11 2018-09-25 Taiwan Semiconductor Manufacturing Co., Ltd. Fin field effect transistor (FinFET) device structure with stop layer and method for forming the same
US10374088B2 (en) 2015-06-16 2019-08-06 International Business Machines Corporation Low parasitic capacitance and resistance finFET device
US9548361B1 (en) * 2015-06-30 2017-01-17 Stmicroelectronics, Inc. Method of using a sacrificial gate structure to make a metal gate FinFET transistor
US9680020B2 (en) 2015-07-09 2017-06-13 Globalfoundries Inc. Increased contact area for FinFETs
US9735164B2 (en) 2015-10-15 2017-08-15 Globalfoundries Singapore Pte. Ltd. Low power embedded one-time programmable (OTP) structures
US10056486B2 (en) * 2016-03-24 2018-08-21 Globalfoundries Inc. Methods for fin thinning providing improved SCE and S/D EPI growth
US9812453B1 (en) 2017-02-13 2017-11-07 Globalfoundries Inc. Self-aligned sacrificial epitaxial capping for trench silicide
US10062577B1 (en) * 2017-07-11 2018-08-28 United Microelectronics Corp. Method of fabricating III-V fin structures and semiconductor device with III-V fin structures
KR102365109B1 (ko) 2017-08-22 2022-02-18 삼성전자주식회사 집적회로 장치
US10522680B2 (en) * 2017-08-31 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Finfet semiconductor device structure with capped source drain structures
KR102403031B1 (ko) * 2017-10-19 2022-05-27 삼성전자주식회사 반도체 장치
US10861969B2 (en) 2018-07-16 2020-12-08 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming FinFET structure with reduced Fin buckling
US10944009B2 (en) * 2018-10-31 2021-03-09 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of fabricating a FinFET device with wrap-around silicide source/drain structure
US11270908B2 (en) * 2020-04-22 2022-03-08 Nanya Technology Corporation Semiconductor die structure with air gaps and method for preparing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086024A (ja) 2003-09-09 2005-03-31 Toshiba Corp 半導体装置及びその製造方法
US20070075372A1 (en) * 2003-10-20 2007-04-05 Nec Corporation Semiconductor device and manufacturing process therefor
JP2005294789A (ja) 2004-03-10 2005-10-20 Toshiba Corp 半導体装置及びその製造方法
JP2007035957A (ja) 2005-07-27 2007-02-08 Toshiba Corp 半導体装置とその製造方法
JP2007073831A (ja) 2005-09-08 2007-03-22 Toshiba Corp 半導体装置の製造方法
JP4635897B2 (ja) * 2006-02-15 2011-02-23 株式会社東芝 半導体装置及びその製造方法
US7425500B2 (en) * 2006-03-31 2008-09-16 Intel Corporation Uniform silicide metal on epitaxially grown source and drain regions of three-dimensional transistors
US7566949B2 (en) * 2006-04-28 2009-07-28 International Business Machines Corporation High performance 3D FET structures, and methods for forming the same using preferential crystallographic etching
JP2007299991A (ja) 2006-05-01 2007-11-15 Toshiba Corp 半導体装置及びその製造方法
US20080003755A1 (en) * 2006-06-30 2008-01-03 Uday Shah Sacrificial oxide layer which enables spacer over-etch in tri-gate architectures
US7435683B2 (en) * 2006-09-15 2008-10-14 Intel Corporation Apparatus and method for selectively recessing spacers on multi-gate devices

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9953885B2 (en) 2009-10-27 2018-04-24 Taiwan Semiconductor Manufacturing Company, Ltd. STI shape near fin bottom of Si fin in bulk FinFET
JP2014199942A (ja) * 2009-10-27 2014-10-23 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. バルクFinFET中のSiフィンのフィン下部近くのSTI形状
JP2011097057A (ja) * 2009-10-27 2011-05-12 Taiwan Semiconductor Manufacturing Co Ltd バルクFinFET中のSiフィンのフィン下部近くのSTI形状
US8796156B2 (en) 2009-10-27 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Cross OD FinFET patterning
JP5404812B2 (ja) * 2009-12-04 2014-02-05 株式会社東芝 半導体装置の製造方法
WO2011067821A1 (ja) * 2009-12-04 2011-06-09 株式会社 東芝 半導体装置の製造方法
US8492219B2 (en) 2009-12-04 2013-07-23 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method
JP2011129825A (ja) * 2009-12-21 2011-06-30 Renesas Electronics Corp 半導体装置、および、半導体装置の製造方法
JP2011181931A (ja) * 2010-03-01 2011-09-15 Taiwan Semiconductor Manufacturing Co Ltd フィン型fetを有する半導体装置およびその製造方法
JP2011199287A (ja) * 2010-03-17 2011-10-06 Taiwan Semiconductor Manufacturing Co Ltd フィン型電界効果トランジスタおよびその製造方法
JP2014017515A (ja) * 2010-03-17 2014-01-30 Taiwan Semiconductor Manufactuaring Co Ltd フィン型電界効果トランジスタおよびその製造方法
US10224245B2 (en) 2010-03-17 2019-03-05 Taiwan Semiconductor Manufacturing Co., Ltd. Method of making a finFET, and finFET formed by the method
US10515856B2 (en) 2010-03-17 2019-12-24 Taiwan Semiconductor Manufacturing Co., Ltd. Method of making a FinFET, and FinFET formed by the method
US9312179B2 (en) 2010-03-17 2016-04-12 Taiwan-Semiconductor Manufacturing Co., Ltd. Method of making a finFET, and finFET formed by the method
US8362574B2 (en) 2010-06-04 2013-01-29 Kabushiki Kaisha Toshiba Faceted EPI shape and half-wrap around silicide in S/D merged FinFET
US9543210B2 (en) 2010-07-26 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Forming crown active regions for FinFETs
US9130058B2 (en) 2010-07-26 2015-09-08 Taiwan Semiconductor Manufacturing Company, Ltd. Forming crown active regions for FinFETs
JP2013175729A (ja) * 2012-02-27 2013-09-05 Samsung Electronics Co Ltd 電界効果トランジスタ及びその製造方法
JP2013191596A (ja) * 2012-03-12 2013-09-26 Toshiba Corp 半導体装置
JP2013197342A (ja) * 2012-03-21 2013-09-30 Toshiba Corp 半導体装置および半導体装置の製造方法
KR101689672B1 (ko) 2012-12-21 2016-12-27 인텔 코포레이션 격자 부정합된 헤테로-에피텍셜 막
KR20150067297A (ko) * 2012-12-21 2015-06-17 인텔 코포레이션 격자 부정합된 헤테로-에피텍셜 막
US9214556B2 (en) 2013-08-09 2015-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. Self-aligned dual-metal silicide and germanide formation
KR101541614B1 (ko) 2013-08-09 2015-08-03 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 집적 회로 및 이의 제조 방법
US9559182B2 (en) 2013-08-09 2017-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Self-aligned dual-metal silicide and germanide formation
US10115597B2 (en) 2013-08-09 2018-10-30 Taiwan Semiconductor Manufacturing Company, Ltd. Self-aligned dual-metal silicide and germanide formation
JP2017505986A (ja) * 2013-12-26 2017-02-23 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 半導体素子の製造方法、半導体素子、およびフィン型電界効果トランジスタ(FinFET)
US9312274B1 (en) 2014-10-15 2016-04-12 Globalfoundries Inc. Merged fin structures for finFET devices
US10424634B1 (en) 2018-03-09 2019-09-24 Toshiba Memory Corporation Semiconductor device

Also Published As

Publication number Publication date
US7915693B2 (en) 2011-03-29
US20090026505A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP2009032955A (ja) 半導体装置、およびその製造方法
US11776852B2 (en) Method of manufacturing a semiconductor device and a semiconductor device
US11031297B2 (en) Multiple gate length vertical field-effect-transistors
JP6329294B2 (ja) ホウ素ドープゲルマニウムの濃度が高いトランジスタ
US9331077B2 (en) Semiconductor device and manufacturing method of semiconductor device
US7154118B2 (en) Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US8871584B2 (en) Replacement source/drain finFET fabrication
US9076759B2 (en) Semiconductor device and manufacturing method of the same
CN110085676B (zh) 具有半导体鳍结构的隧穿场效应晶体管
TWI396283B (zh) 半導體裝置
JP4473741B2 (ja) 半導体装置および半導体装置の製造方法
JP5178152B2 (ja) 相補型半導体装置及びその製造方法
US9716155B2 (en) Vertical field-effect-transistors having multiple threshold voltages
US20090001415A1 (en) Multi-gate transistor with strained body
US20140001561A1 (en) Cmos devices having strain source/drain regions and low contact resistance
TW201137985A (en) Multi-gate semiconductor device with self-aligned epitaxial source and drain
JP2009054705A (ja) 半導体基板、半導体装置およびその製造方法
JP2009099702A (ja) 半導体装置及びその製造方法
CN102376766A (zh) 半导体设备及其制造方法
WO2013119342A1 (en) Tapered nanowire structure with reduced off current
US20230411215A1 (en) Method of manufacturing a semiconductor device and a semiconductor device
WO2013177725A1 (zh) 半导体器件及其制造方法
US8247279B2 (en) Method of fabricating semiconductor device using epitaxial growth inhibiting layers
US20220352035A1 (en) Semiconductor device and manufacturing method thereof
JP2009117621A (ja) 半導体装置及びその製造方法