JP2009025052A - Method and device for confirming presence or absence of optical filter in optical path - Google Patents

Method and device for confirming presence or absence of optical filter in optical path Download PDF

Info

Publication number
JP2009025052A
JP2009025052A JP2007186247A JP2007186247A JP2009025052A JP 2009025052 A JP2009025052 A JP 2009025052A JP 2007186247 A JP2007186247 A JP 2007186247A JP 2007186247 A JP2007186247 A JP 2007186247A JP 2009025052 A JP2009025052 A JP 2009025052A
Authority
JP
Japan
Prior art keywords
light
optical
power
optical filter
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007186247A
Other languages
Japanese (ja)
Other versions
JP4871804B2 (en
Inventor
Kitaro Ogushi
幾太郎 大串
Yuji Azuma
裕司 東
Noriyuki Araki
則幸 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007186247A priority Critical patent/JP4871804B2/en
Publication of JP2009025052A publication Critical patent/JP2009025052A/en
Application granted granted Critical
Publication of JP4871804B2 publication Critical patent/JP4871804B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a confirmation method of presence or absence of an optical filter in an optical path, for determining the presence or absence of the optical filter which cuts off a specific wavelength at the lower end of the optical path composed of one upper optical path and a plurality of lower optical paths branched through the use of a light branching element. <P>SOLUTION: Light of a wavelength λ1 being in the cut-off region of the optical filter and light of a wavelength λ2 being in its passing region are made incident from the upper end of the upper optical path. A bent part is provided in a lower optical path being an object of determination. Powers of beams of leakage light of the wavelengths λ1, λ2 traveling downwards from above at the bent part, and powers of beams of leakage light of the wavelengths λ1, λ2 traveling upwards from below are measured. Differences in power level ΔP<SP>UP</SP>, ΔP<SP>Down</SP>at the wavelengths λ1, λ2 between the powers of the beams of leakage light of the wavelength λ1, λ2 traveling downwards from above and the powers of the beams of leakage light traveling upwards from below are found. It is determined that the optical filter does not exist when the power level differences ΔP<SP>UP</SP>and ΔP<SP>Down</SP>are approximately equal, and it is determined that the optical filter exists when the power level difference ΔP<SP>UP</SP>is smaller than ΔP<SP>Down</SP>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、1本の上部光線路と光分岐素子によって分岐された複数の下部光線路からなる光線路の下方端部における特定波長を遮断する光フィルタの有無を判定する光線路の光フィルタ有無確認方法及び光フィルタ有無確認装置に関する。   The present invention relates to the presence / absence of an optical filter in an optical line for determining the presence / absence of an optical filter that blocks a specific wavelength at the lower end of an optical line composed of a single upper optical line and a plurality of lower optical lines branched by an optical branching element. The present invention relates to a confirmation method and an optical filter presence confirmation device.

例えば、局舎とユーザ宅を光ファイバで結ぶFTTH(Fiber to the home)サービスを提供する光アクセスネットワークにおいて、局舎外に設置された光スプリッタなどの光分岐素子による分岐を有するネットワーク形態(PON:Passive Optical Network、以下PONという)を用いる場合に、該光スプリッタが配置されている分岐点よりもユーザ宅側における引き落とし点(新規工事点)において光ファイバ心線のユーザ用伝送装置側に設けられた試験光遮断フィルタの有無を判定することにより、現用光ファイバ心線と非現用光ファイバ心線の区別を推定することができる。   For example, in an optical access network that provides an FTTH (Fiber to the home) service that connects an office building and a user's home via an optical fiber, a network configuration (PON) with an optical branching device such as an optical splitter installed outside the office building (PON) : When using Passive Optical Network (hereinafter referred to as PON), it is provided on the user's transmission device side of the optical fiber core at the deduction point (new construction point) on the user's home side from the branch point where the optical splitter is arranged. By determining the presence or absence of the test light blocking filter, it is possible to estimate the distinction between the active optical fiber core and the non-active optical fiber core.

現用光ファイバ心線とは既に特定のユーザによって使用されている光ファイバ心線を意味し、非現用光ファイバ心線とはどのユーザにも使用されていない光ファイバ心線を意味する。   The working optical fiber core wire means an optical fiber core wire already used by a specific user, and the non-working optical fiber core wire means an optical fiber core wire not used by any user.

分岐点よりもユーザ宅側の光ファイバ心線において工事等の必要から現用光ファイバ心線を切断することがないように確認するために行われる。   This is performed in order to confirm that the working optical fiber core is not cut from the necessity of construction or the like in the optical fiber core on the user's home side from the branch point.

従来技術では光線路の局舎外に設置された分岐点から下部の光ファイバ心線における新規工事点において、その工事対象となる光ファイバ心線を確認するのに、該光ファイバ心線を物理的に追って、かつ視覚的に光ファイバ心線の順番と色で確認する必要があった。   In the prior art, at the new construction point of the optical fiber core below the branch point of the optical line, the optical fiber core is physically used to confirm the optical fiber core to be constructed. Therefore, it was necessary to visually and visually confirm the order and color of the optical fiber core wires.

また、シングルスター網の場合には、局舎内から非現用光ファイバ心線に試験光を入射し、新規工事点である現地にて光ファイバ心線から漏れて出射する漏れ試験光を検出する作業(心線対照作業)によって、作業者がこれから切断しようとする光ファイバ心線を確認することが出来ていた。   In the case of a single star network, the test light is incident on the non-working optical fiber from inside the office building, and the leak test light leaking from the optical fiber is detected at the new construction site. By the work (core wire contrast work), the operator could confirm the optical fiber core wire to be cut from now on.

しかし、従来技術では新規工事点から離れている光スプリッタを確認し、そこから物理的に配線している光ファイバ心線の色および順番を確認する必要がある。また、心線対照作業による確認方法はシングルスター網の場合に限り、網形態が局舎外に光スプリッタを配置するようなPONの場合には適用することが出来ないという問題を有していた。   However, in the prior art, it is necessary to confirm the optical splitter that is far from the new construction point and confirm the color and order of the optical fiber cores that are physically wired from there. Moreover, the confirmation method by the core wire contrast work has a problem that it cannot be applied to a PON in which an optical splitter is arranged outside a station building only in the case of a single star network. .

また、従来技術として、局舎から複数波長によって試験光を光ファイバ心線に入力し、試験光遮断フィルタの反射特性を利用して、戻ってくる反射光のレベル差から遠隔に判定するものがある(例えば、特許文献1参照。)。   In addition, as a conventional technique, test light is input to an optical fiber core wire from a central office with a plurality of wavelengths, and the reflection characteristics of the test light blocking filter are used to remotely determine the level difference of the reflected light that returns. (For example, refer to Patent Document 1).

しかしながら、特許文献1の技術は、シングルスター網構成に対応可能な技術であって、PON構成には対応できない。   However, the technique of Patent Document 1 is a technique that can support a single star network configuration and cannot support a PON configuration.

特開2002−131178号公報JP 2002-131178 A

本発明は上記の事情に鑑みてなされたもので、1本の上部光線路と光分岐素子によって分岐された複数の下部光線路からなる光線路の下方端部における特定波長を遮断する光フィルタの有無を判定する光線路の光フィルタ有無確認方法及び光フィルタ有無確認装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is an optical filter that blocks a specific wavelength at a lower end portion of an optical line composed of a single upper optical line and a plurality of lower optical lines branched by an optical branching element. An object of the present invention is to provide an optical filter presence / absence confirmation method and an optical filter presence / absence confirmation device for determining the presence / absence of an optical line.

上記目的を達成するために本発明は、1本の上部光線路と光分岐素子によって分岐された複数の下部光線路からなる光線路の下方端部における特定波長を遮断する光フィルタの有無を判定する光線路の光フィルタ有無確認方法において、上部光線路の上方端部から光フィルタの遮断域にある波長λ1の光と透過域にある波長λ2の光を入射する光入射ステップと、判定対象の下部光線路に曲げ部を設け、該曲げ部における上方から下方に向かう波長λ1、λ2の漏洩光と下方から上方に向かう波長λ1、λ2の漏洩光のパワーを測定する光パワー測定ステップと、波長λ1、λ2における上方から下方に向かう漏洩光のパワーと下方から上方に向かう漏洩光のパワーの波長λ1、λ2のパワーレベル差ΔPUP,ΔPDownを求めて後、前記パワーレベル差ΔPUPとΔPDownがほぼ等しければ光フィルタ無しと判定し、パワーレベル差ΔPUPがΔPDownより小さければ光フィルタ有りと判定する判定ステップとよりなることを特徴とする。 In order to achieve the above object, the present invention determines the presence or absence of an optical filter that blocks a specific wavelength at the lower end of an optical line composed of a single upper optical line and a plurality of lower optical lines branched by an optical branching element. In the method for confirming the presence or absence of the optical filter in the optical line, a light incident step for entering light of wavelength λ1 in the cutoff region of the optical filter and light of wavelength λ2 in the transmission region from the upper end of the upper optical line, An optical power measurement step of providing a bent portion in the lower optical line and measuring the power of the leaked light of wavelengths λ1 and λ2 from the upper side to the lower side and the leaked light of wavelengths λ1 and λ2 from the lower side to the upper side, .lambda.1, the wavelength of the power of the leakage light directed from power and lower leakage light directed from above in .lambda.2 downwards upwards .lambda.1, power level difference [Delta] P UP of .lambda.2, after seeking [Delta] P Down, the power If the level difference [Delta] P UP and [Delta] P Down almost equal determines that no optical filter, wherein the power level difference [Delta] P UP is further a determination step of determining that there is an optical filter is smaller than [Delta] P Down.

また本発明は、1本の上部光線路と光分岐素子によって分岐された複数の下部光線路からなる光線路の下方端部における特定波長を遮断する光フィルタの有無を判定する光線路の光フィルタ有無確認方法において、上部光線路の上方端部から光フィルタの遮断域にある波長λ1の光を周波数f1で変調した変調光と透過域にある波長λ2の光を周波数f2で変調した変調光を入射する光入射ステップと、判定対象の下部光線路に曲げ部を設け、該曲げ部における上方から下方に向かう波長λ1、λ2の光を周波数f1,f2で変調した変調光の漏洩光と下方から上方に向かう波長λ1、λ2の光を周波数f1,f2で変調した変調光の漏洩光のパワーを測定する光パワー測定ステップと、波長λ1、λ2の光を周波数f1,f2で変調した変調光における上方から下方に向かう漏洩光のパワーと下方から上方に向かう漏洩光のパワーの波長λ1、λ2の光を周波数f1,f2で変調した変調光のパワーレベル差ΔPUP,ΔPDownを求めて後、前記パワーレベル差ΔPUPとΔPDownがほぼ等しければ光フィルタ無しと判定し、パワーレベル差ΔPUPがΔPDownより小さければ光フィルタ有りと判定する判定ステップとよりなることを特徴とする。 The present invention also relates to an optical filter for an optical line for determining the presence or absence of an optical filter for blocking a specific wavelength at the lower end of an optical line composed of a single upper optical line and a plurality of lower optical lines branched by an optical branching element. In the presence / absence confirmation method, modulated light obtained by modulating light having wavelength λ1 in the cutoff region of the optical filter from the upper end of the upper optical line at frequency f1 and modulated light obtained by modulating light having wavelength λ2 in the transmission region at frequency f2 An incident light incident step, a bent portion is provided in the lower optical line to be judged, and leaked light of modulated light obtained by modulating the light of wavelengths λ1 and λ2 from above to below at the bent portion with frequencies f1 and f2 and from below An optical power measurement step for measuring the leakage light power of modulated light obtained by modulating light with wavelengths λ1 and λ2 going upward with frequencies f1 and f2, and modulated light obtained by modulating light with wavelengths λ1 and λ2 with frequencies f1 and f2. After seeking definitive wavelength λ1 of the power of the leakage light from the power and lower leakage light upward directed from top to bottom, the frequency of light of .lambda.2 f1, f2 power level difference [Delta] P UP of modulated light modulated by, the [Delta] P Down If the power level difference ΔP UP is substantially equal to ΔP Down, it is determined that there is no optical filter, and if the power level difference ΔP UP is smaller than ΔP Down , it is determined that there is an optical filter.

また本発明は、前記光線路の光フィルタ有無確認方法において、判定対象の下部光線路に曲げ部を1箇所設け、2個の光電変換素子を用いて上方から下方に向かう漏洩光のパワー及び下方かう上方に向かう漏洩光のパワーを測定することを特徴とする。   According to the present invention, in the method for confirming the presence or absence of an optical filter in the optical line, the lower optical line to be determined is provided with one bending portion, and the power of the leaked light from the upper side to the lower side using two photoelectric conversion elements and the lower side It is characterized by measuring the power of leaked light traveling upward.

また本発明は、前記光線路の光フィルタ有無確認方法において、判定対象の下部光線路に曲げ部を2箇所設け、1個の光電変換素子を用いて上方から下方に向かう漏洩光のパワー及び下方かう上方に向かう漏洩光のパワーをそれぞれの曲げ部で別々に測定することを特徴とする。   Further, the present invention provides the optical filter presence / absence confirmation method for the optical line, wherein two bent portions are provided in the lower optical line to be determined, and the power of the leaked light from the upper side to the lower side using one photoelectric conversion element and the lower side It is characterized in that the power of the leaked light traveling upward is measured separately at each bending portion.

また本発明は、1本の上部光線路と光分岐素子によって分岐された複数の下部光線路からなる光線路の下方端部における特定波長を遮断する光フィルタの有無を判定する光フィルタ有無確認装置において、判定対象の下部光線路の曲げ部に設けられ、該曲げ部における上方から下方に向かう波長λ1、λ2の漏洩光と下方から上方に向かう波長λ1、λ2の漏洩光を検出して電気信号に変換する光電変換素子と、前記光電変換素子からの電気信号が入力され、波長λ1、λ2に対応する電気信号のパワーを識別して検知するパワーモニタ部と、前記パワーモニタ部で検知された波長λ1、λ2に対応する電気信号のパワーから波長λ1、λ2のパワーレベル差ΔPUP,ΔPDownを求め、前記パワーレベル差ΔPUPとΔPDownを比較して光フィルタの有無を判定するフィルタ判別処理部とを具備することを特徴とするものである。 The present invention also provides an optical filter presence / absence confirmation device for determining the presence or absence of an optical filter that blocks a specific wavelength at the lower end portion of an optical line composed of a single upper optical line and a plurality of lower optical lines branched by an optical branching element. , The leakage light of wavelengths λ1 and λ2 from the upper side to the lower side and the leakage light of wavelengths λ1 and λ2 from the lower side to the upper side are detected at the bending portion of the lower optical line to be judged A photoelectric conversion element for converting to an electric power, an electric signal from the photoelectric conversion element, a power monitor unit for identifying and detecting the power of the electric signal corresponding to wavelengths λ1 and λ2, and the power monitor unit wavelength .lambda.1, the wavelength .lambda.1 from the power of the electrical signal corresponding to .lambda.2, power level difference [Delta] P UP of .lambda.2, seeking [Delta] P Down, by comparing the power level difference [Delta] P UP and [Delta] P Down It is characterized in that it comprises a determining filtering judgment processing section the presence or absence of filter.

また本発明は、1本の上部光線路と光分岐素子によって分岐された複数の下部光線路からなる光線路の下方端部における特定波長を遮断する光フィルタの有無を判定する光フィルタ有無確認装置において、判定対象の下部光線路の曲げ部に設けられ、該曲げ部における上方から下方に向かう波長λ1、λ2の光を周波数f1,f2で変調した変調光の漏洩光と下方から上方に向かう波長λ1、λ2の光を周波数f1,f2で変調した変調光の漏洩光を検出して電気信号に変換する光電変換素子と、前記光電変換素子からの電気信号が入力され、波長λ1、λ2の光を周波数f1,f2で変調した変調光に対応する電気信号のパワーを識別して検知する帯域フィルタを備えたパワーモニタ部と、前記パワーモニタ部で検知された波長λ1、λ2の光を周波数f1,f2で変調した変調光に対応する電気信号のパワーから波長λ1、λ2の光を周波数f1,f2で変調した変調光のパワーレベル差ΔPUP,ΔPDownを求め、前記パワーレベル差ΔPUPとΔPDownを比較して光フィルタの有無を判定するフィルタ判別処理部とを具備することを特徴とするものである。 The present invention also provides an optical filter presence / absence confirmation device for determining the presence or absence of an optical filter that blocks a specific wavelength at the lower end portion of an optical line composed of a single upper optical line and a plurality of lower optical lines branched by an optical branching element. , The leaked light of the modulated light obtained by modulating the light of wavelengths λ1 and λ2 with the frequencies f1 and f2 from the upper side to the lower side at the bent portion of the lower optical line to be determined, and the wavelength from the lower side to the upper side A photoelectric conversion element that detects leakage light of modulated light obtained by modulating light of λ1 and λ2 with frequencies f1 and f2 and converts it into an electric signal, and an electric signal from the photoelectric conversion element is input, and light of wavelengths λ1 and λ2 A power monitor unit including a bandpass filter for identifying and detecting the power of an electric signal corresponding to the modulated light modulated by the frequencies f1 and f2, and the light of wavelengths λ1 and λ2 detected by the power monitor unit The power level differences ΔP UP and ΔP Down of the modulated light obtained by modulating the light of the wavelengths λ1 and λ2 at the frequencies f1 and f2 are obtained from the power of the electric signal corresponding to the modulated light modulated at the frequencies f1 and f2, and the power level difference ΔP is obtained. A filter discrimination processing unit that compares UP and ΔP Down to determine the presence or absence of an optical filter is provided.

また本発明は、前記光フィルタ有無確認装置において、光電変換素子を2個設けたことを特徴とするものである。   The present invention is also characterized in that in the optical filter presence confirmation device, two photoelectric conversion elements are provided.

また本発明は、前記光フィルタ有無確認装置において、光電変換素子を1個設けたことを特徴とするものである。   The present invention is also characterized in that in the optical filter presence confirmation device, one photoelectric conversion element is provided.

本発明の光線路の光フィルタ有無確認方法及び光フィルタ有無確認装置は、1本の上部光線路と光分岐素子によって分岐された複数の下部光線路からなる光線路の下方端部における特定波長を遮断する光フィルタの有無を判定することができる。すなわち、前記光フィルタの有無を判定することにより、現用光ファイバ心線と非現用光ファイバ心線の区別を推定することができる。例えば、PON構成において、分岐点よりユーザ宅側の光ファイバ心線における新規工事点で現用光ファイバ心線と非現用光ファイバ心線の区別をすることができるため、工事等の必要から現用光ファイバ心線を切断することがないように確認することができる。   The optical filter presence / absence confirmation method and the optical filter presence / absence confirmation device of the present invention provide a specific wavelength at a lower end of an optical line composed of one upper optical line and a plurality of lower optical lines branched by an optical branching element. The presence or absence of an optical filter to be blocked can be determined. That is, by determining the presence or absence of the optical filter, it is possible to estimate the distinction between the working optical fiber core and the non-working optical fiber core. For example, in the PON configuration, the working optical fiber core wire and the non-working optical fiber core wire can be distinguished at a new construction point in the optical fiber core wire on the user's home side from the branch point. It can be confirmed that the fiber core wire is not cut.

以下図面を参照して本発明の実施の形態を詳細に説明する。
図1は本発明の一実施形態に係る光フィルタ有無確認システムを示す構成説明図であり、FTTHを実現するPONの構成を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory diagram showing a configuration of an optical filter presence / absence confirmation system according to an embodiment of the present invention, and shows a configuration of a PON that realizes FTTH.

図1に示すように、通信局の局舎11内には波長λ1、λ2の光を発生する二波長光源12及び伝送装置(OLT:Optical Line Terminal、光加入者線終端装置)13が設けられ、前記光源12及び伝送装置13は光線路で試験光挿入用光カプラ14に接続される。前記試験光挿入用光カプラ14は1本の上部光線路を構成する光ファイバケーブル15で局舎11外の光分岐させる光スプリッタ16に接続され、前記光スプリッタ16の第1の分岐部には下部光線路を構成する現用光ファイバ心線(開通芯線)17により光線路の下方端部に特定波長の試験光を遮断すると共に通信光を透過する例えばFBGフィルタ等の試験光遮断フィルタ18を介してユーザ用伝送装置(ONU:Optical Network Unit、光加入者線終端装置)19が接続される。尚、下部光線路を構成する光ファイバ心線の試験のために光パルス試験を行う必要から、試験光がユーザ用伝送装置19によって受光されエラーにならないように試験光遮断フィルタ18をユーザ用伝送装置19の直前に挿入する。   As shown in FIG. 1, a two-wavelength light source 12 for generating light of wavelengths λ1 and λ2 and a transmission device (OLT: Optical Line Terminal) 13 are provided in a station 11 of a communication station. The light source 12 and the transmission device 13 are connected to a test light inserting optical coupler 14 through an optical line. The optical coupler 14 for inserting test light is connected to an optical splitter 16 for branching light outside the station 11 by an optical fiber cable 15 constituting one upper optical line, and the first splitter of the optical splitter 16 is connected to the optical splitter 16. An optical fiber core wire (opening core wire) 17 that constitutes the lower optical line passes through a test light blocking filter 18 such as an FBG filter that blocks test light having a specific wavelength at the lower end of the optical line and transmits communication light. A user transmission device (ONU: Optical Network Unit, optical subscriber line terminating device) 19 is connected. Since it is necessary to perform an optical pulse test for testing the optical fiber core wire constituting the lower optical line, the test light blocking filter 18 is transmitted to the user so that the test light is not received by the user transmission device 19 and causes an error. Insert just before the device 19.

前記光スプリッタ16の第2の分岐部には下部光線路を構成する現用光ファイバ心線(開通芯線)20により特定波長の試験光を遮断すると共に通信光を透過する例えばFBGフィルタ等の試験光遮断フィルタ21を介してユーザ用伝送装置(ONU:Optical Network Unit、光加入者線終端装置)22が接続される。尚、下部光線路を構成する光ファイバ心線の試験のために光パルス試験を行う必要から、試験光がユーザ用伝送装置22によって受光されエラーにならないように試験光遮断フィルタ21をユーザ用伝送装置22の直前に挿入する。   At the second branching portion of the optical splitter 16, test light having a specific wavelength is blocked by a working optical fiber core wire (opening core wire) 20 constituting a lower optical line and communication light is transmitted, for example, test light such as an FBG filter. A user transmission device (ONU: Optical Network Unit, optical subscriber line termination device) 22 is connected via a cutoff filter 21. Since it is necessary to perform an optical pulse test for testing the optical fiber core wire constituting the lower optical line, the test light blocking filter 21 is transmitted to the user so that the test light is not received by the user transmission device 22 and causes an error. Insert just before the device 22.

前記光スプリッタ16の第3の分岐部には下部光線路を構成する非現用光ファイバ心線(未開通芯線)23が接続され、前記非現用光ファイバ心線23の端部は切りっぱなし、もしくはコネクタによって終端されており、いわゆる開放端24として処理されている。   A non-working optical fiber core wire (unopened core wire) 23 constituting a lower optical line is connected to the third branch portion of the optical splitter 16, and the end portion of the non-working optical fiber core wire 23 is cut off. Alternatively, it is terminated by a connector and treated as a so-called open end 24.

前記光スプリッタ16の第4の分岐部には下部光線路を構成する工事対象光ファイバ心線25が接続され、前記工事対象光ファイバ心線25には曲げ部26が設けられる。   A construction target optical fiber 25 constituting a lower optical path is connected to the fourth branch portion of the optical splitter 16, and a bending portion 26 is provided in the construction target optical fiber 25.

前記曲げ部26には光フィルタ有無確認装置27の例えばフォトダイオード等の第1の光電変換素子28及び例えばフォトダイオード等の第2の光電変換素子29が配置して設けられる。   The bent portion 26 is provided with a first photoelectric conversion element 28 such as a photodiode and a second photoelectric conversion element 29 such as a photodiode of the optical filter presence / absence confirmation device 27.

前記第1の光電変換素子28の出力端には第1のパワーモニタ部(上り光パワーモニタ部)30の入力端に接続され、前記第1のパワーモニタ部30の出力端は例えばメモリ、判定ロジック等よりなるフィルタ判別処理部31に接続される。前記第2の光電変換素子29の出力端は第2のパワーモニタ部(下り光パワーモニタ部)32の入力端に接続され、前記第2のパワーモニタ部32の出力端はフィルタ判別処理部31に接続される。   The output end of the first photoelectric conversion element 28 is connected to the input end of a first power monitor unit (upstream optical power monitor unit) 30, and the output end of the first power monitor unit 30 is, for example, a memory, a determination It is connected to a filter discrimination processing unit 31 made of logic or the like. An output end of the second photoelectric conversion element 29 is connected to an input end of a second power monitor unit (downlink optical power monitor unit) 32, and an output end of the second power monitor unit 32 is a filter discrimination processing unit 31. Connected to.

前記第1のパワーモニタ部30及び第2のパワーモニタ部32にはそれぞれ対応して周波数f1,f2を識別(f1/f2識別)する帯域フィルタが内蔵される。図1中、点線33は新規工事点を示す。   Each of the first power monitor unit 30 and the second power monitor unit 32 includes a corresponding band filter for identifying the frequencies f1 and f2 (f1 / f2 identification). In FIG. 1, a dotted line 33 indicates a new construction point.

すなわち、現用光ファイバ心線または非現用光ファイバ心線によって設備構成が異なることを利用して、具体的には試験光遮断フィルタの有無によって、現用光ファイバ心線または非現用光ファイバ心線の判別を行うものである。   That is, by utilizing the fact that the equipment configuration differs depending on the working optical fiber core or the non-working optical fiber core, specifically, depending on the presence or absence of the test light blocking filter, the working optical fiber core wire or the non-working optical fiber core wire This is to make a determination.

本実施形態では局舎11内から二波長光源12を用いて試験を行う試験者と、新規工事点33において作業する作業者がそれぞれ派遣されており、試験者と作業者は互いに通信手段を有するものである。   In the present embodiment, a tester who performs a test using the two-wavelength light source 12 and a worker who works at the new construction point 33 are dispatched from inside the station 11, and the tester and the worker have communication means with each other. Is.

図2及び図3は本発明の実施形態に係る光フィルタ有無確認方法を示すフローチャートである。先ず、ステップS1において、試験者が局舎11内の光ファイバケーブル15の上方端部にある試験光挿入用光カプラ14から、工事対象光ファイバ心線25に対して、二波長光源12によって光波長λ1を持つ試験光を入力する。二波長光源12からの試験光は連続光でも周波数f1で変調された変調光でも良い。   2 and 3 are flowcharts showing an optical filter presence / absence confirmation method according to an embodiment of the present invention. First, in step S1, the tester inserts light from the test light insertion optical coupler 14 at the upper end of the optical fiber cable 15 in the office 11 to the construction target optical fiber 25 by the two-wavelength light source 12. Test light having wavelength λ1 is input. The test light from the two-wavelength light source 12 may be continuous light or modulated light modulated at the frequency f1.

特定の周波数f1で変調された変調光を用いれば、光フィルタ有無確認装置27の第1のパワーモニタ部30及び第2のパワーモニタ部32にそれぞれ対応して変調周波数に応じた帯域フィルタを備えることによって、その変調光のみを検知できる。そのため、例えば、信号光など連続光に準じた他の光の影響を受けることがなくなり、変調光の測定がより確実になる効果がある。   If modulated light modulated at a specific frequency f1 is used, band filters corresponding to the modulation frequencies are provided corresponding to the first power monitor unit 30 and the second power monitor unit 32 of the optical filter presence / absence confirmation device 27, respectively. Thus, only the modulated light can be detected. For this reason, for example, there is no influence of other light in accordance with continuous light such as signal light, and there is an effect that measurement of modulated light becomes more reliable.

ステップS2において、作業者は新規工事点33で工事対象光ファイバ心線25に入力された試験光からの漏洩光を光フィルタ有無確認装置27によって受光する。   In step S <b> 2, the operator receives the leakage light from the test light input to the construction target optical fiber core 25 at the new construction point 33 by the optical filter presence / absence confirmation device 27.

光フィルタ有無確認装置27は、曲げ部26における試験光からの漏洩光を第1の光電変換素子28及び第2の光電変換素子29で検出し、第1のパワーモニタ部30及び第2のパワーモニタ部32で試験光からの漏洩光のパワーを検知することができる。第1の光電変換素子28は局舎11(上方)からユーザ宅(下方)に向かう試験光からの漏洩光を検知することができ、第2の光電変換素子29はユーザ宅(下方)から局舎11(上方)に向かう試験光からの漏洩光を検知する。   The optical filter presence / absence confirmation device 27 detects the leakage light from the test light in the bending section 26 with the first photoelectric conversion element 28 and the second photoelectric conversion element 29, and the first power monitoring section 30 and the second power. The monitor unit 32 can detect the power of leakage light from the test light. The first photoelectric conversion element 28 can detect leakage light from the test light traveling from the station 11 (upper) to the user's house (lower), and the second photoelectric conversion element 29 can be detected from the user's house (lower). Leakage light from the test light traveling toward the building 11 (upward) is detected.

このときの光フィルタ有無確認装置27での受光パワーレベルは次式であらわされる。
P(λ1)UP=Pλ1,input−L λ1−SPλ1−Eλ1 (1)
P(λ1)Down=Pλ1,input−L λ1−SPλ1−Eλ1―L λ1−γλ1 (2)
P(λ1)UPは第1のパワーモニタ部30において光波長λ1で受光するパワーレベル、
P(λ1)Downは第2のパワーモニタ部32において光波長λ1で受光するパワーレベル、
λ1,inputは光波長λ1の入力パワー、L λ1は光波長λ1における新規工事点33までの光線路の損失(光スプリッタを除く)、SPλ1は光波長λ1の光スプリッタ16の損失、Eλ1は光波長λ1の光フィルタ有無確認装置27の損失、L λ1は光波長λ1の新規工事点33から光線路遠端までの往復損失、γλ1は光波長λ1の遠端反射部分における反射減衰量を表している。
The light reception power level at the optical filter presence / absence confirmation device 27 at this time is expressed by the following equation.
P (λ1) UP = P λ1, input −L 1 λ1 −SP λ1 −E λ1 (1)
P (λ1) Down = P λ1, input −L 1 λ1 −SP λ1 −E λ1 −L 2 λ1 −γ λ1 (2)
P (λ1) UP is a power level received by the first power monitor unit 30 at the optical wavelength λ1,
P (λ1) Down power level received by the optical wavelength .lambda.1 in the second power monitor unit 32,
P λ1, input is the input power of the optical wavelength λ1, L 1 λ1 is the loss of the optical line up to the new construction point 33 at the optical wavelength λ1 (excluding the optical splitter), SP λ1 is the loss of the optical splitter 16 of the optical wavelength λ1, E λ1 is the loss of the optical filter presence / absence confirmation device 27 at the optical wavelength λ1, L 2 λ1 is the round trip loss from the new construction point 33 of the optical wavelength λ1 to the far end of the optical line, and γ λ1 is at the far end reflection portion of the optical wavelength λ1. It represents the return loss.

後述するが、γλ1は光波長および試験光遮断フィルタの有無によって損失が大きく変化する。 As will be described later, the loss of γ λ1 varies greatly depending on the light wavelength and the presence or absence of the test light blocking filter.

また、入力パワーの条件として、
ユーザ用伝送装置19,22に影響を与えないようにするために、
λ1,input−A≧Pλ2,input
を満たす必要がある。
In addition, as a condition of input power,
In order not to affect the transmission devices 19 and 22 for users,
P λ1, input −A ≧ P λ2, input
It is necessary to satisfy.

Aはユーザ用伝送装置19,22に影響を与えない程度の遮断量を表す。試験光遮断フィルタ18,21はその種別によりその遮断量が異なるが、FBGを用いるフィルタの場合概ね30dB以上備えている。   A represents a blocking amount that does not affect the user transmission devices 19 and 22. The test light blocking filters 18 and 21 have different blocking amounts depending on their types, but are approximately 30 dB or more in the case of a filter using FBG.

ステップS3において、第1の光電変換素子28及び第2の光電変換素子29で受光できなかった(NO)の場合は、ステップS4において、原因を解析し、対象誤り、過剰損失発生、受光感度不足等を検討する。   In step S3, if the first photoelectric conversion element 28 and the second photoelectric conversion element 29 cannot receive light (NO), the cause is analyzed in step S4, the target error, excessive loss occurs, and the light receiving sensitivity is insufficient. Etc.

ステップS3において、第1の光電変換素子28及び第2の光電変換素子29で受光できた(YES)の場合は、ステップS5において、フィルタ判別処理部31のメモリに記録する。すなわち、
ΔM1(λ1)UP=P(λ1)UP
ΔM1(λ1)Down=P(λ1)Down
In step S3, if light can be received by the first photoelectric conversion element 28 and the second photoelectric conversion element 29 (YES), it is recorded in the memory of the filter discrimination processing unit 31 in step S5. That is,
ΔM1 - (λ1) UP = P (λ1) UP
ΔM1 - (λ1) Down = P (λ1) Down

次に、ステップS6において、試験者が局舎11内の光ファイバケーブル15の上方端部にある試験光挿入用光カプラ14から、工事対象光ファイバ心線25に対して、二波長光源12によって光波長λ2を持つ試験光を入力する。二波長光源12からの試験光は連続光でも周波数f2で変調された変調光でも良い。   Next, in step S6, the tester inserts the test light insertion optical coupler 14 at the upper end of the optical fiber cable 15 in the station 11 from the optical fiber core wire 25 to the construction target optical fiber 25 by the two-wavelength light source 12. Test light having an optical wavelength λ2 is input. The test light from the two-wavelength light source 12 may be continuous light or modulated light modulated at the frequency f2.

特定の周波数f2で変調された変調光を用いれば、光フィルタ有無確認装置27の第1のパワーモニタ部30及び第2のパワーモニタ部32にそれぞれ対応して変調周波数に応じた帯域フィルタを備えることによって、その変調光のみを検知できる。そのため、例えば、信号光など連続光に準じた他の光の影響を受けることがなくなり、変調光の測定がより確実になる効果がある。   If modulated light modulated at a specific frequency f2 is used, band filters corresponding to the modulation frequencies are provided corresponding to the first power monitor unit 30 and the second power monitor unit 32 of the optical filter presence / absence confirmation device 27, respectively. Thus, only the modulated light can be detected. For this reason, for example, there is no influence of other light in accordance with continuous light such as signal light, and there is an effect that measurement of modulated light becomes more reliable.

ステップS7において、作業者は新規工事点33で工事対象光ファイバ心線25に入力された試験光からの漏洩光を光フィルタ有無確認装置27によって受光する。   In step S <b> 7, the operator receives the leakage light from the test light input to the construction target optical fiber 25 at the new construction point 33 by the optical filter presence / absence confirmation device 27.

光フィルタ有無確認装置27は、曲げ部26における試験光からの漏洩光を第1の光電変換素子28及び第2の光電変換素子29で検出し、第1のパワーモニタ部30及び第2のパワーモニタ部32で試験光からの漏洩光のパワーを検知することができる。第1の光電変換素子28は局舎11(上方)からユーザ宅(下方)に向かう試験光からの漏洩光を検知することができ、第2の光電変換素子29はユーザ宅(下方)から局舎11(上方)に向かう試験光からの漏洩光を検知する。   The optical filter presence / absence confirmation device 27 detects the leakage light from the test light in the bending section 26 with the first photoelectric conversion element 28 and the second photoelectric conversion element 29, and the first power monitoring section 30 and the second power. The monitor unit 32 can detect the power of leakage light from the test light. The first photoelectric conversion element 28 can detect leakage light from the test light traveling from the station 11 (upper) to the user's house (lower), and the second photoelectric conversion element 29 can be detected from the user's house (lower). Leakage light from the test light traveling toward the building 11 (upward) is detected.

尚、光波長λ1、λ2の光をそれぞれ周波数f1、f2で変調した変調光を用いれば、2波長の光を同時に入力し、同時に受光しても、これらの光を識別して検知することも可能となるため、測定の手間を省くことができる。   If modulated light obtained by modulating light of wavelengths λ1 and λ2 with frequencies f1 and f2, respectively, two wavelengths of light can be input simultaneously, and even if they are received simultaneously, these lights can be identified and detected. This makes it possible to save the time and effort of measurement.

このときの光フィルタ有無確認装置27での受光パワーレベルは次式であらわされる。
上述した式(1),(2)と同様であるがλ1がλ2に対応して変化する。
P(λ2)UP=Pλ2,input−L λ2−SPλ2−Eλ2 (3)
P(λ2)Down=Pλ2,input−L λ2−SPλ2−Eλ2―L λ2−γλ2 (4)
P(λ2)UPは第1のパワーモニタ部30において光波長λ2で受光するパワーレベル、
P(λ2)Downは第2のパワーモニタ部32において光波長λ2で受光するパワーレベル、
λ2,inputは光波長λ2の入力パワー、L λ2は光波長λ2における新規工事点33までの光線路の損失(光スプリッタを除く)、SPλ2は光波長λ2の光スプリッタ16の損失、Eλ2は光波長λ2の光フィルタ有無確認装置27の損失、L λ2は光波長λ2の新規工事点33から光線路遠端までの往復損失、γλ2は光波長λ2の遠端反射部分における反射減衰量を表している。
The light reception power level at the optical filter presence / absence confirmation device 27 at this time is expressed by the following equation.
Similar to the equations (1) and (2) described above, λ1 changes corresponding to λ2.
P (λ2) UP = P λ2, input −L 1 λ2 −SP λ2 −E λ2 (3)
P (λ2) Down = P λ2, input −L 1 λ2 −SP λ2 −E λ2 −L 2 λ2 −γ λ2 (4)
P (λ2) UP is a power level received at the first power monitor unit 30 at the optical wavelength λ2,
P (λ2) Down is a power level received by the second power monitor unit 32 at the optical wavelength λ2,
P λ2, input is the input power of the optical wavelength λ2, L 1 λ2 is the loss of the optical line up to the new construction point 33 at the optical wavelength λ2 (excluding the optical splitter), SP λ2 is the loss of the optical splitter 16 of the optical wavelength λ2, E λ2 is a loss of the optical filter presence / absence confirmation device 27 of the optical wavelength λ2, L 2 λ2 is a round trip loss from the new construction point 33 of the optical wavelength λ2 to the far end of the optical line, and γ λ2 is a reflection portion at the far end of the optical wavelength λ2. It represents the return loss.

後述するが、γλ2は光波長および試験光遮断フィルタの有無によって損失が大きく変化する。 Will be described later but, gamma .lambda.2 loss by the presence or absence of the optical wavelength and the test light blocking filter is greatly changed.

図4は本発明の実施形態に係る試験光遮断フィルタ・開放端の波長依存特性を示す図であり、点線が反射減衰特性、実線が透過損失特性である。
試験光遮断フィルタ18,21は特定の試験光を遮断させてそれ以外の光を透過させるために図4の点線のような波長特性を持つ。波長λでは高い反射特性を持ち、一方で波長λLよりも短い波長、もしくは波長λHよりも長い波長についてはほとんど光を透過させる。その反射減衰量については
γ(λc)=0(dB)
γ(λ)=F(dB) (λ<λLまたはλ>λH)
となる。このとき、Aはユーザ宅伝送装置に影響を与えない程度の遮断量を表す。試験光遮断フィルタ18,21はその種別によりその遮断量が異なるが、FBGを用いるフィルタの場合概ね30dB以上備えている。
FIG. 4 is a diagram showing the wavelength dependence characteristics of the test light blocking filter / open end according to the embodiment of the present invention, where the dotted line is the reflection attenuation characteristic and the solid line is the transmission loss characteristic.
The test light blocking filters 18 and 21 have wavelength characteristics as shown by the dotted lines in FIG. 4 in order to block specific test light and transmit other light. The wavelength λ C has high reflection characteristics, while light is transmitted almost for wavelengths shorter than the wavelength λL or longer than the wavelength λH. The return loss is γ F (λc) = 0 (dB)
γ F (λ) = F (dB) (λ <λL or λ> λH)
It becomes. At this time, A represents a blocking amount that does not affect the user home transmission apparatus. The test light blocking filters 18 and 21 have different blocking amounts depending on their types, but are approximately 30 dB or more in the case of a filter using FBG.

また開放端については媒質の異なる面での反射、いわゆるフレネル反射が生じることになる。フレネル反射はほぼ波長依存性がないため、図4の破線のようになりその反射減衰量γ≒14(dB)である。 Also, reflection at different surfaces of the medium, so-called Fresnel reflection, occurs at the open end. Since Fresnel reflection has almost no wavelength dependence, it is as shown by a broken line in FIG. 4 and its reflection attenuation amount γ N ≈14 (dB).

そこで、λ1を試験光遮断フィルタの高い反射特性をもつλc付近に設定し、λ2をλ2<λLもしくはλ2>λHに設定することができる。図2及び図3中ではλLより短波長側に設定している。   Therefore, λ1 can be set in the vicinity of λc having high reflection characteristics of the test light blocking filter, and λ2 can be set to λ2 <λL or λ2> λH. In FIG. 2 and FIG. 3, it is set on the shorter wavelength side than λL.

ステップS8において、第1の光電変換素子28及び第2の光電変換素子29で受光できなかった(NO)の場合は、ステップS9において、原因を解析し、過剰損失発生、受光感度不足等を検討する。   In step S8, if the first photoelectric conversion element 28 and the second photoelectric conversion element 29 cannot receive light (NO), the cause is analyzed in step S9, and excessive loss is generated, light reception sensitivity is insufficient, etc. To do.

ステップS8において、第1の光電変換素子28及び第2の光電変換素子29で受光できた(YES)の場合は、ステップS10において、フィルタ判別処理部31のメモリに記録する。すなわち、
ΔM2(λ2)UP=P(λ2)UP
ΔM2(λ2)Down=P(λ2)Down
ステップS11において、フィルタ判別処理部31で波長の違いによるパワーレベル差を比較し、式(1)−式(3)、式(2)−式(4)を計算する。すなわち、
ΔPUP=ΔM1(λ1)UP−ΔM2(λ2)UP
=P(λ1)UP―P(λ2)UP
ΔPDown=ΔM1(λ1)Down−ΔM2(λ2)Down
=P(λ1)Down―P(λ2)Down
If the first photoelectric conversion element 28 and the second photoelectric conversion element 29 have received light (YES) in step S8, they are recorded in the memory of the filter discrimination processing unit 31 in step S10. That is,
ΔM2 - (λ2) UP = P (λ2) UP
ΔM2 - (λ2) Down = P (λ2) Down
In step S11, the filter discrimination processing unit 31 compares the power level difference due to the wavelength difference, and calculates Expression (1) -Expression (3) and Expression (2) -Expression (4). That is,
ΔP UP = ΔM1 - (λ1) UP -ΔM2 - (λ2) UP
= P (λ1) UP -P (λ2) UP
ΔP Down = ΔM1 - (λ1) Down -ΔM2 - (λ2) Down
= P (λ1) Down -P (λ2) Down

次に、ステップS12、S14において、フィルタ判別処理部31で光線路の上下方向のパワーレベル差を比較する。   Next, in steps S12 and S14, the filter discrimination processing unit 31 compares the power level difference in the vertical direction of the optical line.

ステップS12において、ΔPDown>閾値XdB≫ΔPUPであれば、ステップS13において、対象とする光線路の下方端部における試験光遮断フィルタ(FBGフィルタ)有りと判定し、現用光ファイバ心線と確認して終了する。 If ΔP Down > threshold XdB >> ΔP UP in step S12, it is determined in step S13 that there is a test light blocking filter (FBG filter) at the lower end portion of the target optical line, and the current optical fiber core is confirmed. And exit.

一方、ステップS12において、ΔPDown>閾値XdB≫ΔPUPでなく、ステップS14において、ΔPDown≒ΔPUP<閾値YdBであれば、ステップS15において、対象とする光線路の下方端部における試験光遮断フィルタ(FBGフィルタ)無しと判定し、非現用光ファイバ心線と確認して終了する。 On the other hand, in step S12, instead of [Delta] P Down> threshold XdB»derutaP UP, in step S14, if ΔP Down ≒ ΔP UP <threshold Y dB, in step S15, the test light blocking in the lower end portion of the optical line of interest It is determined that there is no filter (FBG filter), and the process is terminated after confirming that the optical fiber core is not used.

ステップS14において、ΔPDown≒ΔPUP<閾値YdBでなければ、グレーゾーンとしてステップS1に戻り再測定する。 If ΔP Down ≈ΔP UP <threshold YdB in step S14, the process returns to step S1 as a gray zone and remeasures.

尚、Lが非常に短い光線路であり、波長差によるパワーレベルにほとんど変化ない場合、L≒0dBとみなせる。また、λ1とλ2の波長において近接する波長間である場合、波長差によるケーブル損失はほとんど同じであるため、Lは波長差によってほとんど変わらない値となる。 Note that L 2 is a very short optical line, and when there is almost no change in the power level due to the wavelength difference, it can be considered that L 2 ≈0 dB. Further, when the wavelengths are close to each other at the wavelengths λ 1 and λ 2 , the cable loss due to the wavelength difference is almost the same, so L 2 becomes a value that hardly changes depending on the wavelength difference.

図5は本発明の他の実施形態に係る光フィルタ有無確認システムを示す構成説明図であり、FTTHを実現するPONの構成を示す。図5中、図1と同一部分は同一符号を付してその説明を省略する。   FIG. 5 is an explanatory diagram showing a configuration of an optical filter presence / absence confirmation system according to another embodiment of the present invention, and shows a configuration of a PON that realizes FTTH. In FIG. 5, the same parts as those in FIG.

図5において、261,262は曲げ部、331,332は新規工事点、41は光フィルタ有無確認装置、42は例えばフォトダイオード等の光電変換素子、43はパワーモニタ部、44はフィルタ判別処理部である。   In FIG. 5, 261 and 262 are bending portions, 331 and 332 are new construction points, 41 is an optical filter presence confirmation device, 42 is a photoelectric conversion element such as a photodiode, 43 is a power monitoring unit, and 44 is a filter discrimination processing unit. It is.

図5の実施形態は一つの光電変換素子42を持つ光フィルタ有無確認装置41で、工事対象光ファイバ心線25に2箇所曲げ部261,262を設けて光線路の上下方向をそれぞれ別に受光する。光線路の上り下りの受光を一つの光フィルタ有無確認装置41で行うため工程が増えることになるが、基本的な動作原理は図1の実施形態と変わらない。   The embodiment of FIG. 5 is an optical filter presence / absence confirmation device 41 having a single photoelectric conversion element 42, and is provided with two bent portions 261 and 262 in the construction target optical fiber 25 to receive light in the vertical direction of the optical line separately. . Although the number of steps increases because light reception in the optical line is received by one optical filter presence / absence confirmation device 41, the basic operation principle is the same as that of the embodiment of FIG.

前記2箇所の曲げ部261,262には光フィルタ有無確認装置41の光電変換素子42がそれぞれ別につかみなおされて配置される。   The photoelectric conversion elements 42 of the optical filter presence / absence confirmation device 41 are separately regarded and disposed at the two bent portions 261 and 262.

前記光電変換素子42の出力端にはパワーモニタ部43の入力端に接続され、前記パワーモニタ部43の出力端は例えばメモリ、判定ロジック等よりなるフィルタ判別処理部44に接続される。   An output end of the photoelectric conversion element 42 is connected to an input end of a power monitor unit 43, and an output end of the power monitor unit 43 is connected to a filter discrimination processing unit 44 including, for example, a memory and a determination logic.

前記パワーモニタ部43には周波数f1,f2を識別(f1/f2識別)する帯域フィルタが内蔵される。図5中、点線331,332は上り測定の新規工事点及び下り測定の新規工事点を示す。   The power monitor 43 has a built-in band filter for identifying the frequencies f1 and f2 (f1 / f2 identification). In FIG. 5, dotted lines 331 and 332 indicate a new construction point for uplink measurement and a new construction point for downlink measurement.

図6及び図7は本発明の他の実施形態に係る光フィルタ有無確認方法を示すフローチャートである。先ず、光フィルタ有無確認装置41は光電変換素子42が工事対象光ファイバ心線25の曲げ部261の位置になるように新規工事点331に配置される。ステップS21において、試験者が局舎内の光ファイバケーブル15の上方端部にある試験光挿入用光カプラから、工事対象光ファイバ心線25に対して、二波長光源によって光波長λ1を持つ試験光を入力する。二波長光源からの試験光は連続光でも周波数f1で変調された変調光でも良い。   6 and 7 are flowcharts showing an optical filter presence / absence confirmation method according to another embodiment of the present invention. First, the optical filter presence / absence confirmation device 41 is disposed at the new construction point 331 so that the photoelectric conversion element 42 is positioned at the bent portion 261 of the construction target optical fiber core wire 25. In step S21, a tester has a light wavelength λ1 from a test light insertion optical coupler at the upper end of the optical fiber cable 15 in the office building with a two-wavelength light source with respect to the construction target optical fiber core 25. Input light. The test light from the two-wavelength light source may be continuous light or modulated light modulated at the frequency f1.

特定の周波数f1で変調された変調光を用いれば、光フィルタ有無確認装置41のパワーモニタ部43に変調周波数に応じた帯域フィルタを備えることによって、その変調光のみを検知できる。そのため、例えば、信号光など連続光に準じた他の光の影響を受けることがなくなり、変調光の測定がより確実になる効果がある。   If modulated light modulated at a specific frequency f1 is used, only the modulated light can be detected by providing the power monitor unit 43 of the optical filter presence / absence confirmation device 41 with a band filter according to the modulation frequency. For this reason, for example, there is no influence of other light in accordance with continuous light such as signal light, and there is an effect that measurement of modulated light becomes more reliable.

ステップS22において、作業者は新規工事点331で工事対象光ファイバ心線25に入力された試験光からの漏洩光を光フィルタ有無確認装置41によって受光する。   In step S <b> 22, the operator receives the leakage light from the test light input to the construction target optical fiber 25 at the new construction point 331 by the optical filter presence / absence confirmation device 41.

光フィルタ有無確認装置41は、曲げ部261における試験光からの漏洩光を光電変換素子42で検出し、パワーモニタ部43で試験光からの漏洩光のパワーを検知することができる。光電変換素子42は局舎(上方)からユーザ宅(下方)に向かう順方向の試験光からの漏洩光を検知する。   The optical filter presence / absence confirmation device 41 can detect the leaked light from the test light in the bending portion 261 by the photoelectric conversion element 42, and can detect the power of the leaked light from the test light by the power monitor unit 43. The photoelectric conversion element 42 detects leakage light from the test light in the forward direction from the central office (upper) to the user's house (lower).

このときの光フィルタ有無確認装置41での受光パワーレベルは次式であらわされる。
P(λ1)UP=Pλ1,input−L λ1−SPλ1−Eλ1 (1)
P(λ1)UPはパワーモニタ部43において光波長λ1で受光するパワーレベル、
λ1,inputは光波長λ1の入力パワー、L λ1は光波長λ1における新規工事点331までの光線路の損失(光スプリッタを除く)、SPλ1は光波長λ1の光スプリッタ16の損失、Eλ1は光波長λ1の光フィルタ有無確認装置41の損失を表している。
The light receiving power level in the optical filter presence / absence confirmation device 41 at this time is expressed by the following equation.
P (λ1) UP = P λ1, input −L 1 λ1 −SP λ1 −E λ1 (1)
P (λ1) UP power level received by the optical wavelength .lambda.1 in power monitor unit 43,
P λ1, input is the input power of the optical wavelength λ1, L 1 λ1 is the loss of the optical line up to the new construction point 331 at the optical wavelength λ1 (excluding the optical splitter), SP λ1 is the loss of the optical splitter 16 of the optical wavelength λ1, E λ1 represents the loss of the optical filter presence / absence confirmation device 41 having the optical wavelength λ1.

ステップS23において、光電変換素子42で受光できなかった(NO)の場合は、ステップS24において、原因を解析し、対象誤り、過剰損失発生、受光感度不足等を検討する。   In step S23, if the photoelectric conversion element 42 cannot receive light (NO), in step S24, the cause is analyzed, and a target error, occurrence of excessive loss, insufficient light receiving sensitivity, and the like are examined.

ステップS23において、光電変換素子42で受光できた(YES)の場合は、ステップS25において、フィルタ判別処理部44のメモリに記録する。すなわち、
ΔM1(λ1)UP=P(λ1)UP
次に、ステップS26において、試験者が局舎内の光ファイバケーブル15の上方端部にある試験光挿入用光カプラから、工事対象光ファイバ心線25に対して、二波長光源によって光波長λ2を持つ試験光を入力する。二波長光源からの試験光は連続光でも周波数f2で変調された変調光でも良い。
If the photoelectric conversion element 42 has received light (YES) in step S23, it is recorded in the memory of the filter discrimination processing unit 44 in step S25. That is,
ΔM1 - (λ1) UP = P (λ1) UP
Next, in step S26, the tester inserts the optical wavelength λ2 from the test optical insertion optical coupler at the upper end of the optical fiber cable 15 in the office building to the construction target optical fiber 25 with a two-wavelength light source. Enter the test light with. The test light from the two-wavelength light source may be continuous light or modulated light modulated at the frequency f2.

特定の周波数f2で変調された変調光を用いれば、光フィルタ有無確認装置41のパワーモニタ部43にそれぞれ対応して変調周波数に応じた帯域フィルタを備えることによって、その変調光のみを検知できる。そのため、例えば、信号光など連続光に準じた他の光の影響を受けることがなくなり、変調光の測定がより確実になる効果がある。   If modulated light modulated at a specific frequency f2 is used, only the modulated light can be detected by providing a band filter corresponding to the modulation frequency corresponding to each of the power monitor units 43 of the optical filter presence / absence confirmation device 41. For this reason, for example, there is no influence of other light in accordance with continuous light such as signal light, and there is an effect that measurement of modulated light becomes more reliable.

ステップS27において、作業者は新規工事点331で工事対象光ファイバ心線25に入力された順方向の試験光からの漏洩光を光フィルタ有無確認装置41によって受光する。   In step S <b> 27, the worker receives leaked light from the forward test light input to the construction target optical fiber 25 at the new construction point 331 by the optical filter presence / absence confirmation device 41.

光フィルタ有無確認装置41は、曲げ部261における試験光からの漏洩光を光電変換素子42で検出し、パワーモニタ部43で試験光からの漏洩光のパワーを検知することができる。光電変換素子42は局舎(上方)からユーザ宅(下方)に向かう試験光からの漏洩光を検知する。   The optical filter presence / absence confirmation device 41 can detect the leaked light from the test light in the bending portion 261 by the photoelectric conversion element 42, and can detect the power of the leaked light from the test light by the power monitor unit 43. The photoelectric conversion element 42 detects leakage light from the test light traveling from the central office (upper) to the user's home (lower).

尚、光波長λ1、λ2の光をそれぞれ周波数f1、f2で変調した変調光を用いれば、2波長の光を同時に入力し、同時に受光しても、これらの光を識別して検知することも可能となるため、測定の手間を省くことができる。   If modulated light obtained by modulating light of wavelengths λ1 and λ2 with frequencies f1 and f2, respectively, two wavelengths of light can be input simultaneously, and even if they are received simultaneously, these lights can be identified and detected. This makes it possible to save the time and effort of measurement.

このときの光フィルタ有無確認装置41での受光パワーレベルは次式であらわされる。
P(λ2)UP=Pλ2,input−L λ2−SPλ2−Eλ2 (3)
P(λ2)UPはパワーモニタ部43において光波長λ2で受光するパワーレベル、
λ2,inputは光波長λ2の入力パワー、L λ2は光波長λ2における新規工事点331までの光線路の損失(光スプリッタを除く)、SPλ2は光波長λ2の光スプリッタ16の損失、Eλ2は光波長λ2の光フィルタ有無確認装置41の損失を表している。
The light receiving power level in the optical filter presence / absence confirmation device 41 at this time is expressed by the following equation.
P (λ2) UP = P λ2, input −L 1 λ2 −SP λ2 −E λ2 (3)
P (λ2) UP is a power level received by the power monitor unit 43 at the optical wavelength λ2,
P λ2, input is the input power of the optical wavelength λ2, L 1 λ2 is the loss of the optical line up to the new construction point 331 at the optical wavelength λ2 (excluding the optical splitter), SP λ2 is the loss of the optical splitter 16 of the optical wavelength λ2, E λ2 represents the loss of the optical filter presence / absence confirmation device 41 having the optical wavelength λ2.

ステップS28において、光電変換素子42で受光できなかった(NO)の場合は、ステップS29において、原因を解析し、過剰損失発生、受光感度不足等を検討する。   In step S28, if the photoelectric conversion element 42 cannot receive light (NO), in step S29, the cause is analyzed and the occurrence of excess loss, insufficient light reception sensitivity, or the like is examined.

ステップS28において、光電変換素子42で受光できた(YES)の場合は、ステップS30において、フィルタ判別処理部41のメモリに記録する。すなわち、
ΔM2(λ2)UP=P(λ2)UP
次に、ステップS31において、光フィルタ有無確認装置41は光電変換素子42が工事対象光ファイバ心線25の曲げ部262の位置になるように新規工事点332に逆方向受光につかみなおされて配置される。ステップS32において、試験者が局舎内の試験光挿入用光カプラから、工事対象光ファイバ心線25に対して、二波長光源によって光波長λ1を持つ試験光を入力する。二波長光源からの試験光は連続光でも周波数f1で変調された変調光でも良い。
If the photoelectric conversion element 42 has received light (YES) in step S28, it is recorded in the memory of the filter discrimination processing unit 41 in step S30. That is,
ΔM2 - (λ2) UP = P (λ2) UP
Next, in step S31, the optical filter presence / absence confirmation device 41 is placed at the new construction point 332 for receiving light in the reverse direction so that the photoelectric conversion element 42 is positioned at the bent portion 262 of the construction target optical fiber core wire 25. Is done. In step S32, the tester inputs test light having a light wavelength λ1 from the test light insertion optical coupler in the office building to the construction target optical fiber 25 with a two-wavelength light source. The test light from the two-wavelength light source may be continuous light or modulated light modulated at the frequency f1.

特定の周波数f1で変調された変調光を用いれば、光フィルタ有無確認装置41のパワーモニタ部43に変調周波数に応じた帯域フィルタを備えることによって、その変調光のみを検知できる。そのため、例えば、信号光など連続光に準じた他の光の影響を受けることがなくなり、変調光の測定がより確実になる効果がある。   If modulated light modulated at a specific frequency f1 is used, only the modulated light can be detected by providing the power monitor unit 43 of the optical filter presence / absence confirmation device 41 with a band filter according to the modulation frequency. For this reason, for example, there is no influence of other light in accordance with continuous light such as signal light, and there is an effect that measurement of modulated light becomes more reliable.

ステップS33において、作業者は新規工事点332で工事対象光ファイバ心線25に入力された試験光からの漏洩光を光フィルタ有無確認装置41によって受光する。   In step S <b> 33, the operator receives the leakage light from the test light input to the construction target optical fiber 25 at the new construction point 332 by the optical filter presence / absence confirmation device 41.

光フィルタ有無確認装置41は、曲げ部262における試験光からの漏洩光を光電変換素子42で検出し、パワーモニタ部43で試験光からの漏洩光のパワーを検知することができる。光電変換素子42はユーザ宅(下方)から局舎(上方)に向かう逆方向の試験光からの漏洩光を検知する。   The optical filter presence / absence confirmation device 41 can detect the leakage light from the test light in the bending portion 262 with the photoelectric conversion element 42 and the power monitor unit 43 to detect the power of the leakage light from the test light. The photoelectric conversion element 42 detects leakage light from the test light in the reverse direction from the user's house (downward) to the office building (upward).

このときの光フィルタ有無確認装置41での受光パワーレベルは次式であらわされる。
P(λ1)Down=Pλ1,input−L λ1−SPλ1−Eλ1―L λ1−γλ1 (2)
P(λ1)Downはパワーモニタ部43において光波長λ1で受光するパワーレベル、
λ1は光波長λ1の新規工事点331から光線路遠端までの往復損失、γλ1は光波長λ1の遠端反射部分における反射減衰量を表している。
The light receiving power level in the optical filter presence / absence confirmation device 41 at this time is expressed by the following equation.
P (λ1) Down = P λ1, input −L 1 λ1 −SP λ1 −E λ1 −L 2 λ1 −γ λ1 (2)
P (λ1) Down is a power level received at the light wavelength λ1 in the power monitor unit 43,
L 2 λ1 represents the round trip loss from the new construction point 331 of the optical wavelength λ1 to the far end of the optical line, and γ λ1 represents the return loss at the far end reflection portion of the optical wavelength λ1.

後述するが、γλ1は光波長および試験光遮断フィルタの有無によって損失が大きく変化する。 Will be described later but, gamma .lambda.1 loss by the presence or absence of the optical wavelength and the test light blocking filter is greatly changed.

ステップS34において、光電変換素子42で受光できなかった(NO)の場合は、ステップS35において、原因を解析し、過剰損失発生、受光感度不足等を検討する。   In step S34, if the photoelectric conversion element 42 cannot receive light (NO), in step S35, the cause is analyzed and the occurrence of excess loss, insufficient light reception sensitivity, or the like is examined.

ステップS34において、光電変換素子42で受光できた(YES)の場合は、ステップS36において、フィルタ判別処理部44のメモリに記録する。すなわち、
ΔM1(λ1)Down=P(λ1)Down
次に、ステップS37において、試験者が局舎内の試験光挿入用光カプラから、工事対象光ファイバ心線25に対して、二波長光源によって光波長λ2を持つ試験光を入力する。二波長光源からの試験光は連続光でも周波数f2で変調された変調光でも良い。
If the photoelectric conversion element 42 has received light (YES) in step S34, it is recorded in the memory of the filter discrimination processing unit 44 in step S36. That is,
ΔM1 - (λ1) Down = P (λ1) Down
Next, in step S37, the tester inputs test light having the light wavelength λ2 from the test light insertion optical coupler in the office building to the construction target optical fiber 25 with a two-wavelength light source. The test light from the two-wavelength light source may be continuous light or modulated light modulated at the frequency f2.

特定の周波数f2で変調された変調光を用いれば、光フィルタ有無確認装置41のパワーモニタ部43にそれぞれ対応して変調周波数に応じた帯域フィルタを備えることによって、その変調光のみを検知できる。そのため、例えば、信号光など連続光に準じた他の光の影響を受けることがなくなり、変調光の測定がより確実になる効果がある。   If modulated light modulated at a specific frequency f2 is used, only the modulated light can be detected by providing a band filter corresponding to the modulation frequency corresponding to each of the power monitor units 43 of the optical filter presence / absence confirmation device 41. For this reason, for example, there is no influence of other light in accordance with continuous light such as signal light, and there is an effect that measurement of modulated light becomes more reliable.

ステップS38において、作業者は新規工事点332で工事対象光ファイバ心線25に入力された逆方向の試験光からの漏洩光を光フィルタ有無確認装置41によって受光する。   In step S <b> 38, the operator receives the leakage light from the test light in the reverse direction input to the construction target optical fiber 25 at the new construction point 332 by the optical filter presence / absence confirmation device 41.

光フィルタ有無確認装置41は、曲げ部262における試験光からの漏洩光を光電変換素子42で検出し、パワーモニタ部43で試験光からの漏洩光のパワーを検知することができる。光電変換素子42はユーザ宅(下方)から局舎(上方)に向かう試験光からの漏洩光を検知する。   The optical filter presence / absence confirmation device 41 can detect the leakage light from the test light in the bending portion 262 with the photoelectric conversion element 42 and the power monitor unit 43 to detect the power of the leakage light from the test light. The photoelectric conversion element 42 detects leakage light from the test light traveling from the user's home (downward) to the office building (upward).

尚、光波長λ1、λ2の光をそれぞれ周波数f1、f2で変調した変調光を用いれば、2波長の光を同時に入力し、同時に受光しても、これらの光を識別して検知することも可能となるため、測定の手間を省くことができる。   If modulated light obtained by modulating light of wavelengths λ1 and λ2 with frequencies f1 and f2, respectively, two wavelengths of light can be input simultaneously, and even if they are received simultaneously, these lights can be identified and detected. This makes it possible to save the time and effort of measurement.

このときの光フィルタ有無確認装置41での受光パワーレベルは次式であらわされる。
P(λ2)Down=Pλ2,input−L λ2−SPλ2−Eλ2―L λ2−γλ2 (4)
P(λ2)Downはパワーモニタ部43において光波長λ2で受光するパワーレベル、
λ2は光波長λ2の新規工事点332から光線路遠端までの往復損失、γλ2は光波長λ2の遠端反射部分における反射減衰量を表している。
The light receiving power level in the optical filter presence / absence confirmation device 41 at this time is expressed by the following equation.
P (λ2) Down = P λ2, input −L 1 λ2 −SP λ2 −E λ2 −L 2 λ2 −γ λ2 (4)
P (λ2) Down is the power level received at the light wavelength λ2 in the power monitor unit 43,
L 2 λ2 represents the round trip loss from the new construction point 332 of the optical wavelength λ2 to the far end of the optical line, and γ λ2 represents the return loss at the far end reflection portion of the optical wavelength λ2.

後述するが、γλ2は光波長および試験光遮断フィルタの有無によって損失が大きく変化する。 Will be described later but, gamma .lambda.2 loss by the presence or absence of the optical wavelength and the test light blocking filter is greatly changed.

ステップS39において、光電変換素子42で受光できなかった(NO)の場合は、ステップS40において、原因を解析し、過剰損失発生、受光感度不足等を検討する。   In step S39, if the photoelectric conversion element 42 cannot receive light (NO), the cause is analyzed in step S40, and the occurrence of excess loss, insufficient light reception sensitivity, and the like are examined.

ステップS39において、光電変換素子42で受光できた(YES)の場合は、ステップS41において、フィルタ判別処理部41のメモリに記録する。すなわち、
ΔM2(λ2)Down=P(λ2)Down
次に、フィルタ判別処理部41の判定ロジックで、図2のステップS11〜S15と同様の処理を行う。すなわち、波長レベル差を比較した後に光線路の上下方向のレベル差を比較する手順は、特に1つの光電変換素子で受光する場合に有効で、工事対象光ファイバ心線をつかみなおした時の漏洩光の検出の違いが影響しないようにするメリットがあり(式中ではEと表現)、1つの光電変換素子方式において漏洩光の検出精度の誤差をカバーすることができる。
If the photoelectric conversion element 42 has received light (YES) in step S39, it is recorded in the memory of the filter discrimination processing unit 41 in step S41. That is,
ΔM2 - (λ2) Down = P (λ2) Down
Next, processing similar to steps S11 to S15 in FIG. 2 is performed by the determination logic of the filter determination processing unit 41. That is, the procedure for comparing the level difference in the vertical direction of the optical line after comparing the wavelength level difference is particularly effective when receiving light with one photoelectric conversion element, and leakage when the construction target optical fiber core is grasped. There is a merit that the difference in the detection of light does not affect (expressed as E in the equation), and it is possible to cover errors in detection accuracy of leaked light in one photoelectric conversion element system.

尚、図1及び図5に記載の光フィルタ有無確認装置は、パワーモニタ部に周波数f1および周波数f2の帯域フィルタを備えている。このため、それぞれ周波数f1、f2で変調された波長λ1、λ2の変調光を同時に受光し、これらの光を帯域フィルタによって識別して検知することが可能である。   The optical filter presence / absence confirmation device described in FIG. 1 and FIG. 5 includes band filters of frequency f1 and frequency f2 in the power monitor unit. For this reason, it is possible to simultaneously receive the modulated light beams having the wavelengths λ1 and λ2 modulated at the frequencies f1 and f2, respectively, and identify and detect these lights by the bandpass filter.

また、フィルタ判別処理部では、図2、図3、図6及び図7のフローチャートに記載の各処理を実行することによって、対象とする光線路の下方端部における光フィルタの有無を判定する。   Further, the filter discrimination processing unit determines the presence or absence of the optical filter at the lower end portion of the target optical line by executing each processing described in the flowcharts of FIGS. 2, 3, 6, and 7.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

本発明の一実施形態に係る光フィルタ有無確認システムを示す構成説明図である。It is composition explanatory drawing which shows the optical filter presence / absence confirmation system which concerns on one Embodiment of this invention. 本発明の実施形態に係る光フィルタ有無確認方法を示すフローチャートである。It is a flowchart which shows the optical filter presence / absence confirmation method which concerns on embodiment of this invention. 本発明の実施形態に係る光フィルタ有無確認方法を示すフローチャートである。It is a flowchart which shows the optical filter presence / absence confirmation method which concerns on embodiment of this invention. 本発明の実施形態に係る試験光遮断フィルタ・開放端の波長依存特性を示す図である。It is a figure which shows the wavelength dependence characteristic of the test light cutoff filter and open end which concern on embodiment of this invention. 本発明の他の実施形態に係る光フィルタ有無確認システムを示す構成説明図である。It is structure explanatory drawing which shows the optical filter presence / absence confirmation system which concerns on other embodiment of this invention. 本発明の他の実施形態に係る光フィルタ有無確認方法を示すフローチャートである。It is a flowchart which shows the optical filter presence / absence confirmation method which concerns on other embodiment of this invention. 本発明の他の実施形態に係る光フィルタ有無確認方法を示すフローチャートである。It is a flowchart which shows the optical filter presence / absence confirmation method which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

11…通信局の局舎、12…二波長光源、13…伝送装置、14…試験光挿入用光カプラ、15…光ファイバケーブル、16…光スプリッタ、17…現用光ファイバ心線、18…試験光遮断フィルタ、19…ユーザ用伝送装置、20…現用光ファイバ心線、21…試験光遮断フィルタ、22…ユーザ用伝送装置、23…非現用光ファイバ心線、24…開放端、25…工事対象光ファイバ心線、26…曲げ部、27…光フィルタ有無確認装置、28…第1の光電変換素子、29…第2の光電変換素子、30…第1のパワーモニタ部、31…フィルタ判別処理部、32…第2のパワーモニタ部、33…新規工事点。   DESCRIPTION OF SYMBOLS 11 ... Communication station building, 12 ... Dual wavelength light source, 13 ... Transmission apparatus, 14 ... Optical coupler for test light insertion, 15 ... Optical fiber cable, 16 ... Optical splitter, 17 ... Working optical fiber core wire, 18 ... Test Optical blocking filter, 19 ... user transmission device, 20 ... working optical fiber core, 21 ... test light blocking filter, 22 ... user transmission device, 23 ... non-working optical fiber core, 24 ... open end, 25 ... construction Target optical fiber core, 26 ... bending part, 27 ... optical filter presence / absence confirmation device, 28 ... first photoelectric conversion element, 29 ... second photoelectric conversion element, 30 ... first power monitoring part, 31 ... filter discrimination Processing unit, 32 ... second power monitor unit, 33 ... new construction point.

Claims (8)

1本の上部光線路と光分岐素子によって分岐された複数の下部光線路からなる光線路の下方端部における特定波長を遮断する光フィルタの有無を判定する光線路の光フィルタ有無確認方法において、
上部光線路の上方端部から光フィルタの遮断域にある波長λ1の光と透過域にある波長λ2の光を入射する光入射ステップと、
判定対象の下部光線路に曲げ部を設け、該曲げ部における上方から下方に向かう波長λ1、λ2の漏洩光と下方から上方に向かう波長λ1、λ2の漏洩光のパワーを測定する光パワー測定ステップと、
波長λ1、λ2における上方から下方に向かう漏洩光のパワーと下方から上方に向かう漏洩光のパワーの波長λ1、λ2のパワーレベル差ΔPUP,ΔPDownを求めて後、前記パワーレベル差ΔPUPとΔPDownがほぼ等しければ光フィルタ無しと判定し、パワーレベル差ΔPUPがΔPDownより小さければ光フィルタ有りと判定する判定ステップと
よりなることを特徴とする光線路の光フィルタ有無確認方法。
In the optical filter presence / absence confirmation method for determining the presence / absence of an optical filter that blocks a specific wavelength at the lower end of an optical line composed of a single upper optical line and a plurality of lower optical lines branched by an optical branching element,
A light incident step for injecting light of wavelength λ1 in the cutoff region of the optical filter and light of wavelength λ2 in the transmission region from the upper end of the upper optical line;
An optical power measurement step in which a bent portion is provided in the lower optical line to be determined, and the power of the leaked light with wavelengths λ1 and λ2 from the upper side to the lower side and the leaked light with wavelengths λ1 and λ2 from the lower side to the upper side is measured. When,
Wavelength .lambda.1, the wavelength of the power of the leakage light directed from power and lower leakage light directed from above in .lambda.2 downwards upwards .lambda.1, .lambda.2 power level difference [Delta] P UP of, after seeking [Delta] P Down, and the power level difference [Delta] P UP [Delta] P Down is determined without optical filter and if almost equal, the optical filter presence check method of the ray path, characterized in that the power level difference [Delta] P UP is further a determination step of determining that there is an optical filter is smaller than [Delta] P Down.
1本の上部光線路と光分岐素子によって分岐された複数の下部光線路からなる光線路の下方端部における特定波長を遮断する光フィルタの有無を判定する光線路の光フィルタ有無確認方法において、
上部光線路の上方端部から光フィルタの遮断域にある波長λ1の光を周波数f1で変調した変調光と透過域にある波長λ2の光を周波数f2で変調した変調光を入射する光入射ステップと、
判定対象の下部光線路に曲げ部を設け、該曲げ部における上方から下方に向かう波長λ1、λ2の光を周波数f1,f2で変調した変調光の漏洩光と下方から上方に向かう波長λ1、λ2の光を周波数f1,f2で変調した変調光の漏洩光のパワーを測定する光パワー測定ステップと、
波長λ1、λ2の光を周波数f1,f2で変調した変調光における上方から下方に向かう漏洩光のパワーと下方から上方に向かう漏洩光のパワーの波長λ1、λ2の光を周波数f1,f2で変調した変調光のパワーレベル差ΔPUP,ΔPDownを求めて後、前記パワーレベル差ΔPUPとΔPDownがほぼ等しければ光フィルタ無しと判定し、パワーレベル差ΔPUPがΔPDownより小さければ光フィルタ有りと判定する判定ステップと
よりなることを特徴とする光線路の光フィルタ有無確認方法。
In the optical filter presence / absence confirmation method for determining the presence / absence of an optical filter that blocks a specific wavelength at the lower end of an optical line composed of a single upper optical line and a plurality of lower optical lines branched by an optical branching element,
Light incident step for entering from the upper end of the upper optical line the modulated light obtained by modulating the light of wavelength λ1 in the cutoff region of the optical filter with the frequency f1 and the modulated light obtained by modulating the light of wavelength λ2 in the transmission region with the frequency f2. When,
A bent portion is provided in the lower optical line to be determined, and the leaked light of the modulated light obtained by modulating the light of wavelengths λ1 and λ2 from above to below with the frequencies f1 and f2 and the wavelengths λ1 and λ2 from below to above. An optical power measurement step for measuring the power of the leaked light of the modulated light obtained by modulating the light at frequencies f1 and f2,
Modulated light with wavelengths λ1 and λ2 modulated at frequencies f1 and f2 The light with wavelengths λ1 and λ2 of the power of leaked light from above to below and the power of leaked light from below to above is modulated with frequencies f1 and f2. After obtaining the power level differences ΔP UP and ΔP Down of the modulated light, it is determined that there is no optical filter if the power level differences ΔP UP and ΔP Down are substantially equal, and if the power level difference ΔP UP is smaller than ΔP Down , the optical filter An optical filter presence / absence confirmation method for an optical line, comprising: a determination step of determining presence / absence.
判定対象の下部光線路に曲げ部を1箇所設け、2個の光電変換素子を用いて上方から下方に向かう漏洩光のパワー及び下方かう上方に向かう漏洩光のパワーを測定することを特徴とする請求項1又は2に記載の光線路の光フィルタ有無確認方法。   One bent portion is provided in the lower optical line to be judged, and the power of the leaked light from above to below and the power of the leaked light from above to below are measured using two photoelectric conversion elements. The optical filter presence / absence confirmation method for an optical line according to claim 1 or 2. 判定対象の下部光線路に曲げ部を2箇所設け、1個の光電変換素子を用いて上方から下方に向かう漏洩光のパワー及び下方かう上方に向かう漏洩光のパワーをそれぞれの曲げ部で別々に測定することを特徴とする請求項1又は2に記載の光線路の光フィルタ有無確認方法。   Two bent parts are provided in the lower optical line to be judged, and the power of leaked light going upward from the lower side and the power of leaked light going upward from the lower side using one photoelectric conversion element are separately determined at each bent part. The method for confirming the presence / absence of an optical filter in an optical line according to claim 1 or 2, characterized in that measurement is performed. 1本の上部光線路と光分岐素子によって分岐された複数の下部光線路からなる光線路の下方端部における特定波長を遮断する光フィルタの有無を判定する光フィルタ有無確認装置において、
判定対象の下部光線路の曲げ部に設けられ、該曲げ部における上方から下方に向かう波長λ1、λ2の漏洩光と下方から上方に向かう波長λ1、λ2の漏洩光を検出して電気信号に変換する光電変換素子と、
前記光電変換素子からの電気信号が入力され、波長λ1、λ2に対応する電気信号のパワーを識別して検知するパワーモニタ部と、
前記パワーモニタ部で検知された波長λ1、λ2に対応する電気信号のパワーから波長λ1、λ2のパワーレベル差ΔPUP,ΔPDownを求め、前記パワーレベル差ΔPUPとΔPDownを比較して光フィルタの有無を判定するフィルタ判別処理部と
を具備することを特徴とする光フィルタ有無確認装置。
In the optical filter presence / absence confirmation apparatus for determining the presence or absence of an optical filter that blocks a specific wavelength at the lower end portion of an optical line composed of one upper optical line and a plurality of lower optical lines branched by an optical branching element,
Provided at the bent part of the lower optical line to be judged, detects the leaked light of wavelengths λ1 and λ2 from the upper side to the lower side and the leaked light of wavelengths λ1 and λ2 from the lower side to the upper side, and converts them into electrical signals A photoelectric conversion element,
A power monitor that receives an electrical signal from the photoelectric conversion element and identifies and detects the power of the electrical signal corresponding to the wavelengths λ1 and λ2.
The power level differences ΔP UP and ΔP Down of the wavelengths λ 1 and λ 2 are obtained from the power of the electrical signal corresponding to the wavelengths λ 1 and λ 2 detected by the power monitor unit, and the power level difference ΔP UP and ΔP Down are compared to obtain the light. An optical filter presence / absence confirmation apparatus comprising: a filter discrimination processing unit that judges presence / absence of a filter.
1本の上部光線路と光分岐素子によって分岐された複数の下部光線路からなる光線路の下方端部における特定波長を遮断する光フィルタの有無を判定する光フィルタ有無確認装置において、
判定対象の下部光線路の曲げ部に設けられ、該曲げ部における上方から下方に向かう波長λ1、λ2の光を周波数f1,f2で変調した変調光の漏洩光と下方から上方に向かう波長λ1、λ2の光を周波数f1,f2で変調した変調光の漏洩光を検出して電気信号に変換する光電変換素子と、
前記光電変換素子からの電気信号が入力され、波長λ1、λ2の光を周波数f1,f2で変調した変調光に対応する電気信号のパワーを識別して検知する帯域フィルタを備えたパワーモニタ部と、
前記パワーモニタ部で検知された波長λ1、λ2の光を周波数f1,f2で変調した変調光に対応する電気信号のパワーから波長λ1、λ2の光を周波数f1,f2で変調した変調光のパワーレベル差ΔPUP,ΔPDownを求め、前記パワーレベル差ΔPUPとΔPDownを比較して光フィルタの有無を判定するフィルタ判別処理部と
を具備することを特徴とする光フィルタ有無確認装置。
In the optical filter presence / absence confirmation apparatus for determining the presence or absence of an optical filter that blocks a specific wavelength at the lower end portion of an optical line composed of one upper optical line and a plurality of lower optical lines branched by an optical branching element,
Leaked light of modulated light obtained by modulating light of wavelengths λ1 and λ2 with the frequencies f1 and f2 provided at the bending portion of the lower optical line to be determined and the wavelength λ1 from the lower side to the upper side. a photoelectric conversion element that detects leakage light of modulated light obtained by modulating light of λ2 at frequencies f1 and f2 and converts it into an electrical signal;
A power monitor unit provided with a bandpass filter for receiving and detecting the power of the electrical signal corresponding to the modulated light obtained by inputting the electrical signal from the photoelectric conversion element and modulating the light of the wavelengths λ1 and λ2 with the frequencies f1 and f2. ,
The power of the modulated light obtained by modulating the light of the wavelengths λ1 and λ2 with the frequencies f1 and f2 from the power of the electric signal corresponding to the modulated light obtained by modulating the lights of the wavelengths λ1 and λ2 with the frequencies f1 and f2 detected by the power monitor unit. level difference [Delta] P UP, seeking [Delta] P Down, the optical filter presence check device power level difference by comparing [Delta] P UP and [Delta] P Down characterized by comprising a determining filtering judgment processing section the presence or absence of the optical filter.
光電変換素子を2個設けたことを特徴とする請求項5又は6に記載の光フィルタ有無確認装置。   The optical filter presence / absence confirmation apparatus according to claim 5, wherein two photoelectric conversion elements are provided. 光電変換素子を1個設けたことを特徴とする請求項5又は6に記載の光フィルタ有無確認装置。   The optical filter presence / absence confirmation apparatus according to claim 5, wherein one photoelectric conversion element is provided.
JP2007186247A 2007-07-17 2007-07-17 Optical filter presence / absence confirmation method and optical filter existence confirmation device Expired - Fee Related JP4871804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007186247A JP4871804B2 (en) 2007-07-17 2007-07-17 Optical filter presence / absence confirmation method and optical filter existence confirmation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007186247A JP4871804B2 (en) 2007-07-17 2007-07-17 Optical filter presence / absence confirmation method and optical filter existence confirmation device

Publications (2)

Publication Number Publication Date
JP2009025052A true JP2009025052A (en) 2009-02-05
JP4871804B2 JP4871804B2 (en) 2012-02-08

Family

ID=40397007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007186247A Expired - Fee Related JP4871804B2 (en) 2007-07-17 2007-07-17 Optical filter presence / absence confirmation method and optical filter existence confirmation device

Country Status (1)

Country Link
JP (1) JP4871804B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192691A (en) * 2008-02-13 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> Live wire decision apparatus and method
JP2009216521A (en) * 2008-03-10 2009-09-24 Nippon Telegr & Teleph Corp <Ntt> Optical filter existence confirmation method and optical filter existence confirmation device of optical path

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192691A (en) * 2008-02-13 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> Live wire decision apparatus and method
JP2009216521A (en) * 2008-03-10 2009-09-24 Nippon Telegr & Teleph Corp <Ntt> Optical filter existence confirmation method and optical filter existence confirmation device of optical path

Also Published As

Publication number Publication date
JP4871804B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
US7872738B2 (en) System and method for monitoring an optical communication system
US8811815B2 (en) Optical network testing
US8411259B2 (en) Optical time-domain reflectometer
US8280253B2 (en) Optical telecommunications network terminal, an installation including the terminal, and a method of detecting a break in optical transmission means
JP5250698B2 (en) Fiber monitoring method in optical network
WO2018051935A1 (en) Monitoring system and monitoring method
US8259387B2 (en) Optical amplifier
CN107026690A (en) Measuring light power in EPON
JP6196124B2 (en) Optical fiber transmission line monitoring system
JP4871804B2 (en) Optical filter presence / absence confirmation method and optical filter existence confirmation device
JP7318705B2 (en) Judgment device and judgment method
WO2015083993A1 (en) Optical time domain reflectometer using polymer wavelength tunable laser
JP4851380B2 (en) Optical fiber identification method and identification apparatus
US6871020B1 (en) Power spectrum monitoring and management in a wavelength division multiplexed network
JP4956163B2 (en) Optical fiber identification device and optical fiber identification method
JP4964809B2 (en) Optical filter presence / absence confirmation method and optical filter existence confirmation device
KR101817335B1 (en) Apparatus and method for monitoring optical terminal
JP4927618B2 (en) Optical fiber identification method and identification apparatus
JP4819165B2 (en) Optical communication system and monitoring method thereof
JP4890354B2 (en) Optical pulse measuring instrument
JP2003294577A (en) In-service testing method and determination device for determining existence/absence of test light cutoff filter
KR101640149B1 (en) Real Time Fiber Line Monitoring System For Optical Ethernet Network
RU2483446C2 (en) Fibre monitoring in optical networks
Araki et al. A new optical fiber line testing function for service construction work that checks for optical filters below an optical splitter in a PON
JP2007258929A (en) Optical amplification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

R150 Certificate of patent or registration of utility model

Ref document number: 4871804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees