JP2009024816A - Sensor-equipped bearing for wheel - Google Patents

Sensor-equipped bearing for wheel Download PDF

Info

Publication number
JP2009024816A
JP2009024816A JP2007190358A JP2007190358A JP2009024816A JP 2009024816 A JP2009024816 A JP 2009024816A JP 2007190358 A JP2007190358 A JP 2007190358A JP 2007190358 A JP2007190358 A JP 2007190358A JP 2009024816 A JP2009024816 A JP 2009024816A
Authority
JP
Japan
Prior art keywords
sensor
strain
boss
wheel
fixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007190358A
Other languages
Japanese (ja)
Inventor
Kazuhiro Baba
一宏 馬場
Kentaro Nishikawa
健太郎 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007190358A priority Critical patent/JP2009024816A/en
Priority to PCT/JP2008/000713 priority patent/WO2008117534A1/en
Priority to US12/450,442 priority patent/US8123411B2/en
Publication of JP2009024816A publication Critical patent/JP2009024816A/en
Priority to US13/349,934 priority patent/US8313242B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor-equipped bearing for a wheel, allowing a load detection sensor to be compactly installed in a vehicle, capable of highly sensitively detecting a load on the wheel, mass-produced at low cost, capable of preventing the undesirable movement of a sensor deformation fulcrum, and capable of reducing variations in sensor strain sensitivity. <P>SOLUTION: Sensor fixing bosses BS1 and BS2 are formed in a fixing side member among an outer member 1 and an inner member 2, and a sensor unit 21 composed of a strain generating member 22 and at least one or more of strain sensors 23 installed in this strain generating member 22, is arranged in the fixing side member via the sensor fixing bosses BS1 and BS2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付車輪用軸受に関する。   The present invention relates to a sensor-equipped wheel bearing with a built-in load sensor for detecting a load applied to a bearing portion of the wheel.

従来、自動車の安全走行のために、各車輪の回転速度を検出するセンサを車輪用軸受に設けたものがある。従来の一般的な自動車の走行安全性確保対策は、各部の車輪の回転速度を検出することで行われているが、車輪の回転速度だけでは十分でなく、その他のセンサ信号を用いてさらに安全面の制御が可能なことが求められている。   2. Description of the Related Art Conventionally, there is a wheel bearing provided with a sensor for detecting the rotational speed of each wheel for safe driving of an automobile. Conventional measures to ensure driving safety of general automobiles are performed by detecting the rotational speed of the wheels of each part, but the rotational speed of the wheels is not sufficient, and it is further safer by using other sensor signals. It is required that the surface can be controlled.

そこで、車両走行時に各車輪に作用する荷重から姿勢制御を図ることも考えられる。例えばコーナリングにおいては外側車輪に大きな荷重がかかり、また左右傾斜面走行では片側車輪に、ブレーキングにおいては前輪にそれぞれ荷重が片寄るなど、各車輪にかかる荷重は均等ではない。また、積載荷重不均等の場合にも各車輪にかかる荷重は不均等になる。このため、車輪にかかる荷重を随時検出できれば、その検出結果に基づき、事前にサスペンション等を制御することで、車両走行時の姿勢制御(コーナリング時のローリング防止、ブレーキング時の前輪沈み込み防止、積載荷重不均等による沈み込み防止等)、および横すべり発生時の瞬時な姿勢制御(スピン防止)を行うことが可能となる。しかし、車輪に作用する荷重を検出するセンサの適切な設置場所がなく、荷重検出による姿勢制御の実現が難しい。   Therefore, it is conceivable to control the posture from the load acting on each wheel during vehicle travel. For example, a large load is applied to the outer wheel in cornering, and the load applied to each wheel is not uniform. In addition, even when the load is uneven, the load applied to each wheel is uneven. For this reason, if the load applied to the wheel can be detected at any time, based on the detection result, the suspension and the like are controlled in advance, thereby controlling the posture during vehicle travel (preventing rolling during cornering, preventing the front wheel from sinking during braking, It is possible to prevent subsidence due to uneven load load, etc.) and to perform instantaneous posture control (spin prevention) when a side slip occurs. However, there is no appropriate installation location of a sensor that detects a load acting on the wheel, and it is difficult to realize posture control by load detection.

また、今後ステアバイワイヤが導入されて、車軸とステアリングが機械的に結合しないシステムになってくると、車軸方向荷重を検出して運転手が握るハンドルに路面情報を伝達することが求められる。   In addition, when steer-by-wire is introduced in the future, and the system is such that the axle and the steering are not mechanically coupled, it is required to detect the axle direction load and transmit the road surface information to the handle held by the driver.

このような要請に応えるものとして、車輪用軸受の外輪に歪みゲージを貼り付け、歪みを検出するようにした車輪用軸受が提案されている(例えば特許文献1)。
特表2003−530565号公報 特願2006−62252 特願2006−228906
As a response to such a demand, a wheel bearing has been proposed in which a strain gauge is attached to the outer ring of the wheel bearing to detect the strain (for example, Patent Document 1).
Special table 2003-530565 gazette Japanese Patent Application No. 2006-62252 Japanese Patent Application No. 2006-228906

車輪用軸受の外輪は、転走面を有し、強度が求められる部品であって、塑性加工や、旋削加工、熱処理、研削加工などの複雑な工程を経て生産される軸受部品であるため、特許文献1のように外輪に歪みゲージを貼り付けるのでは、生産性が悪く、量産時のコストが高くなるという問題点がある。また、外輪の歪みを感度良く検出することが難しく、その検出結果を車両走行時の姿勢制御に利用した場合、制御の精度が問題となる。   The outer ring of the wheel bearing is a part that has a rolling surface and requires strength, and is a bearing part that is produced through complicated processes such as plastic working, turning, heat treatment, and grinding. When a strain gauge is attached to the outer ring as in Patent Document 1, there is a problem that productivity is poor and the cost for mass production is high. In addition, it is difficult to detect the distortion of the outer ring with high sensitivity, and when the detection result is used for attitude control during vehicle travel, the accuracy of control becomes a problem.

そこで、本件出願人は、歪み発生部材および歪みセンサからなるセンサユニットを、スペーサ等の固定用部材を介して外輪に取付けたものを提案している(特許文献2,3)。この場合、上記固定用部材の位置ずれにより、センサ変形支点が不所望に移動し、センサ歪み感度のばらつきが大きくなるおそれがある。   In view of this, the present applicant has proposed a sensor unit comprising a strain generating member and a strain sensor attached to an outer ring through a fixing member such as a spacer (Patent Documents 2 and 3). In this case, the sensor deformation fulcrum may move undesirably due to the displacement of the fixing member, and the variation in sensor distortion sensitivity may increase.

この発明の目的は、車両にコンパクトに荷重検出用のセンサを設置できて、車輪にかかる荷重を感度良く検出でき、量産時のコストが安価となり、センサ変形支点が不所望に移動することを防止できると共に、センサ歪み感度のばらつきを低減することができるセンサ付車輪用軸受を提供することである。   The object of the present invention is to be able to install a load detection sensor compactly in a vehicle, detect the load applied to the wheel with high sensitivity, reduce the cost during mass production, and prevent the sensor deformation fulcrum from moving undesirably. It is possible to provide a sensor-equipped wheel bearing capable of reducing variations in sensor strain sensitivity.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体と、前記外方部材と前記内方部材との間の端部を密封する密封装置とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、前記外方部材および内方部材のうちの固定側部材に、センサ固定用ボスを形成しておき、歪み発生部材およびこの歪み発生部材に取付けた少なくとも1つ以上の歪みセンサからなるセンサユニットを、前記センサ固定用ボスを介して前記固定側部材に設けたことを特徴とする。   The sensor-equipped wheel bearing according to the present invention includes an outer member having a double row rolling surface formed on the inner periphery, an inner member having a rolling surface facing the rolling surface of the outer member, A double row rolling element interposed between both rolling surfaces, and a sealing device that seals an end between the outer member and the inner member, and rotatably supports the wheel with respect to the vehicle body. In the wheel bearing, a sensor fixing boss is formed on a fixed side member of the outer member and the inner member, and the strain generating member and at least one strain sensor attached to the strain generating member are used. The sensor unit is provided on the fixed member via the sensor fixing boss.

車両走行に伴い回転側部材に荷重が加わると、転動体を介して固定側部材が変形し、その変形はセンサユニットに歪みをもたらす。センサユニットに設けられた歪みセンサは、センサユニットの歪みを検出する。歪みと荷重の関係を予め実験やシミュレーションで求めておけば、歪みセンサの出力から車輪にかかる荷重を検出することができる。また、この検出した荷重を自動車の車両制御に使用することが出来る。   When a load is applied to the rotation side member as the vehicle travels, the fixed side member is deformed via the rolling elements, and the deformation causes distortion of the sensor unit. The strain sensor provided in the sensor unit detects the strain of the sensor unit. If the relationship between strain and load is obtained in advance through experiments and simulations, the load applied to the wheel can be detected from the output of the strain sensor. Moreover, this detected load can be used for vehicle control of an automobile.

この車輪用軸受は、歪み発生部材およびこの歪み発生部材に取付けた歪みセンサからなるセンサユニットを、固定側部材に取付ける構成としたため、荷重検出用のセンサを車両にコンパクトに設置できる。歪み発生部材は、外方部材および内方部材のうちの固定側部材に取付けられる簡易な部品であるため、この歪み発生部材に歪みセンサを取付けることで、量産性に優れたものとでき、コスト低下が図れる。
また、センサユニットを、固定側部材に形成したセンサ固定用ボスを介して、この固定側部材に設けたため、次のような作用、効果を奏する。センサ固定用ボスが固定側部材本体に対して相対的に位置ずれすることがなくなる。これにより、センサ変形支点が不所望に移動することを確実に防止することができ、したがって、センサ歪み感度のばらつきを低減することができる。
Since the wheel bearing has a configuration in which the sensor unit including the strain generating member and the strain sensor attached to the strain generating member is attached to the fixed side member, the load detecting sensor can be compactly installed in the vehicle. Since the strain generating member is a simple part that can be attached to the fixed side member of the outer member and the inner member, by attaching a strain sensor to the strain generating member, the strain generating member can be excellent in mass productivity and cost. Reduction can be achieved.
Further, since the sensor unit is provided on the fixed side member via the sensor fixing boss formed on the fixed side member, the following operations and effects are achieved. The sensor fixing boss is not displaced relative to the stationary member body. Thereby, it is possible to reliably prevent the sensor deformation fulcrum from moving undesirably, and therefore it is possible to reduce variations in sensor distortion sensitivity.

この発明において、前記センサ固定用ボスは、前記固定側部材に設けられたフランジ面に形成した第1ボスと、前記固定側部材の周面に形成した第2ボスとを有し、前記歪み発生部材は、前記第1ボスの先端面に接触して固定される第1の接触固定部と、前記第2ボスの先端面に接触して固定される第2の接触固定部とを有するものとしても良い。   In this invention, the sensor fixing boss has a first boss formed on a flange surface provided on the fixed side member, and a second boss formed on a peripheral surface of the fixed side member, and the distortion is generated. The member has a first contact fixing portion fixed in contact with the tip surface of the first boss, and a second contact fixing portion fixed in contact with the tip surface of the second boss. Also good.

この場合、第1の接触固定部は、固定側部材のフランジ面に形成した第1ボスの先端面に接触し、第2の接触固定部は、固定側部材の周面に形成した第2ボスの先端面に接触するため、第1,第2ボスの突出長さが略同一とすると、第1および第2の接触固定部の径方向位置が異なる。これにより、固定側部材の歪みが歪み発生部材に転写しかつ拡大して現われやすくなる。この転写かつ拡大された歪みを歪みセンサで測定するため、固定側部材の歪みを感度良く検出でき、荷重の測定精度が高くなる。   In this case, the first contact fixing portion is in contact with the tip surface of the first boss formed on the flange surface of the fixed side member, and the second contact fixing portion is the second boss formed on the peripheral surface of the fixed side member. If the protruding lengths of the first and second bosses are substantially the same, the radial positions of the first and second contact fixing portions are different. Thereby, the distortion of the fixed side member is easily transferred to the distortion generating member and enlarged. Since this transferred and enlarged strain is measured by the strain sensor, the strain on the fixed side member can be detected with high sensitivity, and the load measurement accuracy is increased.

この発明において、前記固定側部材を外方部材としても良い。その場合、センサユニットを外方部材の外周面に取付ける。
この発明において、前記センサ固定用ボスを、前記固定側部材に一体成形することが望ましい。この場合、部品点数の低減を図り、構造を簡単化でき、量産時のコストを確実に低減することができる。
In the present invention, the fixed side member may be an outward member. In that case, the sensor unit is attached to the outer peripheral surface of the outer member.
In this invention, it is desirable that the sensor fixing boss is integrally formed with the fixed side member. In this case, the number of parts can be reduced, the structure can be simplified, and the cost during mass production can be surely reduced.

この発明において、前記歪みセンサの出力によって、車輪用軸受に作用する外力、またはタイヤと路面間の作用力を推定する作用力推定手段を設けても良い。この作用力推定手段によって得られる車輪用軸受に作用する外力、またはタイヤと路面間の作用力を自動車の車両制御に使用することにより、きめ細かな車両制御が可能となる。
この発明において、前記歪み発生部材と前期固定部材との固定を、ボルト,ピン(これらを固定具と称す)および接着剤の少なくともいずれか一つを用いて行うか、または固定具および接着剤の両方を併用して行うか、または溶接を用いて行っても良い。このような固定具を用いて歪み発生部材と前期固定部材とを固定する場合、溶接等により固定する場合に比べて、作業品質の均一化を図り作業工数を低減でき、製造コストの低減を図ることが可能となる。前記固定具および接着剤の両方を併用して行う場合、歪み発生部材を固定部材により強固に固定することができる。
この発明において、前記歪み発生部材を、径方向に沿った径方向部材と、軸方向に沿った軸方向部材とでL字形状に構成しても良い。この場合、径方向部材と軸方向部材との間である径方向部材側の角部付近に歪みが集中し、外方部材等よりも大きな歪みとなって現れる。この大きな歪みとなって現れる歪みを測定することができるため、上記外方部材の歪みを感度良く検出でき、歪み測定精度が高くなる。
In the present invention, there may be provided an acting force estimating means for estimating an external force acting on the wheel bearing or an acting force between the tire and the road surface based on the output of the strain sensor. By using the external force acting on the wheel bearing obtained by the acting force estimation means or the acting force between the tire and the road surface for vehicle control of the automobile, fine vehicle control becomes possible.
In the present invention, the distortion generating member and the first fixing member are fixed using at least one of a bolt, a pin (these are referred to as a fixing tool) and an adhesive, or the fixing tool and the adhesive You may carry out using both together or using welding. When the strain generating member and the first-stage fixing member are fixed using such a fixing tool, the work quality can be made uniform and the man-hours can be reduced and the manufacturing cost can be reduced as compared with the case where fixing is performed by welding or the like. It becomes possible. When both the fixing tool and the adhesive are used in combination, the strain generating member can be firmly fixed by the fixing member.
In the present invention, the strain generating member may be formed in an L shape with a radial member along the radial direction and an axial member along the axial direction. In this case, the strain concentrates near the corner on the radial member side between the radial member and the axial member, and appears as a larger strain than the outer member. Since the distortion that appears as this large distortion can be measured, the distortion of the outer member can be detected with high sensitivity, and the distortion measurement accuracy is increased.

この発明のセンサ付車輪用軸受は、前記外方部材および内方部材のうちの固定側部材に、センサ固定用ボスを形成しておき、歪み発生部材およびこの歪み発生部材に取付けた少なくとも1つ以上の歪みセンサからなるセンサユニットを、前記センサ固定用ボスを介して前記固定側部材に設けたため、車両にコンパクトに荷重検出用のセンサを設置できて、車輪にかかる荷重を感度良く検出でき、量産時のコストが安価となり、センサ変形支点が不所望に移動することを防止できると共に、センサ歪み感度のばらつきを低減することができる。   In the wheel bearing with sensor according to the present invention, a sensor fixing boss is formed on a fixed side member of the outer member and the inner member, and the strain generating member and at least one attached to the strain generating member are provided. Since the sensor unit composed of the above strain sensors is provided on the fixed side member via the sensor fixing boss, a sensor for load detection can be compactly installed in the vehicle, and the load on the wheel can be detected with high sensitivity. The cost during mass production is reduced, the sensor deformation fulcrum can be prevented from undesirably moving, and variations in sensor strain sensitivity can be reduced.

この発明の一実施形態を図1ないし図4と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。   An embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.

このセンサ付車輪用軸受は、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、各転走面3,4は接触角が外向きとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、密封装置7,8によりそれぞれ密封されている。   This sensor-equipped wheel bearing includes an outer member 1 having a double row rolling surface 3 formed on the inner periphery, an inner member 2 having a rolling surface 4 opposed to each of the rolling surfaces 3, and these It is comprised by the double row rolling element 5 interposed between the rolling surfaces 3 and 4 of the outer member 1 and the inner member 2. This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 are arc-shaped in cross section, and each rolling surface 3 and 4 is formed so that the contact angle is outward. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by sealing devices 7 and 8, respectively.

外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックルに取付けるフランジ1aを外周に有し、このフランジ面1aaに第1ボスBS1が形成されると共に、この外方部材1の周面に第2ボスBS2が形成され、全体が一体の部品とされている。フランジ1aには、周方向の複数箇所に車体取付孔14が設けられている。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト(図示せず)の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、ホイールおよび制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
The outer member 1 is a fixed side member, and has a flange 1a attached to a knuckle in a suspension device (not shown) of a vehicle body on the outer periphery, and a first boss BS1 is formed on the flange surface 1aa. The second boss BS2 is formed on the peripheral surface of the outer member 1, and the whole is an integral part. The flange 1a is provided with vehicle body mounting holes 14 at a plurality of locations in the circumferential direction.
The inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become. The hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. A through hole 11 is provided at the center of the hub wheel 9. The hub flange 9a is provided with press-fitting holes 15 for hub bolts (not shown) at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a wheel and a brake component (not shown) protrudes toward the outboard side.

外方部材1の外周部には、図3に示すセンサユニット21が設けられている。センサユニット21は、歪み発生部材22に、この歪み発生部材22の歪みを測定する歪みセンサ23を取付けたものである。歪み発生部材22は、第1の接触固定部22aと第2の接触固定部22bとを有する。外方部材1の車体取付孔14の近傍に、第1ボスBS1が一体に形成され、この第1ボスBS1の先端面BS1aに、前記第1の接触固定部22aが接触固定される。前記第1ボスBS1の先端面BS1aは、軸方向から見て円形状に形成されている。この先端面BS1aの外形寸法つまり外方部材本体1Aからの軸方向突出長さL1のばらつきを小さくする、この先端面BS1aの平面度の公差を小さくしている。これにより、センサ変形支点を一定にすることができる。   A sensor unit 21 shown in FIG. 3 is provided on the outer peripheral portion of the outer member 1. The sensor unit 21 is obtained by attaching a strain sensor 23 for measuring the strain of the strain generating member 22 to the strain generating member 22. The strain generating member 22 includes a first contact fixing portion 22a and a second contact fixing portion 22b. A first boss BS1 is integrally formed in the vicinity of the vehicle body mounting hole 14 of the outer member 1, and the first contact fixing portion 22a is fixed in contact with the front end surface BS1a of the first boss BS1. The front end surface BS1a of the first boss BS1 is formed in a circular shape when viewed from the axial direction. The tolerance of the flatness of the tip end surface BS1a is reduced to reduce the variation in the outer dimension of the tip end surface BS1a, that is, the variation in the axial protrusion length L1 from the outer member main body 1A. Thereby, a sensor deformation | transformation fulcrum can be made constant.

外方部材1の外周面に第2ボスBS2が一体に形成され、この第2ボスBS2の先端面BS2aに、前記第2の接触固定部22bが接触固定される。この第2ボスBS2の先端面BS2aは、径方向から見て円形状に形成されている。この先端面BS2aの外形寸法つまり外方部材本体1Aからの径方向突出長さL2のばらつきを小さくする、この先端面BS2aの平面度の公差を小さくしている。これにより、センサ変形支点を一定にすることができる。なお、第1,第2ボスBS1,BS2の形状は、前記円形状に限定されるものではなく、例えば矩形状等であっても良い。   A second boss BS2 is integrally formed on the outer peripheral surface of the outer member 1, and the second contact fixing portion 22b is fixed to the front end surface BS2a of the second boss BS2. The front end surface BS2a of the second boss BS2 is formed in a circular shape when viewed from the radial direction. The tolerance of the flatness of the front end surface BS2a is reduced to reduce the variation in the outer dimension of the front end surface BS2a, that is, the variation in the radial protrusion length L2 from the outer member main body 1A. Thereby, a sensor deformation | transformation fulcrum can be made constant. The shape of the first and second bosses BS1 and BS2 is not limited to the circular shape, and may be a rectangular shape, for example.

この第1ボスBS1および外方部材本体1Aに、軸方向に沿って雌ねじ72が形成される。この雌ねじ72は第1ボスBS1の先端面BS1aにおいて外方に臨む。この先端面BS1aに第1の接触固定部22aが接触された状態で、固定具であるボルト76を、第1の接触固定部22aに形成されたボルト挿通孔70を介して前記雌ねじ72に螺着し固定するようになっている。また、第2ボスBS2および外方部材本体1Aに、径方向に沿って雌ねじ73が形成される。この雌ねじ73は第2ボスBS2の先端面BS2aにおいて外方に臨み、この先端面BS2aに第2の接触固定部22bが接触された状態で、固定具であるボルト76を、第2の接触固定部22bに形成されたボルト挿通孔71を介して前記雌ねじ73に螺着し固定するようになっている。前記外方部材本体1Aとは、外方部材1全体のうち第1および第2ボスBS1,BS2を除く本体部分と同義である。   A female screw 72 is formed in the first boss BS1 and the outer member main body 1A along the axial direction. The female screw 72 faces outward at the front end surface BS1a of the first boss BS1. With the first contact fixing portion 22a in contact with the distal end surface BS1a, a bolt 76, which is a fixture, is screwed into the female screw 72 via a bolt insertion hole 70 formed in the first contact fixing portion 22a. It is designed to be worn and fixed. Further, female threads 73 are formed along the radial direction in the second boss BS2 and the outer member main body 1A. The female screw 73 faces outward at the distal end surface BS2a of the second boss BS2, and the bolt 76, which is a fixture, is fixed to the second contact fixing portion 22b in a state where the second contact fixing portion 22b is in contact with the distal end surface BS2a. The female screw 73 is screwed and fixed through a bolt insertion hole 71 formed in the portion 22b. The outer member main body 1A is synonymous with the main body portion of the entire outer member 1 excluding the first and second bosses BS1 and BS2.

また、歪み発生部材22は、前記第1の接触固定部22aを含む径方向に沿った径方向部位22akと、前記第2の接触固定部22bを含む軸方向部位22bjとでL字の形状に形成されている。これら径方向部位22akと軸方向部位22bjのうち、径方向部位22akを軸方向部位22ajに比べて剛性が低くなるように、例えば、図3に示すように肉厚t1を肉厚t2よりも薄く形成している。また、径方向部位22akの径方向長さと軸方向部位の軸方向長さとは、同一寸法または、前記軸方向長さよりも前記径方向長さが長くなるように形成されている。歪センサ23は、径方向部位22akに取付けられている。   Further, the strain generating member 22 has an L shape with a radial portion 22ak along the radial direction including the first contact fixing portion 22a and an axial portion 22bj including the second contact fixing portion 22b. Is formed. Of these radial portion 22ak and axial portion 22bj, the thickness t1 is made thinner than the thickness t2, for example, as shown in FIG. 3, so that the radial portion 22ak is less rigid than the axial portion 22aj. Forming. Further, the radial length of the radial portion 22ak and the axial length of the axial portion are formed to have the same dimension or the radial length longer than the axial length. The strain sensor 23 is attached to the radial portion 22ak.

上記歪み発生部材22は、外方部材1への固定により塑性変形を起こさない形状や材質とされている。また、歪み発生部材22は、車輪用軸受に予想される最大の荷重が印加された場合でも、塑性変形を起こさない形状とする必要がある。上記の想定される最大の力は、車両故障につながらない走行において想定される最大の力である。歪み発生部材22に塑性変形が生じると、外方部材1の変形が歪み発生部材22に正確に伝わらず、歪みの測定に影響を及ぼすためである。   The strain generating member 22 is formed in a shape or material that does not cause plastic deformation by being fixed to the outer member 1. Further, the strain generating member 22 needs to have a shape that does not cause plastic deformation even when the maximum load expected for the wheel bearing is applied. The above assumed maximum force is the maximum force assumed in traveling that does not lead to vehicle failure. This is because, when plastic deformation occurs in the strain generating member 22, the deformation of the outer member 1 is not accurately transmitted to the strain generating member 22 and affects the measurement of strain.

この歪み発生部材22は、例えばプレス加工により製作することができる。この場合、切削加工等の機械加工により歪み発生部材を製作するものより、コストダウンを図ることが可能となる。また、歪み発生部材22は、金属粉末射出成形による焼結金属品としてもよい。金属粉末射出成形は、金属、金属間化合物等の成形技術の一つであり、金属粉末をバインダーと混練する工程、この混練物を用いて射出成型する工程、成形体の脱脂処理を行う工程、および成形体の焼結を行う工程を含む。この金属粉末射出成形によれば、一般の粉末冶金に比べて焼結密度の高い焼結体が得られ、焼結金属品を高い寸法精度で製作することができ、また機械的強度も高いという利点がある。また、径方向部位22akと軸方向部位22bjとを略同一肉厚とし、かつ、前記径方向部位22akの一部に図示外の弱部を形成しても良い。これにより、この径方向部位22akを軸方向部位22bjに比べて剛性が低くすることも可能である。   The strain generating member 22 can be manufactured, for example, by pressing. In this case, it is possible to reduce the cost compared to manufacturing the strain generating member by machining such as cutting. Further, the strain generating member 22 may be a sintered metal product by metal powder injection molding. Metal powder injection molding is one of molding techniques for metals, intermetallic compounds, and the like, a step of kneading metal powder with a binder, a step of injection molding using this kneaded product, a step of degreasing the molded body, And a step of sintering the compact. According to this metal powder injection molding, a sintered body having a higher sintering density than that of general powder metallurgy is obtained, and sintered metal products can be manufactured with high dimensional accuracy, and mechanical strength is also high. There are advantages. Further, the radial portion 22ak and the axial portion 22bj may have substantially the same thickness, and a weak portion (not shown) may be formed in a part of the radial portion 22ak. Thereby, it is possible to make the radial portion 22ak less rigid than the axial portion 22bj.

上記センサユニット21は、図2に示すように、歪み発生部材22の第1および第2の接触固定部22a,22bにより、両接触固定部22a,22bが外方部材1の周方向に対して同位相の位置となるように、外方部材1の外周部に固定される。また、図6に示すように、外方部材1の隣り合うフランジ1a間のフランジ1cに、センサユニット21を固定しても良い。第1および第2の接触固定部22a,22bを周方向において同位相とすると、歪み発生部材22の長さを短くすることができるため、センサユニット21の設置が容易である。この実施形態の場合、歪みセンサ23は、歪み発生部材22のうち第1の接触固定部22aに形成された凹形状部22aaに、例えば接着剤を用いて固定されている。前記凹形状部22aaは、歪みセンサ23の形状に合わせて加工され、これにより、歪み発生部材22と歪みセンサ23との密着性を確保することができる。また、歪み発生部材22に対する歪みセンサ23の位置決め精度を高めることができる。   As shown in FIG. 2, the sensor unit 21 includes the first and second contact fixing portions 22 a and 22 b of the strain generating member 22 so that both contact fixing portions 22 a and 22 b are in the circumferential direction of the outer member 1. The outer member 1 is fixed to the outer peripheral portion so as to be in the same phase position. In addition, as shown in FIG. 6, the sensor unit 21 may be fixed to a flange 1 c between adjacent flanges 1 a of the outer member 1. If the first and second contact fixing portions 22a and 22b have the same phase in the circumferential direction, the length of the strain generating member 22 can be shortened, so that the sensor unit 21 can be easily installed. In the case of this embodiment, the strain sensor 23 is fixed to the concave portion 22aa formed in the first contact fixing portion 22a of the strain generating member 22 using, for example, an adhesive. The concave portion 22aa is processed in accordance with the shape of the strain sensor 23, whereby the adhesion between the strain generating member 22 and the strain sensor 23 can be ensured. Further, the positioning accuracy of the strain sensor 23 with respect to the strain generating member 22 can be increased.

歪みセンサ23としては、種々のものを使用することができる。例えば、歪みセンサ23が金属箔ストレインゲージで構成されている場合、この金属箔ストレインゲージの耐久性を考慮すると、車輪用軸受に予想される最大の荷重が印加された場合でも、歪み発生部材22における歪みセンサ取付部分の歪み量が1500マイクロストレイン以下であることが好ましい。同様の理由から、歪みセンサ23が半導体ストレインゲージで構成されている場合は、同歪み量が1000マイクロストレイン以下であることが好ましい。また、歪みセンサ23が厚膜式センサで構成されている場合は、同歪み量が1500マイクロストレイン以下であることが好ましい。   Various strain sensors 23 can be used. For example, when the strain sensor 23 is composed of a metal foil strain gauge, considering the durability of the metal foil strain gauge, the strain generating member 22 even when the maximum load expected is applied to the wheel bearing. The strain amount of the strain sensor mounting portion is preferably 1500 microstrain or less. For the same reason, when the strain sensor 23 is composed of a semiconductor strain gauge, the strain amount is preferably 1000 microstrain or less. Further, when the strain sensor 23 is formed of a thick film type sensor, the amount of strain is preferably 1500 microstrain or less.

図1に示すように、歪みセンサ23の出力を処理する手段として、作用力推定手段31および異常判定手段32が設けられている。これらの手段31,32は、この車輪用軸受の外方部材1等に取付けられた回路基板等の図示外の電子回路装置に設けられたものであっても、また自動車の電気制御ユニット(ECU)に設けられたものであっても良い。   As shown in FIG. 1, acting force estimating means 31 and abnormality determining means 32 are provided as means for processing the output of the strain sensor 23. These means 31 and 32 may be provided in an electronic circuit device (not shown) such as a circuit board attached to the outer member 1 of the wheel bearing, or may be an electric control unit (ECU) of an automobile. ) May be provided.

上記構成のセンサ付車輪用軸受の作用を説明する。ハブ輪9に荷重が印加されると、転動体5を介して外方部材1が変形し、その変形は外方部材1に取付けられた歪み発生部材22に伝わり、この歪み発生部材22が変形する。その歪み発生部材22の歪みを歪みセンサ23により測定する。この際、歪み発生部材22の径方向部位22akは、外方部材1のフランジ1aの変形に従って変形する。   The operation of the sensor-equipped wheel bearing with the above configuration will be described. When a load is applied to the hub wheel 9, the outer member 1 is deformed via the rolling elements 5, and the deformation is transmitted to the strain generating member 22 attached to the outer member 1, and the strain generating member 22 is deformed. To do. The strain of the strain generating member 22 is measured by the strain sensor 23. At this time, the radial portion 22ak of the strain generating member 22 is deformed in accordance with the deformation of the flange 1a of the outer member 1.

この実施形態の場合、外方部材1と比べ前記径方向部位22akは剛性が低く、かつ歪み発生部材22は、相対的に剛性の低い径方向部位22akと剛性の高い軸方向部位22bjとで構成されたL字形をしているため、径方向部位22akと軸方向部位22bjとの間である径方向部位22ak側の角部22c付近に歪みが集中し、外方部材1よりも大きな歪みとなって現れる。すなわち、径方向部位22akと軸方向部位22bjとの間で発生する歪みは、フランジ1aの基端のR部1bの歪みを転写しかつ拡大したものとなる。この歪みを歪みセンサ23で測定するため、外方部材1の歪みを感度良く検出でき、歪み測定精度が高くなる。   In the case of this embodiment, the radial portion 22ak is lower in rigidity than the outer member 1, and the strain generating member 22 is composed of a relatively low radial portion 22ak and a highly rigid axial portion 22bj. Therefore, the strain concentrates near the corner portion 22c on the radial portion 22ak side between the radial portion 22ak and the axial portion 22bj, resulting in a strain larger than that of the outer member 1. Appear. In other words, the distortion generated between the radial part 22ak and the axial part 22bj is obtained by transferring and expanding the distortion of the R portion 1b at the proximal end of the flange 1a. Since this strain is measured by the strain sensor 23, the strain of the outer member 1 can be detected with high sensitivity, and the strain measurement accuracy is increased.

荷重の方向や大きさによって歪みの変化が異なるため、予め歪みと荷重の関係を実験やシミュレーションにて求めておけば、車輪用軸受に作用する外力、またはタイヤと路面間の作用力を算出することができる。前記作用力推定手段31は、このように実験やシミュレーションにより予め求めて設定しておいた歪みと荷重の関係から、歪みセンサ23の出力により、車輪用軸受に作用する外力、またはタイヤと路面間の作用力を算出する。前記異常判定手段32は、作用力推定手段31により算出された車輪用軸受に作用する外力、またはタイヤと路面間の作用力を出力すると、よりきめ細やかな車両制御が可能となる。   Since the strain changes depending on the direction and magnitude of the load, if the relationship between the strain and the load is obtained in advance through experiments and simulations, the external force acting on the wheel bearing or the acting force between the tire and the road surface is calculated. be able to. From the relationship between the strain and the load obtained and set in advance through experiments and simulations, the acting force estimation means 31 is configured so that the external force acting on the wheel bearing or the distance between the tire and the road surface is determined by the output of the strain sensor 23. Is calculated. When the abnormality determining means 32 outputs an external force acting on the wheel bearing calculated by the acting force estimating means 31, or an acting force between the tire and the road surface, finer vehicle control becomes possible.

この実施形態のセンサユニット21は、歪み発生部材22に歪みセンサ23を1個だけ取付けた構成としているが、歪み発生部材22に歪みセンサ23を複数個取付けた構成としても良い。この場合、歪み発生部材22の複数箇所の歪みを測定することができ、より一層精度の高い荷重の検出が可能となる。また、複数個の歪みセンサのうちいずれか1個の歪みセンサに不具合等が生じたとしても、他の歪みセンサにより荷重の検出を行うことができる。   The sensor unit 21 of this embodiment has a configuration in which only one strain sensor 23 is attached to the strain generating member 22, but may be configured to have a plurality of strain sensors 23 attached to the strain generating member 22. In this case, strains at a plurality of locations of the strain generating member 22 can be measured, and a load with higher accuracy can be detected. Moreover, even if a defect or the like occurs in any one of the plurality of strain sensors, the load can be detected by another strain sensor.

また、この実施形態は、センサユニット21を外方部材1の周方向1箇所にだけ設けた構成としているが、必ずしもこの構成に限定されるものではない。例えば、図5に示すように、センサユニット21を外方部材1の周方向2箇所以上に設けた構成としても良い。これら複数のセンサユニット21を周方向一定間隔おきに配置してもよく、また周方向適当間隔おきに配置してもよい。このように、センサユニット21を外方部材1の周方向2箇所以上に設けた場合、より一層精度の高い荷重の検出が可能となる。   In this embodiment, the sensor unit 21 is provided only at one place in the circumferential direction of the outer member 1, but the present invention is not necessarily limited to this configuration. For example, as shown in FIG. 5, the sensor units 21 may be provided at two or more locations in the circumferential direction of the outer member 1. The plurality of sensor units 21 may be arranged at regular intervals in the circumferential direction, or may be arranged at appropriate intervals in the circumferential direction. As described above, when the sensor units 21 are provided at two or more locations in the circumferential direction of the outer member 1, it is possible to detect a load with higher accuracy.

以上説明したセンサ付車輪用軸受は、歪み発生部材22および歪みセンサ23からなるセンサユニット21を、固定側部材である外方部材1に取付ける構成としたため、荷重検出用のセンサを車両にコンパクトに設置できる。歪み発生部材22は、外方部材1および内方部材2のうちの固定側部材に取付けられる簡易な部品であるため、この歪み発生部材22に歪みセンサ23を取付けることで、量産性に優れたものとでき、コスト低下が図れる。   Since the sensor-equipped wheel bearing described above has a configuration in which the sensor unit 21 including the strain generating member 22 and the strain sensor 23 is attached to the outer member 1 that is a fixed member, the load detection sensor can be made compact in the vehicle. Can be installed. Since the strain generating member 22 is a simple part that can be attached to the fixed side member of the outer member 1 and the inner member 2, attaching the strain sensor 23 to the strain generating member 22 is excellent in mass productivity. Can reduce costs.

また、センサユニット21を、外方部材1に形成したセンサ固定用ボスBS1,BS2を介して、この外方部材1に設けたため、次のような作用、効果を奏する。センサ固定用ボスBS1,BS2が外方部材本体1Aに対して相対的に位置ずれすることがなくなる。これにより、センサ変形支点が不所望に移動することを確実に防止することができ、したがって、センサ歪み感度のばらつきを低減することができる。   Further, since the sensor unit 21 is provided on the outer member 1 via the sensor fixing bosses BS1 and BS2 formed on the outer member 1, the following operations and effects are achieved. The sensor fixing bosses BS1 and BS2 are not displaced relative to the outer member main body 1A. Thereby, it is possible to reliably prevent the sensor deformation fulcrum from moving undesirably, and therefore it is possible to reduce variations in sensor distortion sensitivity.

前記歪み発生部材22は、第1ボスBS1の先端面BS1aに接触して固定される第1の接触固定部22aと、第2ボスBS2の先端面BS2aに接触して固定される第2の接触固定部22bとを有するため、第1,第2ボスBS1,BS2の突出長さが略同一とすると、第1および第2の接触固定部22a,22bの径方向位置が異なる。これにより、外方部材1の歪みが歪み発生部材22に転写しかつ拡大して現れやすくなる。この転写かつ拡大された歪みを歪みセンサ23で測定するため、外方部材1の歪みを感度良く検出でき、荷重の測定精度が高くなる。   The strain generating member 22 is in contact with and fixed to the front end surface BS1a of the first boss BS1, and the second contact is fixed in contact with the front end surface BS2a of the second boss BS2. If the protruding lengths of the first and second bosses BS1 and BS2 are substantially the same, the radial positions of the first and second contact fixing portions 22a and 22b are different. Thereby, the distortion of the outer member 1 is easily transferred to the distortion generating member 22 and enlarged. Since this transferred and enlarged strain is measured by the strain sensor 23, the strain of the outer member 1 can be detected with high sensitivity, and the load measurement accuracy is increased.

前記歪み発生部材22の第1,第2の接触固定部22a,22bを、固定具としてのボルト76により第1,第2ボスBS1,BS2を介して外方部材1に固定するため、接着剤や溶接等により歪み発生部材を固定する場合に比べて、作業品質の均一化を図り作業工数を低減でき、製造コストの低減を図ることが可能となる。なお、歪み発生部材22をボルト固定するのに加えて、接着剤および溶接等の少なくともいずれか一つを併用することも可能である。この場合、歪み発生部材22を外方部材1により強固に固定することができる。また、ボルト固定の代替手段として、ピン固定やこれら溶接等を用いても良い。   Since the first and second contact fixing portions 22a and 22b of the strain generating member 22 are fixed to the outer member 1 via the first and second bosses BS1 and BS2 by a bolt 76 as a fixture, an adhesive is used. Compared to the case where the distortion generating member is fixed by welding or welding, the work quality can be made uniform, the number of work steps can be reduced, and the manufacturing cost can be reduced. In addition to fixing the strain generating member 22 with bolts, it is also possible to use at least one of an adhesive and welding together. In this case, the strain generating member 22 can be firmly fixed by the outer member 1. Further, as an alternative means for fixing the bolt, pin fixing, welding, or the like may be used.

前記実施形態では、外方部材1が固定側部材である場合につき説明したが、この発明は、内方部材が固定側部材である車輪用軸受にも適用することができ、その場合、センサユニット21は内方部材の内周となる周面に設ける。
また、前記実施形態では第3世代型の車輪用軸受に適用した場合につき説明したが、この発明は、軸受部分とハブとが互いに独立した部品となる第1または第2世代型の車輪用軸受や、内方部材の一部が等速ジョイントの外輪で構成される第4世代型の車輪用軸受にも適用することができる。また、このセンサ付車輪用軸受は、従動輪用の車輪用軸受にも適用でき、さらに各世代形式のテーパころタイプの車輪用軸受にも適用することができる。このような車輪用軸受にセンサ付車輪用軸受を適用した場合にも、本実施形態と同様の作用、効果を奏する。
In the above embodiment, the case where the outer member 1 is a fixed side member has been described. However, the present invention can also be applied to a wheel bearing in which the inner member is a fixed side member. 21 is provided in the surrounding surface used as the inner periphery of an inner member.
In the above embodiment, the case where the present invention is applied to a third generation type wheel bearing has been described. However, the present invention relates to a first or second generation type wheel bearing in which the bearing portion and the hub are independent parts. In addition, the present invention can also be applied to a fourth generation type wheel bearing in which a part of the inner member is composed of an outer ring of a constant velocity joint. Further, this sensor-equipped wheel bearing can be applied to a wheel bearing for a driven wheel, and can also be applied to a tapered roller type wheel bearing of each generation type. Even when the sensor-equipped wheel bearing is applied to such a wheel bearing, the same operations and effects as in the present embodiment can be obtained.

この発明の一実施形態に係るセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure showing combining the sectional view of the wheel bearing with a sensor concerning one embodiment of this invention, and the block diagram of the conceptual composition of the detection system. 同センサ付車輪用軸受の外方部材とセンサユニットとを示す正面図である。It is a front view which shows the outward member and sensor unit of the wheel bearing with a sensor. 外方部材の第1,第2ボスに対してセンサユニットを分離して表示した破断側面図である。It is the fracture | rupture side view which isolate | separated and displayed the sensor unit with respect to the 1st, 2nd boss | hub of an outer member. 同外方部材の第1,第2ボスにセンサユニットを固定した破断側面図である。It is the fracture | rupture side view which fixed the sensor unit to the 1st, 2nd boss | hub of the outward member. 異なるセンサ付車輪用軸受の外方部材とセンサユニットとを示す正面図である。It is a front view which shows the outward member and sensor unit of a different wheel bearing with a sensor. 同センサ付車輪用軸受の外方部材とセンサユニットとを示す正面図である。It is a front view which shows the outward member and sensor unit of the wheel bearing with a sensor.

符号の説明Explanation of symbols

1…外方部材
1aa…フランジ面
2…内方部材
3,4…転走面
5…転動体
7,8…密封装置
21…センサユニット
23…歪みセンサ
31…作用力推定手段
76…ボルト
BS1…第1ボス
BS2…第2ボス
DESCRIPTION OF SYMBOLS 1 ... Outer member 1aa ... Flange surface 2 ... Inner member 3, 4 ... Rolling surface 5 ... Rolling body 7, 8 ... Sealing device 21 ... Sensor unit 23 ... Strain sensor 31 ... Action force estimation means 76 ... Bolt BS1 ... 1st boss BS2 ... 2nd boss

Claims (7)

複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体と、前記外方部材と前記内方部材との間の端部を密封する密封装置とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
前記外方部材および内方部材のうちの固定側部材に、センサ固定用ボスを形成しておき、歪み発生部材およびこの歪み発生部材に取付けた少なくとも1つ以上の歪みセンサからなるセンサユニットを、前記センサ固定用ボスを介して前記固定側部材に設けたことを特徴とするセンサ付車輪用軸受。
An outer member in which a double row rolling surface is formed on the inner periphery, an inner member having a rolling surface opposite to the rolling surface of the outer member, and a double row interposed between both rolling surfaces A rolling bearing, and a sealing device that seals an end between the outer member and the inner member, and a wheel bearing that rotatably supports a wheel with respect to a vehicle body,
A sensor unit consisting of a strain generating member and at least one strain sensor attached to the strain generating member, with a sensor fixing boss formed on the fixed side member of the outer member and the inner member, A wheel bearing with a sensor, wherein the bearing is provided on the fixed side member via the sensor fixing boss.
請求項1において、前記センサ固定用ボスは、前記固定側部材に設けられたフランジ面に形成した第1ボスと、前記固定側部材の周面に形成した第2ボスとを有し、前記歪み発生部材は、前記第1ボスの先端面に接触して固定される第1の接触固定部と、前記第2ボスの先端面に接触して固定される第2の接触固定部とを有するセンサ付車輪用軸受。   2. The sensor fixing boss according to claim 1, wherein the sensor fixing boss includes a first boss formed on a flange surface provided on the fixed side member, and a second boss formed on a peripheral surface of the fixed side member. The generating member includes a first contact fixing portion fixed in contact with the tip surface of the first boss, and a second contact fixing portion fixed in contact with the tip surface of the second boss. Wheel bearing. 請求項1または請求項2において、前記固定側部材が外方部材であるセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 1 or 2, wherein the stationary member is an outer member. 請求項1ないし請求項3のいずれか1項において、前記センサ固定用ボスを、前記固定側部材に一体成形したセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to any one of claims 1 to 3, wherein the sensor-fixing boss is integrally formed with the fixed-side member. 請求項1ないし請求項4のいずれか1項において、前記歪みセンサの出力によって、車輪用軸受に作用する外力、またはタイヤと路面間の作用力を推定する作用力推定手段を設けたセンサ付車輪用軸受。   5. The sensor-equipped wheel according to claim 1, further comprising an acting force estimating unit that estimates an external force acting on a wheel bearing or an acting force between a tire and a road surface based on an output of the strain sensor. Bearings. 請求項1ないし請求項5のいずれか1項において、前記歪み発生部材と前期固定部材との固定を、ボルト,ピンおよび接着剤の少なくともいずれか一つを用いて行うか、またはボルト,ピンおよび接着剤の両方を併用して行うか、または溶接を用いて行うセンサ付車輪用軸受。   In any 1 paragraph of Claims 1 thru / or 5, Fixing with the above-mentioned distortion generating member and a previous term fixing member is performed using at least any one of a bolt, a pin, and adhesives, or a bolt, a pin, and A bearing for a wheel with a sensor, which is performed by using both adhesives or by welding. 請求項1ないし請求項6のいずれか1項において、前記歪み発生部材を、径方向に沿った径方向部材と、軸方向に沿った軸方向部材とでL字形状に構成したセンサ付車輪用軸受。   The sensor-equipped wheel according to any one of claims 1 to 6, wherein the strain generating member is configured in an L shape by a radial member along a radial direction and an axial member along the axial direction. bearing.
JP2007190358A 2007-03-27 2007-07-23 Sensor-equipped bearing for wheel Pending JP2009024816A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007190358A JP2009024816A (en) 2007-07-23 2007-07-23 Sensor-equipped bearing for wheel
PCT/JP2008/000713 WO2008117534A1 (en) 2007-03-27 2008-03-25 Sensor-equipped bearing for wheel
US12/450,442 US8123411B2 (en) 2007-03-27 2008-03-25 Sensor-equipped bearing for wheel
US13/349,934 US8313242B2 (en) 2007-03-27 2012-01-13 Sensor-equipped bearing for wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007190358A JP2009024816A (en) 2007-07-23 2007-07-23 Sensor-equipped bearing for wheel

Publications (1)

Publication Number Publication Date
JP2009024816A true JP2009024816A (en) 2009-02-05

Family

ID=40396799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007190358A Pending JP2009024816A (en) 2007-03-27 2007-07-23 Sensor-equipped bearing for wheel

Country Status (1)

Country Link
JP (1) JP2009024816A (en)

Similar Documents

Publication Publication Date Title
JP4925624B2 (en) Wheel bearing with sensor
JP4864441B2 (en) Wheel bearing with sensor
US8028589B2 (en) Sensor-equipped bearing for wheel
JP2007292158A (en) Wheel bearing with sensor
JP2007071280A (en) Wheel bearing with sensor
WO2007023785A1 (en) Sensor-equipped bearing for wheel
JP2007239848A (en) Bearing for wheel with sensor
JP2007155629A (en) Bearing for wheel with sensor
JP2007046635A (en) Bearing for wheel with sensor
JP4850078B2 (en) Wheel bearing with sensor
JP4925625B2 (en) Wheel bearing with sensor
JP2007057259A (en) Wheel bearing with sensor
JP2007057258A (en) Wheel bearing with sensor
JP2007078615A (en) Bearing with sensor for wheel
JP2007057257A (en) Wheel bearing with sensor
JP2006258241A (en) Wheel bearing with sensor
JP5334370B2 (en) Wheel bearing with sensor
JP2007071652A (en) Wheel bearing with sensor
JP2007292159A (en) Wheel bearing with sensor
JP2009024816A (en) Sensor-equipped bearing for wheel
JP4911967B2 (en) Wheel bearing with sensor
JP2007078597A (en) Bearing with sensor for wheel
JP2007057301A (en) Wheel bearing with sensor
JP2008249566A (en) Sensor-attached wheel bearing
JP2007071628A (en) Wheel bearing with sensor