JP2009023215A - Dividing method of laminate - Google Patents

Dividing method of laminate Download PDF

Info

Publication number
JP2009023215A
JP2009023215A JP2007188511A JP2007188511A JP2009023215A JP 2009023215 A JP2009023215 A JP 2009023215A JP 2007188511 A JP2007188511 A JP 2007188511A JP 2007188511 A JP2007188511 A JP 2007188511A JP 2009023215 A JP2009023215 A JP 2009023215A
Authority
JP
Japan
Prior art keywords
material layer
cleaving
laminate
modified
forming step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007188511A
Other languages
Japanese (ja)
Other versions
JP5139739B2 (en
Inventor
Kazuji Yoshida
和司 吉田
Masao Kubo
雅男 久保
Masayuki Fujita
雅之 藤田
Hideji Tanaka
秀治 田中
Masaki Esashi
正喜 江刺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Panasonic Electric Works Co Ltd
Institute for Laser Technology
Original Assignee
Tohoku University NUC
Panasonic Electric Works Co Ltd
Institute for Laser Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Panasonic Electric Works Co Ltd, Institute for Laser Technology filed Critical Tohoku University NUC
Priority to JP2007188511A priority Critical patent/JP5139739B2/en
Publication of JP2009023215A publication Critical patent/JP2009023215A/en
Application granted granted Critical
Publication of JP5139739B2 publication Critical patent/JP5139739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/221Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dividing method of a laminate capable of dividing the laminate at a low cost while preventing breakage of the laminate having a laminate structure of a translucent material layer and a crystalline material layer. <P>SOLUTION: The dividing method of the laminate is provided with a modified part forming process for forming modified parts 20a and 20b on a surface 13 of the crystalline material layer (Si substrate) 12 on the translucent material layer (glass substrate) 11 side and in an inside of the translucent material layer 11 respectively by irradiating laser beams LBa and LBb to the surface 13 of the crystalline material layer 12 on the translucent material layer 11 side and the inside of the translucent material layer 11 respectively along a desired division schedule line L, and a dividing process for dividing the laminate 10 along the division schedule line L while having the modified parts 20a and 20b as the division starting points by thermal stress generated by partially imparting temperature change on the laminate 10 after the modified part forming process. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レーザビームなどを利用して積層体を割断する積層体の割断方法に関するものである。   The present invention relates to a method for cleaving a laminate by cleaving the laminate using a laser beam or the like.

従来から、透光性材料層(例えば、ガラス基板、透光性セラミック基板など)と結晶性材料層(例えば、Si基板、化合物半導体基板など)との積層構造を有する積層体を、レーザビームなどを利用して割断する積層体の割断方法が各所で研究開発されている(例えば、特許文献1参照)。   Conventionally, a laminated body having a laminated structure of a light-transmitting material layer (for example, a glass substrate, a light-transmitting ceramic substrate, etc.) and a crystalline material layer (for example, a Si substrate, a compound semiconductor substrate, etc.), a laser beam, etc. A method for cleaving a laminated body that cleaves by using a material has been researched and developed in various places (for example, see Patent Document 1).

ここにおいて、上記特許文献1には、ガラス基板とSi基板との積層体を割断する積層体の割断方法として、所望の割断予定線に沿ってガラス基板の表面側からSi基板の内部にレーザビームを集光照射してSi基板の内部に改質部として変質層(溶融再固化層)を形成し、続いて、上記割断予定線に沿ってガラス基板の表面側から当該ガラス基板の内部にレーザビームを集光照射して当該ガラス基板の内部に改質部として変質層(溶融再固化層)を形成する改質部形成工程と、改質部形成工程の後に積層体に上記割断予定線に沿って外力を加えることにより積層体を上記割断予定線に沿って割断する割断工程とを順次行うようにした割断方法が提案されている。   Here, in Patent Document 1, as a method for cleaving a laminate of a glass substrate and a Si substrate, a laser beam is projected from the surface side of the glass substrate to the inside of the Si substrate along a desired cleaving line. Is irradiated to form a modified layer (melted and re-solidified layer) as a modified portion inside the Si substrate, and then a laser is projected from the surface side of the glass substrate along the planned cutting line to the inside of the glass substrate. A modified part forming step of forming a deteriorated layer (melted and resolidified layer) as a modified part inside the glass substrate by condensing the beam, and after the modified part forming step, the cut line is formed on the laminate. A cleaving method is proposed in which an external force is applied along the cleaving step of cleaving the laminate along the planned cleaving line.

また、従来から、ガラス基板を割断する割断方法として、所望の割断予定線に沿ってガラス基板の表面側からガラス基板の内部にレーザビームを集光照射して改質部を形成する改質部形成工程と、改質部形成工程の後に改質部に吸収される波長のレーザビームを改質部に集光照射することにより改質部を起点としてガラス基板を割断予定線に沿って割断する割断工程とを順次行うようにした割断方法が提案されている(例えば、特許文献2参照)。   Conventionally, as a cleaving method for cleaving a glass substrate, a reforming unit that forms a reforming unit by condensing and irradiating a laser beam from the surface side of the glass substrate to the inside of the glass substrate along a desired planned cutting line After the forming step and the modified portion forming step, the modified portion is focused and irradiated with a laser beam having a wavelength that is absorbed by the modified portion, and the glass substrate is cut along the planned cutting line starting from the modified portion. There has been proposed a cleaving method in which the cleaving step is sequentially performed (see, for example, Patent Document 2).

なお、透光性材料層と結晶性材料層との積層構造を有する積層体を割断することにより形成されるデバイスとしては、例えば、マイクロマシニング技術などを利用して形成されたMEMS(例えば、加速度センサ、圧力センサ、ジャイロセンサ、マイクロリレー、マイクロバルブなど)や、LED、表示装置(例えば、液晶デバイス)などが知られている。
特開2007−45675号公報 特開2006−35710号公報
Note that as a device formed by cleaving a stacked body having a stacked structure of a light-transmitting material layer and a crystalline material layer, for example, a MEMS (for example, an acceleration) formed using a micromachining technique or the like is used. Sensors, pressure sensors, gyro sensors, micro relays, micro valves, etc.), LEDs, display devices (for example, liquid crystal devices), and the like are known.
JP 2007-45675 A JP 2006-35710 A

ところで、上記特許文献1に記載された積層体の割断方法では、割断工程において、積層体に上記割断予定線に沿って外力を加えることにより積層体を上記割断予定線に沿って割断するようにしているので、上記特許文献1に記載された積層体の割断方法を利用して製造するデバイスがMEMSのような3次元構造を有するデバイスの場合、割断工程において積層体に加える外力に起因して3次元構造に生じる機械的ストレスなどによって3次元構造が破壊されてしまう恐れがあった。   By the way, in the cleaving method of the laminated body described in Patent Document 1, in the cleaving step, the laminated body is cleaved along the planned cutting line by applying an external force along the planned cutting line to the laminated body. Therefore, when the device manufactured using the method for cleaving a laminate described in Patent Document 1 is a device having a three-dimensional structure such as MEMS, it is caused by an external force applied to the laminate in the cleaving step. There is a possibility that the three-dimensional structure is destroyed due to mechanical stress generated in the three-dimensional structure.

そこで、上記特許文献1に記載された積層体の割断方法において、割断工程として上記特許文献2に記載の割断工程と同様の技術を採用することが考えられるが、Si基板の内部に変質層を形成するためのレーザビームの波長(1064nm)と、ガラス基板の内部に変質層を形成するためのレーザビームの波長(355nm)とが異なるので、改質部形成工程において、波長の異なる2種類のレーザを必要とするとともに、割断工程において更に波長の異なるレーザを必要とし、これら3種類のレーザごとに光学系を必要とし、コストが高くなってしまうという問題があった。また、積層体を割断する割断工程としては、改質部形成工程の後で積層体に冷媒を噴き付けて冷却することで熱衝撃を生じさせることにより積層体を割断することも考えられるが、この場合にも、改質部形成工程において、波長の異なる2種類のレーザを必要とするので、コストが高くなってしまうという問題があった。   Therefore, in the method for cleaving the laminate described in Patent Document 1, it is conceivable to employ the same technique as the cleaving process described in Patent Document 2 as the cleaving process, but the altered layer is formed inside the Si substrate. The wavelength of the laser beam for forming (1064 nm) is different from the wavelength of the laser beam for forming the altered layer inside the glass substrate (355 nm). There is a problem that a laser is required and lasers having different wavelengths are required in the cleaving step, and an optical system is required for each of these three types of lasers, resulting in an increase in cost. In addition, as a cleaving step for cleaving the laminate, it is also conceivable to cleave the laminate by causing a thermal shock by spraying a coolant on the laminate and cooling after the reforming portion forming step. Also in this case, since two types of lasers having different wavelengths are required in the modified portion forming step, there is a problem that the cost is increased.

本発明は上記事由に鑑みて為されたものであり、本発明の目的は、透光性材料層と結晶性材料層との積層構造を有する積層体の破損発生を防止しつつ積層体を低コストで割断することが可能な積層体の割断方法を提供することにある。   The present invention has been made in view of the above reasons, and an object of the present invention is to reduce the thickness of the laminate while preventing the occurrence of breakage of the laminate having the laminated structure of the light-transmitting material layer and the crystalline material layer. The object is to provide a method for cleaving a laminate that can be cleaved at a cost.

請求項1の発明は、透光性材料層と結晶性材料層との積層構造を有する積層体を割断する積層体の割断方法であって、所望の割断予定線に沿って結晶性材料層における透光性材料層側の表面および透光性材料層の内部それぞれに各別にレーザビームを照射することによって改質部を結晶性材料層における透光性材料層側の表面および透光性材料層の内部それぞれに形成する改質部形成工程と、改質部形成工程の後で積層体に局所的に温度変化を与えることにより生じる熱応力によって改質部を割断起点として積層体を割断予定線に沿って割断する割断工程とを備えることを特徴とする。   The invention of claim 1 is a method of cleaving a laminate having a laminate structure of a light-transmitting material layer and a crystalline material layer, wherein the crystalline material layer is cut along a desired planned cutting line. The surface of the translucent material layer side and the inside of the translucent material layer are individually irradiated with a laser beam to change the modified portion into the surface of the crystalline material layer and the translucent material layer side. The reformed part forming step formed inside each of the layers, and the planned cutting line of the laminate from the modified part as a starting point by the thermal stress generated by locally changing the temperature of the laminate after the reforming part forming step And a cleaving step of cleaving along the line.

この発明によれば、改質部形成工程では、所望の割断予定線に沿って結晶性材料層における透光性材料層側の表面および透光性材料層の内部それぞれに各別にレーザビームを照射することによって改質部を結晶性材料層における透光性材料層側の表面および透光性材料層の内部それぞれに形成するので、改質部形成工程において結晶性材料層における透光性材料層側の表面に改質部を形成する過程と、透光性材料層の内部に改質部を形成する過程とで共通のレーザを用いることができ、改質部形成工程において1つのレーザにより、結晶性材料層における透光性材料層側の表面の改質部および透光性材料層の内部の改質部を各別に形成することができるから、改質部形成工程において波長の異なる2種類のレーザを必要とする場合に比べて、低コスト化を図れ、しかも、改質部形成工程の後の割断工程では、積層体に局所的に温度変化を与えることにより生じる熱応力によって改質部を割断起点として積層体を割断予定線に沿って割断するので、積層体の破損発生を防止しつつ積層体を割断することができ、また、直線に限らず任意の割断予定線に沿って割断することも可能になる。   According to the present invention, in the modified part forming step, the laser beam is individually irradiated to the surface of the crystalline material layer on the side of the light transmissive material layer and the inside of the light transmissive material layer along the desired planned cutting line. By doing so, the modified portion is formed on the surface of the crystalline material layer on the side of the light transmissive material layer and inside the light transmissive material layer, so that the light transmissive material layer in the crystalline material layer is formed in the modified portion forming step. A common laser can be used in the process of forming the modified part on the surface on the side and the process of forming the modified part in the translucent material layer. With one laser in the modified part forming step, Since the modified part of the surface of the crystalline material layer on the side of the light transmissive material layer and the modified part inside the light transmissive material layer can be formed separately, two types having different wavelengths in the modified part forming step Compared to when you need a laser In the cleaving process after the reforming part forming process, the cost can be reduced, and the laminated body can be cut along the planned cleaving line with the reforming part as a starting point due to the thermal stress generated by locally changing the temperature of the laminated body. Therefore, the laminated body can be cleaved while preventing the occurrence of damage to the laminated body, and it is also possible to cleave along not only a straight line but also a predetermined planned cutting line.

請求項2の発明は、請求項1の発明において、改質部形成工程では、透光性材料層の内部に改質部を形成するにあたって、改質部を割断予定線に沿ってミシン目状に形成することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, in the modified portion forming step, when the modified portion is formed in the translucent material layer, the modified portion is perforated along the planned cutting line. It is characterized by forming in.

この発明によれば、改質部形成工程において透光性材料層の内部に改質部を形成する過程のタクトタイムを短縮することができる。   According to the present invention, it is possible to shorten the tact time of the process of forming the modified portion inside the translucent material layer in the modified portion forming step.

請求項3の発明は、請求項1または請求項2の発明において、改質部形成工程では、透光性材料層の内部に改質部を形成するにあたって、積層体の厚み方向において異なる複数の位置に改質部を形成することを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, in the modified portion forming step, when the modified portion is formed inside the translucent material layer, a plurality of different in the thickness direction of the laminate is provided. A reforming part is formed at the position.

この発明によれば、積層体を割断予定線に沿ってより精度良く割断することが可能となる。   According to this invention, it becomes possible to cleave a laminated body more accurately along a cleaving line.

請求項4の発明は、請求項1ないし請求項3の発明において、改質部形成工程では、結晶性材料層における透光性材料層側の表面に改質部を形成するにあたって、改質部を割断予定線に沿ってミシン目状に形成することを特徴とする。   According to a fourth aspect of the present invention, in the first to third aspects of the invention, in the modified portion forming step, the modified portion is formed on the surface of the crystalline material layer on the light transmissive material layer side. Is formed in a perforation shape along the planned cutting line.

この発明によれば、改質部形成工程において結晶性材料層における透光性材料層側の表面に改質部を形成する過程のタクトタイムを短縮することができる。   According to this invention, the tact time of the process of forming the modified portion on the surface of the crystalline material layer on the light transmissive material layer side in the modified portion forming step can be shortened.

請求項5の発明は、請求項1ないし請求項4の発明において、改質部形成工程では、透光性材料層の内部に改質部を形成するにあたって、格子状の割断予定線の各交差点ごとに改質部を十字状に形成することを特徴とする。   According to a fifth aspect of the present invention, in the first to fourth aspects of the invention, in the reforming portion forming step, each crossing point of the grid-like cutting planned line is formed when the reforming portion is formed inside the translucent material layer. Each of the reforming portions is formed in a cross shape.

この発明によれば、積層体から矩形状の個片を切り出すことができる。   According to this invention, a rectangular piece can be cut out from the laminate.

請求項6の発明は、請求項1ないし請求項5の発明において、改質部形成工程では、レーザビームのパルス幅を20fs〜20nsの範囲で設定することを特徴とする。   According to a sixth aspect of the present invention, in the first to fifth aspects of the invention, the pulse width of the laser beam is set in the range of 20 fs to 20 ns in the modified portion forming step.

この発明によれば、改質部形成工程において割断予定線に沿って改質部を形成する際に改質部が透光性材料層の表面に平行な面内で割断予定線に交差する方向へ不要に広がるのを防止することができ、積層体を割断予定線に沿ってより精度良く割断することが可能となって割断工程の歩留まりを高めることが可能になるとともに、割断に必要なエリアであるストリートの幅を狭くすることが可能になる。   According to the present invention, when the modified portion is formed along the planned cutting line in the modified portion forming step, the modified portion intersects the planned cutting line in a plane parallel to the surface of the translucent material layer. Unnecessarily spread to the substrate, and the laminate can be cleaved more accurately along the planned cleaving line, increasing the yield of the cleaving process and the area required for cleaving. It becomes possible to narrow the width of the street.

請求項7の発明は、請求項1ないし請求項6の発明において、割断工程では、透光性材料層の表面にレーザビームを照射することにより温度変化を与えることを特徴とする。   The invention of claim 7 is characterized in that, in the invention of claims 1 to 6, in the cleaving step, the surface of the light transmissive material layer is irradiated with a laser beam to change the temperature.

この発明によれば、同一のステージ上で改質部形成工程と割断工程とを連続的に行うことが可能となり、積層体の割断方法に用いる割断処理システムの自動化が容易になるとともに割断処理システム全体の小型化を図ることが可能となる。   According to the present invention, it is possible to continuously perform the reforming portion forming step and the cleaving step on the same stage, facilitating the automation of the cleaving processing system used for the cleaving method of the laminate, and the cleaving processing system. The overall size can be reduced.

請求項1の発明では、透光性材料層と結晶性材料層との積層構造を有する積層体の破損発生を防止しつつ積層体を低コストで割断することが可能になるという効果がある。   According to the first aspect of the present invention, there is an effect that the laminated body can be cleaved at a low cost while preventing the laminated body having a laminated structure of the translucent material layer and the crystalline material layer from being damaged.

本実施形態では、図1および図2に示すようにガラス基板からなる透光性材料層11と主表面が(100)面の単結晶のSi基板からなる結晶性材料層12との積層構造を有する積層体10を割断する割断方法を例示する。ここで、本実施形態では、上述のように、透光性材料層11がガラス基板により構成され、結晶性材料層12が単結晶のSi基板により構成されており、透光性材料層11と結晶性材料層12とを陽極接合法により直接接合することによって積層体10を形成している。なお、本実施形態では、透光性材料層11と結晶性材料層12との2層の積層構造を有する積層体10について例示するが、積層体10は、透光性材料層と結晶性材料層と透光性材料層との3層の積層構造を有するものでもよい。また、本実施形態における積層体10としては、例えば、MEMS(例えば、加速度センサ、圧力センサ、ジャイロセンサ、マイクロリレー、マイクロバルブなど)や、LED、表示装置(例えば、液晶デバイス)などが多数形成されたものを採用することができる。   In this embodiment, as shown in FIG. 1 and FIG. 2, a laminated structure of a translucent material layer 11 made of a glass substrate and a crystalline material layer 12 made of a single crystal Si substrate having a main surface of (100) plane is used. The cleaving method which cleaves the laminated body 10 which has is illustrated. Here, in the present embodiment, as described above, the translucent material layer 11 is composed of a glass substrate, the crystalline material layer 12 is composed of a single crystal Si substrate, and the translucent material layer 11 and The laminated body 10 is formed by directly joining the crystalline material layer 12 by an anodic bonding method. In the present embodiment, the laminated body 10 having a two-layer laminated structure of the translucent material layer 11 and the crystalline material layer 12 is illustrated. However, the laminated body 10 includes the translucent material layer and the crystalline material. It may have a three-layer structure including a layer and a light-transmitting material layer. Moreover, as the laminated body 10 in this embodiment, for example, a large number of MEMS (for example, an acceleration sensor, a pressure sensor, a gyro sensor, a micro relay, a micro valve, and the like), LEDs, and display devices (for example, liquid crystal devices) are formed. Can be adopted.

透光性材料層11を構成するガラス基板のガラス材料としては、ソーダライムガラスを採用しているが、ソーダライムガラスに限らず、例えば、パイレックス(登録商標)のような硼珪酸ガラス、無アルカリガラス、石英ガラスなどを採用してもよい。また、結晶性材料層12の材料としては、Siを採用しているが、Siに限らず、例えば、Ge、GaAs、InGaAs、GaN、InP、GaP、SiCなどでもよい。また、透光性材料層11は、ガラス基板に限らず、例えば、透光性セラミック基板、サファイア基板などでもよく、結晶性材料層12は、Si基板、化合物半導体基板などに限らず、例えば、SOI基板、多結晶Si層などでもよい。また、Si基板の主表面も(100)面に限らず、(110)面でも、(111)面でもよい。   As the glass material of the glass substrate constituting the translucent material layer 11, soda lime glass is adopted, but not limited to soda lime glass, for example, borosilicate glass such as Pyrex (registered trademark), non-alkali Glass, quartz glass, or the like may be used. Further, Si is adopted as the material of the crystalline material layer 12, but is not limited to Si, and may be, for example, Ge, GaAs, InGaAs, GaN, InP, GaP, SiC, or the like. Further, the translucent material layer 11 is not limited to a glass substrate, and may be, for example, a translucent ceramic substrate or a sapphire substrate, and the crystalline material layer 12 is not limited to an Si substrate, a compound semiconductor substrate, or the like. An SOI substrate, a polycrystalline Si layer, or the like may be used. Further, the main surface of the Si substrate is not limited to the (100) plane, and may be a (110) plane or a (111) plane.

本実施形態の積層体10の割断方法では、所望の割断予定線Lに沿って結晶性材料層12における透光性材料層11側の表面13および透光性材料層11の内部それぞれに各別にレーザビームを照射することによって改質部20を結晶性材料層12における透光性材料層11側の表面13および透光性材料層11の内部それぞれに形成する改質部形成工程を行い、その後、積層体10に局所的に温度変化を与えることにより生じる熱応力によって改質部を割断起点として積層体10を割断予定線Lに沿って割断する割断工程を行う。   In the cleaving method of the laminate 10 according to the present embodiment, the surface 13 on the translucent material layer 11 side in the crystalline material layer 12 and the inside of the translucent material layer 11 are respectively separated along the desired cleaving line L. A modified portion forming step is performed in which the modified portion 20 is formed on the surface 13 of the crystalline material layer 12 on the side of the light transmissive material layer 11 and the inside of the light transmissive material layer 11 by irradiating a laser beam. Then, a cleaving process is performed in which the laminated body 10 is cleaved along the planned cleaving line L by the thermal stress generated by locally changing the temperature of the laminated body 10 with the modified portion as a cleaving starting point.

上述の改質部形成工程では、結晶性材料層12における透光性材料層11側の表面13の改質部20(以下、第1の改質部20aと称す)としてクラックを形成し、透光性材料層11の内部の改質部20(以下、第2の改質部20bと称す)としてクラックを形成しており、各改質部20a,20bが、透光性材料層11の表面に平行な面内で割断予定線Lに交差する方向の熱流束の流れを制限する機能を有すると考えられるが、各改質部20a,20bはクラックに限らず、周辺部位に比べて熱伝導率が小さくなるように改質された領域など、割断起点となりうる領域であればよい。   In the modified portion forming step, a crack is formed as a modified portion 20 (hereinafter referred to as a first modified portion 20a) on the surface 13 of the crystalline material layer 12 on the light transmissive material layer 11 side, and the transparent material layer 12 is transparent. A crack is formed as a modified portion 20 (hereinafter referred to as a second modified portion 20b) inside the light-sensitive material layer 11, and each modified portion 20a, 20b is formed on the surface of the light-transmissive material layer 11. Is considered to have a function of restricting the flow of the heat flux in the direction intersecting the cleaving line L in a plane parallel to, but each reforming part 20a, 20b is not limited to a crack, and heat conduction compared to the surrounding part. Any region can be used as long as it can serve as a cleaving start point, such as a region modified so as to reduce the rate.

ここで、上述の積層体10の割断方法に用いる割断処理システムについて図3に基づいて簡単に説明する。   Here, the cleaving processing system used for the cleaving method of the laminated body 10 will be briefly described with reference to FIG.

図3に示す構成の割断処理システムは、改質部形成工程にて用いるレーザ(以下、第1のレーザと称す)1aと、第1のレーザ1aから出射されたレーザビームLBaのビーム径およびプロファイルを調整する第1のビーム調整光学系2aと、割断工程にて用いるレーザ(以下、第2のレーザと称す)2aと、第2のレーザ2aから出射されたレーザビームLBbのビーム径およびプロファイルを調整する第2のビーム調整光学系2bと、各ビーム調整光学系2a,2bにて調整されたレーザビームLBa,LBb(図1および図2参照)の一方を積層体10へ集光する集光光学系3と、積層体10が載置され3軸方向(X軸方向、Y軸方向およびZ軸方向)に移動可能なステージ4と、各レーザ1a,1b、各ビーム調整光学系2a,2b、集光光学系3およびステージ4を制御する適宜のプログラムが搭載されたマイクロコンピュータなどからなる制御装置(図示せず)とを備えている。   The cleaving processing system having the configuration shown in FIG. 3 includes a laser (hereinafter referred to as a first laser) 1a used in the modified portion forming step, and a beam diameter and a profile of a laser beam LBa emitted from the first laser 1a. The beam diameter and profile of the first beam adjusting optical system 2a for adjusting the laser, the laser (hereinafter referred to as second laser) 2a used in the cleaving step, and the laser beam LBb emitted from the second laser 2a Condensation for condensing one of the second beam adjustment optical system 2b to be adjusted and the laser beams LBa and LBb (see FIG. 1 and FIG. 2) adjusted by the beam adjustment optical systems 2a and 2b onto the laminated body 10. The optical system 3, the stage 4 on which the laminated body 10 is mounted and movable in the three-axis directions (X-axis direction, Y-axis direction and Z-axis direction), the lasers 1a and 1b, and the beam adjustment optical systems 2a and 2b And a control unit suitable program for controlling the condensing optical system 3 and the stage 4 and the like mounted on a microcomputer (not shown).

ここにおいて、第1のビーム調整光学系2aは、第1のレーザ1aから出射されたレーザビームLBaのプロファイルをガウシアン分布に調整し、第2のビーム調整光学系2bは、第2のレーザ1bから出射されたレーザビームLBbのプロファイルをリング状に調整するように光学設計されている。ステージ4は、集光光学系3の光軸に交差する面内で互いに直交するX軸方向、Y軸方向と、集光光学系3の光軸方向に沿ったZ軸方向との3軸方向に移動可能となっている。なお、積層体10は、Si基板12の裏面側がダイシングテープ(粘着剤の付いたプラスチックフィルム)にフラットリングとともに接着固定された状態でステージ4上に載置する。   Here, the first beam adjusting optical system 2a adjusts the profile of the laser beam LBa emitted from the first laser 1a to a Gaussian distribution, and the second beam adjusting optical system 2b is adjusted from the second laser 1b. The optical design is such that the profile of the emitted laser beam LBb is adjusted in a ring shape. The stage 4 has a three-axis direction including an X-axis direction and a Y-axis direction orthogonal to each other within a plane intersecting the optical axis of the condensing optical system 3 and a Z-axis direction along the optical axis direction of the condensing optical system 3. It is possible to move to. In addition, the laminated body 10 is mounted on the stage 4 in a state where the back side of the Si substrate 12 is bonded and fixed to a dicing tape (a plastic film with an adhesive) together with a flat ring.

また、上述の割断処理システムは、積層体10を撮像するCCDカメラからなる撮像装置(図示せず)を備えており、上記制御装置は、上記撮像装置の出力に基づいて、結晶性材料層12を構成するSi基板における透光性材料層11側の表面に予め設けられているアライメント用マーク(図示せず)を認識して積層体10における仮想の割断予定線Lの位置を決定する割断予定線決定手段を有し、当該割断予定線決定手段にて決定された割断予定線Lに沿ってレーザビームLBa,LBbが各別に照射されるように、各レーザ1a,1b、各ビーム調整光学系2a,2b、集光光学系3およびステージ4を制御する。ここにおいて、上記制御装置は、割断予定線Lに沿ってレーザビームLBa,LBbが照射されるようにステージ4を各軸方向に適宜移動させる。なお、割断予定線決定手段は、上記マイクロコンピュータに適宜のプログラムを搭載することにより実現される。   In addition, the above-described cleaving processing system includes an imaging device (not shown) including a CCD camera that images the stacked body 10, and the control device uses the crystalline material layer 12 based on the output of the imaging device. A cutting schedule for recognizing an alignment mark (not shown) provided in advance on the surface of the light-transmitting material layer 11 side of the Si substrate constituting the material and determining the position of the virtual cutting planned line L in the laminate 10. Each of the lasers 1a and 1b and each beam adjusting optical system so that the laser beams LBa and LBb are individually irradiated along the planned cutting line L determined by the planned cutting line determining unit. 2a, 2b, the condensing optical system 3, and the stage 4 are controlled. Here, the control device appropriately moves the stage 4 in each axial direction so that the laser beams LBa and LBb are irradiated along the planned cutting line L. Note that the planned cutting line determination means is realized by mounting an appropriate program on the microcomputer.

また、本実施形態では、割断予定線Lに沿って第1の改質部20aを形成する際にレーザビームLBaをスキャンニングする向き(図1(a)における矢印の向き)と、当該割断予定線Lに沿って第2の改質部20bを形成する際にレーザビームLBaをスキャンニングする向き(図1(a)における矢印の向き)とを逆向きとしてあり、第1の改質部20aと第2の改質部20bとでスキャンニングする向きが同じである場合に比べて、高速の処理が可能となる。   In the present embodiment, the direction of scanning the laser beam LBa (the direction of the arrow in FIG. 1A) when forming the first modified portion 20a along the planned cutting line L, and the planned cutting The direction in which the laser beam LBa is scanned when forming the second modified portion 20b along the line L (the direction of the arrow in FIG. 1A) is reversed, and the first modified portion 20a. Compared with the case where the scanning direction is the same for the second reforming unit 20b, high-speed processing is possible.

ここにおいて、改質部形成工程で用いる第1のレーザ1aとしては、波長が800nm、パルス幅が100fs、パルスの繰り返し周波数が1kHzのTi:サファイアレーザを用い、集光光学系3において第1のレーザ1aからのレーザビームLBaを積層体10に集光する集光レンズ(以下、第1の集光レンズと称す)3aとして、開口数(NA)が0.5の対物レンズを用いている。   Here, as the first laser 1a used in the modified portion forming step, a Ti: sapphire laser having a wavelength of 800 nm, a pulse width of 100 fs, and a pulse repetition frequency of 1 kHz is used. An objective lens having a numerical aperture (NA) of 0.5 is used as a condensing lens (hereinafter referred to as a first condensing lens) 3a that condenses the laser beam LBa from the laser 1a onto the laminate 10.

ここで、第1のレーザ1aから出力するレーザビームLBaのパルス幅は、100fsに限らず、20fs〜20nsの範囲で適宜設定すれば、割断予定線Lに沿って各改質部20b,20aを形成する際に各改質部20b,20aが透光性材料層11の表面に平行な面内で割断予定線Lに交差する方向へ不要に広がるのを防止することができ、後の割断工程において積層体10を割断予定線Lに沿ってより精度良く割断することが可能となって割断工程の歩留まりを高めることが可能になるとともに、割断に必要なエリアであるストリートの幅を狭くすることが可能になり、パルス幅をfsオーダとすることにより、集光スポット径よりもストリートの幅を狭くすることが可能になるとともに、周辺部位への熱損傷の発生を防止することができ、積層体10へ熱ストレスがかかるのを防止することができる。ただし、レーザビームLBaのパルス幅が短くなるにつれて単位体積当たりのエネルギが小さくなるので、パルス幅の下限値は100fs以上とすることがより望ましく、また、クラックサイズ(クラックの幅)が大きくなるとチッピングを誘発する可能性が高まるので、パルス幅の上限値は300ps以下とすることがより望ましい。なお、レーザビームLBaのパルス幅が20fsよりも短くなると、割断起点となりうる改質部20b,20aの形成は難しくなり、屈折率が数%変化した程度の改質にとどまってしまう。   Here, the pulse width of the laser beam LBa output from the first laser 1a is not limited to 100 fs, and if it is appropriately set in the range of 20 fs to 20 ns, the respective modified portions 20b and 20a are arranged along the planned cutting line L. When forming, each modified part 20b, 20a can be prevented from unnecessarily spreading in the direction intersecting the planned cutting line L in a plane parallel to the surface of the translucent material layer 11, and the subsequent cutting step It is possible to cleave the laminated body 10 along the planned cutting line L with high accuracy, thereby increasing the yield of the cleaving process and reducing the width of the street, which is an area necessary for cleaving. By setting the pulse width to the fs order, the street width can be made narrower than the focused spot diameter, and the occurrence of thermal damage to surrounding parts can be prevented. Come, it is possible to prevent thermal stress to the laminate 10 from being applied. However, since the energy per unit volume decreases as the pulse width of the laser beam LBa decreases, the lower limit value of the pulse width is more preferably 100 fs or more, and chipping occurs when the crack size (crack width) increases. Therefore, the upper limit of the pulse width is more preferably 300 ps or less. If the pulse width of the laser beam LBa is shorter than 20 fs, it becomes difficult to form the modified portions 20b and 20a that can be the starting point of cleavage, and the modification is limited to a degree that the refractive index has changed by several percent.

また、改質部形成工程において用いる第1のレーザ1aは、多光子吸収による改質部20b,20aの形成が可能なものであればよく、Ti:サファイアレーザに限らず、例えば、SHG−YAGレーザ、THG−YAGレーザ、FHG−YAGレーザなどの固体レーザの高調波発振を用いたものや、KrFエキシマレーザ、ArFエキシマレーザなどを用いてもよい。   The first laser 1a used in the modified portion forming step is not limited to the Ti: sapphire laser, and may be any one that can form the modified portions 20b and 20a by multiphoton absorption, for example, SHG-YAG. A laser using a harmonic oscillation of a solid laser such as a THG-YAG laser or an FHG-YAG laser, a KrF excimer laser, an ArF excimer laser, or the like may be used.

上述の改質部形成工程の後の割断工程では、割断予定線Lに沿って積層体10の表面(透光性材料層11の表面)にレーザビームLBbを照射することにより積層体10を溶融させることなく積層体10に局所的に温度変化を与えるようにしている。   In the cleaving step after the above-described modified portion forming step, the laminate 10 is melted by irradiating the surface of the laminate 10 (the surface of the translucent material layer 11) with the laser beam LBb along the planned cutting line L. A temperature change is locally given to the laminated body 10 without making it.

ここにおいて、割断工程で用いる第2のレーザ2bとしては、中心波長が10.6μm、出力が25W、発振形態がCW発振のCOレーザを用い、集光光学系3において第2のレーザ2aからのレーザビームLBbを積層体10に集光する集光レンズ(以下、第2の集光レンズと称す)3bとして、NAが0.28の対物レンズを用いている。なお、本実施形態では、レーザビームLBbにより積層体10が溶融されないように積層体10の表面におけるレーザビームLBbのパワーを4.7W、スキャンニング速度を4500μm/secとしてあるが、これらの数値は一例であって特に限定するものではない。また、割断工程において用いる第2のレーザ2bは、COレーザに限らず、例えば、Nd:YAGレーザなどを用いてもよい。 Here, as the second laser 2b used in the cleaving step, a CO 2 laser having a center wavelength of 10.6 μm, an output of 25 W, and an oscillation form of CW oscillation is used, and the condensing optical system 3 starts from the second laser 2a. An objective lens having an NA of 0.28 is used as a condensing lens (hereinafter referred to as a second condensing lens) 3b that condenses the laser beam LBb on the laminate 10. In this embodiment, the power of the laser beam LBb on the surface of the stacked body 10 is 4.7 W and the scanning speed is 4500 μm / sec so that the stacked body 10 is not melted by the laser beam LBb. It is an example and is not particularly limited. Further, the second laser 2b used in the cleaving step is not limited to the CO 2 laser, and for example, an Nd: YAG laser or the like may be used.

以上説明した本実施形態の積層体10の割断方法によれば、改質部形成工程では、所望の割断予定線Lに沿って結晶性材料層12における透光性材料層11側の表面13および透光性材料層11の内部それぞれに各別にレーザビームLBa,LBbを照射することによって改質部20a,20bを結晶性材料層12における透光性材料層11側の表面13および透光性材料層11の内部それぞれに形成するので、改質部形成工程において結晶性材料層12における透光性材料層11側の表面13に第1の改質部20aを形成する過程と、透光性材料層11の内部に第2の改質部20b形成する過程とで共通のレーザ1aを用いることができ、改質部形成工程において1つのレーザ1aにより、結晶性材料層12における透光性材料層11側の表面13の改質部20aおよび透光性材料層11の内部の改質部20bを各別に形成することができるから、改質部形成工程において波長の異なる2種類のレーザを必要とする場合に比べて、低コスト化を図れ、しかも、改質部形成工程の後の割断工程では、積層体10に局所的に温度変化を与えることにより生じる熱応力によって改質部20a,20bを割断起点として積層体10を割断予定線に沿って割断するので、外力を加えることなく積層体10を割断したり、或いは温度変化を与えることにより生じる熱応力によって完全な割断が行われなかった場合でも補足的に小さな外力を印加することによって積層体10を割断することができるから、積層体10の破損発生を防止しつつ積層体10を割断することができ、また、直線に限らず任意の割断予定線Lに沿って割断することも可能になる。   According to the cleaving method of the laminate 10 of the present embodiment described above, in the modified portion forming step, the surface 13 on the translucent material layer 11 side of the crystalline material layer 12 along the desired cleaving line L and By irradiating laser beams LBa and LBb separately to the inside of the light transmissive material layer 11, the modified portions 20 a and 20 b are caused to pass through the surface 13 of the crystalline material layer 12 on the light transmissive material layer 11 side and the light transmissive material. Forming the first modified portion 20a on the surface 13 of the crystalline material layer 12 on the translucent material layer 11 side in the modified portion forming step, and the translucent material. The common laser 1a can be used in the process of forming the second modified portion 20b inside the layer 11, and the light transmissive material layer in the crystalline material layer 12 is formed by one laser 1a in the modified portion forming step. 11 side Since the modified portion 20a of the surface 13 and the modified portion 20b inside the translucent material layer 11 can be formed separately, two types of lasers having different wavelengths are required in the modified portion forming step. In comparison, the cost can be reduced, and in the cleaving step after the reforming portion forming step, the reforming portions 20a and 20b are used as the cleaving starting points due to the thermal stress generated by locally changing the temperature of the laminated body 10. Since the laminated body 10 is cleaved along the planned cutting line, even if the laminated body 10 is cleaved without applying an external force or a complete cleaving is not performed due to a thermal stress generated by applying a temperature change, it is supplementary. Since the laminated body 10 can be cleaved by applying a small external force to the laminated body 10, the laminated body 10 can be cleaved while preventing the laminated body 10 from being broken, and is limited to a straight line. It also becomes possible to fracture along any expected splitting line L.

また、本実施形態では、割断工程において、透光性材料層11の表面にレーザビームLBbを照射することにより積層体10に局所的に温度変化を与えるようにしているので、同一のステージ4上で改質部形成工程と割断工程とを連続的に行うことが可能となり、積層体10の割断方法に用いる割断処理システムの自動化が容易になるとともに割断処理システム全体の小型化を図ることが可能となる。   In the present embodiment, in the cleaving step, the surface of the light transmissive material layer 11 is irradiated with the laser beam LBb so as to locally change the temperature of the stacked body 10. This makes it possible to continuously perform the reforming part forming step and the cleaving step, making it easy to automate the cleaving processing system used for the cleaving method of the laminate 10 and reducing the size of the entire cleaving processing system. It becomes.

ところで、上述の改質部形成工程では、第2の改質部20bを割断予定線Lに沿った直線状に形成しているが、図4に示すように、第2の改質部20bを割断予定線Lに沿ってミシン目状に形成するようにすれば、改質部形成工程において透光性材料層11の内部に第2の改質部20bを形成する過程のタクトタイムを短縮することができる。   By the way, in the above-described reforming portion forming step, the second reforming portion 20b is formed in a straight line along the planned cutting line L. As shown in FIG. If the perforated lines L are formed along the planned cutting line L, the tact time of the process of forming the second modified portion 20b in the translucent material layer 11 in the modified portion forming step is shortened. be able to.

同様に、改質部形成工程において結晶性材料層12における透光性材料層11側の表面13に第1の改質部20aを形成するにあたって、図4に示すように、第1の改質部20aを割断予定線Lに沿ってミシン目状に形成するようにすれば、改質部形成工程において結晶性材料層12における透光性材料層11側の表面13に第1の改質部20aを形成する過程のタクトタイムを短縮することができる。   Similarly, in forming the first modified portion 20a on the surface 13 of the crystalline material layer 12 on the translucent material layer 11 side in the modified portion forming step, as shown in FIG. If the portion 20a is formed in a perforated shape along the planned cutting line L, the first modified portion is formed on the surface 13 of the crystalline material layer 12 on the translucent material layer 11 side in the modified portion forming step. The tact time in the process of forming 20a can be shortened.

ところで、上述の改質部形成工程では、透光性材料層11の内部に第2の改質部20bを形成するにあたって、図5に示すように積層体10の厚み方向において異なる複数の位置に第2の改質部20bを形成するようにすれば、積層体10をより精度良く割断予定線Lに沿って割断することが可能となる。この場合には、レーザビームLBaを透光性材料層11の内部に集光照射してスキャンニングする過程を、透光性材料層11の厚み方向における形成位置(深さ)を変えながら繰り返すようにすればよい。このように、積層体10の厚み方向において異なる複数の位置に第2の改質部20bを形成するようにすれば、積層体10を精度良く割断予定線Lに沿って割断することが可能となる。なお、この場合、レーザビームLBaを単方向へスキャンニングすることにより、つまり、レーザビームLBaを割断予定線Lに沿って単方向へスキャンニングすることにより第2の改質部20bを始点から終点まで形成する度に、デフォーカス距離を変えてレーザビームLBaを割断予定線Lに沿ってスキャンニングすることにより第2の改質部20bを始点から終点まで形成するようにしてもよいし、双方向にスキャンニングするようにしてもよい。   By the way, in the above-mentioned modified part formation process, when forming the 2nd modified part 20b in the inside of translucent material layer 11, as shown in FIG. If the second modified portion 20b is formed, the laminated body 10 can be cleaved along the cleaving line L with higher accuracy. In this case, the process of condensing and irradiating the laser beam LBa inside the translucent material layer 11 is repeated while changing the formation position (depth) in the thickness direction of the translucent material layer 11. You can do it. As described above, if the second modified portions 20b are formed at a plurality of different positions in the thickness direction of the stacked body 10, the stacked body 10 can be cut along the planned cutting line L with high accuracy. Become. In this case, by scanning the laser beam LBa in one direction, that is, by scanning the laser beam LBa in one direction along the planned cutting line L, the second modified portion 20b is moved from the start point to the end point. The second modified portion 20b may be formed from the start point to the end point by changing the defocus distance and scanning the laser beam LBa along the planned cutting line L. You may make it scan in the direction.

また、上述の改質部形成工程では、透光性材料層11の内部に第2の改質部20bを形成するにあたって、図6に示すように積層体10の厚み方向において異なる複数の位置に第2の改質部20bをミシン目状に形成するようにしてもよく、図5の場合に比べてタクトタイムを短縮できる。   Further, in the above-described modified portion forming step, when the second modified portion 20b is formed inside the translucent material layer 11, as shown in FIG. The second reforming portion 20b may be formed in a perforated shape, and the tact time can be shortened compared to the case of FIG.

また、上述の改質部形成工程では、透光性材料層11の内部に第2の改質部20bを形成するにあたって、例えば、図7(a)に示すように透光性材料層11の表面との距離が割断予定線Lの始点から終点に向かう方向(同図(a)における右方向)において徐々に長くなるように形成してもよいし、同図(b)に示すように透光性材料層11の表面との距離が割断予定線Lの始点から終点に向かう方向(同図(b)における右方向)において徐々に長くなる第2の改質部20bと、透光性材料層11の表面との距離が上記方向において徐々に短くなる第2の改質部20bとを交互に形成するようにしてもよいし、同図(c)に示すように透光性材料層11の表面との距離が割断予定線Lの始点から終点に向かう方向(同図(c)における右方向)において徐々に長くなる第2の改質部20bと、透光性材料層11の表面との距離が上記方向において徐々に短くなる第2の改質部20bとが、たすき状に交差するように形成してもよい。   Further, in the above-described modified portion forming step, when forming the second modified portion 20b inside the translucent material layer 11, for example, as shown in FIG. The distance from the surface may be formed so as to gradually increase in the direction from the start point to the end point of the cleaving line L (the right direction in FIG. 5A), or as shown in FIG. A second modified portion 20b whose distance from the surface of the light-sensitive material layer 11 gradually increases in a direction from the start point to the end point of the cleaving line L (right direction in FIG. 5B); The second modified portions 20b whose distance from the surface of the layer 11 is gradually shortened in the above direction may be alternately formed, or as shown in FIG. The direction from the start point of the planned cutting line L to the end point (right in the same figure (c)) The second modified portion 20b that gradually increases in the direction) and the second modified portion 20b in which the distance from the surface of the translucent material layer 11 gradually decreases in the above direction intersect each other. You may form as follows.

また、改質部形成工程において、透光性材料層11の内部に第2の改質部20bを形成するにあたって、図8に示すように、格子状の割断予定線Lの各交差点ごとに第2の改質部20bを平面視形状が十字状となるように形成するようにすれば、積層体10から矩形状の個片を切り出すことができる。   Further, in forming the second modified portion 20b in the translucent material layer 11 in the modified portion forming step, as shown in FIG. If the two modified portions 20b are formed so that the shape in plan view is a cross shape, rectangular pieces can be cut out from the laminate 10.

なお、本実施形態では、透光性材料層11の表面にレーザビームLBbを照射することにより積層体10に局所的に温度変化を与えているが、割断予定線Lに沿って透光性材料層11の表面に冷媒(例えば、液体窒素など)を噴き付けることにより局所的に温度変化を与えるようにしてもよい。   In the present embodiment, the temperature of the multilayer body 10 is locally changed by irradiating the surface of the light transmissive material layer 11 with the laser beam LBb. You may make it give a temperature change locally by spraying a refrigerant | coolant (for example, liquid nitrogen etc.) on the surface of the layer 11. FIG.

実施形態における積層体の割断方法の説明図である。It is explanatory drawing of the cleaving method of the laminated body in embodiment. 同上における積層体の割断方法の説明図である。It is explanatory drawing of the cleaving method of a laminated body in the same as the above. 同上において用いる割断処理システムのシステム構成図である。It is a system block diagram of the cleaving processing system used in the same as the above. 同上における積層体の割断方法の説明図である。It is explanatory drawing of the cleaving method of a laminated body in the same as the above. 同上における積層体の割断方法の説明図である。It is explanatory drawing of the cleaving method of a laminated body in the same as the above. 同上における積層体の割断方法の説明図である。It is explanatory drawing of the cleaving method of a laminated body in the same as the above. 同上における積層体の割断方法の説明図である。It is explanatory drawing of the cleaving method of a laminated body in the same as the above. 同上における積層体の割断方法の説明図である。It is explanatory drawing of the cleaving method of a laminated body in the same as the above.

符号の説明Explanation of symbols

10 積層体
11 透光性材料層
12 結晶性材料層
13 表面
20a 改質部
20b 改質部
L 割断予定線
LBa レーザビーム
LBb レーザビーム
DESCRIPTION OF SYMBOLS 10 Laminated body 11 Translucent material layer 12 Crystalline material layer 13 Surface 20a Modified part 20b Modified part L Scheduled line LBa Laser beam LBb Laser beam

Claims (7)

透光性材料層と結晶性材料層との積層構造を有する積層体を割断する積層体の割断方法であって、所望の割断予定線に沿って結晶性材料層における透光性材料層側の表面および透光性材料層の内部それぞれに各別にレーザビームを照射することによって改質部を結晶性材料層における透光性材料層側の表面および透光性材料層の内部それぞれに形成する改質部形成工程と、改質部形成工程の後で積層体に局所的に温度変化を与えることにより生じる熱応力によって改質部を割断起点として積層体を割断予定線に沿って割断する割断工程とを備えることを特徴とする積層体の割断方法。   A method for cleaving a laminated body having a laminated structure of a light transmissive material layer and a crystalline material layer, the method comprising: cutting the laminated body along a desired breaking planned line on the side of the light transmissive material layer in the crystalline material layer The modified portion is formed on the surface of the crystalline material layer on the side of the light-transmitting material layer and the inside of the light-transmitting material layer, respectively, by irradiating the surface and the inside of the light-transmitting material layer separately. The material part forming step and the cleaving step of cleaving the laminate along the planned cleaving line with the modified part as a cleaving starting point due to the thermal stress generated by locally changing the temperature of the laminated body after the reforming part forming step A method for cleaving a laminate, comprising: 改質部形成工程では、透光性材料層の内部に改質部を形成するにあたって、改質部を割断予定線に沿ってミシン目状に形成することを特徴とする請求項1記載の積層体の割断方法。   2. The laminated structure according to claim 1, wherein, in the modified part forming step, the modified part is formed in a perforation along a planned cutting line when the modified part is formed in the translucent material layer. How to cleave the body. 改質部形成工程では、透光性材料層の内部に改質部を形成するにあたって、積層体の厚み方向において異なる複数の位置に改質部を形成することを特徴とする請求項1または請求項2記載の積層体の割断方法。   2. The reforming part forming step, wherein the reforming part is formed at a plurality of different positions in the thickness direction of the laminate when forming the reforming part in the translucent material layer. Item 3. A method for cleaving a laminate according to Item 2. 改質部形成工程では、結晶性材料層における透光性材料層側の表面に改質部を形成するにあたって、改質部を割断予定線に沿ってミシン目状に形成することを特徴とする請求項1ないし請求項3のいずれか1項に記載の積層体の割断方法。   In the modified part forming step, when the modified part is formed on the surface of the crystalline material layer on the translucent material layer side, the modified part is formed in a perforated shape along the planned cutting line. The method for cleaving a laminate according to any one of claims 1 to 3. 改質部形成工程では、透光性材料層の内部に改質部を形成するにあたって、格子状の割断予定線の各交差点ごとに改質部を十字状に形成することを特徴とする請求項1ないし請求項4のいずれか1項に記載の積層体の割断方法。   The reforming part forming step includes forming a reforming part in a cross shape at each intersection of the grid-like cutting lines when forming the reforming part in the translucent material layer. The method for cleaving a laminate according to any one of claims 1 to 4. 改質部形成工程では、レーザビームのパルス幅を20fs〜20nsの範囲で設定することを特徴とする請求項1ないし請求項5のいずれか1項に記載の積層体の割断方法。   6. The method for cleaving a laminate according to claim 1, wherein in the modified portion forming step, the pulse width of the laser beam is set in a range of 20 fs to 20 ns. 割断工程では、透光性材料層の表面にレーザビームを照射することにより温度変化を与えることを特徴とする請求項1ないし請求項6のいずれか1項に記載の積層体の割断方法。   The method for cleaving a laminate according to any one of claims 1 to 6, wherein in the cleaving step, a temperature change is applied by irradiating the surface of the light transmissive material layer with a laser beam.
JP2007188511A 2007-07-19 2007-07-19 Lamination method Active JP5139739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188511A JP5139739B2 (en) 2007-07-19 2007-07-19 Lamination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188511A JP5139739B2 (en) 2007-07-19 2007-07-19 Lamination method

Publications (2)

Publication Number Publication Date
JP2009023215A true JP2009023215A (en) 2009-02-05
JP5139739B2 JP5139739B2 (en) 2013-02-06

Family

ID=40395519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188511A Active JP5139739B2 (en) 2007-07-19 2007-07-19 Lamination method

Country Status (1)

Country Link
JP (1) JP5139739B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116917A1 (en) * 2009-04-07 2010-10-14 浜松ホトニクス株式会社 Laser machining device and laser machining method
WO2011013556A1 (en) * 2009-07-28 2011-02-03 浜松ホトニクス株式会社 Method for cutting object to be processed
WO2011021627A1 (en) * 2009-08-21 2011-02-24 浜松ホトニクス株式会社 Laser machining method and chip
WO2011109688A1 (en) * 2010-03-05 2011-09-09 Sage Electrochromics, Inc. Lamination of electrochromic device to glass substrates
WO2011128929A1 (en) * 2010-04-12 2011-10-20 三菱電機株式会社 Laser-cutting method and laser-cutting device
KR20110138727A (en) * 2010-06-21 2011-12-28 엘지이노텍 주식회사 Light emitting device, a method for manufacturing the same, light emitting device package, lighting system, laser scribing method
US9272941B2 (en) 2012-04-05 2016-03-01 Sage Electrochromics, Inc. Method of cutting a panel using a starter crack and a glass panel including a starter crack
KR20160045065A (en) * 2013-07-23 2016-04-26 쓰리디-마이크로막 아게 Method and device for separating a flat workpiece into a plurality of sections
JP2017185547A (en) * 2010-07-12 2017-10-12 ロフィン−シナー テクノロジーズ インコーポレーテッド Method of material processing by laser filamentation
JP2018206945A (en) * 2017-06-05 2018-12-27 株式会社ディスコ Chip manufacturing method
JP2018206941A (en) * 2017-06-05 2018-12-27 株式会社ディスコ Chip manufacturing method
JP2018206943A (en) * 2017-06-05 2018-12-27 株式会社ディスコ Chip manufacturing method
JP2019177410A (en) * 2018-03-30 2019-10-17 Dgshape株式会社 Processing method, processing system and processing program
US10718937B2 (en) 2010-07-16 2020-07-21 Sage Electrochromics, Inc. Electrochemical glazing having electrically controllable optical and energy-related properties
WO2022162768A1 (en) * 2021-01-27 2022-08-04 ギガフォトン株式会社 Laser processing method and laser processing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035710A (en) * 2004-07-28 2006-02-09 Cyber Laser Kk Glass processing method using laser and device
JP2006231413A (en) * 2002-03-12 2006-09-07 Hamamatsu Photonics Kk Laser beam machining method
JP2006339382A (en) * 2005-06-01 2006-12-14 Renesas Technology Corp Manufacturing method of semiconductor device
JP2007015169A (en) * 2005-07-06 2007-01-25 Seiko Epson Corp Scribing formation method, scribing formation apparatus, and multilayer substrate
JP2007118009A (en) * 2005-10-25 2007-05-17 Seiko Epson Corp Method for machining laminated body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231413A (en) * 2002-03-12 2006-09-07 Hamamatsu Photonics Kk Laser beam machining method
JP2006035710A (en) * 2004-07-28 2006-02-09 Cyber Laser Kk Glass processing method using laser and device
JP2006339382A (en) * 2005-06-01 2006-12-14 Renesas Technology Corp Manufacturing method of semiconductor device
JP2007015169A (en) * 2005-07-06 2007-01-25 Seiko Epson Corp Scribing formation method, scribing formation apparatus, and multilayer substrate
JP2007118009A (en) * 2005-10-25 2007-05-17 Seiko Epson Corp Method for machining laminated body

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9035216B2 (en) 2009-04-07 2015-05-19 Hamamatsu Photonics K.K. Method and device for controlling interior fractures by controlling the laser pulse width
WO2010116917A1 (en) * 2009-04-07 2010-10-14 浜松ホトニクス株式会社 Laser machining device and laser machining method
TWI593497B (en) * 2009-04-07 2017-08-01 Hamamatsu Photonics Kk Laser processing equipment
US9302410B2 (en) 2009-07-28 2016-04-05 Hamamatsu Photonics K.K. Method for cutting object to be processed
WO2011013556A1 (en) * 2009-07-28 2011-02-03 浜松ホトニクス株式会社 Method for cutting object to be processed
JP2011025611A (en) * 2009-07-28 2011-02-10 Hamamatsu Photonics Kk Method of cutting workpiece
US10315403B2 (en) 2009-07-28 2019-06-11 Hamamatsu Photonics K.K. Method for cutting object to be processed
KR101802527B1 (en) * 2009-07-28 2017-11-28 하마마츠 포토닉스 가부시키가이샤 Method for cutting object to be processed
CN102470550A (en) * 2009-07-28 2012-05-23 浜松光子学株式会社 Method for cutting object to be processed
WO2011021627A1 (en) * 2009-08-21 2011-02-24 浜松ホトニクス株式会社 Laser machining method and chip
EP2468448A4 (en) * 2009-08-21 2017-07-05 Hamamatsu Photonics K.K. Laser machining method and chip
JP2011041966A (en) * 2009-08-21 2011-03-03 Hamamatsu Photonics Kk Laser machining method and chip
US8790997B2 (en) 2009-08-21 2014-07-29 Hamamatsu Photonics K.K. Laser machining method and chip
US9029987B2 (en) 2009-08-21 2015-05-12 Hamamatsu Photonics K.K. Laser machining method and chip
US8482837B2 (en) 2010-03-05 2013-07-09 Sage Electrochromics, Inc. Lamination of electrochromic device to glass substrates
US11890835B2 (en) 2010-03-05 2024-02-06 Sage Electrochromics, Inc. Lamination of electrochromic device to glass substrates
WO2011109688A1 (en) * 2010-03-05 2011-09-09 Sage Electrochromics, Inc. Lamination of electrochromic device to glass substrates
US11241865B2 (en) 2010-03-05 2022-02-08 Sage Electrochromics, Inc. Lamination of electrochromic device to glass substrates
EP2641734A1 (en) * 2010-03-05 2013-09-25 Sage Electrochromics, Inc. Lamination of Electrochromic Device to Glass Substrates
US8482838B2 (en) 2010-03-05 2013-07-09 Sage Electrochromics, Inc. Lamination of electrochromic device to glass substrates
US9182644B2 (en) 2010-03-05 2015-11-10 Sage Electrochromics, Inc. Lamination of electrochromic device to glass substrates
US9316883B2 (en) 2010-03-05 2016-04-19 Sage Electrochromics, Inc. Lamination of electrochromic device to glass substrates
TWI399256B (en) * 2010-04-12 2013-06-21 Mitsubishi Electric Corp Laser cutting method and laser cutting device
WO2011128929A1 (en) * 2010-04-12 2011-10-20 三菱電機株式会社 Laser-cutting method and laser-cutting device
JP5367162B2 (en) * 2010-04-12 2013-12-11 三菱電機株式会社 Laser cutting method and laser cutting apparatus
CN102858489A (en) * 2010-04-12 2013-01-02 三菱电机株式会社 Laser-cutting method and laser-cutting device
KR101409520B1 (en) 2010-04-12 2014-06-20 미쓰비시덴키 가부시키가이샤 Laser-cutting method and laser-cutting device
EP2398073A3 (en) * 2010-06-21 2015-03-04 LG Innotek Co., Ltd. Light emitting diode, light emitting diode package, and lighting system
KR101704028B1 (en) * 2010-06-21 2017-02-07 엘지이노텍 주식회사 Light emitting device
KR20110138727A (en) * 2010-06-21 2011-12-28 엘지이노텍 주식회사 Light emitting device, a method for manufacturing the same, light emitting device package, lighting system, laser scribing method
JP2017185547A (en) * 2010-07-12 2017-10-12 ロフィン−シナー テクノロジーズ インコーポレーテッド Method of material processing by laser filamentation
US10399184B2 (en) 2010-07-12 2019-09-03 Rofin-Sinar Technologies Llc Method of material processing by laser filamentation
US11650410B2 (en) 2010-07-16 2023-05-16 Sage Electrochromics, Inc. Electrochemical glazing having electrically controllable optical and energy-related properties
US10718937B2 (en) 2010-07-16 2020-07-21 Sage Electrochromics, Inc. Electrochemical glazing having electrically controllable optical and energy-related properties
US9272941B2 (en) 2012-04-05 2016-03-01 Sage Electrochromics, Inc. Method of cutting a panel using a starter crack and a glass panel including a starter crack
US10654133B2 (en) 2013-07-23 2020-05-19 3D-Micromac Ag Method and device for separating a flat workpiece into a plurality of sections
JP2016525018A (en) * 2013-07-23 2016-08-22 3デー−ミクロマク アクチェンゲゼルシャフト Method and apparatus for dividing a flat workpiece into a plurality of parts
KR102172826B1 (en) * 2013-07-23 2020-11-02 쓰리디-마이크로막 아게 Method and device for separating a flat workpiece into a plurality of sections
KR20160045065A (en) * 2013-07-23 2016-04-26 쓰리디-마이크로막 아게 Method and device for separating a flat workpiece into a plurality of sections
JP2018206945A (en) * 2017-06-05 2018-12-27 株式会社ディスコ Chip manufacturing method
JP2018206943A (en) * 2017-06-05 2018-12-27 株式会社ディスコ Chip manufacturing method
JP2018206941A (en) * 2017-06-05 2018-12-27 株式会社ディスコ Chip manufacturing method
JP2019177410A (en) * 2018-03-30 2019-10-17 Dgshape株式会社 Processing method, processing system and processing program
WO2022162768A1 (en) * 2021-01-27 2022-08-04 ギガフォトン株式会社 Laser processing method and laser processing system

Also Published As

Publication number Publication date
JP5139739B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5139739B2 (en) Lamination method
US7468310B2 (en) Method of machining substrate and method of manufacturing element
JP4754801B2 (en) Laser processing method
KR101758789B1 (en) Method of closed form release for brittle materials using burst ultrafast laser pulses
KR102230762B1 (en) Method of and device for the laser-based machining of sheet-like substrates using a laser beam focal line
KR101428823B1 (en) Laser processing method and laser processing apparatus
JP5537081B2 (en) Processing object cutting method
TWI629249B (en) Method for cutting tempered glass sheets
JP4692717B2 (en) Brittle material cleaving device
JP5476063B2 (en) Processing object cutting method
US7482553B2 (en) Laser beam processing machine
JP2007167875A (en) Method for inner scribing using laser beam
WO2006101091A1 (en) Laser machining method
JP2009039755A (en) Machining method for cutting
JP6012186B2 (en) Processing object cutting method
JP5117806B2 (en) Laser processing method and laser processing apparatus
JP2008012542A (en) Laser beam machining method
JP2007021514A (en) Scribe forming method, and substrate with division projected line
WO2012063348A1 (en) Laser processing method and device
JP2005001001A (en) Laser beam machining method
JP2007015169A (en) Scribing formation method, scribing formation apparatus, and multilayer substrate
TW201334902A (en) Laser machining method
JP2006205260A (en) Device for laser beam machining
JP2007061825A (en) Laser irradiation device, and laser scribing method
JP2006248075A (en) Method and apparatus for working substrate using laser beam

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100705

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121116

R150 Certificate of patent or registration of utility model

Ref document number: 5139739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250