JP2009023254A - Analysis method of injection molding process, device for analysis, program for it, memory medium and manufacturing method by using the program - Google Patents

Analysis method of injection molding process, device for analysis, program for it, memory medium and manufacturing method by using the program Download PDF

Info

Publication number
JP2009023254A
JP2009023254A JP2007189662A JP2007189662A JP2009023254A JP 2009023254 A JP2009023254 A JP 2009023254A JP 2007189662 A JP2007189662 A JP 2007189662A JP 2007189662 A JP2007189662 A JP 2007189662A JP 2009023254 A JP2009023254 A JP 2009023254A
Authority
JP
Japan
Prior art keywords
cross
section
upstream
downstream
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007189662A
Other languages
Japanese (ja)
Inventor
Akira Nakano
亮 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2007189662A priority Critical patent/JP2009023254A/en
Publication of JP2009023254A publication Critical patent/JP2009023254A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for carrying out an analysis for a resin flow with plural resin flowing passages indispensable to a mold constructed so as to have plural cavities or plural gates and with a high precision within a short time. <P>SOLUTION: The analysis method for an injection molding includes a step for dividing a part or a whole of a resin flow pathway to plural minute line elements, a step for defining a shape of a cross section of the resin flow pathway, a step for dividing the cross section of the micro-elements based on the shape of the cross section to plural micro-two-dimensional elements, and a step for analyzing a temperature distribution in the cross section of the resin flow pathway by using the micre-two-dimensional elements. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、射出成形過程における射出成形材料の流動挙動をコンピュータによる数値解析により予測し、あるいは解析する方法、装置、プログラム、記憶媒体、そしてプログラムを用いた製造方法に関する。 The present invention relates to a method, an apparatus, a program, a storage medium, and a manufacturing method using a program for predicting or analyzing the flow behavior of an injection molding material in an injection molding process by numerical analysis using a computer.

一般に射出成形における流体流動過程をコンピュータ・シミュレーションにより再現する解析方法が広く実用化されている。これらの射出成形過程の解析方法は、射出成形品等の製品開発において高品質化、効率化、低コスト化に貢献している。 In general, an analysis method for reproducing a fluid flow process in injection molding by computer simulation has been widely put into practical use. These analysis methods of the injection molding process contribute to high quality, efficiency and cost reduction in the development of products such as injection molded products.

その活用方法などについては、たとえば射出成形プロセスシミュレーションの方法によって、注入段階による成形材料の温度変化と圧力変化の算出、温度解析、そして注入段階以後の材料の温度変化の算出、溶融層のつながりが消失した時点の算出、その消失時点の材料の温度分布および流動解析による注入終了段階の材料の圧力分布から熱応力歪を算出し、その熱応力歪に係る成形品の形状歪を算出する等の特開平3−224712号公報(特許文献1)、或いは、微小要素に分割した製品形状モデルを流動解析することにより、射出成形条件の評価を行うもので、温度条件、充填時間を基に複数の微小要素のせん断応力の最大値を求め充填時間とせん断応力最大値の関係をグラフ化する工程と、複数の充填時間条件で前記の工程を繰り返し行って、せん断応力最大値の差が最小となる充填時間を求め評価する等の特開平4−305424号公報(特許文献2)などが開示されている。   For example, the injection molding process simulation method is used to calculate the temperature change and pressure change of the molding material during the injection stage, analyze the temperature, calculate the temperature change of the material after the injection stage, and link the molten layer. Calculation of the thermal stress strain from the calculation of the time of disappearance, the temperature distribution of the material at the time of disappearance and the pressure distribution of the material at the end of injection by flow analysis, and the shape strain of the molded product related to the thermal stress strain, etc. JP-A-3-224712 (Patent Document 1) or a flow analysis of a product shape model divided into microelements to evaluate injection molding conditions. Based on temperature conditions and filling times, a plurality of Obtaining the maximum value of the shear stress of the microelement and graphing the relationship between the filling time and the shearing stress maximum value, and repeating the above steps under multiple filling time conditions Go and like Hei 4-305424 discloses such a difference in shear stress maximum value to evaluate seek smallest filling time (Patent Document 2) are disclosed.

射出成形解析では、まず成形品を3角形や4角形、4面体、6面体などの微小要素に分割し、流体の運動方程式として良く知られたナビエ・ストークス方程式またはその簡略化した式と、質量保存則やエネルギー方程式と呼ばれる基礎方程式とを用いて、有限要素法や差分法などの良く知られた数値解析手法により各微小要素の圧力や温度、流動速度などを計算する。   In injection molding analysis, the molded product is first divided into small elements such as triangles, quadrangles, tetrahedrons, hexahedrons, etc., and the Navier-Stokes equations well known as fluid equations of motion, or their simplified equations, and mass Using well-known numerical analysis methods such as the finite element method and the difference method, the pressure, temperature, flow velocity, etc. of each microelement are calculated using a conservation law and a basic equation called an energy equation.

一方、同一形状の成形品を一度の射出成形で複数個成形する多数個取り成形や、異なる形状の成形品を一つの金型で同時に成形するファミリーモールド成形では、複数のキャビティをランナーと呼ばれる射出成形材料の流路で連結することで同時成形し、生産効率の向上が図られている。このとき、キャビティ間の品質ばらつきを抑えたり、成形圧力や型締め力の上昇を抑えるために、各キャビティの充填完了する時間や、各キャビティの圧力履歴を一致させることが金型設計上重要となる。一般にこうしたキャビティ間の充填バランスの調整は、ランナーやゲートの形状、すなわちランナーやゲートの直径や断面積等を調整して行われることが多く、一般にランナーバランス設計と呼ばれている。   On the other hand, in multi-cavity molding in which a plurality of molded products with the same shape are molded by one injection molding and family mold molding in which molded products of different shapes are simultaneously molded with one mold, multiple cavities are called runners. Production is improved by simultaneous molding by connecting the molding material flow paths. At this time, in order to suppress the quality variation between cavities and to suppress the increase in molding pressure and clamping force, it is important in the mold design to match the filling completion time of each cavity and the pressure history of each cavity. Become. Generally, the adjustment of the filling balance between the cavities is often performed by adjusting the shape of the runner and the gate, that is, the diameter and the cross-sectional area of the runner and the gate, and is generally called a runner balance design.

また単独のキャビティに対して樹脂の流入するゲートを複数設定する場合において、各ゲートまで樹脂を分岐し導く場合にもランナーが用いられる。この場合にも、各ゲートからの流量バランスを調整し、キャビティ内で樹脂の流動先端が合流する“ウェルド”と呼ばれる位置を調整したり、最終充填位置を調整したりするためにランナーやゲートの径や長さを調整しランナーバランス設計を行う必要がある。   In the case where a plurality of gates into which resin flows into a single cavity is set, a runner is also used to branch and guide the resin to each gate. In this case as well, the flow balance from each gate is adjusted to adjust the position called “weld” where the flow fronts of the resin merge in the cavity, and to adjust the final filling position. It is necessary to adjust the diameter and length to design a runner balance.

前記射出成形の数値解析によるシミュレーションを用いて、こうしたランナーバランス設計を自動的に行うソフトウェアシステムが実用化されている。たとえば特開2003−231167(特許文献3)には複雑なキャビティ部の流動解析を別に実行して簡単な関数に置き換え、境界条件として与えることにより、ランナー部分だけを用いて高速にランナーバランス設計を行う手法が提案されている。   A software system that automatically performs such a runner balance design using simulation by numerical analysis of the injection molding has been put into practical use. For example, in Japanese Patent Laid-Open No. 2003-231167 (Patent Document 3), a complicated cavity part flow analysis is separately performed and replaced with a simple function, and given as a boundary condition, a runner balance design can be performed at high speed using only the runner part. A technique to do this has been proposed.

射出成形の流動解析では、従来よりランナーやゲート部分を一次元の線要素で簡略的に定義し、各部の流体相当円直径を与えることによって簡単に流体の圧力や温度を算出する手法が用いられてきた。   In the flow analysis of injection molding, conventionally, the runner and gate parts are simply defined by one-dimensional line elements, and the fluid pressure and temperature are simply calculated by giving the equivalent circular diameter of each part. I came.

また近年では射出成形の3次元流動解析が普及し、ランナー・ゲート部についてもキャビティ部と同様に微小な4面体や6面体などの立体要素に分割し、3次元的な流動や温度分布を考慮して解析する手法も一般化している。   In recent years, three-dimensional flow analysis of injection molding has become widespread, and the runner / gate part is divided into three-dimensional elements such as microtetrahedrons and hexahedrons in the same way as the cavity part, taking into consideration three-dimensional flow and temperature distribution. The analysis method is also generalized.

特開平3−224712号公報JP-A-3-224712 特開平4−305424号公報JP-A-4-305424 特開2003−231167JP2003-231167A

上記した特許文献1および特許文献2の解析の方法では、解析の結果の精度を高くするためにモデルの形状を非常に緻密な小片に区切り(メッシング)し、解析の条件を変更して繰り返し計算させる等することにより、解析に要する時間が膨大になってしまう。   In the analysis methods of Patent Document 1 and Patent Document 2 described above, the model shape is divided into very fine pieces (meshing) in order to increase the accuracy of the analysis results, and the analysis conditions are changed and repeated calculation is performed. By doing so, the time required for analysis becomes enormous.

また、上記の解析は金型にキャビティー型とコア型の2面に掘り込まれた主要部で形成される樹脂成形品の形状を所望の形状にすることを主目的としており、その主要部にいたる溶融樹脂の流れの影響は主要な対象とされていない。   The main purpose of the above analysis is to make the shape of the resin molded product formed by the main part dug into the cavity mold and the core mold into the desired shape. The influence of the flow of molten resin leading to is not the main target.

あるいは、射出成形の流動解析では、従来よりランナーやゲート部分を一次元の線要素で簡略的に定義し、各部の流体相当円直径を与えることによって簡単に流体の圧力や温度を算出する手法が用いられており、この方法では単純な直線的な部分の小径のスプール、ランナー或いはゲートなどは解析できても、曲がり或いは分岐などのある形状で、屈曲する部分の内側と外側の差が生じるような複雑なランナーやゲートなどには対応できていない。   Or, in the flow analysis of injection molding, there is a method to calculate the fluid pressure and temperature simply by defining the runner and the gate part simply with one-dimensional line elements and giving the equivalent fluid circular diameter of each part. Although this method can analyze small diameter spools, runners, gates, etc. in a simple linear part, it may be bent or branched, and a difference between the inside and outside of the bent part will occur. It cannot cope with complicated runners and gates.

さらに、金型内で成形機先端からキャビティへ溶融樹脂を流す流路(ランナー)の曲がりや分岐によって樹脂の充填順序が変化する現象は、従来の射出成形CAEではランナーの3次元メッシュを細かく分割しなければ解析できなかった。このためメッシュ生成に手間や時間がかかり、また計算時間が膨大にかかるという問題があった。   Furthermore, the phenomenon in which the resin filling sequence changes due to bending or branching of the flow path (runner) that flows the molten resin from the tip of the molding machine to the cavity in the mold is divided into the three-dimensional mesh of the runner in conventional injection molding CAE. Otherwise, it could not be analyzed. For this reason, there is a problem that it takes time and effort to generate the mesh, and the calculation time is enormous.

また、特許文献3の方法は流入点の上下の2つの解析モデルの解析を行って、解析モデル1の解析結果で得た圧力の値を解析モデル2の境界条件として流動解析を行うなど複雑で解析実行時間を多く要するものであった。   Further, the method of Patent Document 3 is complicated, for example, by analyzing two analysis models above and below the inflow point and performing a flow analysis using the pressure value obtained from the analysis result of the analysis model 1 as a boundary condition of the analysis model 2. It took a lot of analysis time.

本出願の発明では、従来から使われていた線要素でランナーを簡単に入力し、計算上は断面内のメッシュを自動生成して温度分布を2次元的に計算し、また曲がりによる距離の増減や分岐による断面内温度の分配を考慮することにより、簡単な入力で計算も短時間にできる解析方法、解析装置、解析を実行するプログラム、および解析結果を利用した樹脂成形品の製造方法を提供する。   In the invention of this application, the runner is simply input using the line elements that have been used in the past, and in the calculation, the mesh in the cross section is automatically generated, the temperature distribution is calculated two-dimensionally, and the distance increase / decrease by bending Provides analysis method, analysis device, program to execute analysis, and method of manufacturing resin molded product using analysis result by considering distribution of temperature in cross section due to temperature and branching by simple input To do.

上記の目的を達成するために本発明では、射出成形過程における射出成形材料の流動挙動を、解析対象物の形状を複数の微小要素に分割した解析モデルを用いてコンピュータによりシミュレーションする数値解析方法であって、樹脂流路の一部または全体を複数の微小な線要素に分割する工程と、前記樹脂流路の断面形状を定義する工程と、前記断面形状にもとづき前記線要素の断面を複数の微小な2次元要素に分割する工程と、前記2次元要素を用いて前記樹脂流路の断面内温度分布を解析する工程を有する構成としている。   In order to achieve the above object, the present invention is a numerical analysis method in which the flow behavior of an injection molding material in an injection molding process is simulated by a computer using an analysis model in which the shape of an analysis object is divided into a plurality of minute elements. A step of dividing a part or the whole of the resin flow path into a plurality of minute line elements; a step of defining a cross-sectional shape of the resin flow path; and a plurality of cross-sections of the line elements based on the cross-sectional shape. It is configured to have a step of dividing into minute two-dimensional elements and a step of analyzing the temperature distribution in the cross section of the resin flow path using the two-dimensional elements.

また、本発明の好ましい態様では、前記線要素の上流から下流へ樹脂の流れる順序を決定する工程と、前記順序にもとづき上流から下流への熱移流を考慮して下流側線要素の断面内温度分布を解析する工程を有する構成としている。   Further, in a preferred aspect of the present invention, the step of determining the order in which the resin flows from upstream to downstream of the line element, and the temperature distribution in the cross section of the downstream line element in consideration of heat advection from upstream to downstream based on the order. It is set as the structure which has the process of analyzing.

また、本発明の好ましい態様では、上流から下流へ連続する2つの線要素間の角度に応じて、曲がりによる断面内の流動距離増減を算出する工程と、上流側線要素の断面内の温度分布と流動距離にもとづき上流から下流への熱移流を考慮して下流側線要素の断面内温度分布を解析する工程を有する構成としている。   Further, in a preferred aspect of the present invention, the step of calculating the flow distance increase / decrease in the cross section due to the bending according to the angle between the two line elements continuous from the upstream to the downstream, the temperature distribution in the cross section of the upstream line element, It is configured to include a step of analyzing the temperature distribution in the cross section of the downstream line element in consideration of the heat advection from upstream to downstream based on the flow distance.

また、本発明の好ましい態様では、上流から下流へ分岐する部分の分岐先の線要素数に応じて上流側線要素の断面内の温度分布を分割して上流側温度分布を定め、上流から下流への熱移流を考慮して下流側線要素の断面内温度分布を解析する工程を有する構成としている。   Further, in a preferred aspect of the present invention, the upstream temperature distribution is determined by dividing the temperature distribution in the cross section of the upstream line element in accordance with the number of the branch destination line elements of the portion branching from upstream to downstream, and from upstream to downstream. In consideration of this heat advection, the temperature distribution in the cross section of the downstream line element is analyzed.

また、本発明によれば、射出成形過程における射出成形材料の流動挙動を、解析対象物の形状を複数の微小要素に分割した解析モデルを用いてコンピュータによりシミュレーションする数値解析方法であって、樹脂流路の一部または全体を複数の微小な線要素に分割する手段と、前記樹脂流路の断面形状を定義する手段と、前記断面形状にもとづき前記線要素の断面を複数の微小な2次元要素に分割する手段と、
前記2次元要素を用いて前記樹脂流路の断面内温度分布を解析する手段を有することを特徴とする射出成形CAE解析装置が提供される。
Further, according to the present invention, there is provided a numerical analysis method for simulating a flow behavior of an injection molding material in an injection molding process by a computer using an analysis model obtained by dividing the shape of an analysis object into a plurality of minute elements, Means for dividing a part or the whole of the flow path into a plurality of minute line elements; means for defining the cross-sectional shape of the resin flow path; and Means for dividing into elements;
There is provided an injection molding CAE analyzer characterized by having means for analyzing the temperature distribution in the cross section of the resin flow path using the two-dimensional element.

また、本発明の好ましい態様では、前記線要素の上流から下流へ樹脂の流れる順序を決定する手段と、前記順序にもとづき上流から下流への熱移流を考慮して下流側線要素の断面内温度分布を解析する手段を有することを特徴とする、請求項1記載の射出成形CAE解析装置である。   Further, in a preferred aspect of the present invention, means for determining the order in which the resin flows from upstream to downstream of the line element, and temperature distribution in the cross section of the downstream line element in consideration of heat advection from upstream to downstream based on the order The injection molding CAE analyzing apparatus according to claim 1, further comprising means for analyzing

また、本発明の好ましい態様では、上流から下流へ連続する2つの線要素間の角度に応じて、曲がりによる断面内の流動距離増減を算出する手段と、上流側線要素の断面内の温度分布と流動距離にもとづき上流から下流への熱移流を考慮して下流側線要素の断面内温度分布を解析する手段を有することを特徴とする、請求項2記載の射出成形CAE解析装置である。なお、前記流動距離の増減は、断面内温度分布のみならず、圧力や流速などの計算に用いて各計算結果の精度を高めることに活用することもできる。   Further, in a preferred aspect of the present invention, the means for calculating the flow distance increase / decrease in the cross section due to the bending according to the angle between the two line elements continuous from the upstream to the downstream, the temperature distribution in the cross section of the upstream line element, 3. The injection molding CAE analyzer according to claim 2, further comprising means for analyzing the temperature distribution in the cross section of the downstream line element in consideration of heat advection from upstream to downstream based on the flow distance. The increase / decrease in the flow distance can be used not only to calculate the temperature distribution in the cross section but also to increase the accuracy of each calculation result by calculating the pressure and flow velocity.

また、本発明の好ましい態様では、上流から下流へ分岐する部分の分岐先の線要素数に応じて上流側線要素の断面内の温度分布を分割して上流側温度分布を定め、上流から下流への熱移流を考慮して下流側線要素の断面内温度分布を解析する手段を有することを特徴とする、請求項2記載の射出成形CAE解析装置である。   Further, in a preferred aspect of the present invention, the upstream temperature distribution is determined by dividing the temperature distribution in the cross section of the upstream line element in accordance with the number of the branch destination line elements of the portion branching from upstream to downstream, and from upstream to downstream. The injection molding CAE analyzing apparatus according to claim 2, further comprising means for analyzing the temperature distribution in the cross-section of the downstream line element in consideration of the heat advection.

また、本発明によれば、射出成形過程における射出成形材料の流動挙動を、解析対象物の形状を複数の微小要素に分割した解析モデルを用いてコンピュータによりシミュレーションするプログラムであって、樹脂流路の一部または全体を複数の微小な線要素に分割する工程と、前記樹脂流路の断面形状を定義する工程と、前記断面形状にもとづき前記線要素の断面を複数の微小な2次元要素に分割する工程と、
前記2次元要素を用いて前記樹脂流路の断面内温度分布を解析する工程を有することを特徴とするコンピュータで実行可能なプログラムが提供される。
Further, according to the present invention, there is provided a program for simulating a flow behavior of an injection molding material in an injection molding process by a computer using an analysis model obtained by dividing the shape of an analysis object into a plurality of minute elements. Dividing a part or the whole into a plurality of minute line elements, defining a cross-sectional shape of the resin flow path, and converting the cross-section of the line element into a plurality of minute two-dimensional elements based on the cross-sectional shape Dividing, and
There is provided a computer-executable program comprising a step of analyzing a temperature distribution in a cross section of the resin flow path using the two-dimensional element.

また、本発明によれば、前記プログラムを記憶した、コンピュータ読み取り可能な記憶媒体が提供される。   In addition, according to the present invention, a computer-readable storage medium storing the program is provided.

また、本発明によれば、上記のいずれかに記載のCAE解析方法・装置を用いて射出成形品の射出成形過程を解析し、解析結果に基づいて製造パラメータを最終決定し、最終決定された製造パラメータに基づいて射出成形品を製造する射出成形品の製造方法が提供される。   In addition, according to the present invention, the injection molding process of the injection molded product is analyzed using any one of the CAE analysis methods and apparatuses described above, and the manufacturing parameters are finally determined based on the analysis result. An injection molded product manufacturing method for manufacturing an injection molded product based on manufacturing parameters is provided.

ここで、ランナーとは成形機のノズル先端からコア・キャビティーまでの金型内の材料流路であり、スプールやゲートと呼ばれる部分を含むものとする。   Here, the runner is a material flow path in the mold from the nozzle tip of the molding machine to the core cavity, and includes a part called a spool or a gate.

以上のように、本発明によれば、曲がり、分岐といった複雑な流路を持つ構成の樹脂成形金型におけるランナー部の適切な設計を短時間で行うことができる解析方法、解析装置、解析を実行するプログラム、プログラムを実行した解析結果に基づいた製造方法による樹脂成形品を得ることができる。   As described above, according to the present invention, an analysis method, an analysis apparatus, and an analysis that can perform an appropriate design of a runner portion in a resin molding die having a complicated flow path such as bending and branching in a short time. It is possible to obtain a resin molded product by a manufacturing method based on a program to be executed and an analysis result of executing the program.

また、上述したように副次的に樹脂成形に使用する設備も射出圧力・型締力などの低い能力の成形機で済み、金型や機械などの設備費・そのランニングコスト或いはスプールなどの副材料の省資源化などトータルコストの低減に大きく貢献することができる。   In addition, as described above, the equipment used for resin molding as a secondary item may be a molding machine having a low capacity such as injection pressure and clamping force, and the equipment costs such as molds and machines, the running costs thereof, and the auxiliary costs such as spools. It can greatly contribute to the reduction of total cost such as resource saving of materials.

図1は本発明を射出成形解析に適用した場合の一実施形態例の概略手順を示すためのフローチャートである。 FIG. 1 is a flowchart for showing a schematic procedure of an embodiment when the present invention is applied to an injection molding analysis.

本実施形態による数値解析方法では、樹脂流路の一部または全体を複数の微小な線要素に分割し、成形条件う樹脂データなどの解析条件を入力する工程(ステップ1)と、前記樹脂流路の断面形状を定義する工程(ステップ2)と、前記断面形状にもとづき前記線要素の断面を複数の微小な2次元要素に分割する工程(ステップ3)と、前記線要素の上流から下流へ樹脂の流れる順序を決定する工程(ステップ4)と、下流側2次元要素に対する上流側温度を決定する工程(ステップ5)と、上流から下流へ連続する2つの線要素間の角度に応じて、曲がりによる断面内の流動距離増減を算出する工程(ステップ6)と、上流から下流へ分岐する部分の分岐先の線要素数に応じて上流側線要素の断面内の温度分布を分割して下流へ移流する温度分布を定める工程(ステップ7)と、上流から下流への熱移流を考慮して下流側線要素の断面内温度分布を解析する工程(ステップ8)
とよりなり、解析結果に応じて流路形状や断面形状を変更し、ステップ1から繰り返し計算することにより、解析精度を保ちながら全体のフローを実行する時間を短縮できているので、充填バランスのよい流路設計を効率よく行うことができる。
In the numerical analysis method according to the present embodiment, a step (step 1) of dividing a part or the whole of the resin flow path into a plurality of minute line elements and inputting analysis conditions such as resin data for molding conditions, and the resin flow A step of defining a cross-sectional shape of the road (step 2), a step of dividing the cross-section of the line element into a plurality of minute two-dimensional elements based on the cross-sectional shape (step 3), and from upstream to downstream of the line element According to the step (step 4) of determining the order in which the resin flows, the step of determining the upstream temperature for the downstream two-dimensional element (step 5), and the angle between two line elements continuous from upstream to downstream, The step of calculating the flow distance increase / decrease in the cross-section due to bending (step 6) and the temperature distribution in the cross-section of the upstream line element is divided downstream in accordance with the number of branch-destination line elements in the portion branched from the upstream to the downstream. Advection temperature Step for determining the distribution (step 7), the step of analyzing the cross-sectional temperature distribution of the downstream side wire element from upstream in consideration of heat advection downstream (Step 8)
By changing the flow path shape and cross-sectional shape according to the analysis result and repeatedly calculating from step 1, the time for executing the entire flow can be shortened while maintaining the analysis accuracy. A good flow path design can be performed efficiently.

図2は本実施形態例で用いる解析装置の構成図であり、解析条件設定手段101と、流路断面の微小要素生成手段102と、流動解析実行手段103、解析結果出力手段104よりなる解析演算処理を行う演算装置100と、解析データやソフトウェアなどを保存するメモリやハードディスク等よりなるデータを記憶する補助記憶装置110と、キーボードやマウス、デジタイザ、3次元形状測定装置等よりなる解析条件入力装置120と、ディスプレイやプリンタ、光造形装置等よりなる出力装置130などがある。   FIG. 2 is a block diagram of an analysis apparatus used in this embodiment, and an analysis operation comprising an analysis condition setting means 101, a microelement generation means 102 for a flow path cross section, a flow analysis execution means 103, and an analysis result output means 104. An arithmetic device 100 for processing, an auxiliary storage device 110 for storing data such as a memory for storing analysis data and software, a hard disk, and the like, and an analysis condition input device including a keyboard, mouse, digitizer, three-dimensional shape measuring device, etc. 120 and an output device 130 including a display, a printer, an optical modeling apparatus, and the like.

上記の解析条件設定手段101等の各手段はいずれも演算装置(コンピュータ)のCPUおよびメモリによって構築されるハードウェア上の関数やサブルーチン等の形で実現されている。   Each means such as the above-described analysis condition setting means 101 is realized in the form of a hardware function or subroutine constructed by the CPU and memory of an arithmetic unit (computer).

以下に具体的な例を説明する。本実施例では本発明の基本的な実施方法を解説することを目的とし、図3に示すような射出成形品のを多数個取りにより射出成形する場合を例に、本発明を射出成形時の射出成形材料の流動充填解析に適用した場合の形態を説明する。   A specific example will be described below. The purpose of this embodiment is to explain the basic method of carrying out the present invention. In the case of injection molding by taking a large number of injection molded products as shown in FIG. The form when applied to the flow filling analysis of the injection molding material will be described.

まずステップ1にて解析条件入力装置120により射出成形品形状を微小要素に分割した形状データ、成形材料の粘度、射出温度、射出圧力などの解析条件を入力する。   First, in step 1, the analysis condition input device 120 inputs analysis data such as shape data obtained by dividing the injection molded product shape into minute elements, the viscosity of the molding material, the injection temperature, and the injection pressure.

ここでは図4に示すようにキャビティ形状を4角形の微小要素に分割し、ランナー部分を微小な線要素に分割して解析モデル1を作成した。これらの解析条件入力は、予め解析条件入力装置120に入力され、補助記憶装置110にデータベースとして保存していた電子情報から選択することにより入力してもよい。また材料が成形機より供給される樹脂流入部として、流入口4aを設定した。   Here, as shown in FIG. 4, the cavity model was divided into quadrangular minute elements, and the runner portion was divided into minute line elements to create the analysis model 1. These analysis condition inputs may be input by selecting from electronic information that has been input to the analysis condition input device 120 in advance and stored in the auxiliary storage device 110 as a database. Moreover, the inflow port 4a was set as a resin inflow part to which material is supplied from a molding machine.

入力された解析条件データはメモリ上に保持されると共に必要に応じて解析条件設定手段101により補助記憶装置110に保存される。解析モデルはこのように既に作成されたものをメモリ上に読み込んだり、外形等を表すCADデータ等から自動的に作成したりしてメモリ上に構築することができる。さらに補助記憶装置110より解析条件データが演算装置100のメモリに読み込まれ、成形条件や材料物性などの解析条件が解析条件設定手段101にて設定される。   The input analysis condition data is stored in the memory and is stored in the auxiliary storage device 110 by the analysis condition setting means 101 as necessary. The analysis model can be constructed on the memory by reading the already created model on the memory or automatically creating it from CAD data representing the outer shape or the like. Further, analysis condition data is read from the auxiliary storage device 110 into the memory of the arithmetic device 100, and analysis conditions such as molding conditions and material properties are set by the analysis condition setting means 101.

次にステップ2にて流路断面形状を入力する。ここではキャビティにいたるランナーの断面形状を円形とし、直径4mmとして入力する。流路の断面形状としては円形に限定されず、矩形や台形、半円形、二重鉛管などさまざまな形状を設定することができる。また、ここでは全てのランナー部分について一定の断面形状を設定しているが、ランナーの各微小線要素の全部または一部について異なる断面形状を設定することも可能である。入力された断面形状は補助記憶装置110に保存される。   Next, in step 2, the channel cross-sectional shape is input. Here, the cross-sectional shape of the runner leading to the cavity is circular, and the diameter is 4 mm. The cross-sectional shape of the flow path is not limited to a circle, and various shapes such as a rectangle, a trapezoid, a semicircle, and a double lead pipe can be set. Further, here, a constant cross-sectional shape is set for all the runner portions, but a different cross-sectional shape can be set for all or a part of each micro-line element of the runner. The input cross-sectional shape is stored in the auxiliary storage device 110.

ステップ3にて流路の断面を微小要素生成手段102により、2次元の微小要素に分割する。ここでは図5に示すように円形断面を64個の四角形と三角形に分割した。   In step 3, the cross section of the flow path is divided into two-dimensional microelements by the microelement generating means 102. Here, as shown in FIG. 5, the circular cross section was divided into 64 squares and triangles.

ステップ4にて樹脂流入位置より下流へ樹脂の流動する順序を決定する。この流動順序の決定は流動解析に先立って流路をたどることによって決定してもよく、あるいは流動解析を実行しながら樹脂の流動方向より決定してもよい。このとき、ランナー部のそれぞれの線要素について上流となる線要素の番号が抽出される。   In step 4, the order in which the resin flows downstream from the resin inflow position is determined. The flow order may be determined by following the flow path prior to the flow analysis, or may be determined from the resin flow direction while performing the flow analysis. At this time, the number of the upstream line element is extracted for each line element of the runner part.

ステップ5では下流側線要素の断面2次元要素に対応する上流側の断面内位置を算出する。例えば図6について下流側の要素6cに対する上流側位置6bが算出される。また、例えば図4の4b部分のように微小線要素が上流から下流へ分岐する場合は、分岐部分の微小要素間では上流の断面と下流の断面とで図7に示すように下流側線要素の断面2次元要素に対応する上流側の断面内位置を算出する。このとき、分岐の際に外回り側となる7fなどの断面2次元要素では、上流側の分岐境界に沿った7e位置の温度が上流温度となる。   In step 5, the upstream position in the cross section corresponding to the two-dimensional cross section element of the downstream line element is calculated. For example, with respect to FIG. 6, the upstream position 6b with respect to the downstream element 6c is calculated. Further, for example, when the micro line element branches from the upstream to the downstream as in the portion 4b in FIG. 4, between the micro elements in the branch portion, the upstream side section and the downstream section have the downstream side line element as shown in FIG. The upstream position in the cross-section corresponding to the cross-sectional two-dimensional element is calculated. At this time, in a two-dimensional cross-sectional element such as 7f that becomes the outer side when branching, the temperature at the 7e position along the upstream branch boundary becomes the upstream temperature.

ステップ6では中立軸の流動距離6aに対して6dなど各断面2次元要素ごとの流動距離が算出される。   In step 6, the flow distance for each two-dimensional cross-sectional element such as 6d is calculated with respect to the flow distance 6a of the neutral axis.

ステップ7では樹脂流入点において射出樹脂温度を設定し、上流の微小線要素から下流の線要素へ順次初期温度を設定し、熱伝導解析により断面内の温度変化を計算する。この際、ステップ6で算出した流動長の増減と、ステップ5で算出した分岐部における上流から下流へ対応する断面2次元微小要素を考慮する。   In step 7, the injection resin temperature is set at the resin inflow point, the initial temperature is sequentially set from the upstream minute line element to the downstream line element, and the temperature change in the cross section is calculated by heat conduction analysis. At this time, the increase / decrease of the flow length calculated in step 6 and the cross-sectional two-dimensional microelements corresponding to the branch portion calculated in step 5 from upstream to downstream are taken into consideration.

最後にステップ8にてランナー断面内の温度分布と流動長分布を考慮して、流動解析実行手段103により樹脂流動解析を実施することにより、線要素の入力に対してランナー断面内の非対称分布を考慮した解析を実施することができる。そして、その解析結果を解析結果出力手段104により、出力装置130等にデータを送出し、プリンタに結果を印字したり、ディスプレイに表示したり等することができる。   Finally, in step 8, taking into account the temperature distribution and flow length distribution in the runner cross section, the flow analysis execution means 103 performs the resin flow analysis to obtain an asymmetric distribution in the runner cross section with respect to the input of the line element. Analyzes can be performed in consideration. The analysis result can be sent to the output device 130 or the like by the analysis result output means 104 and the result can be printed on a printer or displayed on a display.

図8は解析の結果得られた充填領域図である。キャビティ8aとキャビティ8bは充填開始から0.9秒後に末端までが充填しているが、キャビティ8cとキャビティ8dは1.0秒後となり、充填のアンバランスが発生することが判明した。そこで、数回の修正を繰り返した結果、図9に示すように一部のランナー径を3.5mmに修正することにより各キャビティが同時に充填するバランスよいランナー形状を得ることができた。   FIG. 8 is a filling area diagram obtained as a result of the analysis. The cavities 8a and 8b are filled up to the end 0.9 seconds after the start of filling, but the cavities 8c and 8d are 1.0 seconds later, and it has been found that filling imbalance occurs. Therefore, as a result of repeating the correction several times, as shown in FIG. 9, by adjusting a part of the runner diameter to 3.5 mm, it was possible to obtain a well-balanced runner shape in which each cavity was simultaneously filled.

通常の3次元解析を用いてランナー部分を3次元要素に分割して、同様の計算を行い、メッシュ変更を繰り返して最適なランナーバランスを求めた場合に比べて、1/10以下の時間で最適な解が得られた。   The runner part is divided into three-dimensional elements using ordinary three-dimensional analysis, the same calculation is performed, and the optimal runner balance is obtained in less than 1/10 of the time required by repeatedly changing the mesh. The correct solution was obtained.

次に示す実施例では、図10に示す平板状のキャビティに対して、2点ゲートから充填する際のランナーバランスについて検討する。   In the following embodiment, the runner balance when filling the flat cavity shown in FIG. 10 from a two-point gate will be examined.

図11に示すように、樹脂流入口11bから2つのゲートまでにいたる距離は等しく、従来方法の射出成形CAE解析によれば、充填は図12のようにキャビティ内で対称に進む。しかし実際にはランナーの曲がり部分の影響を受けて図13に示すように内回り側のゲートA側の充填が早く進むことが判明した。   As shown in FIG. 11, the distance from the resin inlet 11b to the two gates is equal, and according to the injection molding CAE analysis of the conventional method, filling proceeds symmetrically in the cavity as shown in FIG. However, in actuality, it has been found that the filling on the gate A side on the inner side proceeds faster as shown in FIG. 13 due to the influence of the bent portion of the runner.

本出願の方法により解析した結果、この内回りが先行する現象を再現し、ゲートAの直径を80%に低減することにより、ほぼ対象に充填が進むことが判明した。この対策により、充填バランスが改善したことによって充填に要する樹脂圧力が対策前の65%にまで低減し、小型の成形機で射出することが可能となり、大幅に成形コストを低減できることが判明した。   As a result of the analysis by the method of the present application, it was found that the phenomenon that the inner circumference precedes was reproduced, and that the diameter of the gate A was reduced to 80%, so that the filling progressed almost to the target. By this measure, it was found that the resin pressure required for filling is reduced to 65% before the measure by improving the filling balance, and it is possible to inject with a small molding machine, and the molding cost can be greatly reduced.

本願発明に係る射出成形解析方法、解析装置、解析を実行するプログラム、プログラムを実行した解析結果に基づいた製造方法によれば、複数のキャビティを有する多数個取り成形やファミリーモールド成形、或いは多点ゲートなどにおけるランナーバランス設計に要する計算の速度を大幅に向上することができる。これによって短時間に多数の設計検討案を繰り返し計算することが可能となり、適切なランナー・ゲートの径や長さなど、金型設計の効率化が図られ、製品開発期間の短縮や製品品質の向上に寄与することができる。 According to the injection molding analysis method, the analysis apparatus, the program for executing the analysis, the manufacturing method based on the analysis result of executing the program according to the present invention, a multi-cavity molding having a plurality of cavities, a family mold molding, or multiple points The speed of calculation required for runner balance design in gates can be greatly improved. This makes it possible to repeatedly calculate a large number of design considerations in a short time, improve the efficiency of mold design, such as the appropriate runner / gate diameter and length, shorten the product development period and improve product quality. It can contribute to improvement.

なお、このプログラムを記憶する記憶媒体には、記憶容量として十分なものであれば、現在利用可能な多様な記録メディアを使用できる。   As a storage medium for storing this program, various recording media that are currently available can be used as long as the storage capacity is sufficient.

本願発明の実施の工程を示すフローチャートである。It is a flowchart which shows the process of implementation of this invention. 本願発明の装置の構成図である。It is a block diagram of the apparatus of this invention. 実施例1にて検討する射出成形品のキャビティとランナー形状を示す概念図である。It is a conceptual diagram which shows the cavity and runner shape of the injection molded product examined in Example 1. 図3に示す射出成形品のキャビティを四角形の微小要素に分割し、ランナーを線要素に分割した概念図である。It is the conceptual diagram which divided | segmented the cavity of the injection molded product shown in FIG. 3 into the square microelement, and divided | segmented the runner into the line element. 図3のランナーの円形断面を三角形と四角形の2次元要素に分割した様子を示す概念図である。It is a conceptual diagram which shows a mode that the circular cross section of the runner of FIG. 3 was divided | segmented into the two-dimensional element of a triangle and a rectangle. ランナーが屈曲する部分において、上流から下流へ対応する断面の2次元要素を抽出する様子をあらわす概念図である。It is a conceptual diagram showing a mode that the two-dimensional element of the cross section corresponding from upstream to downstream is extracted in the part where a runner bends. ランナーが分岐する部分において、下流側の線要素の断面2次元要素に対応する上流側の断面2次要素内位置を抽出する様子をあらわす概念図である。It is a conceptual diagram showing a mode that the position in the upstream cross-sectional secondary element corresponding to the cross-sectional two-dimensional element of a downstream line element is extracted in the part where a runner branches. 実施例1のランナー径を4mm一定として樹脂流動解析を行った結果、充填完了の0.1秒前の充填部分と未充填部分を示す概念図である。It is a conceptual diagram which shows the filling part and the unfilling part of 0.1 second before completion of filling as a result of conducting a resin flow analysis by making the runner diameter of Example 1 constant 4 mm. 実施例1の一部のランナー径を3.5mmとして樹脂流動解析を行った結果、充填完了の0.1秒前の充填部分と未充填部分を示す概念図である。It is a conceptual diagram which shows the filling part and non-filling part of 0.1 second before completion of filling as a result of conducting resin flow analysis by setting a part of runner diameter of Example 1 to 3.5 mm. 実施例2にて検討する射出成形品のキャビティとランナー形状を示す概念図である。It is a conceptual diagram which shows the cavity and runner shape of the injection molded product examined in Example 2. 図3に示す射出成形品のキャビティを四角形の微小要素に分割し、ランナーを線要素に分割した概念図である。It is the conceptual diagram which divided | segmented the cavity of the injection molded product shown in FIG. 3 into the square microelement, and divided | segmented the runner into the line element. 実施例2のランナー径を4mm一定として樹脂流動解析を行った結果、充填完了の0.1秒前の充填部分と未充填部分を示す概念図である。It is a conceptual diagram which shows the filling part and non-filling part 0.1 second before completion of filling as a result of conducting a resin flow analysis by making the runner diameter of Example 2 constant 4 mm. 実施例2の一部のランナー径を調整し、充填バランスを改善した結果、充填完了の0.1秒前の充填部分と未充填部分を示す概念図である。It is a conceptual diagram which shows the filling part and non-filling part 0.1 second before completion of filling as a result of adjusting the part runner diameter of Example 2, and improving filling balance.

符号の説明Explanation of symbols

4a 実施例1の樹脂流入口
4b 実施例1のランナー分岐部の例
6a ランナー中心を結ぶ線
6b 上流側のランナー断面2次元要素の例
6c 6bに対応する下流側のランナー断面2次元要素
6d 6bと6cをつなぐ流路
6e 上流側のランナー断面2次元要素分割
6f 下流側のランナー断面2次元要素分割
7a 分岐部の上流側のランナー断面2次元要素分割
7b 分岐部の下流側のランナー断面2次元要素分割
7c 7dに対応する上流側のランナー断面内の位置
7d 下流側のランナー断面2次元要素の一例
7e 7fに対応する上流側のランナー断面内の位置
7f 下流側のランナー断面2次元要素の別の一例
7g 樹脂の流動方向
8a 実施例1のキャビティ1
8b 実施例1のキャビティ2
8c 実施例1のキャビティ3
8d 実施例1のキャビティ4
8e 充填完了0.1秒前の充填部分
8f 充填完了0.1秒前の未充填部分
9a 充填完了0.1秒前の充填部分
9b 充填完了0.1秒前の未充填部分
11a 実施例2のキャビティ部分を分割した四角形微小要素
11b 実施例2の樹脂流入口
12a 充填完了0.1秒前の充填部分
12b 充填完了0.1秒前の未充填部分
13a 充填完了0.1秒前の充填部分
13b 充填完了0.1秒前の未充填部分
4a Resin inlet 4b of Example 1 Example 6 of runner branching part of Example 1 6b Line 6b connecting the runner centers Example 2c of downstream runner cross section corresponding to upstream runner cross section 6d 6b 6d 6b 6e upstream-side runner cross-sectional two-dimensional element division 6f downstream runner cross-sectional two-dimensional element division 7a upstream runner cross-sectional two-dimensional element division 7b downstream runner cross-sectional two-dimensional Position 7d in the upstream runner cross section corresponding to the element division 7c 7d 7d Example of the downstream runner cross section two-dimensional element 7e Position in the upstream runner cross section corresponding to 7f 7f Differentiating the downstream runner cross section two-dimensional element Example 7g Flow direction of resin 8a Cavity 1 of Example 1
8b Cavity 2 of Example 1
8c Cavity 3 of Example 1
8d Cavity 4 of Example 1
8e Filled portion 8f 0.1 seconds before completion of filling 9f Unfilled portion 9a before completion of filling 9b Filled portion 9b before completion of filling 11b Unfilled portion 11a 0.1 seconds before completion of filling Example 2 Square micro-element 11b obtained by dividing the cavity portion of the resin inlet 12a of Example 2 Filled portion 12b before completion of filling 0.1b Unfilled portion 13a before completion of filling 13a Filling 0.1 seconds before completion of filling Part 13b Unfilled part 0.1 seconds before completion of filling

Claims (11)

射出成形過程における射出成形材料の流動挙動を、解析対象物の形状を複数の微小要素に分割した解析モデルを用いてコンピュータによりシミュレーションする数値解析方法であって、樹脂流路の一部または全体を複数の微小な線要素に分割する工程と、前記樹脂流路の断面形状を定義する工程と、前記断面形状にもとづき前記線要素の断面を複数の微小な2次元要素に分割する工程と、
前記2次元要素を用いて前記樹脂流路の断面内温度分布を解析する工程を有することを特徴とする、射出成形CAE解析方法。
A numerical analysis method in which the flow behavior of an injection molding material in an injection molding process is simulated by a computer using an analysis model in which the shape of an object to be analyzed is divided into a plurality of minute elements. Dividing the plurality of minute line elements, defining the cross-sectional shape of the resin flow path, dividing the cross-section of the line element into a plurality of minute two-dimensional elements based on the cross-sectional shape,
An injection molding CAE analysis method comprising a step of analyzing a temperature distribution in a cross section of the resin flow path using the two-dimensional element.
前記線要素の上流から下流へ樹脂の流れる順序を決定する工程と、前記順序にもとづき上流から下流への熱移流を考慮して下流側線要素の断面内温度分布を解析する工程を有することを特徴とする、請求項1記載の射出成形CAE解析方法。 Determining the order in which the resin flows from upstream to downstream of the line element, and analyzing the temperature distribution in the cross section of the downstream line element in consideration of heat advection from upstream to downstream based on the order. The injection molding CAE analysis method according to claim 1. 上流から下流へ連続する2つの線要素間の角度に応じて、曲がりによる断面内の流動距離増減を算出する工程と、上流側線要素の断面内の温度分布と流動距離にもとづき上流から下流への熱移流を考慮して下流側線要素の断面内温度分布を解析する工程を有することを特徴とする、請求項2記載の射出成形CAE解析方法。 In accordance with the angle between two line elements that continue from upstream to downstream, the flow distance increase / decrease in the cross-section due to bending, and from the upstream to the downstream based on the temperature distribution and flow distance in the cross-section of the upstream line element 3. The injection molding CAE analysis method according to claim 2, further comprising a step of analyzing the temperature distribution in the cross section of the downstream line element in consideration of heat advection. 上流から下流へ分岐する部分の分岐先の線要素数に応じて上流側線要素の断面内の温度分布を分割して上流側温度分布を定め、上流から下流への熱移流を考慮して下流側線要素の断面内温度分布を解析する工程を有することを特徴とする、請求項2記載の射出成形CAE解析方法。 The upstream temperature distribution is determined by dividing the temperature distribution in the cross section of the upstream line element in accordance with the number of branch line elements at the branch point from the upstream to the downstream, and the downstream line in consideration of the heat advection from the upstream to the downstream. 3. The injection molding CAE analysis method according to claim 2, further comprising a step of analyzing a temperature distribution in the cross section of the element. 射出成形過程における射出成形材料の流動挙動を、解析対象物の形状を複数の微小要素に分割した解析モデルを用いてコンピュータによりシミュレーションする数値解析方法であって、樹脂流路の一部または全体を複数の微小な線要素に分割する手段と、前記樹脂流路の断面形状を定義する手段と、前記断面形状にもとづき前記線要素の断面を複数の微小な2次元要素に分割する手段と、
前記2次元要素を用いて前記樹脂流路の断面内温度分布を解析する手段を有することを特徴とする、射出成形CAE解析装置。
A numerical analysis method in which the flow behavior of an injection molding material in an injection molding process is simulated by a computer using an analysis model in which the shape of an object to be analyzed is divided into a plurality of minute elements. Means for dividing into a plurality of minute line elements; means for defining a cross-sectional shape of the resin flow path; means for dividing the cross-section of the line elements into a plurality of minute two-dimensional elements based on the cross-sectional shape;
An injection molding CAE analyzing apparatus comprising means for analyzing a temperature distribution in a cross section of the resin flow path using the two-dimensional element.
前記線要素の上流から下流へ樹脂の流れる順序を決定する手段と、前記順序にもとづき上流から下流への熱移流を考慮して下流側線要素の断面内温度分布を解析する手段を有することを特徴とする、請求項1記載の射出成形CAE解析装置。 Means for determining the order in which the resin flows from upstream to downstream of the line element; and means for analyzing the temperature distribution in the cross-section of the downstream line element in consideration of heat advection from upstream to downstream based on the order. The injection molding CAE analyzer according to claim 1. 上流から下流へ連続する2つの線要素間の角度に応じて、曲がりによる断面内の流動距離増減を算出する手段と、上流側線要素の断面内の温度分布と流動距離にもとづき上流から下流への熱移流を考慮して下流側線要素の断面内温度分布を解析する手段を有することを特徴とする、請求項2記載の射出成形CAE解析装置。 According to the angle between two line elements continuous from the upstream to the downstream, the means for calculating the increase or decrease of the flow distance in the cross section due to the bending, the temperature distribution in the cross section of the upstream line element and the flow distance from the upstream to the downstream The injection molding CAE analyzer according to claim 2, further comprising means for analyzing the temperature distribution in the cross section of the downstream line element in consideration of heat advection. 上流から下流へ分岐する部分の分岐先の線要素数に応じて上流側線要素の断面内の温度分布を分割して上流側温度分布を定め、上流から下流への熱移流を考慮して下流側線要素の断面内温度分布を解析する手段を有することを特徴とする、請求項2記載の射出成形CAE解析装置。 The upstream temperature distribution is determined by dividing the temperature distribution in the cross section of the upstream line element in accordance with the number of branch line elements at the branch point from the upstream to the downstream, and the downstream line in consideration of the heat advection from the upstream to the downstream. The injection molding CAE analyzing apparatus according to claim 2, further comprising means for analyzing a temperature distribution in a cross section of the element. 射出成形過程における射出成形材料の流動挙動を、解析対象物の形状を複数の微小要素に分割した解析モデルを用いてコンピュータによりシミュレーションするプログラムであって、樹脂流路の一部または全体を複数の微小な線要素に分割する工程と、前記樹脂流路の断面形状を定義する工程と、前記断面形状にもとづき前記線要素の断面を複数の微小な2次元要素に分割する工程と、
前記2次元要素を用いて前記樹脂流路の断面内温度分布を解析する工程を有することを特徴とするコンピュータで実行可能なプログラム。
A program that simulates the flow behavior of an injection molding material in an injection molding process by a computer using an analysis model in which the shape of an analysis object is divided into a plurality of microelements, and a part or all of a resin flow path Dividing the fine line elements, defining the cross-sectional shape of the resin flow path, dividing the cross-section of the line elements into a plurality of fine two-dimensional elements based on the cross-sectional shape,
A computer-executable program comprising a step of analyzing a temperature distribution in a cross section of the resin flow path using the two-dimensional element.
請求項9に記載のプログラムを記憶した、コンピュータ読み取り可能な記憶媒体。 A computer-readable storage medium storing the program according to claim 9. 請求項1〜4のいずれかに記載のCAE解析方法を用いて射出成形品の射出成形過程を解析し、解析結果に基づいて射出成形品を製造する射出成形品の製造方法 An injection molded product manufacturing method of analyzing an injection molding process of an injection molded product using the CAE analysis method according to any one of claims 1 to 4 and manufacturing an injection molded product based on the analysis result
JP2007189662A 2007-07-20 2007-07-20 Analysis method of injection molding process, device for analysis, program for it, memory medium and manufacturing method by using the program Pending JP2009023254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007189662A JP2009023254A (en) 2007-07-20 2007-07-20 Analysis method of injection molding process, device for analysis, program for it, memory medium and manufacturing method by using the program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007189662A JP2009023254A (en) 2007-07-20 2007-07-20 Analysis method of injection molding process, device for analysis, program for it, memory medium and manufacturing method by using the program

Publications (1)

Publication Number Publication Date
JP2009023254A true JP2009023254A (en) 2009-02-05

Family

ID=40395554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007189662A Pending JP2009023254A (en) 2007-07-20 2007-07-20 Analysis method of injection molding process, device for analysis, program for it, memory medium and manufacturing method by using the program

Country Status (1)

Country Link
JP (1) JP2009023254A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487025A1 (en) * 2011-02-11 2012-08-15 Gentex Optics, Inc. Method and system employing flow simulation for improving material delivery in lens manufacturing
KR101320755B1 (en) * 2011-12-30 2013-10-21 주식회사 포스코아이씨티 Manufacturing facility simulation system and method
JPWO2018135443A1 (en) * 2017-01-17 2019-11-07 日精樹脂工業株式会社 Molding condition estimation method for injection molding machine
WO2023210613A1 (en) * 2022-04-29 2023-11-02 キャニヨン株式会社 Trigger spring structure and trigger sprayer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487025A1 (en) * 2011-02-11 2012-08-15 Gentex Optics, Inc. Method and system employing flow simulation for improving material delivery in lens manufacturing
US8589134B2 (en) 2011-02-11 2013-11-19 Gentex Optics, Inc. Method and system employing flow simulation for improving material delivery in lens manufacturing
KR101320755B1 (en) * 2011-12-30 2013-10-21 주식회사 포스코아이씨티 Manufacturing facility simulation system and method
JPWO2018135443A1 (en) * 2017-01-17 2019-11-07 日精樹脂工業株式会社 Molding condition estimation method for injection molding machine
WO2023210613A1 (en) * 2022-04-29 2023-11-02 キャニヨン株式会社 Trigger spring structure and trigger sprayer

Similar Documents

Publication Publication Date Title
US8463584B2 (en) Interactive filling simulation on 3D injection molding models
Zhang et al. Numerical and experimental study on hydraulic performance of emitters with arc labyrinth channels
JP4820318B2 (en) Resin molded product design support apparatus, support method, and support program
JP2009023254A (en) Analysis method of injection molding process, device for analysis, program for it, memory medium and manufacturing method by using the program
CN1388444A (en) Simulation method of casting cavity filling process
JP4643373B2 (en) Uniform melting simulation method for extrusion screw, computer program for executing the method, and uniform melting simulation device for extrusion screw
JP4032848B2 (en) Molding simulation method, molding simulation apparatus, molding simulation program, and computer-readable recording medium recording the molding simulation program
JP2003271678A (en) Numerical analysis method and device
KR101545154B1 (en) Field line creation apparatus in overlapped grid and method thereof
CN105269763A (en) Ceramic injection mould optimal design method and ceramic injection mould
Chiang et al. True 3D CAE visualization of filling imbalance in geometry-balanced runners
US10960592B2 (en) Computer-implemented simulation method for injection-molding process
JP2008191830A (en) Resin flow analysis program, resin flow analysis device and resin flow analysis method
Singh et al. Computer aided design of gating system for a die-casting die
JP2008093860A (en) System, program, and method for forecasting quality of foamed injection-molded article
JP4032755B2 (en) Molding simulation method, molding simulation apparatus, molding simulation program, and computer-readable recording medium recording the molding simulation program
EP3511149B1 (en) Curvature deformation prevention design method for resin molded article, program, recording medium, and curvature deformation prevention design apparatus for resin molded article
JP2008001088A (en) Prediction method, apparatus, its program, storage medium for secondary weld line, manufacturing method of moldings by using them
JP4052006B2 (en) Molding simulation method, molding simulation apparatus, molding simulation program, and computer-readable recording medium recording the molding simulation program
JP6092832B2 (en) Fluid behavior prediction apparatus, fluid behavior prediction method and fluid behavior prediction program
US20230367924A1 (en) System and Method for Fast Computer Simulation of Injection Molding
JP3582930B2 (en) Manufacturing method for injection molded products
JP2003228594A (en) Method and device for numerical analysis
US20080077369A1 (en) Apparatus and method for simulating a mold cooling process for injection molding
JP2003231167A (en) Numerical analysis method and device of injection molding process