JP2009029698A - Method for producing zinc oxide fine particles and dispersion of zinc oxide fine particles produced by the method - Google Patents

Method for producing zinc oxide fine particles and dispersion of zinc oxide fine particles produced by the method Download PDF

Info

Publication number
JP2009029698A
JP2009029698A JP2008173063A JP2008173063A JP2009029698A JP 2009029698 A JP2009029698 A JP 2009029698A JP 2008173063 A JP2008173063 A JP 2008173063A JP 2008173063 A JP2008173063 A JP 2008173063A JP 2009029698 A JP2009029698 A JP 2009029698A
Authority
JP
Japan
Prior art keywords
zinc oxide
fine particles
oxide fine
shape
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008173063A
Other languages
Japanese (ja)
Other versions
JP5071278B2 (en
Inventor
Reiko Izumi
礼子 泉
Toshiharu Hayashi
年治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008173063A priority Critical patent/JP5071278B2/en
Publication of JP2009029698A publication Critical patent/JP2009029698A/en
Application granted granted Critical
Publication of JP5071278B2 publication Critical patent/JP5071278B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing zinc oxide fine particles where alkali-free zinc oxide fine particles can be produced, without passing many steps, and with high productivity, where the zinc oxide fine particles having high crystallinity, having superior emission wavelengths in an ultraviolet region and superior dispersibility can be prepared and where the shape of the fine particles can be controlled to be a desired shape. <P>SOLUTION: The method for producing the zinc oxide fine particles is characterized by that a mixed liquid in which a zinc compound, acetic acid, a glycol and water are mixed is prepared and that the zinc oxide fine particles having a mean particle diameter of 200 nm or less are produced by keeping the resultant mixed liquid at 50-200°C for 0.5-5 hours. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高い生産性で結晶性が高く、優れた分散性を有する酸化亜鉛微粒子を製造する方法及び該方法により得られた酸化亜鉛微粒子の分散体に関するものである。   The present invention relates to a method for producing zinc oxide fine particles having high productivity, high crystallinity, and excellent dispersibility, and a dispersion of zinc oxide fine particles obtained by the method.

通常、湿式法で得られる酸化亜鉛微粒子については結晶性が低く、欠陥が多いことから、緑色発光体材料として用いられてきた。   Usually, zinc oxide fine particles obtained by a wet method have been used as a green light emitting material because of low crystallinity and many defects.

一方で、緑色の発光を消失させた紫外線光源や紫外線レーザーなどに応用できる、紫外領域に優勢な発光波長をもち、結晶性の高い酸化亜鉛微粒子やこの結晶性の高い酸化亜鉛微粒子が分散した分散体が求められている。現在、分散性に優れた酸化亜鉛微粒子の製造方法としては、以下の技術が知られている。   On the other hand, it can be applied to ultraviolet light sources and ultraviolet lasers that have lost green light emission, and has a dominant emission wavelength in the ultraviolet region, and is a dispersion of highly crystalline zinc oxide particles and highly crystalline zinc oxide particles dispersed The body is sought. Currently, the following techniques are known as methods for producing fine zinc oxide particles having excellent dispersibility.

酸化亜鉛の水性スラリーに炭酸アルカリ塩を反応させて塩基性炭酸亜鉛を得る工程、該塩基性炭酸亜鉛を加熱熟成する工程、得られる熟成液に、IIIB族元素、IVB族元素及びFeよりなる群から選択される少なくとも1種の元素の水溶液塩を混合して再熟成する工程、該熟成物を脱水し乾燥する工程、得られる乾燥物を焼成する工程、該焼成物を解砕する工程を順次実施することを特徴とする導電性酸化亜鉛粉末の製法が開示されている(例えば、特許文献1参照。)。この特許文献1では、焼成を300℃以上、600℃以下の温度で行うことが記載され、具体的な実施例では、400℃で焼成を行っている。上記製造方法により、優れた分散性と導電性付与特性を備えた導電性酸化亜鉛粉末を提供することができる。   A step of reacting an alkali carbonate with an aqueous zinc oxide slurry to obtain basic zinc carbonate, a step of heating and aging the basic zinc carbonate, and a group of IIIB element, IVB group element and Fe in the resulting aging solution A step of mixing and re-ripening an aqueous salt of at least one element selected from the following: a step of dehydrating and drying the aged product, a step of firing the resulting dried product, and a step of crushing the fired product A method for producing a conductive zinc oxide powder, which is characterized in that it is carried out, is disclosed (for example, see Patent Document 1). This Patent Document 1 describes that firing is performed at a temperature of 300 ° C. or more and 600 ° C. or less. In a specific example, firing is performed at 400 ° C. By the said manufacturing method, the electroconductive zinc oxide powder provided with the outstanding dispersibility and electroconductivity provision characteristic can be provided.

また、少なくとも1種のアルコール又はアルコール/水混合物中での塩基性加水分解による酸化亜鉛ゲルの製造方法であって、加水分解中に最初に生成する沈殿を、酸化亜鉛が完全に綿状の塊になるまで熟成させ、次いでこの沈殿を濃縮してゲルとし、そして上澄み相から分離することを特徴とする方法が開示されている(例えば、特許文献2参照。)。この特許文献2では、塩基性加水分解に使用する塩基として、水酸化ナトリウムや水酸化カリウムが挙げられている。上記方法により、UV−A領域においても強いUV吸収を示し、散乱が最小になる優れた分散特性をも合わせて持つナノサイズ酸化亜鉛を提供することができる。
国際公開第2004/058645号パンフレット(請求の範囲2、第3頁24〜25行目、第16頁11〜14行目、第23頁14行目〜第26頁3行目) 特表2002−537219号公報(請求項3、[0015]、[0025])
A method for producing a zinc oxide gel by basic hydrolysis in at least one alcohol or alcohol / water mixture, wherein the zinc oxide is a completely flocculent mass that precipitates initially formed during hydrolysis. A method is disclosed in which the mixture is aged until the mixture is concentrated, and then the precipitate is concentrated to a gel and separated from the supernatant phase (see, for example, Patent Document 2). In this patent document 2, sodium hydroxide and potassium hydroxide are mentioned as a base used for basic hydrolysis. By the above method, it is possible to provide nano-sized zinc oxide that exhibits strong UV absorption even in the UV-A region and also has excellent dispersion characteristics that minimize scattering.
International Publication No. 2004/058645 (Claim 2, page 3, lines 24-25, page 16, lines 11-14, page 23, lines 14-26, line 3) Japanese translation of PCT publication No. 2002-537219 (Claim 3, [0015], [0025])

しかしながら、上記特許文献1に示される方法では、多段階工程を経なければならず、また、400℃のような高温で焼成する必要があった。更に、高温焼成で焼結した粉体の分散性を向上させるために、焼成物を解砕する工程が必要となるため、生産性が低い問題があった。   However, in the method disclosed in Patent Document 1, it is necessary to go through a multi-step process, and it is necessary to fire at a high temperature such as 400 ° C. Furthermore, in order to improve the dispersibility of the powder sintered by high-temperature firing, a step of crushing the fired product is required, which has a problem of low productivity.

また、上記特許文献2に示される方法では、アルコール中で塩基によって加水分解することによって酸化亜鉛微粒子を得るため、酸化亜鉛微粒子を得る際に焼成工程を省略することはできるが、塩基による加水分解の段階で、アルカリ金属が混入してしまうため、より多くの洗浄工程が必要となり、また、最終的に得られた酸化亜鉛微粒子中にアルカリ金属が不純物として混入する原因となっていた。また、この方法により得られる酸化亜鉛ナノ粒子の結晶性は比較的低いものであった。   Moreover, in the method shown in the above-mentioned Patent Document 2, since the zinc oxide fine particles are obtained by hydrolysis with a base in alcohol, the baking step can be omitted when obtaining the zinc oxide fine particles. At this stage, the alkali metal is mixed in, so that more cleaning steps are required, and the alkali metal is mixed as an impurity in the finally obtained zinc oxide fine particles. Moreover, the crystallinity of the zinc oxide nanoparticles obtained by this method was relatively low.

本発明の第1の目的は、多段階工程を経ることなく、高い生産性でアルカリフリーの酸化亜鉛微粒子を得ることができる、酸化亜鉛微粒子の製造方法を提供することにある。   A first object of the present invention is to provide a method for producing zinc oxide fine particles, which can obtain alkali-free zinc oxide fine particles with high productivity without going through a multi-step process.

本発明の第2の目的は、結晶性が高く、紫外領域に優勢な発光波長をもち、優れた分散性を有する酸化亜鉛微粒子を得ることができる、酸化亜鉛微粒子の製造方法を提供することにある。   A second object of the present invention is to provide a method for producing zinc oxide fine particles, which can obtain zinc oxide fine particles having high crystallinity, having a light emission wavelength dominant in the ultraviolet region, and having excellent dispersibility. is there.

本発明の第3の目的は、微粒子の形状を所望の形状に制御することが可能な酸化亜鉛微粒子の製造方法を提供することにある。   A third object of the present invention is to provide a method for producing zinc oxide fine particles capable of controlling the shape of the fine particles to a desired shape.

本発明の第4の目的は、結晶性が高く、紫外領域に優勢な発光波長をもち、分散性に優れた酸化亜鉛微粒子、分散体、紫外線光源、紫外線レーザーを提供することにある。   A fourth object of the present invention is to provide zinc oxide fine particles, a dispersion, an ultraviolet light source, and an ultraviolet laser that have high crystallinity, have a dominant emission wavelength in the ultraviolet region, and are excellent in dispersibility.

請求項1に係る発明は、亜鉛化合物と酢酸とグリコールを混合して混合液を調製し、調製した混合液を50〜200℃の温度で0.5〜5時間保持することにより、平均粒径が200nm以下の酸化亜鉛微粒子を生成させることを特徴とする酸化亜鉛微粒子の製造方法である。   In the invention according to claim 1, the zinc compound, acetic acid and glycol are mixed to prepare a mixed solution, and the prepared mixed solution is held at a temperature of 50 to 200 ° C. for 0.5 to 5 hours, thereby obtaining an average particle diameter. Is a method for producing zinc oxide fine particles characterized in that zinc oxide fine particles having a diameter of 200 nm or less are produced.

請求項1に係る発明では、製造原料としてグリコールを使用することによって、調製した混合物を1ポットで加熱するのみで、多段階工程を経ることなく、非常に高い生産性で酸化亜鉛微粒子を生成することができる。また、結晶性が高く、紫外領域に優勢な発光波長をもち、かつ優れた分散性を有する酸化亜鉛微粒子を得ることができる。また、製造原料にアルカリ金属を使用していないため、アルカリフリーの酸化亜鉛微粒子を得ることができる。   In the invention according to claim 1, by using glycol as a manufacturing raw material, the prepared mixture is heated only in one pot, and zinc oxide fine particles are generated with very high productivity without passing through a multi-step process. be able to. Further, it is possible to obtain zinc oxide fine particles having high crystallinity, a light emission wavelength dominant in the ultraviolet region, and excellent dispersibility. In addition, since alkali metal is not used as a production raw material, alkali-free zinc oxide fine particles can be obtained.

請求項2に係る発明は、請求項1に係る発明であって、原料として使用する亜鉛化合物が粒径がサブミクロン以上の酸化亜鉛の粗粒子である酸化亜鉛微粒子の製造方法である。   The invention according to claim 2 is the method according to claim 1, wherein the zinc compound used as a raw material is a zinc oxide fine particle in which zinc oxide coarse particles having a particle size of submicron or more are used.

請求項2に係る発明では、粒径がサブミクロン以上の酸化亜鉛の粗粒子は、安価に入手できるため、原料として使用する亜鉛化合物として好適である。   In the invention according to claim 2, since the coarse particles of zinc oxide having a particle size of submicron or more can be obtained at low cost, they are suitable as a zinc compound used as a raw material.

請求項3に係る発明は、請求項1に係る発明であって、原料として使用する亜鉛化合物が酢酸亜鉛である酸化亜鉛微粒子の製造方法である。   The invention according to claim 3 is the method according to claim 1, wherein the zinc compound used as a raw material is zinc acetate.

請求項3に係る発明では、酢酸亜鉛は、安価に入手でき、取扱いが容易な点で、原料として使用する亜鉛化合物として好適である。   In the invention which concerns on Claim 3, zinc acetate is suitable as a zinc compound used as a raw material at the point which can be obtained cheaply and is easy to handle.

請求項4に係る発明は、請求項1に係る発明であって、原料として使用するグリコールがエチレングリコール、プロピレングリコール、1,3−プロパンジオール、ジエチレングリコール、1,3−ブタンジオール又はトリエチレングリコールである酸化亜鉛微粒子の製造方法である。   The invention according to claim 4 is the invention according to claim 1, wherein the glycol used as a raw material is ethylene glycol, propylene glycol, 1,3-propanediol, diethylene glycol, 1,3-butanediol or triethylene glycol. This is a method for producing certain zinc oxide fine particles.

請求項4に係る発明では、上記種類のグリコール化合物は、得られる酸化亜鉛微粒子の形状を粒状、鱗片状、棒状、多角形状など様々な形状に制御できるため、原料として使用するグリコールとして好適である。   In the invention according to claim 4, the glycol compound of the above type is suitable as a glycol used as a raw material because the shape of the obtained zinc oxide fine particles can be controlled to various shapes such as granular, scale-like, rod-like, and polygonal. .

請求項5に係る発明は、請求項1に係る発明であって、生成させた酸化亜鉛微粒子をX線回折により測定したとき、測定で得られたX線回折パターンにおける最大ピークの半値幅が0.5度以下である酸化亜鉛微粒子の製造方法である。   The invention according to claim 5 is the invention according to claim 1, wherein when the generated zinc oxide fine particles are measured by X-ray diffraction, the half-width of the maximum peak in the X-ray diffraction pattern obtained by the measurement is 0. This is a method for producing zinc oxide fine particles having a temperature of 5 degrees or less.

請求項5に係る発明では、X線回折パターンにおける最大ピークの半値幅が0.5度以下であれば、結晶性が高い微粒子が得られていることが確認できる。   In the invention which concerns on Claim 5, if the half value width of the maximum peak in an X-ray-diffraction pattern is 0.5 degrees or less, it can confirm that the microparticles | fine-particles with high crystallinity are obtained.

請求項6に係る発明は、請求項1に係る発明であって、生成させた酸化亜鉛微粒子が球状、針状、板状、多角形状、多角錐状、多角体状及び棒状からなる群より選ばれた少なくとも一つの形状を有する粒子である酸化亜鉛微粒子の製造方法である。   The invention according to claim 6 is the invention according to claim 1, wherein the generated zinc oxide fine particles are selected from the group consisting of a sphere, a needle, a plate, a polygon, a polygonal pyramid, a polygon and a rod. This is a method for producing zinc oxide fine particles which are particles having at least one shape.

請求項7に係る発明は、請求項1に係る発明であって、生成させた酸化亜鉛微粒子が球状粒子の他に、針状、板状、多角形状、多角錐状、多角体状及び棒状からなる群より選ばれた少なくとも一つの形状を有する粒子を含む、2種類以上の粒子形状から構成される酸化亜鉛微粒子の製造方法である。   The invention according to claim 7 is the invention according to claim 1, wherein the generated zinc oxide fine particles are in the form of needles, plates, polygons, polygonal pyramids, polygons and rods in addition to spherical particles. This is a method for producing zinc oxide fine particles composed of two or more types of particle shapes including particles having at least one shape selected from the group consisting of:

請求項8に係る発明は、請求項1ないし7いずれか1項に記載の製造方法により得られた平均粒径が200nm以下の微粒子であって、微粒子をX線回折により測定したとき、測定で得られたX線回折パターンにおける最大ピークの半値幅が0.5度以下であることを特徴とする酸化亜鉛微粒子である。   The invention according to claim 8 is a fine particle having an average particle diameter of 200 nm or less obtained by the production method according to any one of claims 1 to 7, and is measured when the fine particle is measured by X-ray diffraction. The zinc oxide fine particles are characterized in that the half-value width of the maximum peak in the obtained X-ray diffraction pattern is 0.5 degrees or less.

請求項8に係る発明では、上記製造方法により得られた平均粒径が200nm以下の微粒子であって、X線回折パターンにおける最大ピークの半値幅が0.5度以下であれば、結晶性が高く、紫外領域に優勢な発光波長をもち、優れた分散性を有する。   In the invention according to claim 8, if the average particle diameter obtained by the above production method is 200 nm or less and the half width of the maximum peak in the X-ray diffraction pattern is 0.5 degrees or less, the crystallinity is It has a high emission wavelength dominant in the ultraviolet region and has excellent dispersibility.

請求項9に係る発明は、請求項8記載の酸化亜鉛微粒子を分散媒に分散させた分散体である。   The invention according to claim 9 is a dispersion in which the zinc oxide fine particles according to claim 8 are dispersed in a dispersion medium.

請求項9に係る発明では、上記酸化亜鉛微粒子を分散媒に分散させた分散体は、優れた分散性を有する。   In the invention according to claim 9, the dispersion in which the zinc oxide fine particles are dispersed in a dispersion medium has excellent dispersibility.

請求項10に係る発明は、請求項9に係る発明であって、酸化亜鉛微粒子が少なくとも三角錐状と球状の双方の形状を含み、微粒子を構成する全ての形状を100%とするとき、三角錐状の形状が含まれる割合が10〜40%の範囲である分散体である。   The invention according to claim 10 is the invention according to claim 9, wherein the zinc oxide fine particles include at least both triangular pyramid and spherical shapes, and when all the shapes constituting the fine particles are 100%, the triangular shape is obtained. It is a dispersion in which the proportion of the conical shape is in the range of 10 to 40%.

請求項11に係る発明は、請求項9に係る発明であって、酸化亜鉛微粒子が少なくともアスペクト比が3〜10の棒状の形状を含み、微粒子を構成する全ての粒子を100%とするとき、棒状粒子の含まれる割合が80〜99%の範囲である分散体である。   The invention according to claim 11 is the invention according to claim 9, wherein the zinc oxide fine particles include at least a rod-like shape with an aspect ratio of 3 to 10, and when all the particles constituting the fine particles are 100%, It is a dispersion in which the proportion of rod-like particles is in the range of 80 to 99%.

請求項12に係る発明は、請求項9ないし11いずれか1項に記載の酸化亜鉛微粒子分散体を用いて成膜して得られる酸化亜鉛膜である。   The invention according to claim 12 is a zinc oxide film obtained by forming a film using the zinc oxide fine particle dispersion according to any one of claims 9 to 11.

請求項13に係る発明は、請求項12記載の酸化亜鉛膜からなる蛍光体である。   The invention according to claim 13 is a phosphor comprising the zinc oxide film according to claim 12.

請求項14に係る発明は、請求項9ないし11いずれか1項に記載の酸化亜鉛微粒子分散体を紫外線発光体材料として用いた紫外線光源である。   The invention according to claim 14 is an ultraviolet light source using the zinc oxide fine particle dispersion according to any one of claims 9 to 11 as an ultraviolet light emitter material.

請求項15に係る発明は、請求項9ないし11いずれか1項に記載の酸化亜鉛微粒子分散体を紫外線発光体材料として用いた紫外線レーザーである。   An invention according to claim 15 is an ultraviolet laser using the zinc oxide fine particle dispersion according to any one of claims 9 to 11 as an ultraviolet light emitter material.

本発明の酸化亜鉛微粒子の製造方法は、製造原料としてグリコールを使用することによって、調製した混合物を1ポットで加熱するのみで、多段階工程を経ることなく、非常に高い生産性で酸化亜鉛微粒子を得ることができる。また、結晶性が高く、紫外領域に優勢な発光波長をもち、かつ優れた分散性を有する酸化亜鉛微粒子を得ることができる。また、製造原料にアルカリ金属を使用していないため、アルカリフリーの酸化亜鉛微粒子を得ることができる。   The method for producing fine zinc oxide particles of the present invention uses glycol as a raw material for production, and the zinc oxide fine particles can be produced with very high productivity without any multi-step process by heating the prepared mixture in one pot. Can be obtained. Further, it is possible to obtain zinc oxide fine particles having high crystallinity, a light emission wavelength dominant in the ultraviolet region, and excellent dispersibility. In addition, since alkali metal is not used as a production raw material, alkali-free zinc oxide fine particles can be obtained.

次に本発明を実施するための最良の形態を説明する。   Next, the best mode for carrying out the present invention will be described.

本発明の酸化亜鉛微粒子の製造方法は、亜鉛化合物と酢酸とグリコールと水を混合して混合液を調製し、調製した混合液を50〜200℃の温度で0.5〜5時間保持することにより、平均粒径が200nm以下の酸化亜鉛微粒子を生成させることを特徴とする。   In the method for producing zinc oxide fine particles of the present invention, a zinc compound, acetic acid, glycol and water are mixed to prepare a mixed solution, and the prepared mixed solution is held at a temperature of 50 to 200 ° C. for 0.5 to 5 hours. Thus, zinc oxide fine particles having an average particle diameter of 200 nm or less are generated.

製造原料としてグリコールを使用することによって、調製した混合物を1ポットで加熱するのみで、多段階工程を経ることなく、非常に高い生産性で平均粒径が200nm以下の酸化亜鉛微粒子を生成することができる。また、結晶性が高く、紫外領域に優勢な発光波長をもち、優れた分散性を有する酸化亜鉛微粒子を得ることができる。また、製造原料にアルカリ金属を使用していないため、アルカリフリーの酸化亜鉛微粒子を得ることができる。原料として、水を添加しても良く、添加量を多くすることで生成する酸化亜鉛微粒子の粒径を大きくすることができる等、粒径の制御が水の添加量によって可能である。   By using glycol as a raw material for production, it is possible to produce zinc oxide fine particles with an extremely high productivity and an average particle size of 200 nm or less, without passing through a multi-step process, only by heating the prepared mixture in one pot. Can do. Further, it is possible to obtain zinc oxide fine particles having high crystallinity, a light emission wavelength dominant in the ultraviolet region, and excellent dispersibility. In addition, since alkali metal is not used as a production raw material, alkali-free zinc oxide fine particles can be obtained. Water may be added as a raw material, and the particle size can be controlled by the amount of water added, for example, the particle size of the zinc oxide fine particles produced can be increased by increasing the amount added.

亜鉛化合物と酢酸とグリコールを混合して得られた混合液を加熱保持して酸化亜鉛微粒子を生成させる場合、反応液中においては酸化亜鉛微粒子の表面に酢酸やグリコールが吸着し、酸化亜鉛微粒子同士が凝集しない状態が維持されていると考えられる。その際、グリコールのように、1分子中に2つの水酸基を持つ化合物は、2箇所で酸化亜鉛微粒子表面に吸着するため、吸着状態が非常に安定しているものと予想される。そのため、酸化亜鉛微粒子の結晶成長は、微粒子表面に安定して吸着している酢酸やグリコールによって阻害され、非常に遅い速度で結晶成長が進むこととなるため、結果として、結晶性の高い酸化亜鉛微粒子が生成することになると考えられる。   When the zinc oxide, acetic acid and glycol mixture is heated and held to produce zinc oxide fine particles, acetic acid and glycol are adsorbed on the surface of the zinc oxide fine particles in the reaction solution, It is considered that the state in which the particles do not aggregate is maintained. In that case, since a compound having two hydroxyl groups in one molecule, such as glycol, is adsorbed on the surface of the zinc oxide fine particles at two locations, the adsorption state is expected to be very stable. Therefore, the crystal growth of zinc oxide fine particles is inhibited by acetic acid and glycol stably adsorbed on the surface of the fine particles, and the crystal growth proceeds at a very slow rate. It is thought that fine particles will be generated.

また、生成させた平均粒径が200nm以下の酸化亜鉛微粒子表面には、酢酸やグリコールが安定して表面に吸着しているため、結果的に酸化亜鉛微粒子を溶媒に分散させる際も、非常に安定な分散体になり得る。また、生成する酸化亜鉛微粒子表面を修飾する添加剤を加えると、更に安定な分散体になり得る。添加剤としては酸化亜鉛表面を修飾するようなものなら何でも良いが、特に、高分子分散剤やSi、Ti、Al系カップリング剤等が好ましい。この方法により製造した酸化亜鉛微粒子を含む液は、そのままでも非常に安定した酸化亜鉛微粒子分散体として用いることができるが、生成した液から酸化亜鉛微粒子のみを分取してもよい。   In addition, since acetic acid and glycol are stably adsorbed on the surface of the generated zinc oxide fine particles having an average particle diameter of 200 nm or less, it is very difficult to disperse the zinc oxide fine particles in the solvent. It can be a stable dispersion. Further, when an additive for modifying the surface of the generated zinc oxide fine particles is added, a more stable dispersion can be obtained. Any additive may be used as long as it modifies the surface of zinc oxide, but polymer dispersants, Si, Ti, Al-based coupling agents, and the like are particularly preferable. The liquid containing zinc oxide fine particles produced by this method can be used as a very stable zinc oxide fine particle dispersion as it is, but only the zinc oxide fine particles may be separated from the produced liquid.

原料として使用する亜鉛化合物としては、粒径がサブミクロン以上、具体的にはサブミクロン〜ミクロンオーダーの酸化亜鉛の粗粒子が、安価に入手できるため、好適である。また、原料として使用する亜鉛化合物としては、酢酸亜鉛が、安価に入手でき、取扱いが容易な点で、好適である。   As a zinc compound used as a raw material, coarse particles of zinc oxide having a particle size of submicron or more, specifically, submicron to micron order are preferable because they can be obtained at low cost. Moreover, as a zinc compound used as a raw material, zinc acetate is suitable because it can be obtained at a low cost and is easy to handle.

原料として酢酸を使用することとしたのは、酢酸以外の他の有機酸では、加熱しても酸化亜鉛微粒子が生成せず、その有機酸からなる亜鉛錯体のままで反応が進まないためである。   The reason for using acetic acid as a raw material is that, with other organic acids other than acetic acid, zinc oxide fine particles are not generated even when heated, and the reaction does not proceed with the zinc complex consisting of the organic acid. .

原料として使用するグリコールとしては、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,10−デカンジオール、ピナコール、ジエチレングリコール、トリエチレングリコールなどのアルキレングリコール、シクロペンタン−1、2−ジオール、シクロヘキサン−1,2−ジオール、シクロヘキサン−1,4−ジオールなどの脂環式グリコール類、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、3−メチル−3−メトキシブタノール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、エチレングリコールモノアセテートなどの上記グリコール類のモノエーテル及びモノエステルなどの誘導体等を挙げることができるが、特に、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、ジエチレングリコール、1,3−ブタンジオール、トリエチレングリコールが好ましい。上記種類のグリコール化合物を使用することで、得られる酸化亜鉛微粒子の形状を粒状、鱗片状、棒状、多角形状など様々な形状に制御できる。   As glycols used as raw materials, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6- Hexanediol, 1,8-octanediol, 1,10-decanediol, pinacol, alkylene glycol such as diethylene glycol, triethylene glycol, cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1, Cycloaliphatic glycols such as 4-diol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, 3-methyl -3-Methoxybutanol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, triethylene glycol monomethyl ether, derivatives of monoethers and monoesters of the above glycols such as ethylene glycol monoacetate, etc. , Ethylene glycol, propylene glycol, 1,3-propanediol, diethylene glycol, 1,3-butanediol, and triethylene glycol are preferable. By using the glycol compound of the above type, the shape of the obtained zinc oxide fine particles can be controlled to various shapes such as a granular shape, a scale shape, a rod shape, and a polygonal shape.

亜鉛化合物と酢酸とグリコールと水との混合割合は、混合物全体を100重量%とするとき、亜鉛化合物の割合が0.1〜20重量%、酢酸の割合が1〜30重量%、グリコールの割合が65〜95重量%及び水の割合が0.1〜5重量%の範囲内となるように調製することが好適である。このうち、混合物全体を100重量%とするとき、亜鉛化合物の割合が0.1〜10重量%、酢酸の割合が5〜20重量%、グリコールの割合が75〜95重量%及び水の割合が0.1〜5重量%の範囲内となるように調製することが特に好ましい。亜鉛化合物の割合を上記0.1〜20重量%の範囲内としたのは、下限値未満であると、生産性が悪く、上限値を越えると溶媒であるグリコールに亜鉛化合物が溶解し難くなり生産性が悪いためである。また、酢酸の割合を上記1〜30重量%の範囲内としたのは、下限値未満であると、亜鉛化合物が溶解し難く、上限値を越えると混合液のpHが低くなりすぎて酸化亜鉛が溶け易くなり、収率が悪くなるためである。更に、水の割合を上記0.1〜5重量%の範囲内としたのは、下限値未満であると、亜鉛化合物が溶け難くなり、生産性が悪く、上限値を越えると生成する酸化亜鉛の粒径が大きくなりすぎるか、反応が進みにくいためである。   The mixing ratio of the zinc compound, acetic acid, glycol and water is such that when the total mixture is 100% by weight, the ratio of zinc compound is 0.1 to 20% by weight, the ratio of acetic acid is 1 to 30% by weight, and the ratio of glycol Is preferably prepared so that the ratio of water is 65 to 95% by weight and the ratio of water is within the range of 0.1 to 5% by weight. Of these, when the total mixture is 100% by weight, the proportion of zinc compound is 0.1 to 10% by weight, the proportion of acetic acid is 5 to 20% by weight, the proportion of glycol is 75 to 95% by weight, and the proportion of water is It is particularly preferable to prepare so as to be in the range of 0.1 to 5% by weight. The reason why the ratio of the zinc compound is within the range of 0.1 to 20% by weight is that if it is less than the lower limit, the productivity is poor, and if the upper limit is exceeded, the zinc compound is difficult to dissolve in the solvent glycol. This is because productivity is poor. Moreover, the ratio of acetic acid within the range of 1 to 30% by weight is that the zinc compound is difficult to dissolve if it is less than the lower limit, and if the upper limit is exceeded, the pH of the mixed solution becomes too low and zinc oxide It is because it becomes easy to melt | dissolve and a yield worsens. Furthermore, the water content in the range of 0.1 to 5% by weight is less than the lower limit, the zinc compound is difficult to dissolve, the productivity is poor, and the zinc oxide that is generated when the upper limit is exceeded. This is because the particle size of the particles becomes too large or the reaction does not proceed easily.

亜鉛化合物と酢酸とグリコールと水を混合して得られた混合液の加熱温度を50〜200℃としたのは、50℃未満では反応が進行せず、200℃を越えると、多量の副生成物が生成するためである。好ましい加熱温度は100〜180℃である。また、加熱保持時間を0.5〜5時間としたのは、0.5時間未満では、反応が進行せず、5時間を越えると、それ以上加熱しても生成する酸化亜鉛の結晶性等の特性は向上しないため、生産性が悪いためである。好ましい加熱保持時間は1〜3時間である。   The reason why the heating temperature of the mixture obtained by mixing the zinc compound, acetic acid, glycol and water was 50 to 200 ° C. is that the reaction does not proceed at a temperature lower than 50 ° C. This is because a product is generated. A preferable heating temperature is 100 to 180 ° C. Further, the heating holding time is set to 0.5 to 5 hours because the reaction does not proceed when the heating time is less than 0.5 hours, and when it exceeds 5 hours, the crystallinity of the zinc oxide produced even if the heating is further performed. This is because the characteristics are not improved and the productivity is poor. A preferable heating and holding time is 1 to 3 hours.

本発明の酸化亜鉛微粒子の製造方法について説明する。   A method for producing the zinc oxide fine particles of the present invention will be described.

先ず、フラスコにグリコール、亜鉛化合物を順に投入し、更に酢酸と必要があれば水を適量添加し、混合して混合液を調製する。また、安定な分散体とする必要がある場合、添加剤を加える。次いで、調製した混合液をオイルバス中で、マグネチックスターラで攪拌し、還流しながら、50〜200℃で加熱し、0.5〜5時間保持する。50〜200℃に達した時点でフラスコ中の混合液が反応し、反応液中に白色の粒子が析出する。加熱後は、自然放冷する。得られた白色反応液は、そのままでも非常に安定した酸化亜鉛微粒子分散体として用いることができるが、酸化亜鉛微粒子のみを分取したい場合は、次のような方法にて分取することができる。得られた白色反応液を500〜1500Gにて1〜5時間遠心分離することで、反応液から白色沈殿物を分離する。この分離した白色沈殿物には、グリコールや副生成物等が含まれているので、白色沈殿物をエタノールやアセトン、水等の溶媒に再分散させ、この分散液を遠心分離して、分散液から白色沈殿物を分離する工程を複数回繰り返すことにより、白色沈殿物を洗浄する。最後に、洗浄した白色沈殿物を25〜60℃で真空乾燥することにより、所望の酸化亜鉛微粒子が得られる。このように、多段階工程を経ることがないため、高い生産性で酸化亜鉛微粒子を得ることができる。また、製造原料にアルカリ金属を使用していないため、アルカリフリーの酸化亜鉛微粒子を得ることができる。   First, glycol and zinc compound are put into a flask in order, and acetic acid and, if necessary, water are added in an appropriate amount and mixed to prepare a mixed solution. In addition, when it is necessary to form a stable dispersion, an additive is added. Next, the prepared mixed liquid is stirred with a magnetic stirrer in an oil bath, heated at 50 to 200 ° C. while being refluxed, and held for 0.5 to 5 hours. When the temperature reaches 50 to 200 ° C., the mixed liquid in the flask reacts and white particles are precipitated in the reaction liquid. Allow to cool naturally after heating. The obtained white reaction liquid can be used as a very stable zinc oxide fine particle dispersion as it is, but when only zinc oxide fine particles are to be fractionated, it can be fractionated by the following method. . The white reaction liquid obtained is centrifuged at 500-1500 G for 1-5 hours to separate the white precipitate from the reaction liquid. Since the separated white precipitate contains glycols and by-products, the white precipitate is redispersed in a solvent such as ethanol, acetone, water, etc., and the dispersion is centrifuged to obtain a dispersion. The white precipitate is washed by repeating the process of separating the white precipitate from a plurality of times. Finally, the washed white precipitate is vacuum-dried at 25 to 60 ° C. to obtain desired zinc oxide fine particles. Thus, since it does not pass through a multistep process, zinc oxide microparticles | fine-particles can be obtained with high productivity. In addition, since alkali metal is not used as a production raw material, alkali-free zinc oxide fine particles can be obtained.

本発明の製造方法により、生成させた酸化亜鉛微粒子をX線回折により測定したとき、測定で得られたX線回折パターンにおける最大ピークの半値幅が0.5度以下であれば、結晶性が高く、緑色の発光を消失させた紫外線光源や紫外線レーザーなどに応用可能な紫外領域に優勢な発光波長をもつ酸化亜鉛微粒子が得られていることを確認できるが、更に、酢酸やグリコール、またそれら添加剤が酸化亜鉛微粒子表面に修飾し、酸化亜鉛微粒子表面の欠陥を補うことで、より欠陥由来の緑色発光を消失させることができる。   When the zinc oxide fine particles produced by the production method of the present invention are measured by X-ray diffraction, if the half-width of the maximum peak in the X-ray diffraction pattern obtained by the measurement is 0.5 degrees or less, the crystallinity is It can be confirmed that zinc oxide fine particles having a dominant emission wavelength in the ultraviolet region, which can be applied to ultraviolet light sources and ultraviolet lasers that have lost high green light emission, are obtained. By modifying the surface of the zinc oxide fine particles with the additive to compensate for defects on the surface of the zinc oxide fine particles, the green light emission derived from the defects can be further eliminated.

本発明の製造方法により、生成させた平均粒径が200nm以下の酸化亜鉛微粒子は、球状、針状、板状、多角形状、多角錐状、多角体状及び棒状からなる群より選ばれた少なくとも一つの形状を有することができる。このうち、生成させた酸化亜鉛微粒子が球状粒子の他に、針状、板状、多角形状、多角錐状、多角体状及び棒状からなる群より選ばれた少なくとも一つの形状を有する粒子を含む、2種類以上の粒子形状から構成される。針状、板状、多角形状、多角錐状、多角体状及び棒状の形状からなる微粒子の場合、その最も長い部分の径が、200nm以下となることが分散体の安定性や分散体や膜の透明性の理由から好ましい。   The zinc oxide fine particles having an average particle diameter of 200 nm or less produced by the production method of the present invention are at least selected from the group consisting of spherical, needle-like, plate-like, polygonal, polygonal pyramid, polygonal and rod-like. It can have one shape. Among these, the generated zinc oxide fine particles include particles having at least one shape selected from the group consisting of needle shape, plate shape, polygonal shape, polygonal pyramid shape, polygonal shape and rod shape in addition to spherical particles. It is composed of two or more types of particle shapes. In the case of fine particles having a needle shape, a plate shape, a polygonal shape, a polygonal pyramid shape, a polygonal shape, and a rod shape, the stability of the dispersion or the dispersion or film is such that the diameter of the longest portion is 200 nm or less. It is preferable for the reason of transparency.

本発明の酸化亜鉛微粒子は、前述した本発明の製造方法により得られた平均粒径が200nm以下の微粒子であって、微粒子をX線回折により測定したとき、測定で得られたX線回折パターンにおける最大ピークの半値幅が0.5度以下であることを特徴とする。上記製造方法により得られた平均粒径が200nm以下の微粒子であって、X線回折パターンにおける最大ピークの半値幅が0.5度以下であれば、結晶性が高く、紫外領域に優勢な発光波長をもち、優れた分散性を有する。   The zinc oxide fine particles of the present invention are fine particles having an average particle diameter of 200 nm or less obtained by the above-described production method of the present invention. When the fine particles are measured by X-ray diffraction, the X-ray diffraction pattern obtained by the measurement is obtained. The full width at half maximum of the peak is 0.5 degrees or less. If the average particle diameter obtained by the above production method is 200 nm or less and the half-value width of the maximum peak in the X-ray diffraction pattern is 0.5 degrees or less, the crystallinity is high and the light emission is dominant in the ultraviolet region. Has a wavelength and excellent dispersibility.

本発明の分散体は、前述した本発明の酸化亜鉛微粒子を分散媒に分散させた分散体である。本発明の酸化亜鉛微粒子を分散媒に分散させた分散体は、優れた分散性を有する。分散媒としては、特に限定はされないが、例えば、脂肪族1価アルコール(メタノール、エタノール、イソプロピルアルコール、n−ブチルアルコール、t−ブチルアルコール、ステアリルアルコールなど)、アルキレングリコール(エチレングリコール、プロピレングリコール、1,3−プロパンジオール、トリメチレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,10−デカンジオール、ピナコール、ジエチレングリコール、トリエチレングリコールなど)、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、3−メチル−3−メトキシブタノール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、エチレングリコールモノアセテートなどの上記グリコール類のモノエーテル及びモノエステルなどの誘導体等を挙げることができる。これらアルコールは1種のみ用いても2種以上併用しても良い。この分散体は、酸化亜鉛微粒子の濃度が0.1〜50重量%の範囲内となるように調製することが、分散体を用いてなる酸化亜鉛膜の膜厚や塗料にした場合の酸化亜鉛含有率を稼ぐため好ましい。   The dispersion of the present invention is a dispersion in which the above-described zinc oxide fine particles of the present invention are dispersed in a dispersion medium. The dispersion in which the zinc oxide fine particles of the present invention are dispersed in a dispersion medium has excellent dispersibility. Although it does not specifically limit as a dispersion medium, For example, aliphatic monohydric alcohol (Methanol, ethanol, isopropyl alcohol, n-butyl alcohol, t-butyl alcohol, stearyl alcohol, etc.), alkylene glycol (ethylene glycol, propylene glycol, 1,3-propanediol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,10- Decanediol, pinacol, diethylene glycol, triethylene glycol, etc.), propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol Derivatives such as monoethers and monoesters of the above glycols such as methyl ether, 3-methyl-3-methoxybutanol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, triethylene glycol monomethyl ether, ethylene glycol monoacetate, etc. be able to. These alcohols may be used alone or in combination of two or more. This dispersion can be prepared so that the concentration of the zinc oxide fine particles is in the range of 0.1 to 50% by weight. The thickness of the zinc oxide film using the dispersion and the zinc oxide in the case of coating It is preferable because the content rate is increased.

特に、酸化亜鉛微粒子が少なくとも三角錐状と球状の双方の形状を含み、微粒子を構成する全ての形状を100%とするとき、三角錐状の形状が含まれる割合が10〜40%の範囲である分散体が、より欠陥由来の緑色発光を消失させ、より紫外領域での発光強度が強いという優れた効果を備える。更に、この分散体は、酸化亜鉛微粒子が少なくともアスペクト比が3〜10の棒状の形状を含み、微粒子を構成する全ての粒子を100%とするとき、棒状粒子の含まれる割合が80〜99%の範囲であることが好ましい。   In particular, when the zinc oxide fine particles include at least a triangular pyramid shape and a spherical shape and all the shapes constituting the fine particles are 100%, the proportion of the triangular pyramid shape included is in the range of 10 to 40%. A certain dispersion has the excellent effect that the green light emission derived from the defect is more eliminated and the light emission intensity in the ultraviolet region is stronger. Further, in this dispersion, when the zinc oxide fine particles include at least a rod-shaped shape having an aspect ratio of 3 to 10, and when all the particles constituting the fine particles are 100%, the ratio of the rod-shaped particles included is 80 to 99%. It is preferable that it is the range of these.

上記本発明の分散体は、欠陥由来の緑色発光が消失され、紫外領域での発光強度が強いという優れた効果を奏するため、紫外線光源や紫外線レーザーを作製する際の紫外線発光体材料として用いることができる。   The dispersion of the present invention has an excellent effect that the green light emission derived from defects disappears and the light emission intensity in the ultraviolet region is strong. Therefore, the dispersion of the present invention should be used as an ultraviolet light emitter material when producing an ultraviolet light source or an ultraviolet laser. Can do.

また、本発明の製造方法により得られた酸化亜鉛微粒子は高い生産性で得ることができ、この酸化亜鉛微粒子を分散させた分散体を紫外線発光体材料として用いることで、製造コストを低減した紫外線光源や紫外線レーザーとすることができる。   In addition, the zinc oxide fine particles obtained by the production method of the present invention can be obtained with high productivity, and the dispersion in which the zinc oxide fine particles are dispersed is used as an ultraviolet light emitter material, thereby reducing the production cost. It can be a light source or an ultraviolet laser.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
先ず、亜鉛化合物として平均粒径が0.5μmの酸化亜鉛粗粒子を、溶媒としてエチレングリコールをそれぞれ用意した。また、酢酸と水を用意した。次いで、フラスコにエチレングリコール300g、酸化亜鉛粗粒子15gを順に投入し、更に酢酸と水を適量添加し、混合して混合液を調製した。続いて、調製した混合液をオイルバス中で、マグネチックスターラで攪拌し、還流しながら、150℃まで加熱した。この加熱の際、145℃に達した時点でフラスコ中に白色の粒子が析出した。この150℃の加熱を2時間保持した後、自然放冷した。次に、得られた白色反応液を1000Gにて5時間遠心分離することで、反応液から白色沈殿物を分離した。更に、分離した白色沈殿物をエタノールに再分散させ、この分散液を遠心分離して、分散液から白色沈殿物を分離する工程を3回繰り返すことにより、白色沈殿物を洗浄した。最後に、洗浄した白色沈殿物を50℃で真空乾燥して所望の白色粉末を得た。
<Example 1>
First, zinc oxide coarse particles having an average particle diameter of 0.5 μm were prepared as a zinc compound, and ethylene glycol was prepared as a solvent. Acetic acid and water were also prepared. Next, 300 g of ethylene glycol and 15 g of zinc oxide coarse particles were sequentially added to the flask, and an appropriate amount of acetic acid and water were added and mixed to prepare a mixed solution. Subsequently, the prepared mixed liquid was stirred with a magnetic stirrer in an oil bath and heated to 150 ° C. while refluxing. During this heating, when the temperature reached 145 ° C., white particles were precipitated in the flask. This heating at 150 ° C. was held for 2 hours and then allowed to cool naturally. Next, the white reaction liquid obtained was centrifuged at 1000 G for 5 hours to separate a white precipitate from the reaction liquid. Furthermore, the separated white precipitate was re-dispersed in ethanol, the dispersion was centrifuged, and the process of separating the white precipitate from the dispersion was repeated three times to wash the white precipitate. Finally, the washed white precipitate was vacuum dried at 50 ° C. to obtain the desired white powder.

得られた白色粉末をXRD測定した。得られたX線回折パターンを図1に示す。図1から、その測定ピーク位置は六方晶酸化亜鉛と完全に一致し、得られた粉末が酸化亜鉛粉末であることが確認された。また、この測定で得られたX線回折パターンにおける最大ピークである(101)面による回折ピークの半値幅は0.33度と非常に狭く、結晶性の高い酸化亜鉛粒子であることが判った。また、得られた白色粉末のTEM観察を行ったところ、粒径が60nmの球状の粒子の中に、一部、一辺が約120nmの三角形状の粒子が見られた。また、同様に得られた白色粉末のSEM観察を行ったところ、TEM観察で見られた三角形状の粒子は、三角錐状の粒子であることが確認された。その結果を次の表1に示す。   The obtained white powder was subjected to XRD measurement. The obtained X-ray diffraction pattern is shown in FIG. From FIG. 1, it was confirmed that the measurement peak position completely coincided with hexagonal zinc oxide, and the obtained powder was zinc oxide powder. Further, the half-value width of the diffraction peak due to the (101) plane, which is the maximum peak in the X-ray diffraction pattern obtained by this measurement, was very narrow at 0.33 degrees, and it was found that the particles were highly crystalline zinc oxide particles. . When the obtained white powder was observed by TEM, triangular particles having a side of about 120 nm were partially observed in spherical particles having a particle size of 60 nm. Moreover, when SEM observation of the white powder obtained similarly was performed, it was confirmed that the triangular-shaped particle | grains seen by TEM observation are triangular pyramid-shaped particles. The results are shown in Table 1 below.

<実施例2>
溶媒としてエチレングリコールの代わりにプロピレングリコールを用いた以外は実施例1と同様の方法により白色粉末を得た。
<Example 2>
A white powder was obtained in the same manner as in Example 1 except that propylene glycol was used instead of ethylene glycol as the solvent.

得られた白色粉末をXRD測定したところ、その測定ピーク位置は六方晶酸化亜鉛と完全に一致し、得られた粉末が酸化亜鉛粉末であることが確認された。また、この測定で得られたX線回折パターンにおける最大ピークである(101)面による回折ピークの半値幅は0.38度と非常に狭く、結晶性の高い酸化亜鉛粒子であることが判った。また、得られた白色粉末のTEM観察及びSEM観察を行ったところ、粒径が30nmの球状の粒子の中に、一部、一辺が約50nmの鱗片形状の粒子が見られた。その結果を次の表1に示す。   When the obtained white powder was subjected to XRD measurement, the measurement peak position completely coincided with hexagonal zinc oxide, and it was confirmed that the obtained powder was zinc oxide powder. In addition, the half-value width of the diffraction peak due to the (101) plane, which is the maximum peak in the X-ray diffraction pattern obtained by this measurement, was very narrow at 0.38 degrees, indicating that the particles were highly crystalline zinc oxide particles. . Moreover, when TEM observation and SEM observation of the obtained white powder were performed, some of the scaly particles having a side of about 50 nm were observed in spherical particles having a particle diameter of 30 nm. The results are shown in Table 1 below.

<実施例3>
溶媒としてエチレングリコールの代わりに1,3−プロパンジオールを用いた以外は実施例1と同様の方法により白色粉末を得た。
<Example 3>
A white powder was obtained in the same manner as in Example 1 except that 1,3-propanediol was used as a solvent instead of ethylene glycol.

得られた白色粉末をXRD測定したところ、その測定ピーク位置は六方晶酸化亜鉛と完全に一致し、得られた粉末が酸化亜鉛粉末であることが確認された。また、この測定で得られたX線回折パターンにおける最大ピークである(101)面による回折ピークの半値幅は0.27度と非常に狭く、結晶性の高い酸化亜鉛粒子であることが判った。また、得られた白色粉末のTEM観察及びSEM観察を行ったところ、粒径が50nmの球状の粒子が確認された。その結果を次の表1に示す。   When the obtained white powder was subjected to XRD measurement, the measurement peak position completely coincided with hexagonal zinc oxide, and it was confirmed that the obtained powder was zinc oxide powder. In addition, the half-value width of the diffraction peak due to the (101) plane, which is the maximum peak in the X-ray diffraction pattern obtained by this measurement, was very narrow at 0.27 degrees, indicating that the particles were highly crystalline zinc oxide particles. . Moreover, when TEM observation and SEM observation of the obtained white powder were performed, spherical particles having a particle diameter of 50 nm were confirmed. The results are shown in Table 1 below.

<実施例4>
溶媒としてエチレングリコールの代わりにジエチレングリコールを用いた以外は実施例1と同様の方法により白色粉末を得た。
<Example 4>
A white powder was obtained in the same manner as in Example 1 except that diethylene glycol was used instead of ethylene glycol as the solvent.

得られた白色粉末をXRD測定したところ、その測定ピーク位置は六方晶酸化亜鉛と完全に一致し、得られた粉末が酸化亜鉛粉末であることが確認された。また、この測定で得られたX線回折パターンにおける最大ピークである(101)面による回折ピークの半値幅は0.31度と非常に狭く、結晶性の高い酸化亜鉛粒子であることが判った。また、得られた白色粉末のTEM観察及びSEM観察を行ったところ、長軸が100nm、短軸が40nmの棒状の粒子が確認された。その結果を次の表1に示す。   When the obtained white powder was subjected to XRD measurement, the measurement peak position completely coincided with hexagonal zinc oxide, and it was confirmed that the obtained powder was zinc oxide powder. Further, the half-value width of the diffraction peak due to the (101) plane, which is the maximum peak in the X-ray diffraction pattern obtained by this measurement, was very narrow at 0.31 degrees, and it was found that the particles were highly crystalline zinc oxide particles. . Further, when TEM observation and SEM observation of the obtained white powder were performed, rod-like particles having a major axis of 100 nm and a minor axis of 40 nm were confirmed. The results are shown in Table 1 below.

<実施例5>
溶媒としてエチレングリコールの代わりに1,3−ブタンジオールを用いた以外は実施例1と同様の方法により白色粉末を得た。
<Example 5>
A white powder was obtained in the same manner as in Example 1 except that 1,3-butanediol was used in place of ethylene glycol as the solvent.

得られた白色粉末をXRD測定したところ、その測定ピーク位置は六方晶酸化亜鉛と完全に一致し、得られた粉末が酸化亜鉛粉末であることが確認された。また、この測定で得られたX線回折パターンにおける最大ピークである(101)面による回折ピークの半値幅は0.27度と非常に狭く、結晶性の高い酸化亜鉛粒子であることが判った。また、得られた白色粉末のTEM観察及びSEM観察を行ったところ、粒径が50nmの球状の粒子が確認された。その結果を次の表1に示す。   When the obtained white powder was subjected to XRD measurement, the measurement peak position completely coincided with hexagonal zinc oxide, and it was confirmed that the obtained powder was zinc oxide powder. In addition, the half-value width of the diffraction peak due to the (101) plane, which is the maximum peak in the X-ray diffraction pattern obtained by this measurement, was very narrow at 0.27 degrees, indicating that the particles were highly crystalline zinc oxide particles. . Moreover, when TEM observation and SEM observation of the obtained white powder were performed, spherical particles having a particle diameter of 50 nm were confirmed. The results are shown in Table 1 below.

<比較例1>
先ず、亜鉛化合物として平均粒径が0.5μmの酸化亜鉛粗粒子を、溶媒としてメタノールを、アルカリとして水酸化カリウムをそれぞれ用意した。また、酢酸と水を用意した。次いで、フラスコにメタノール及び酢酸を順に適量投入し、更にイオン交換水5gと酸化亜鉛粗粒子21.5gとを添加し還流しながら60℃まで加熱し、その後、23%水酸化カリウムメタノール溶液をあらかじめ60℃に加熱していたフラスコ中の酸化亜鉛メタノール溶液に滴下した。滴下直後に反応液は白濁した。次に、得られた白色反応液を500Gにて30分間遠心分離することで、反応液から白色沈殿物を分離した。更に、分離した白色沈殿物をエタノールに再分散させ、この分散液を遠心分離して、分散液から白色沈殿物を分離する工程を3回繰り返すことにより、白色沈殿物を洗浄した。最後に、洗浄した白色沈殿物を50℃で真空乾燥して所望の白色粉末を得た。
<Comparative Example 1>
First, zinc oxide coarse particles having an average particle size of 0.5 μm as a zinc compound, methanol as a solvent, and potassium hydroxide as an alkali were prepared. Acetic acid and water were also prepared. Next, appropriate amounts of methanol and acetic acid are added to the flask in this order, and 5 g of ion-exchanged water and 21.5 g of zinc oxide coarse particles are added and heated to 60 ° C. while refluxing. Thereafter, a 23% potassium hydroxide methanol solution is added in advance. It was dripped at the zinc oxide methanol solution in the flask heated at 60 degreeC. Immediately after the addition, the reaction solution became cloudy. Next, the obtained white reaction liquid was centrifuged at 500 G for 30 minutes to separate a white precipitate from the reaction liquid. Furthermore, the separated white precipitate was re-dispersed in ethanol, the dispersion was centrifuged, and the process of separating the white precipitate from the dispersion was repeated three times to wash the white precipitate. Finally, the washed white precipitate was vacuum dried at 50 ° C. to obtain the desired white powder.

得られた白色粉末をXRD測定した。得られたX線回折パターンを図2に示す。図2から、その測定ピーク位置は六方晶酸化亜鉛と完全に一致し、得られた粉末が酸化亜鉛粉末であることが確認された。しかしながら、ピークは実施例1のピークと比較するとブロードであった。この測定で得られたX線回折パターンにおける最大ピークである(101)面による回折ピークの半値幅は1.1度と非常に広く、結晶性の低い酸化亜鉛粒子であることが判った。また、得られた白色粉末のTEM観察及びSEM観察を行ったところ、粒径が10nmの球状の粒子が確認された。その結果を次の表1に示す。   The obtained white powder was subjected to XRD measurement. The obtained X-ray diffraction pattern is shown in FIG. From FIG. 2, the measurement peak position completely coincided with hexagonal zinc oxide, and it was confirmed that the obtained powder was zinc oxide powder. However, the peak was broad compared to the peak of Example 1. It was found that the full width at half maximum of the diffraction peak due to the (101) plane, which is the maximum peak in the X-ray diffraction pattern obtained by this measurement, was 1.1 degrees, which is a zinc oxide particle having low crystallinity. Moreover, when TEM observation and SEM observation of the obtained white powder were performed, spherical particles having a particle diameter of 10 nm were confirmed. The results are shown in Table 1 below.

<比較例2>
酢酸の代わりに蟻酸を用いた以外は実施例3と同様の方法により酸化亜鉛微粒子の合成を試みたが、加熱を継続しても蟻酸と亜鉛との化合物のままで存在し、酸化亜鉛微粒子は発生しなかった。その結果を次の表1に示す。
<Comparative Example 2>
Although synthesis of zinc oxide fine particles was attempted by the same method as in Example 3 except that formic acid was used instead of acetic acid, the compound of formic acid and zinc was still present even when heating was continued. Did not occur. The results are shown in Table 1 below.

<比較例3>
酢酸の代わりに2−エチルヘキサン酸を用いた以外は実施例3と同様の方法により酸化亜鉛微粒子の合成を試みたが、加熱を継続しても2−エチルヘキサン酸と亜鉛の化合物のままで存在し、酸化亜鉛微粒子は発生しなかった。その結果を次の表1に示す。
<Comparative Example 3>
Although synthesis of zinc oxide fine particles was attempted by the same method as in Example 3 except that 2-ethylhexanoic acid was used instead of acetic acid, the compound of 2-ethylhexanoic acid and zinc remained as it was even if heating was continued. The zinc oxide fine particles were not present. The results are shown in Table 1 below.

<比較例4>
酢酸の代わりにプロピオン酸を用いた以外は実施例3と同様の方法により酸化亜鉛微粒子の合成を試みたが、加熱を継続してもプロピオン酸と亜鉛の化合物のままで存在し、酸化亜鉛微粒子は発生しなかった。その結果を次の表1に示す。
<Comparative example 4>
Although synthesis of zinc oxide fine particles was attempted by the same method as in Example 3 except that propionic acid was used instead of acetic acid, the compound of propionic acid and zinc was still present even when heating was continued. Did not occur. The results are shown in Table 1 below.

<比較例5>
溶媒としてグリコールの代わりに2−n−ブトキシエタノールを用いた以外は実施例1と同様の方法により白色粉末を得た。
<Comparative Example 5>
A white powder was obtained in the same manner as in Example 1 except that 2-n-butoxyethanol was used in place of glycol as a solvent.

得られた白色粉末をXRD測定した。得られたX線回折パターンを図3に示す。図3から、その測定ピーク位置は六方晶酸化亜鉛と完全に一致し、得られた粉末が酸化亜鉛粉末であることが確認された。しかしながら、この測定で得られたX線回折パターンにおける最大ピークである(101)面による回折ピークの半値幅は0.62度と広く、結晶性に劣る酸化亜鉛粒子であることが判った。また、得られた白色粉末のTEM観察及びSEM観察を行ったところ、粒径が5nmの球状の粒子が確認された。その結果を次の表1に示す。   The obtained white powder was subjected to XRD measurement. The obtained X-ray diffraction pattern is shown in FIG. From FIG. 3, the measurement peak position completely coincided with hexagonal zinc oxide, and it was confirmed that the obtained powder was zinc oxide powder. However, the half-value width of the diffraction peak due to the (101) plane, which is the maximum peak in the X-ray diffraction pattern obtained by this measurement, was as wide as 0.62 degrees, indicating that the particles were inferior in crystallinity. Moreover, when TEM observation and SEM observation of the obtained white powder were performed, spherical particles having a particle diameter of 5 nm were confirmed. The results are shown in Table 1 below.

<比較例6>
溶媒としてグリコールの代わりにエタノールを用いた以外は実施例1と同様の方法により白色粉末を得た。
<Comparative Example 6>
A white powder was obtained in the same manner as in Example 1 except that ethanol was used instead of glycol as the solvent.

得られた白色粉末をXRD測定した。得られたX線回折パターンを図4に示す。図4から、その測定ピーク位置は六方晶酸化亜鉛と完全に一致し、得られた粉末が酸化亜鉛粉末であることが確認された。しかしながら、この測定で得られたX線回折パターンにおける最大ピークである(101)面による回折ピークの半値幅は0.78度と広く、結晶性に劣る酸化亜鉛粒子であることが判った。また、得られた白色粉末のTEM観察及びSEM観察を行ったところ、粒径が20nmの球状の粒子が確認された。その結果を次の表1に示す。   The obtained white powder was subjected to XRD measurement. The obtained X-ray diffraction pattern is shown in FIG. From FIG. 4, the measurement peak position completely coincided with hexagonal zinc oxide, and it was confirmed that the obtained powder was zinc oxide powder. However, the full width at half maximum of the diffraction peak due to the (101) plane, which is the maximum peak in the X-ray diffraction pattern obtained by this measurement, was as wide as 0.78 degrees, indicating that the particles were inferior in crystallinity. Moreover, when TEM observation and SEM observation of the obtained white powder were performed, spherical particles having a particle diameter of 20 nm were confirmed. The results are shown in Table 1 below.

Figure 2009029698
<実施例6>
実施例1で得られた酸化亜鉛微粒子を濃度が1重量%となるようにエタノールに添加し、この添加液に超音波を約20分ほどかけて微粒子を分散させることにより、酸化亜鉛微粒子分散液を得た。
Figure 2009029698
<Example 6>
The zinc oxide fine particles obtained in Example 1 were added to ethanol so as to have a concentration of 1% by weight, and the fine particles were dispersed in this additive solution by applying ultrasonic waves for about 20 minutes. Got.

<比較試験1>
実施例6で得られた酸化亜鉛微粒子分散液を静置し、その際に分散液に生じる沈降物の有無によって分散液の分散性を評価したところ、2週間後でも分散液中には沈降物がなく、非常に分散性に優れた分散液であることが確認された。
<Comparison test 1>
The dispersion of the zinc oxide fine particles obtained in Example 6 was allowed to stand, and the dispersibility of the dispersion was evaluated by the presence or absence of the precipitate generated in the dispersion. At that time, the precipitate was still in the dispersion even after 2 weeks. It was confirmed that the dispersion was extremely excellent in dispersibility.

また、得られた分散液中の酸化亜鉛微粒子のTEM観察を行ったところ、三角形状の粒子と球状の粒子とが観察された。同様に得られた分散液中の酸化亜鉛微粒子のSEM観察を行ったところ、TEM観察で見られた三角形状の粒子は、三角錐状の粒子であることが確認された。三角錐状粒子の粒子全体に対する割合は、22%であった。   Further, when TEM observation was performed on the zinc oxide fine particles in the obtained dispersion, triangular particles and spherical particles were observed. Similarly, when SEM observation of the zinc oxide fine particles in the obtained dispersion liquid was performed, it was confirmed that the triangular particles observed in the TEM observation were triangular pyramid particles. The ratio of the triangular pyramid particles to the whole particles was 22%.

<比較試験2>
実施例6で得られた酸化亜鉛微粒子分散液を用いて蛍光測定を行った。その結果を図5に示す。
<Comparison test 2>
Fluorescence measurement was performed using the zinc oxide fine particle dispersion obtained in Example 6. The result is shown in FIG.

図5より明らかなように、発光及び吸収スペクトルにおいては、波長400〜600nm間の緑色発光ピークは見られず、発光ピーク波長は380nm付近の紫外線発光のみであった。   As is clear from FIG. 5, in the emission and absorption spectra, no green emission peak was observed between wavelengths of 400 to 600 nm, and the emission peak wavelength was only ultraviolet emission near 380 nm.

実施例1で得られた酸化亜鉛微粒子のX線回折パターンを示す図。The figure which shows the X-ray-diffraction pattern of the zinc oxide microparticles | fine-particles obtained in Example 1. FIG. 比較例1で得られた酸化亜鉛微粒子のX線回折パターンを示す図。The figure which shows the X-ray-diffraction pattern of the zinc oxide microparticles | fine-particles obtained by the comparative example 1. 比較例5で得られた酸化亜鉛微粒子のX線回折パターンを示す図。The figure which shows the X-ray-diffraction pattern of the zinc oxide microparticles | fine-particles obtained by the comparative example 5. 比較例6で得られた酸化亜鉛微粒子のX線回折パターンを示す図。The figure which shows the X-ray-diffraction pattern of the zinc oxide microparticles | fine-particles obtained by the comparative example 6. 実施例6の酸化亜鉛微粒子分散液における発光及び吸収スペクトル図。FIG. 6 shows emission and absorption spectrum diagrams of the zinc oxide fine particle dispersion liquid of Example 6.

Claims (15)

亜鉛化合物と酢酸とグリコールを混合して混合液を調製し、前記調製した混合液を50〜200℃の温度で0.5〜5時間保持することにより、平均粒径が200nm以下の酸化亜鉛微粒子を生成させることを特徴とする酸化亜鉛微粒子の製造方法。   A zinc compound, acetic acid, and glycol are mixed to prepare a mixed solution, and the prepared mixed solution is held at a temperature of 50 to 200 ° C. for 0.5 to 5 hours, whereby zinc oxide fine particles having an average particle size of 200 nm or less A method for producing zinc oxide fine particles, wherein 原料として使用する亜鉛化合物が粒径がサブミクロン以上の酸化亜鉛の粗粒子である請求項1記載の酸化亜鉛微粒子の製造方法。   The method for producing fine zinc oxide particles according to claim 1, wherein the zinc compound used as a raw material is coarse zinc oxide particles having a particle size of submicron or more. 原料として使用する亜鉛化合物が酢酸亜鉛である請求項1記載の酸化亜鉛微粒子の製造方法。   The method for producing zinc oxide fine particles according to claim 1, wherein the zinc compound used as a raw material is zinc acetate. 原料として使用するグリコールがエチレングリコール、プロピレングリコール、1,3−プロパンジオール、ジエチレングリコール、1,3−ブタンジオール又はトリエチレングリコールである請求項1記載の酸化亜鉛微粒子の製造方法。   The method for producing zinc oxide fine particles according to claim 1, wherein the glycol used as a raw material is ethylene glycol, propylene glycol, 1,3-propanediol, diethylene glycol, 1,3-butanediol, or triethylene glycol. 生成させた酸化亜鉛微粒子をX線回折により測定したとき、
測定で得られたX線回折パターンにおける最大ピークの半値幅が0.5度以下である請求項1記載の酸化亜鉛微粒子の製造方法。
When the generated zinc oxide fine particles were measured by X-ray diffraction,
The method for producing zinc oxide fine particles according to claim 1, wherein the half width of the maximum peak in the X-ray diffraction pattern obtained by measurement is 0.5 degrees or less.
生成させた酸化亜鉛微粒子が球状、針状、板状、多角形状、多角錐状、多角体状及び棒状からなる群より選ばれた少なくとも一つの形状を有する粒子である請求項1記載の酸化亜鉛微粒子の製造方法。   2. The zinc oxide according to claim 1, wherein the generated zinc oxide fine particles are particles having at least one shape selected from the group consisting of a spherical shape, a needle shape, a plate shape, a polygonal shape, a polygonal pyramid shape, a polygonal shape and a rod shape. A method for producing fine particles. 生成させた酸化亜鉛微粒子が球状粒子の他に、針状、板状、多角形状、多角錐状、多角体状及び棒状からなる群より選ばれた少なくとも一つの形状を有する粒子を含む、2種類以上の粒子形状から構成される請求項1記載の酸化亜鉛微粒子の製造方法。   The generated zinc oxide fine particles include, in addition to spherical particles, two kinds including particles having at least one shape selected from the group consisting of needle shape, plate shape, polygonal shape, polygonal pyramid shape, polygonal shape and rod shape The manufacturing method of the zinc oxide microparticles | fine-particles of Claim 1 comprised from the above particle | grain shape. 請求項1ないし7いずれか1項に記載の製造方法により得られた平均粒径が200nm以下の微粒子であって、
前記微粒子をX線回折により測定したとき、
測定で得られたX線回折パターンにおける最大ピークの半値幅が0.5度以下であることを特徴とする酸化亜鉛微粒子。
Fine particles having an average particle diameter of 200 nm or less obtained by the production method according to claim 1,
When the fine particles are measured by X-ray diffraction,
A zinc oxide fine particle, wherein the half-value width of the maximum peak in the X-ray diffraction pattern obtained by the measurement is 0.5 degrees or less.
請求項8記載の酸化亜鉛微粒子を分散媒に分散させた分散体。   A dispersion in which the zinc oxide fine particles according to claim 8 are dispersed in a dispersion medium. 酸化亜鉛微粒子が少なくとも三角錐状と球状の双方の形状を含み、
前記微粒子を構成する全ての形状を100%とするとき、前記三角錐状の形状が含まれる割合が10〜40%の範囲である請求項9記載の分散体。
The zinc oxide fine particles include at least both a triangular pyramid shape and a spherical shape,
The dispersion according to claim 9, wherein the ratio of the triangular pyramid shape is 10 to 40% when all the shapes constituting the fine particles are 100%.
酸化亜鉛微粒子が少なくともアスペクト比が3〜10の棒状の形状を含み、前記微粒子を構成する全ての粒子を100%とするとき、前記棒状粒子の含まれる割合が80〜99%の範囲である請求項9記載の分散体。   The zinc oxide fine particles include at least a rod-like shape having an aspect ratio of 3 to 10, and when all the particles constituting the fine particles are taken as 100%, the proportion of the rod-like particles is in the range of 80 to 99%. Item 10. The dispersion according to Item 9. 請求項9ないし11いずれか1項に記載の酸化亜鉛微粒子分散体を用いて成膜して得られる酸化亜鉛膜。   A zinc oxide film obtained by forming a film using the zinc oxide fine particle dispersion according to any one of claims 9 to 11. 請求項12記載の酸化亜鉛膜からなる蛍光体。   A phosphor comprising the zinc oxide film according to claim 12. 請求項9ないし11いずれか1項に記載の酸化亜鉛微粒子分散体を紫外線発光体材料として用いた紫外線光源。   An ultraviolet light source using the zinc oxide fine particle dispersion according to claim 9 as an ultraviolet light emitter material. 請求項9ないし11いずれか1項に記載の酸化亜鉛微粒子分散体を紫外線発光体材料として用いた紫外線レーザー。   An ultraviolet laser using the zinc oxide fine particle dispersion according to any one of claims 9 to 11 as an ultraviolet luminescent material.
JP2008173063A 2007-07-05 2008-07-02 Method for producing zinc oxide fine particles Expired - Fee Related JP5071278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008173063A JP5071278B2 (en) 2007-07-05 2008-07-02 Method for producing zinc oxide fine particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007177400 2007-07-05
JP2007177400 2007-07-05
JP2008173063A JP5071278B2 (en) 2007-07-05 2008-07-02 Method for producing zinc oxide fine particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012150035A Division JP5594326B2 (en) 2007-07-05 2012-07-04 Dispersion of zinc oxide fine particles

Publications (2)

Publication Number Publication Date
JP2009029698A true JP2009029698A (en) 2009-02-12
JP5071278B2 JP5071278B2 (en) 2012-11-14

Family

ID=40400616

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008173063A Expired - Fee Related JP5071278B2 (en) 2007-07-05 2008-07-02 Method for producing zinc oxide fine particles
JP2012150035A Expired - Fee Related JP5594326B2 (en) 2007-07-05 2012-07-04 Dispersion of zinc oxide fine particles

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012150035A Expired - Fee Related JP5594326B2 (en) 2007-07-05 2012-07-04 Dispersion of zinc oxide fine particles

Country Status (1)

Country Link
JP (2) JP5071278B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029700A (en) * 2007-07-05 2009-02-12 Mitsubishi Materials Corp Method for producing zinc oxide fine particles and dispersion of zinc oxide fine particles prepared by the method
WO2012147888A1 (en) 2011-04-28 2012-11-01 堺化学工業株式会社 Zinc oxide particles, production method for same, cosmetic material, heat-dissipating filler, heat-dissipating resin composition, heat-dissipating grease, and heat-dissipating coating composition
JP2014084256A (en) * 2012-10-24 2014-05-12 Sakai Chem Ind Co Ltd Method for producing zinc oxide particle
JP2015110804A (en) * 2015-02-26 2015-06-18 メトロ電気株式会社 Dispersion liquid, solution, and ink for light-emitting element
US9120681B2 (en) 2011-04-28 2015-09-01 Sakai Chemical Industry Co., Ltd. Method for production of zinc oxide particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110143609B (en) * 2019-05-30 2021-12-14 上海理工大学 Preparation method for synthesizing nano zinc oxide with controllable shape based on direct precipitation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232919A (en) * 1994-02-22 1995-09-05 Nippon Shokubai Co Ltd Production of fine zinc oxide particles
JPH07328421A (en) * 1994-06-06 1995-12-19 Nippon Shokubai Co Ltd Inorganic compound fine particle, its production and its use
JP2003268368A (en) * 2002-03-19 2003-09-25 Nippon Shokubai Co Ltd Uv light emitting body and zinc oxide particle for the same
WO2004058645A1 (en) * 2002-12-25 2004-07-15 Cf High Tech Co., Ltd. Electroconductive zinc oxide powder and method for production thereof, and electroconductive composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19907704A1 (en) * 1999-02-23 2000-08-24 Bayer Ag Nano-scale precipitating zinc oxide used e.g. for protecting UV-sensitive organic polymers consists of particles having an average specified primary particle diameter
JP4304343B2 (en) * 2005-09-08 2009-07-29 国立大学法人 千葉大学 Zinc oxide fine particles, method for producing aggregates thereof and dispersion solution
JP5062065B2 (en) * 2007-07-05 2012-10-31 三菱マテリアル株式会社 Method for producing zinc oxide fine particles and method for producing dispersion using zinc oxide fine particles obtained by the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232919A (en) * 1994-02-22 1995-09-05 Nippon Shokubai Co Ltd Production of fine zinc oxide particles
JPH07328421A (en) * 1994-06-06 1995-12-19 Nippon Shokubai Co Ltd Inorganic compound fine particle, its production and its use
JP2003268368A (en) * 2002-03-19 2003-09-25 Nippon Shokubai Co Ltd Uv light emitting body and zinc oxide particle for the same
WO2004058645A1 (en) * 2002-12-25 2004-07-15 Cf High Tech Co., Ltd. Electroconductive zinc oxide powder and method for production thereof, and electroconductive composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029700A (en) * 2007-07-05 2009-02-12 Mitsubishi Materials Corp Method for producing zinc oxide fine particles and dispersion of zinc oxide fine particles prepared by the method
WO2012147888A1 (en) 2011-04-28 2012-11-01 堺化学工業株式会社 Zinc oxide particles, production method for same, cosmetic material, heat-dissipating filler, heat-dissipating resin composition, heat-dissipating grease, and heat-dissipating coating composition
US9120681B2 (en) 2011-04-28 2015-09-01 Sakai Chemical Industry Co., Ltd. Method for production of zinc oxide particles
US9199857B2 (en) 2011-04-28 2015-12-01 Sakai Chemical Industry Co., Ltd. Zinc oxide particles, method for production of the same, and cosmetic, heat releasing filler, heat releasing resin composition, heat releasing grease, and heat releasing coating composition comprising the same
JP2014084256A (en) * 2012-10-24 2014-05-12 Sakai Chem Ind Co Ltd Method for producing zinc oxide particle
JP2015110804A (en) * 2015-02-26 2015-06-18 メトロ電気株式会社 Dispersion liquid, solution, and ink for light-emitting element

Also Published As

Publication number Publication date
JP5071278B2 (en) 2012-11-14
JP2012193107A (en) 2012-10-11
JP5594326B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5594326B2 (en) Dispersion of zinc oxide fine particles
JP6602908B2 (en) Zirconia slurry for thin film formation and manufacturing method thereof
Balamurugan et al. Synthesis of nanocrystalline MgO particles by combustion followed by annealing method using hexamine as a fuel
Sczancoski et al. Morphology and blue photoluminescence emission of PbMoO4 processed in conventional hydrothermal
JPWO2012096172A1 (en) Method for producing particles containing metal oxide and method for producing aggregates of metal oxide colloidal particles
Liu et al. A simple and efficient synthetic route for preparation of NaYF 4 upconversion nanoparticles by thermo-decomposition of rare-earth oleates
BRPI0621262A2 (en) methods for the production of metal oxide nanoparticles having controlled properties, and nanoparticles and preparations produced therefrom
TW201615545A (en) Suspension of a magnesium silicate, method for making same and use thereof as a phosphor
JP2010254533A (en) Method for producing strontium carbonate particle powder
WO2018105699A1 (en) Zinc oxide powder for preparing zinc oxide sintered body with high strength and low thermal conductivity
JP5125817B2 (en) Method for producing zinc oxide fine particles and method for producing dispersion using zinc oxide fine particles obtained by the method
JP5120112B2 (en) Method for producing zinc oxide fine particles and method for producing dispersion using zinc oxide fine particles obtained by the method
JP5062065B2 (en) Method for producing zinc oxide fine particles and method for producing dispersion using zinc oxide fine particles obtained by the method
KR101302417B1 (en) Preparation method of green-emitting phosphor using mesoporous silica, and the green-emitting phosphor thereby
JP7151712B2 (en) Agricultural and horticultural soil cover film and its manufacturing method
JP5486751B2 (en) Rod-shaped indium tin oxide powder and method for producing the same
JP5125816B2 (en) Method for producing zinc oxide fine particles and method for producing dispersion using zinc oxide fine particles obtained by the method
JP5848053B2 (en) Method for producing boehmite nanorods, method for producing alumina nanorods, and method for producing CuAlO2 film
JP7067557B2 (en) Agricultural and horticultural soil covering film and its manufacturing method
CN110092915B (en) Aqueous phase room temperature rapid synthesis method of europium polymer material
JP2010195599A (en) Method for producing platy ceria particle
Baklanova et al. Preparation, morphology, and luminescent properties of europium-doped nanodispersed scandium sesquioxide
Manu et al. Optical characterization of nanocrystalline Pr2MoO6 synthesized via modified combustion technique
JP5486752B2 (en) Heat ray shielding composition containing rod-shaped indium tin oxide powder and method for producing the same
Collantes et al. Effect of Crystal Size on the Structural and Functional Properties of Water-Stable Monodisperse ZnO Nanoparticles Synthesized Via a Polyol-Route

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5071278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees