JP2009026880A - Method of manufacturing semiconductor apparatus - Google Patents

Method of manufacturing semiconductor apparatus Download PDF

Info

Publication number
JP2009026880A
JP2009026880A JP2007187202A JP2007187202A JP2009026880A JP 2009026880 A JP2009026880 A JP 2009026880A JP 2007187202 A JP2007187202 A JP 2007187202A JP 2007187202 A JP2007187202 A JP 2007187202A JP 2009026880 A JP2009026880 A JP 2009026880A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
polyimide precursor
photosensitive polyimide
polyimide
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007187202A
Other languages
Japanese (ja)
Other versions
JP5013467B2 (en
Inventor
Kenichi Yokoyama
賢一 横山
Kazuhiro Osone
一弘 大曽根
Hirotaka Yamashita
宏隆 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2007187202A priority Critical patent/JP5013467B2/en
Publication of JP2009026880A publication Critical patent/JP2009026880A/en
Application granted granted Critical
Publication of JP5013467B2 publication Critical patent/JP5013467B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/16235Connecting to a semiconductor or solid-state bodies, i.e. cap-to-chip

Abstract

<P>PROBLEM TO BE SOLVED: To form a reliable adhesion portion while a simple tape etc., is used as a support substrate for temporarily supporting a protection cap made of polyimide when the protection cap is bonded to a semiconductor substrate. <P>SOLUTION: This manufacturing method includes the steps of: preparing a semiconductor substrate 3 having a structure 2 formed on its surface; bonding thermosetting polyimide 7 to the support substrate 6 with a thermally peelable adhesive 8; forming a cavity 9 on the surface of the polyimide 7; coating the surface of the thermosetting polyimide 7 with a photosensitive polyimide precursor 11 and performing exposure and development; and temporarily sticking the thermosetting polyimide 11 on the surface of the semiconductor substrate 11, where the -COOH/maximum peak detection intensity ratio of the photosensitive polyimide precursor 11 is made >0.15 in the step wherein the photosensitive polymide precursor 11 is applied and the exposure and development are carried out. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体にて構成された構造体が形成された半導体基板と、構造体を覆うように半導体基板に接着された樹脂製の保護キャップとを備えてなる半導体装置の製造方法に関する。   The present invention relates to a method of manufacturing a semiconductor device comprising a semiconductor substrate on which a structure composed of a semiconductor is formed, and a protective cap made of resin bonded to the semiconductor substrate so as to cover the structure.

構造体を覆うように半導体基板に接着された樹脂製の保護キャップを備えた半導体装置の一例として、加速度センサやジャイロスコープ等の容量式センサが知られている。この容量式センサは、静電容量変化にて、慣性力を計測するセンサである。上記容量式センサは、自動車用エアバッグ制御や車両安定制御、民生用ゲームアミューズメント等のさまざまな用途に使用されている。上記容量式センサは、一般的に、容量検出に必要な可動質量を具備した可動電極と、基板に固定された固定電極との間の静電容量変化を電圧変化として出力するセンサ素子を備える構成となっている。   A capacitive sensor such as an acceleration sensor or a gyroscope is known as an example of a semiconductor device including a resin protective cap bonded to a semiconductor substrate so as to cover a structure. This capacitive sensor is a sensor that measures inertial force by changing the capacitance. The capacitive sensor is used in various applications such as automotive airbag control, vehicle stability control, and consumer game amusement. The capacitive sensor generally includes a sensor element that outputs a change in capacitance between a movable electrode having a movable mass necessary for capacitance detection and a fixed electrode fixed to a substrate as a voltage change. It has become.

上記センサ素子の容量検出電極部、即ち、センシング部は、製造工程や動作環境下でのパーティクルの進入を防止するために、保護キャップで覆われている。上記センサ素子の一例として、特許文献1に記載された構成が知られており、この特許文献1には、半導体製造技術を適用した、いわゆるMEMSといわれる技術を応用した半導体装置およびその製造方法が開示されている。上記特許文献1の構成においては、保護キャップとして樹脂製例えばポリイミド製の保護キャップが設けられている。ポリイミドは、耐熱性の高い材料である。
特開2000−31349号公報
The capacitance detection electrode portion of the sensor element, that is, the sensing portion, is covered with a protective cap in order to prevent particles from entering in the manufacturing process or the operating environment. As an example of the sensor element, a configuration described in Patent Document 1 is known. This Patent Document 1 includes a semiconductor device to which a so-called MEMS technology to which a semiconductor manufacturing technology is applied, and a method for manufacturing the semiconductor device. It is disclosed. In the configuration of Patent Document 1, a protective cap made of resin, for example, polyimide, is provided as a protective cap. Polyimide is a material having high heat resistance.
JP 2000-31349 A

さて、半導体基板の表面上に保護キャップを貼り合わせて接着する製造方法をとる場合、接着する部分には、熱可塑性ポリイミドを使用することが考えられる。この熱可塑性ポリイミドを、アミド状態からイミドさせるためには、400℃前後の熱処理が必要である。更に、保護キャップの厚さ寸法としては、パッケージを小形化するために、125μm程度に薄く構成することが好ましい。   Now, when taking the manufacturing method which bonds a protective cap on the surface of a semiconductor substrate, it is possible to use thermoplastic polyimide for the part to adhere. In order to imide this thermoplastic polyimide from the amide state, heat treatment at around 400 ° C. is required. Further, the thickness of the protective cap is preferably as thin as about 125 μm in order to reduce the size of the package.

本発明者らは、ポリイミド製の保護キャップを半導体基板の表面上に接着するに際して、保護キャップを仮に支持する基板を用いる加工方法を考えている。これは、センシング部を形成する半導体基板である例えばシリコンウエハのような剛性(ヤング率:数百GPa)があるものと、このような剛性があるものとは相違するポリイミド材料(保護キャップ本体のヤング率:数GPa、例えば東レデュポン社製カプトン等)とをウエハレベルでの貼り合わせや、それまでの装置類搬送や、ハンドリング等に支障がないようにするためである。この場合、仮に支持する基板としては、取り扱いが簡便なテープ類を用いることを考えている。   The inventors have considered a processing method using a substrate that temporarily supports the protective cap when bonding the protective cap made of polyimide onto the surface of the semiconductor substrate. This is because, for example, a semiconductor substrate that forms a sensing part, which has rigidity (Young's modulus: several hundred GPa) such as a silicon wafer, and a polyimide material (such as a protective cap body) that is different from such rigidity. This is so that bonding at a wafer level, transport of devices up to that point, handling, etc. are not hindered (Young's modulus: several GPa, for example, Kapton manufactured by Toray DuPont). In this case, it is considered to use tapes that are easy to handle as a substrate to be supported.

しかし、仮支持可能な支持基板として簡便なテープ類を用いた場合、耐熱温度が低いため、上記した400℃前後の熱処理に耐え得る構成とすることは困難であった。具体的には、一般的な半導体ウエハのダイシング等で使用しているような感圧テープ、例えばUV剥離型テープ(耐熱温度が125℃前後)や熱剥離型テープ(耐熱温度が170℃前後)を用いた場合には、テープの耐熱温度(上記したテープの場合、170℃)以下で熱処理して保護キャップの接着部(接合部)を形成しなければならない。このため、熱処理が不十分となり、信頼性の高い接合部を形成できないという問題点があった。   However, when a simple tape is used as a support substrate that can be temporarily supported, since the heat-resistant temperature is low, it has been difficult to achieve a configuration that can withstand the heat treatment at about 400 ° C. described above. Specifically, pressure-sensitive tapes used for dicing semiconductor wafers, such as UV peelable tape (heat resistant temperature is around 125 ° C) and heat peelable tape (heat resistant temperature is around 170 ° C) Is used, heat treatment must be performed at a temperature lower than the heat resistant temperature of the tape (170 ° C. in the case of the tape described above) to form an adhesion portion (joint portion) of the protective cap. For this reason, there was a problem that heat treatment was insufficient and a highly reliable joint could not be formed.

そこで、本発明の目的は、ポリイミド製の保護キャップを半導体基板に接着する際に、保護キャップを仮支持する支持基板として簡便なテープ類を用いながら、信頼性の高い接着部を形成することができる半導体装置の製造方法を提供することにある。   Therefore, an object of the present invention is to form a highly reliable adhesive portion while using simple tapes as a support substrate for temporarily supporting the protective cap when bonding the protective cap made of polyimide to the semiconductor substrate. Another object of the present invention is to provide a method for manufacturing a semiconductor device.

請求項1の発明によれば、半導体にて構成された構造体が表面に形成された半導体基板を用意する工程と、支持基板に熱硬化性ポリイミドを熱剥離可能な接着剤を介して接着する工程と、前記熱硬化性ポリイミドの表面に前記構造体を覆うためのキャビティを形成する工程と、前記熱硬化性ポリイミドの表面に感光性ポリイミド前駆体を塗布し、露光現像する工程と、前記熱硬化性ポリイミドを前記半導体基板の表面上に仮貼り合わせする工程とを備え、前記感光性ポリイミド前駆体を塗布し、露光現像する工程において、前記感光性ポリイミド前駆体の−COOH/最大ピーク検出強度比が0.15より大きくなるように構成したので、ポリイミド製の保護キャップを半導体基板に接着する際に、保護キャップを仮支持する支持基板として簡便なテープ類を用いながら、信頼性の高い接着部を形成することができる。   According to the first aspect of the present invention, a step of preparing a semiconductor substrate on which a structure composed of a semiconductor is formed is bonded to the support substrate, and the thermosetting polyimide is bonded to the support substrate through a heat-peelable adhesive. A step of forming a cavity for covering the structure on the surface of the thermosetting polyimide, a step of applying a photosensitive polyimide precursor to the surface of the thermosetting polyimide, exposing and developing, and the heat A step of temporarily bonding a curable polyimide onto the surface of the semiconductor substrate, the step of applying the photosensitive polyimide precursor, and the step of exposing and developing, -COOH / maximum peak detection intensity of the photosensitive polyimide precursor Since the ratio is configured to be larger than 0.15, when the polyimide protective cap is bonded to the semiconductor substrate, as a support substrate for temporarily supporting the protective cap While using flights of tapes, it is possible to form a highly reliable bonding portion.

上記構成の場合、請求項2の発明のように、前記感光性ポリイミド前駆体を塗布し、露光現像する工程において、前記感光性ポリイミド前駆体の−COOH/最大ピーク検出強度比が0.30以下となるように構成することが好ましい。   In the case of the above configuration, as in the invention of claim 2, in the step of applying the photosensitive polyimide precursor, exposing and developing, -COOH / maximum peak detection intensity ratio of the photosensitive polyimide precursor is 0.30 or less. It is preferable to constitute so that.

また、請求項3の発明のように、前記支持基板を前記熱硬化性ポリイミドから熱剥離する工程と、前記熱硬化性ポリイミドを前記半導体基板の表面上に本貼り合わせする工程とを備えることがより一層好ましい。   Further, as in a third aspect of the invention, the method includes a step of thermally peeling the support substrate from the thermosetting polyimide, and a step of permanently bonding the thermosetting polyimide onto the surface of the semiconductor substrate. Even more preferred.

以下、本発明の一実施例について、図面を参照しながら説明する。まず、図2は、本実施例の半導体加速度センサ(半導体装置)のセンサチップ1の断面構成を示す図である。本実施例のセンサチップ1は、MEMS技術を用いて製造される半導体チップであり、特開平9−211022号公報や特開2006−153482号公報に記載されたものとほぼ同様の構成のものである。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. First, FIG. 2 is a diagram showing a cross-sectional configuration of the sensor chip 1 of the semiconductor acceleration sensor (semiconductor device) of the present embodiment. The sensor chip 1 of the present embodiment is a semiconductor chip manufactured by using the MEMS technology, and has substantially the same configuration as that described in Japanese Patent Application Laid-Open Nos. 9-2111022 and 2006-153482. is there.

このセンサチップ1は、加速度を受けて変位する可動部としての梁構造体2が半導体基板(例えばSOI基板)3上に形成されており、上記梁構造体2に設けられた可動電極と半導体基板3上に形成された固定電極との間の変位に基づいて加速度を検出するように構成されている。半導体基板3の表面には、可動電極、固定電極を外部と電気接続するためのパッド4が形成されている。   In this sensor chip 1, a beam structure 2 as a movable part that is displaced by acceleration is formed on a semiconductor substrate (for example, an SOI substrate) 3, and a movable electrode and a semiconductor substrate provided on the beam structure 2 are formed. The acceleration is detected based on the displacement between the fixed electrode formed on the substrate 3 and the fixed electrode. A pad 4 for electrically connecting the movable electrode and the fixed electrode to the outside is formed on the surface of the semiconductor substrate 3.

そして、半導体基板3の表面には、梁構造体2を覆うように樹脂製の保護キャップ5が接着されている。尚、上記センサチップ1は、図示しないリードフレームの上に固定され、パッド4とリードフレームとの間はワイヤボンディングされ、全体が図示しない樹脂でモールドされるように構成されている。   A resin protective cap 5 is adhered to the surface of the semiconductor substrate 3 so as to cover the beam structure 2. The sensor chip 1 is fixed on a lead frame (not shown), wire-bonded between the pad 4 and the lead frame, and entirely configured with a resin (not shown).

次に、上記した半導体加速度センサの製造方法について、図1を参照して説明する。図1は、半導体加速度センサ(センサチップ1)の製造工程を示す図である。
まず、図1(a)に示すように、支持基板6の上に、保護キャップ5の材料となる熱硬化性ポリイミド7を熱剥離可能な接着剤8を介して接着する工程を実行する。ここで、支持基板6としては、半導体基板3と貼り合わせたときに、熱応力の影響を小さくするために、熱膨張係数差が小さいものを使用することが好ましい。例えば、旭テクノグラス社製SW3等を支持基板6として用いることが好ましい。
Next, a method for manufacturing the semiconductor acceleration sensor described above will be described with reference to FIG. FIG. 1 is a diagram illustrating a manufacturing process of a semiconductor acceleration sensor (sensor chip 1).
First, as shown to Fig.1 (a), the process of adhere | attaching the thermosetting polyimide 7 used as the material of the protective cap 5 on the support substrate 6 through the adhesive agent 8 which can be thermally peeled is performed. Here, as the support substrate 6, it is preferable to use a substrate having a small difference in thermal expansion coefficient in order to reduce the influence of thermal stress when bonded to the semiconductor substrate 3. For example, SW3 manufactured by Asahi Techno Glass Co., Ltd. is preferably used as the support substrate 6.

また、熱硬化性ポリイミド7としては、例えば東レデュポン社製カプトン(厚さが125μm程度のもの)を使用している。接着剤8としては、例えば日東電工社製リバアルファ(熱剥離テープ)を使用しており、これにより、支持基板6から保護キャップ5を半導体基板3に転写する際に、熱剥離することが可能である。   Moreover, as the thermosetting polyimide 7, for example, Kapton (thickness of about 125 μm) manufactured by Toray DuPont is used. As the adhesive 8, for example, Riva Alpha (thermal release tape) manufactured by Nitto Denko Corporation is used, and thus it is possible to perform thermal release when transferring the protective cap 5 from the support substrate 6 to the semiconductor substrate 3. It is.

続いて、図1(b)、(c)に示すように、熱硬化性ポリイミド7の表面に前記梁構造体2を覆うためのキャビティ9を形成する工程を実行する。この場合、まず図1(b)に示すように、フィルム状レジスト10を用いて露光・現像し、保護キャップ5の製品毎の分断と、センサチップ1とのクリアランスの確保を実行する(図1(b)では製品毎の分断用のレジストを示している。図示しないが、キャビティ9形成の場合も同様の処置を実行する)。続いて、図1(c)に示すように、熱硬化性ポリイミド7のウェットエッチングを2回施して、梁構造体2(センシング部)と非接触になるようにキャビティ9を形成する。   Subsequently, as shown in FIGS. 1B and 1C, a step of forming a cavity 9 for covering the beam structure 2 on the surface of the thermosetting polyimide 7 is performed. In this case, as shown in FIG. 1B, first, exposure and development are performed using a film resist 10, and the protective cap 5 is divided for each product and the clearance with the sensor chip 1 is secured (FIG. 1). (B) shows a resist for division for each product (although not shown, the same treatment is performed when the cavity 9 is formed). Subsequently, as shown in FIG. 1C, wet etching of the thermosetting polyimide 7 is performed twice to form the cavity 9 so as not to contact the beam structure 2 (sensing portion).

次に、図1(d)に示すように、熱硬化性ポリイミド7の表面に感光性ポリイミド前駆体11を塗布し、露光・現像する工程を実行する。そして、上記露光・現像後において、感光性ポリイミド前駆体11をベークするときに、ベーク条件を調整することによって、前記感光性ポリイミド前駆体11の−COOH/最大ピーク検出強度比が0.15より大きくなるように構成した。尚、このように構成した理由については、後述する。また、前記感光性ポリイミド前駆体11の−COOH/最大ピーク検出強度比が0.3以下となるように構成することが好ましい。   Next, as shown in FIG.1 (d), the photosensitive polyimide precursor 11 is apply | coated to the surface of the thermosetting polyimide 7, and the process of exposing and developing is performed. Then, after baking and developing, when the photosensitive polyimide precursor 11 is baked, by adjusting the baking conditions, the -COOH / maximum peak detected intensity ratio of the photosensitive polyimide precursor 11 is from 0.15. It was configured to be larger. The reason for this configuration will be described later. Moreover, it is preferable that the photosensitive polyimide precursor 11 has a —COOH / maximum peak detection intensity ratio of 0.3 or less.

次に、図1(e)に示すように、梁構造体2及びパッド4が形成された半導体基板3を用意する(工程)。続いて、図1(f)に示すように、支持基板6の熱硬化性ポリイミド7(保護キャップ5)を半導体基板3上に仮貼り合わせる工程を実行する。この場合、支持基板6に設けられたアライメント用のアライメントキー(図示しない)と、半導体基板3に設けられたアライメント用のアライメントキー(図示しない)とが合うようにアライメントを実行して、貼り合わせる。   Next, as shown in FIG. 1E, a semiconductor substrate 3 on which a beam structure 2 and a pad 4 are formed is prepared (step). Subsequently, as shown in FIG. 1 (f), a step of temporarily bonding the thermosetting polyimide 7 (protective cap 5) of the support substrate 6 to the semiconductor substrate 3 is performed. In this case, alignment is performed so that an alignment key (not shown) provided on the support substrate 6 and an alignment key (not shown) provided on the semiconductor substrate 3 are aligned with each other. .

そして、図1(g)に示すように、支持基板6を熱硬化性ポリイミド7(保護キャップ5)から熱剥離する工程を実行し、その後、保護キャップ5(熱硬化性ポリイミド7)の表面に残っている接着成分を除去するアッシングを実行し、保護キャップ5(熱硬化性ポリイミド7)を半導体基板3の表面上に本貼り合わせする工程を実行する。尚、上記熱剥離する工程では、例えば150℃程度の温度の加熱処理を実行して、支持基板6を剥離する。尚、この加熱処理は、オーブンまたはホットプレートで行う。   And as shown in FIG.1 (g), the process which thermally peels the support substrate 6 from the thermosetting polyimide 7 (protective cap 5) is performed, and the surface of the protective cap 5 (thermosetting polyimide 7) is carried out after that. Ashing for removing the remaining adhesive component is performed, and a step of performing main bonding of the protective cap 5 (thermosetting polyimide 7) on the surface of the semiconductor substrate 3 is performed. In the thermal peeling step, for example, a heat treatment at a temperature of about 150 ° C. is performed to peel off the support substrate 6. This heat treatment is performed in an oven or a hot plate.

また、上記本貼り合わせする工程においては、例えば400℃程度の温度の加熱処理(キュア)を実行して、貼り合わせる。尚、この加熱処理は、オーブンまたはホットプレートで行う。上記加熱処理(キュア)により、感光性ポリイミド前駆体11がイミド化し、保護キャップ5と半導体基板3との接着部の強度が十分なものとなる。   Further, in the step of performing the main bonding, for example, a heat treatment (curing) at a temperature of about 400 ° C. is performed to perform bonding. This heat treatment is performed in an oven or a hot plate. By the heat treatment (curing), the photosensitive polyimide precursor 11 is imidized, and the strength of the bonded portion between the protective cap 5 and the semiconductor substrate 3 becomes sufficient.

尚、この後、半導体基板3をダイシングすることにより、個々のセンサチップ1に分離する。
ここで、図1(d)に示す感光性ポリイミド前駆体11の塗布、露光・現像工程において、感光性ポリイミド前駆体11をベークするときに、ベーク条件を調整することによって、前記感光性ポリイミド前駆体11の−COOH/最大ピーク検出強度比が0.15より大きくなるように構成した理由について、図3ないし図5を参照して説明する。
After this, the semiconductor substrate 3 is separated into individual sensor chips 1 by dicing.
Here, when the photosensitive polyimide precursor 11 is baked in the coating, exposure and development steps of the photosensitive polyimide precursor 11 shown in FIG. 1D, the photosensitive polyimide precursor is adjusted by adjusting the baking conditions. The reason why the -COOH / maximum peak detection intensity ratio of the body 11 is configured to be greater than 0.15 will be described with reference to FIGS.

まず、図1(d)に示す感光性ポリイミド前駆体11の塗布、露光・現像工程を実行した後、感光性ポリイミド前駆体11のベーク条件によっては、図1(g)に示す支持基板6の熱剥離工程を実行するときに、保護キャップ5を転写できないという不良(即ち、転写不良)が発生することがあった。ここで、保護キャップ5の転写不良は、感光性ポリイミド前駆体11の密着性、即ち、引張強度が不足したときに発生し、引張強度が十分であれば上記転写不良は発生しないのであるから、本発明者らは、感光性ポリイミド前駆体11の密着性、即ち、引張強度が、条件(特に、ベーク条件)によってどのように変化するかを調べてみた。   First, after carrying out the application of the photosensitive polyimide precursor 11 shown in FIG. 1 (d), the exposure / development process, depending on the baking conditions of the photosensitive polyimide precursor 11, the support substrate 6 shown in FIG. When the thermal peeling process is executed, a defect that the protective cap 5 cannot be transferred (that is, a transfer defect) may occur. Here, the transfer failure of the protective cap 5 occurs when the adhesiveness of the photosensitive polyimide precursor 11, that is, when the tensile strength is insufficient, and if the tensile strength is sufficient, the transfer failure does not occur. The present inventors examined how the adhesiveness of the photosensitive polyimide precursor 11, that is, the tensile strength changes depending on conditions (particularly baking conditions).

最初に、感光性ポリイミド前駆体11の密着性に関与する水酸基として例えば−COOH(カルボキシル基)の検出強度について調べた。この場合、XPS(X線光電子分光分析)を用いて感光性ポリイミド前駆体11の炭素化学結合状態を分析した。この分析結果を、図3に示す。この図3において、実線F1は良好な実施例1を示し、実線F2は良好な実施例2を示し、実線S1は不良が発生した比較例1を示し、実線S2は不良が発生した比較例2を示しており、矢印で示すところが、−COOHの検出強度のピークである。   First, the detection intensity of, for example, —COOH (carboxyl group) as a hydroxyl group involved in the adhesion of the photosensitive polyimide precursor 11 was examined. In this case, the carbon chemical bonding state of the photosensitive polyimide precursor 11 was analyzed using XPS (X-ray photoelectron spectroscopy). The analysis results are shown in FIG. In FIG. 3, the solid line F1 indicates a good example 1, the solid line F2 indicates a good example 2, the solid line S1 indicates a comparative example 1 in which a defect has occurred, and a solid line S2 indicates a comparative example 2 in which a defect has occurred. The point indicated by the arrow is the peak of the detected intensity of —COOH.

そして、−COOHの検出強度を、最大ピークを示す樹脂材料の−C−C−や−C−H−といったものとの比で表しており、この−COOH/最大ピーク検出強度比と密着性(即ち、引張強度)との関係を、図5に示す。   The detected intensity of -COOH is represented by the ratio of the resin material having the maximum peak, such as -C-C- or -C-H-, and this -COOH / maximum peak detected intensity ratio and adhesion ( That is, the relationship with the tensile strength is shown in FIG.

上記図5から、−COOH/最大ピーク検出強度比が0.15のときは、引張強度が全く無く、転写することができない(即ち、転写不良が発生する)。そして、−COOH/最大ピーク検出強度比が0.17、0.25、0.26のときは、良好に転写することができた(即ち、転写不良が発生しなかった)。よって、−COOH/最大ピーク検出強度比を0.15よりも大きくするように構成すれば、転写不良を防止することができる。   From FIG. 5 above, when the -COOH / maximum peak detected intensity ratio is 0.15, there is no tensile strength at all, and transfer cannot be performed (that is, transfer failure occurs). When the -COOH / maximum peak detection intensity ratio was 0.17, 0.25, or 0.26, transfer was good (that is, transfer failure did not occur). Therefore, if the -COOH / maximum peak detection intensity ratio is configured to be larger than 0.15, transfer defects can be prevented.

一方、一般的な半導体製造設備においては、−COOH/最大ピーク検出強度比の実施可能な数値範囲は、0.3以下であることが好ましい。更に、支持基板6の剥離時や、感光性ポリイミド前駆体11をイミド化させるためのキュアを実行する時に、多かれ少なかれガスが発生する。ここで、ガスの発生を抑えたい場合には、−COOHといった水酸基の比率を下げることが良い。この場合、−COOH/最大ピーク検出強度比を0.3以下に設定することが好ましい。   On the other hand, in a general semiconductor manufacturing facility, the feasible numerical range of -COOH / maximum peak detection intensity ratio is preferably 0.3 or less. Furthermore, more or less gas is generated when the support substrate 6 is peeled off or when the curing for imidizing the photosensitive polyimide precursor 11 is performed. Here, in order to suppress the generation of gas, the ratio of hydroxyl groups such as —COOH is preferably lowered. In this case, it is preferable to set the -COOH / maximum peak detection intensity ratio to 0.3 or less.

次に、感光性ポリイミド前駆体11の−COOH/最大ピーク検出強度比を変更(制御)する方法について、図4に従って説明する。本実施例の場合、図1(d)に示す感光性ポリイミド前駆体11の塗布、露光・現像工程において、感光性ポリイミド前駆体11をベークするときのベーク条件を調整することによって、感光性ポリイミド前駆体11の−COOH/最大ピーク検出強度比を調整している。   Next, a method for changing (controlling) the -COOH / maximum peak detection intensity ratio of the photosensitive polyimide precursor 11 will be described with reference to FIG. In the case of this example, the photosensitive polyimide precursor 11 shown in FIG. 1 (d) is coated with the photosensitive polyimide precursor 11 by adjusting the baking conditions when the photosensitive polyimide precursor 11 is baked. The -COOH / maximum peak detection intensity ratio of the precursor 11 is adjusted.

まず、図4の左端に示す実施例では、露光後にホットプレートでベーク(PEB(Post Exposure Bake))し、現像後にホットプレートでベークしている。この実施例では、−COOH/最大ピーク検出強度比が0.26(2個のサンプルの平均値)となり、転写が良好に行われた。次に、図4の左端の右隣りに示す実施例では、露光後にオーブンでベーク(PEB)し、現像後にオーブンでベークしている。この実施例では、−COOH/最大ピーク検出強度比が0.15(2個のサンプルの平均値)となり、転写不良が発生した。   First, in the embodiment shown at the left end of FIG. 4, baking is performed with a hot plate after exposure (PEB (Post Exposure Bake)), and baking is performed with a hot plate after development. In this example, -COOH / maximum peak detection intensity ratio was 0.26 (average value of two samples), and transfer was performed well. Next, in the embodiment shown on the right side of the left end in FIG. 4, baking is performed in an oven (PEB) after exposure, and baking is performed in the oven after development. In this example, -COOH / maximum peak detection intensity ratio was 0.15 (average value of two samples), and transfer failure occurred.

図4における更に右隣りに示す実施例では、露光後にオーブンでベーク(PEB)し、現像後はN2ブローのみとした(即ち、ベークしないで常温におくようにした)。この実施例では、−COOH/最大ピーク検出強度比が0.17(2個のサンプルの平均値)となり、転写が良好に行われた。また、図4における右端に示す実施例では、露光後に自然放置(PED(Post Exposure Delay))し、現像後はN2ブローのみとした(即ち、ベークしないで常温におくようにした)。この実施例では、−COOH/最大ピーク検出強度比が0.25(2個のサンプルの平均値)となり、転写が良好に行われた。 In the example shown on the right side in FIG. 4, baking was performed in an oven (PEB) after exposure, and only N 2 blow was performed after development (that is, it was kept at room temperature without baking). In this example, -COOH / maximum peak detection intensity ratio was 0.17 (average value of two samples), and transfer was performed well. Further, in the example shown at the right end in FIG. 4, the film was left to stand after exposure (PED (Post Exposure Delay)), and after development, only N 2 blow was performed (that is, it was kept at room temperature without baking). In this example, -COOH / maximum peak detection intensity ratio was 0.25 (average value of two samples), and transfer was performed well.

このような構成の本実施例によれば、半導体にて構成された梁構造体2が表面に形成された半導体基板3を用意する工程と、支持基板6に熱硬化性ポリイミド7を熱剥離可能な接着剤8を介して接着する工程と、熱硬化性ポリイミド7の表面に梁構造体2を覆うためのキャビティ9を形成する工程と、熱硬化性ポリイミド7の表面に感光性ポリイミド前駆体11を塗布し、露光・現像する工程と、熱硬化性ポリイミド7を半導体基板3の表面上に仮貼り合わせする工程とを備え、感光性ポリイミド前駆体11を塗布し、露光・現像する工程において、感光性ポリイミド前駆体11の−COOH/最大ピーク検出強度比が0.15より大きくなるように構成したので、ポリイミド製の保護キャップ5を半導体基板3に接着する際に、保護キャップ5を仮支持する支持基板6として簡便なテープ類を用いながら、信頼性の高い接着部を形成することができ、転写不良を防止することができる。   According to the present embodiment having such a configuration, the step of preparing the semiconductor substrate 3 having the beam structure 2 made of semiconductor formed on the surface, and the thermosetting polyimide 7 on the support substrate 6 can be thermally peeled off. A step of bonding via an adhesive 8, a step of forming a cavity 9 for covering the beam structure 2 on the surface of the thermosetting polyimide 7, and a photosensitive polyimide precursor 11 on the surface of the thermosetting polyimide 7. In the step of applying, exposing and developing, and the step of temporarily bonding the thermosetting polyimide 7 on the surface of the semiconductor substrate 3, applying the photosensitive polyimide precursor 11, and exposing and developing. Since the —COOH / maximum peak detection intensity ratio of the photosensitive polyimide precursor 11 is greater than 0.15, the protective cap 5 is bonded to the semiconductor substrate 3 when the polyimide protective cap 5 is bonded. While using a simple tapes 5 as the supporting substrate 6 for temporarily supporting, it is possible to form a highly reliable bonding portion, it is possible to prevent transfer defects.

また、上記実施例においては、感光性ポリイミド前駆体11を塗布し、露光・現像する工程において、感光性ポリイミド前駆体11の−COOH/最大ピーク検出強度比が0.30以下となるように構成したので、通常の半導体製造設備で製造することができる。   Moreover, in the said Example, it is comprised so that the -COOH / maximum peak detection intensity ratio of the photosensitive polyimide precursor 11 may be 0.30 or less in the process of apply | coating the photosensitive polyimide precursor 11, exposure, and image development. Therefore, it can be manufactured with normal semiconductor manufacturing equipment.

更に、上記実施例においては、支持基板6を熱硬化性ポリイミド7から熱剥離する工程と、熱硬化性ポリイミド7を半導体基板3の表面上に本貼り合わせする工程とを備えたので、支持基板6を除去できると共に、熱硬化性ポリイミド7、即ち、保護キャップ5を半導体基板3に十分に接着することができる。   Furthermore, in the said Example, since the process of heat-peeling the support substrate 6 from the thermosetting polyimide 7 and the process of carrying out this bonding of the thermosetting polyimide 7 on the surface of the semiconductor substrate 3 were provided, support substrate 6 can be removed, and the thermosetting polyimide 7, that is, the protective cap 5 can be sufficiently adhered to the semiconductor substrate 3.

尚、上記実施例においては、例えば半導体加速度センサを製造する構成に適用したが、これに限られるものではなく、例えばジャイロスコープ等の容量式センサを製造する構成に適用しても良い。   In the above embodiment, the present invention is applied to a structure for manufacturing a semiconductor acceleration sensor, for example. However, the present invention is not limited to this. For example, the present invention may be applied to a structure for manufacturing a capacitive sensor such as a gyroscope.

本発明の一実施例を示す半導体加速度センサの製造工程を示す図The figure which shows the manufacturing process of the semiconductor acceleration sensor which shows one Example of this invention センサチップの縦断面図Longitudinal section of sensor chip 感光性ポリイミド前駆体の炭素化学結合状態を示す特性図Characteristic chart showing carbon chemical bonding state of photosensitive polyimide precursor 感光性ポリイミド前駆体のベーク条件と−COOH/最大ピーク検出強度比との関係を示す図The figure which shows the relationship between the baking conditions of a photosensitive polyimide precursor, and -COOH / maximum peak detection intensity ratio 感光性ポリイミド前駆体の−COOH/最大ピーク検出強度比と引張強度との関係を示す図The figure which shows the relationship between -COOH / maximum peak detection intensity ratio and tensile strength of a photosensitive polyimide precursor

符号の説明Explanation of symbols

図面中、1はセンサチップ、2は梁構造体、3は半導体基板、5は保護キャップ、6は支持基板、7は熱硬化性ポリイミド、8は接着剤、9はキャビティ、11は感光性ポリイミド前駆体を示す。   In the drawings, 1 is a sensor chip, 2 is a beam structure, 3 is a semiconductor substrate, 5 is a protective cap, 6 is a support substrate, 7 is a thermosetting polyimide, 8 is an adhesive, 9 is a cavity, and 11 is a photosensitive polyimide. The precursor is shown.

Claims (3)

半導体にて構成された構造体が形成された半導体基板と、前記構造体を覆うように前記半導体基板に接着された樹脂製の保護キャップとを備えてなる半導体装置の製造方法において、
半導体にて構成された構造体が表面に形成された半導体基板を用意する工程と、
支持基板に熱硬化性ポリイミドを熱剥離可能な接着剤を介して接着する工程と、
前記熱硬化性ポリイミドの表面に前記構造体を覆うためのキャビティを形成する工程と、
前記熱硬化性ポリイミドの表面に感光性ポリイミド前駆体を塗布し、露光現像する工程と、
前記熱硬化性ポリイミドを前記半導体基板の表面上に仮貼り合わせする工程とを備え、
前記感光性ポリイミド前駆体を塗布し、露光現像する工程において、前記感光性ポリイミド前駆体の−COOH/最大ピーク検出強度比が0.15より大きくなるように構成したことを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device, comprising: a semiconductor substrate on which a structure composed of a semiconductor is formed; and a protective cap made of resin bonded to the semiconductor substrate so as to cover the structure.
Preparing a semiconductor substrate having a structure formed of a semiconductor formed on the surface;
Adhering the thermosetting polyimide to the support substrate through an adhesive that can be thermally peeled;
Forming a cavity for covering the structure on the surface of the thermosetting polyimide;
Applying a photosensitive polyimide precursor to the surface of the thermosetting polyimide, exposing and developing;
Temporarily bonding the thermosetting polyimide onto the surface of the semiconductor substrate,
A semiconductor device characterized in that, in the step of applying the photosensitive polyimide precursor, exposing and developing, the -COOH / maximum peak detection intensity ratio of the photosensitive polyimide precursor is greater than 0.15. Production method.
前記感光性ポリイミド前駆体を塗布し、露光現像する工程において、前記感光性ポリイミド前駆体の−COOH/最大ピーク検出強度比が0.30以下となるように構成したことを特徴とする請求項1記載の半導体装置の製造方法。   2. The step of applying the photosensitive polyimide precursor, exposing and developing the photosensitive polyimide precursor, wherein the photosensitive polyimide precursor has a -COOH / maximum peak detection intensity ratio of 0.30 or less. The manufacturing method of the semiconductor device of description. 前記支持基板を前記熱硬化性ポリイミドから熱剥離する工程と、
前記熱硬化性ポリイミドを前記半導体基板の表面上に本貼り合わせする工程と、
を備えたことを特徴とする請求項1または2記載の半導体装置の製造方法。
Thermally exfoliating the support substrate from the thermosetting polyimide;
A step of permanently bonding the thermosetting polyimide on the surface of the semiconductor substrate;
The method for manufacturing a semiconductor device according to claim 1, further comprising:
JP2007187202A 2007-07-18 2007-07-18 Manufacturing method of semiconductor device Expired - Fee Related JP5013467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007187202A JP5013467B2 (en) 2007-07-18 2007-07-18 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187202A JP5013467B2 (en) 2007-07-18 2007-07-18 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2009026880A true JP2009026880A (en) 2009-02-05
JP5013467B2 JP5013467B2 (en) 2012-08-29

Family

ID=40398432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187202A Expired - Fee Related JP5013467B2 (en) 2007-07-18 2007-07-18 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5013467B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077891A1 (en) * 2009-12-21 2011-06-30 太陽誘電株式会社 Process for producing hollow package
US20160126196A1 (en) 2014-11-03 2016-05-05 Rf Micro Devices, Inc. Printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer
US9583414B2 (en) 2013-10-31 2017-02-28 Qorvo Us, Inc. Silicon-on-plastic semiconductor device and method of making the same
US9613831B2 (en) 2015-03-25 2017-04-04 Qorvo Us, Inc. Encapsulated dies with enhanced thermal performance
US9812350B2 (en) 2013-03-06 2017-11-07 Qorvo Us, Inc. Method of manufacture for a silicon-on-plastic semiconductor device with interfacial adhesion layer
US9824951B2 (en) 2014-09-12 2017-11-21 Qorvo Us, Inc. Printed circuit module having semiconductor device with a polymer substrate and methods of manufacturing the same
US20170358511A1 (en) 2016-06-10 2017-12-14 Qorvo Us, Inc. Thermally enhanced semiconductor package with thermal additive and process for making the same
US20180019184A1 (en) 2016-07-18 2018-01-18 Qorvo Us, Inc. Thermally enhanced semiconductor package having field effect transistors with back-gate feature
US20180044177A1 (en) 2016-08-12 2018-02-15 Qorvo Us, Inc. Wafer-level package with enhanced performance
US9960145B2 (en) 2015-03-25 2018-05-01 Qorvo Us, Inc. Flip chip module with enhanced properties
US10020405B2 (en) 2016-01-19 2018-07-10 Qorvo Us, Inc. Microelectronics package with integrated sensors
US10038055B2 (en) 2015-05-22 2018-07-31 Qorvo Us, Inc. Substrate structure with embedded layer for post-processing silicon handle elimination
US20180228030A1 (en) 2014-10-01 2018-08-09 Qorvo Us, Inc. Method for manufacturing an integrated circuit package
US10062583B2 (en) 2016-05-09 2018-08-28 Qorvo Us, Inc. Microelectronics package with inductive element and magnetically enhanced mold compound component
US10068831B2 (en) 2016-12-09 2018-09-04 Qorvo Us, Inc. Thermally enhanced semiconductor package and process for making the same
US10090339B2 (en) 2016-10-21 2018-10-02 Qorvo Us, Inc. Radio frequency (RF) switch
US10109550B2 (en) 2016-08-12 2018-10-23 Qorvo Us, Inc. Wafer-level package with enhanced performance
US10109502B2 (en) 2016-09-12 2018-10-23 Qorvo Us, Inc. Semiconductor package with reduced parasitic coupling effects and process for making the same
US20190013255A1 (en) 2017-07-06 2019-01-10 Qorvo Us, Inc. Wafer-level packaging for enhanced performance
US20190074271A1 (en) 2017-09-05 2019-03-07 Qorvo Us, Inc. Microelectronics package with self-aligned stacked-die assembly
US20190074263A1 (en) 2017-09-05 2019-03-07 Qorvo Us, Inc. Microelectronics package with self-aligned stacked-die assembly
US10276495B2 (en) 2015-09-11 2019-04-30 Qorvo Us, Inc. Backside semiconductor die trimming
US10486963B2 (en) 2016-08-12 2019-11-26 Qorvo Us, Inc. Wafer-level package with enhanced performance
US20200235054A1 (en) 2019-01-23 2020-07-23 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US10749518B2 (en) 2016-11-18 2020-08-18 Qorvo Us, Inc. Stacked field-effect transistor switch
US10773952B2 (en) 2016-05-20 2020-09-15 Qorvo Us, Inc. Wafer-level package with enhanced performance
US10784149B2 (en) 2016-05-20 2020-09-22 Qorvo Us, Inc. Air-cavity module with enhanced device isolation
US10804246B2 (en) 2018-06-11 2020-10-13 Qorvo Us, Inc. Microelectronics package with vertically stacked dies
US10964554B2 (en) 2018-10-10 2021-03-30 Qorvo Us, Inc. Wafer-level fan-out package with enhanced performance
US11069590B2 (en) 2018-10-10 2021-07-20 Qorvo Us, Inc. Wafer-level fan-out package with enhanced performance
US20210296199A1 (en) 2018-11-29 2021-09-23 Qorvo Us, Inc. Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
US11152363B2 (en) 2018-03-28 2021-10-19 Qorvo Us, Inc. Bulk CMOS devices with enhanced performance and methods of forming the same utilizing bulk CMOS process
US20220139862A1 (en) 2019-01-23 2022-05-05 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US11387157B2 (en) 2019-01-23 2022-07-12 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11646289B2 (en) 2019-12-02 2023-05-09 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11710680B2 (en) 2019-01-23 2023-07-25 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11923238B2 (en) 2019-12-12 2024-03-05 Qorvo Us, Inc. Method of forming RF devices with enhanced performance including attaching a wafer to a support carrier by a bonding technique without any polymer adhesive

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165180A (en) * 2004-12-06 2006-06-22 Matsushita Electric Ind Co Ltd Method of applying photosensitive curable resin and adhesion method
JP2006303485A (en) * 2005-03-25 2006-11-02 Sumitomo Chemical Co Ltd Solid-state imaging apparatus and its manufacturing process
JP2007227439A (en) * 2006-02-21 2007-09-06 Denso Corp Method and apparatus of manufacturing semiconductor device
JP2009003369A (en) * 2007-06-25 2009-01-08 Hitachi Chem Co Ltd Photosensitive resin composition, and photosensitive element using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165180A (en) * 2004-12-06 2006-06-22 Matsushita Electric Ind Co Ltd Method of applying photosensitive curable resin and adhesion method
JP2006303485A (en) * 2005-03-25 2006-11-02 Sumitomo Chemical Co Ltd Solid-state imaging apparatus and its manufacturing process
JP2007227439A (en) * 2006-02-21 2007-09-06 Denso Corp Method and apparatus of manufacturing semiconductor device
JP2009003369A (en) * 2007-06-25 2009-01-08 Hitachi Chem Co Ltd Photosensitive resin composition, and photosensitive element using the same

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130356A (en) * 2009-12-21 2011-06-30 Taiyo Yuden Co Ltd Method of manufacturing hollow package
WO2011077891A1 (en) * 2009-12-21 2011-06-30 太陽誘電株式会社 Process for producing hollow package
US9812350B2 (en) 2013-03-06 2017-11-07 Qorvo Us, Inc. Method of manufacture for a silicon-on-plastic semiconductor device with interfacial adhesion layer
US10134627B2 (en) 2013-03-06 2018-11-20 Qorvo Us, Inc. Silicon-on-plastic semiconductor device with interfacial adhesion layer
US9583414B2 (en) 2013-10-31 2017-02-28 Qorvo Us, Inc. Silicon-on-plastic semiconductor device and method of making the same
US10062637B2 (en) 2013-10-31 2018-08-28 Qorvo Us, Inc. Method of manufacture for a semiconductor device
US9824951B2 (en) 2014-09-12 2017-11-21 Qorvo Us, Inc. Printed circuit module having semiconductor device with a polymer substrate and methods of manufacturing the same
US10492301B2 (en) 2014-10-01 2019-11-26 Qorvo Us, Inc. Method for manufacturing an integrated circuit package
US20180228030A1 (en) 2014-10-01 2018-08-09 Qorvo Us, Inc. Method for manufacturing an integrated circuit package
US10085352B2 (en) 2014-10-01 2018-09-25 Qorvo Us, Inc. Method for manufacturing an integrated circuit package
US10199301B2 (en) 2014-11-03 2019-02-05 Qorvo Us, Inc. Methods of manufacturing a printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer
US20160126196A1 (en) 2014-11-03 2016-05-05 Rf Micro Devices, Inc. Printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer
US10121718B2 (en) 2014-11-03 2018-11-06 Qorvo Us, Inc. Printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer
US10109548B2 (en) 2014-11-03 2018-10-23 Qorvo Us, Inc. Printed circuit module having a semiconductor device with a protective layer in place of a low-resistivity handle layer
US9960145B2 (en) 2015-03-25 2018-05-01 Qorvo Us, Inc. Flip chip module with enhanced properties
US10020206B2 (en) 2015-03-25 2018-07-10 Qorvo Us, Inc. Encapsulated dies with enhanced thermal performance
US9613831B2 (en) 2015-03-25 2017-04-04 Qorvo Us, Inc. Encapsulated dies with enhanced thermal performance
US10038055B2 (en) 2015-05-22 2018-07-31 Qorvo Us, Inc. Substrate structure with embedded layer for post-processing silicon handle elimination
US10276495B2 (en) 2015-09-11 2019-04-30 Qorvo Us, Inc. Backside semiconductor die trimming
US10020405B2 (en) 2016-01-19 2018-07-10 Qorvo Us, Inc. Microelectronics package with integrated sensors
US10090262B2 (en) 2016-05-09 2018-10-02 Qorvo Us, Inc. Microelectronics package with inductive element and magnetically enhanced mold compound component
US10062583B2 (en) 2016-05-09 2018-08-28 Qorvo Us, Inc. Microelectronics package with inductive element and magnetically enhanced mold compound component
US10784149B2 (en) 2016-05-20 2020-09-22 Qorvo Us, Inc. Air-cavity module with enhanced device isolation
US10882740B2 (en) 2016-05-20 2021-01-05 Qorvo Us, Inc. Wafer-level package with enhanced performance and manufacturing method thereof
US10773952B2 (en) 2016-05-20 2020-09-15 Qorvo Us, Inc. Wafer-level package with enhanced performance
US10262915B2 (en) 2016-06-10 2019-04-16 Qorvo Us, Inc. Thermally enhanced semiconductor package with thermal additive and process for making the same
US10103080B2 (en) 2016-06-10 2018-10-16 Qorvo Us, Inc. Thermally enhanced semiconductor package with thermal additive and process for making the same
US20170358511A1 (en) 2016-06-10 2017-12-14 Qorvo Us, Inc. Thermally enhanced semiconductor package with thermal additive and process for making the same
US20180197803A1 (en) 2016-06-10 2018-07-12 Qorvo Us, Inc. Thermally enhanced semiconductor package with thermal additive and process for making the same
US10468329B2 (en) 2016-07-18 2019-11-05 Qorvo Us, Inc. Thermally enhanced semiconductor package having field effect transistors with back-gate feature
US10079196B2 (en) 2016-07-18 2018-09-18 Qorvo Us, Inc. Thermally enhanced semiconductor package having field effect transistors with back-gate feature
US20180019184A1 (en) 2016-07-18 2018-01-18 Qorvo Us, Inc. Thermally enhanced semiconductor package having field effect transistors with back-gate feature
US20180044177A1 (en) 2016-08-12 2018-02-15 Qorvo Us, Inc. Wafer-level package with enhanced performance
US10804179B2 (en) 2016-08-12 2020-10-13 Qorvo Us, Inc. Wafer-level package with enhanced performance
US10109550B2 (en) 2016-08-12 2018-10-23 Qorvo Us, Inc. Wafer-level package with enhanced performance
US10486963B2 (en) 2016-08-12 2019-11-26 Qorvo Us, Inc. Wafer-level package with enhanced performance
US10486965B2 (en) 2016-08-12 2019-11-26 Qorvo Us, Inc. Wafer-level package with enhanced performance
US10985033B2 (en) 2016-09-12 2021-04-20 Qorvo Us, Inc. Semiconductor package with reduced parasitic coupling effects and process for making the same
US10109502B2 (en) 2016-09-12 2018-10-23 Qorvo Us, Inc. Semiconductor package with reduced parasitic coupling effects and process for making the same
US10090339B2 (en) 2016-10-21 2018-10-02 Qorvo Us, Inc. Radio frequency (RF) switch
US10749518B2 (en) 2016-11-18 2020-08-18 Qorvo Us, Inc. Stacked field-effect transistor switch
US10790216B2 (en) 2016-12-09 2020-09-29 Qorvo Us, Inc. Thermally enhanced semiconductor package and process for making the same
US10068831B2 (en) 2016-12-09 2018-09-04 Qorvo Us, Inc. Thermally enhanced semiconductor package and process for making the same
US20180342439A1 (en) 2016-12-09 2018-11-29 Qorvo Us, Inc. Thermally enhanced semiconductor package and process for making the same
US10490471B2 (en) 2017-07-06 2019-11-26 Qorvo Us, Inc. Wafer-level packaging for enhanced performance
US10755992B2 (en) 2017-07-06 2020-08-25 Qorvo Us, Inc. Wafer-level packaging for enhanced performance
US20190013255A1 (en) 2017-07-06 2019-01-10 Qorvo Us, Inc. Wafer-level packaging for enhanced performance
US10366972B2 (en) 2017-09-05 2019-07-30 Qorvo Us, Inc. Microelectronics package with self-aligned stacked-die assembly
US20190074263A1 (en) 2017-09-05 2019-03-07 Qorvo Us, Inc. Microelectronics package with self-aligned stacked-die assembly
US10784233B2 (en) 2017-09-05 2020-09-22 Qorvo Us, Inc. Microelectronics package with self-aligned stacked-die assembly
US20190074271A1 (en) 2017-09-05 2019-03-07 Qorvo Us, Inc. Microelectronics package with self-aligned stacked-die assembly
US11152363B2 (en) 2018-03-28 2021-10-19 Qorvo Us, Inc. Bulk CMOS devices with enhanced performance and methods of forming the same utilizing bulk CMOS process
US11063021B2 (en) 2018-06-11 2021-07-13 Qorvo Us, Inc. Microelectronics package with vertically stacked dies
US10804246B2 (en) 2018-06-11 2020-10-13 Qorvo Us, Inc. Microelectronics package with vertically stacked dies
US10964554B2 (en) 2018-10-10 2021-03-30 Qorvo Us, Inc. Wafer-level fan-out package with enhanced performance
US11069590B2 (en) 2018-10-10 2021-07-20 Qorvo Us, Inc. Wafer-level fan-out package with enhanced performance
US11942389B2 (en) 2018-11-29 2024-03-26 Qorvo Us, Inc. Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
US20210296199A1 (en) 2018-11-29 2021-09-23 Qorvo Us, Inc. Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
US11646242B2 (en) 2018-11-29 2023-05-09 Qorvo Us, Inc. Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
US11387157B2 (en) 2019-01-23 2022-07-12 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US20220139862A1 (en) 2019-01-23 2022-05-05 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US11710680B2 (en) 2019-01-23 2023-07-25 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11923313B2 (en) 2019-01-23 2024-03-05 Qorvo Us, Inc. RF device without silicon handle substrate for enhanced thermal and electrical performance and methods of forming the same
US20200235054A1 (en) 2019-01-23 2020-07-23 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US11961813B2 (en) 2019-01-23 2024-04-16 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11646289B2 (en) 2019-12-02 2023-05-09 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11923238B2 (en) 2019-12-12 2024-03-05 Qorvo Us, Inc. Method of forming RF devices with enhanced performance including attaching a wafer to a support carrier by a bonding technique without any polymer adhesive

Also Published As

Publication number Publication date
JP5013467B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5013467B2 (en) Manufacturing method of semiconductor device
JP4591378B2 (en) Manufacturing method of semiconductor device
JP6342405B2 (en) Releasable substrate on carrier
JP5718005B2 (en) A heat-resistant adhesive tape for manufacturing a semiconductor device and a method for manufacturing a semiconductor device using the tape.
JP2009164314A (en) Laminated substrate and production process of semiconductor device using the laminated substrate
JP2007251080A (en) Fixing method for plastic substrate, circuit substrate, and manufacturing method therefor
WO2003077308A1 (en) Mold release layer transferring film and laminate film
JP2006128641A (en) Flexible printed wiring board for cof and method of manufacturing the same
JP2008300487A (en) Pasting device, method of preventing adhesive from dissolving, and pasting method
JP5718342B2 (en) Apparatus and method for applying a film to a semiconductor wafer and method for processing a semiconductor wafer
JP2007139576A (en) Manufacturing method of semiconductor dynamic quantity sensor
TW201201267A (en) Method for dicing wafer, connection method and connected structure body
JP2001102430A (en) Wafer support base with dust covering film and manufacturing method thereof
JP2014096422A (en) Substrate support member, substrate processing apparatus, manufacturing method for substrate support member, and substrate processing method
WO2015064953A1 (en) Method for manufacturing electronic component
JP2006332464A (en) Method of manufacturing semiconductor device
JP2008135795A (en) Semiconductor device, and method for producing the same
JP2002275435A (en) Masking sheet for assembling semiconductor device and method for assembling semiconductor device
US20150174859A1 (en) Panel with releasable core
JP6799988B2 (en) Sticking device
JP4342340B2 (en) Manufacturing method of semiconductor device
KR100572191B1 (en) Mask sheet for assembling semiconductor device and method for assembling semiconductor device
JP2003068995A (en) Method for manufacturing thin film device substrate
JP2003166998A (en) Semiconductor acceleration sensor
US20120009394A1 (en) Bonding method and bonding substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees