JP2009017394A - Laminate and antenna core - Google Patents

Laminate and antenna core Download PDF

Info

Publication number
JP2009017394A
JP2009017394A JP2007178781A JP2007178781A JP2009017394A JP 2009017394 A JP2009017394 A JP 2009017394A JP 2007178781 A JP2007178781 A JP 2007178781A JP 2007178781 A JP2007178781 A JP 2007178781A JP 2009017394 A JP2009017394 A JP 2009017394A
Authority
JP
Japan
Prior art keywords
laminate
resin
antenna
winding
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007178781A
Other languages
Japanese (ja)
Inventor
Koichiro Kurihara
光一郎 栗原
Nakao Moritsugu
仲男 森次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007178781A priority Critical patent/JP2009017394A/en
Publication of JP2009017394A publication Critical patent/JP2009017394A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate that can be manufactured by an easy process, and can improve antenna characteristics by reducing a magnetic gap between the laminate and winding as much as possible, and to provide an antenna core using the laminate. <P>SOLUTION: In the laminate, a Co-based metal thin strip having a thickness of not more than 100 μm is laminated, and an edge section is chamfered. Preferably, the chamfering dimensions of the edge are not less than 10 μm. Preferably, in the laminate, a coil is directly wound on the surface or the edge is coated with resin of not more than 30 μm and a coil is wound on the resin. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、車両のキーレスエントリーシステム用などのアンテナ、モータ用の回転磁心、自動車用途などに用いられるリアクトルなどに使用される、軟磁性のCo基金属薄帯を積層した積層体に関し、特にアンテナ用磁心として好適なものである。   The present invention relates to a laminate in which soft magnetic Co-based metal ribbons are laminated, particularly for an antenna for a vehicle keyless entry system, a rotating magnetic core for a motor, a reactor used for an automobile, and the like, and in particular, an antenna. It is suitable as a magnetic core.

従来、車両のキーレスエントリーシステムなどに使用されるRFID用のアンテナとして、フェライト磁心を使用したものが用いられていた。しかし、フェライトは脆いためにわずかに変形しただけでも割れが発生する問題があり、キーを地面に落とした場合やズボンのポケット等に入れて持ち歩いたりする場合に衝撃を受けて割れが発生し、特性が低下する問題がある。また、フェライト材は温度に対して特性の変動が大きいため、アンテナとしての機能を確保するために、電子回路による制御が必要となり、複雑な回路構成を取っている。この問題を解決するために、アンテナ用磁心の材料に非晶質金属薄帯を用い、これを積層して磁心に用いることが行われている。
例えば、特許文献1では、非晶質金属薄帯を板状のボビンに巻きまわし、これにコイルを巻いてアンテナ用磁心とすることが開示されている。これにより、磁心の端部に任意の曲面や厚みが得られ、アンテナ用磁心の送受信性能のバラツキを防止できることが開示されている。
Conventionally, an RFID antenna used in a keyless entry system of a vehicle has been used that uses a ferrite magnetic core. However, since ferrite is brittle, even if it is slightly deformed, there is a problem that cracks occur, and when a key is dropped on the ground or carried in a pocket of a trouser, it receives a shock and cracks occur. There is a problem that the characteristics deteriorate. In addition, since the ferrite material has a large variation in characteristics with respect to temperature, in order to ensure the function as an antenna, control by an electronic circuit is necessary, and a complicated circuit configuration is taken. In order to solve this problem, an amorphous metal ribbon is used as a material for the antenna core, and these are laminated and used for the magnetic core.
For example, Patent Document 1 discloses that an amorphous metal ribbon is wound around a plate-like bobbin, and a coil is wound around this to form an antenna magnetic core. Thus, it is disclosed that an arbitrary curved surface or thickness can be obtained at the end of the magnetic core, and variations in transmission / reception performance of the antenna magnetic core can be prevented.

近年のRFID用のアンテナ用磁心には、さらなる薄型化と高磁気特性(低損失、高透磁率、高磁束密度)が要求されている。そのため、前記のような厚みのある芯材を使用するアンテナの他に、特許文献2に開示されるような、金属薄帯を積層した磁心の検討が継続されている。これは、非晶質金属薄帯やナノ結晶金属薄帯等の高磁気特性の金属薄帯同士を積層一体化したものである。
金属薄帯の表面には樹脂等の接着剤を塗布しており、その後、ホットプレスなどを用いて圧着される。これらの積層技術は例えば特許文献3などにも開示されている。
In recent years, RFID antenna cores are required to be thinner and have higher magnetic properties (low loss, high magnetic permeability, high magnetic flux density). Therefore, in addition to the antenna using the thick core material as described above, the investigation of the magnetic core laminated with metal ribbons as disclosed in Patent Document 2 is continued. This is obtained by laminating and integrating metal ribbons having high magnetic properties such as amorphous metal ribbons and nanocrystalline metal ribbons.
An adhesive such as a resin is applied to the surface of the metal ribbon, and is then pressure-bonded using a hot press or the like. These lamination techniques are also disclosed in Patent Document 3, for example.

特開2004−166071号公報JP 2004-166071 A 特開平7−278763号公報Japanese Patent Laid-Open No. 7-278763 WO2003/060175WO2003 / 060175

このような軟磁性の金属薄帯を用いた積層体には、金属薄帯としてCo基の金属薄帯が用いられることがある。Co基金属薄帯の方が高いアンテナ特性Q値を得やすいだけでなく、Fe基の金属薄帯よりも耐蝕性に優れるため、錆の発生を抑えることができる。
ただし、この積層体に巻き線を巻きつける場合、直接巻きつけると積層体の稜部で巻き線が切れたり、巻き線にコーティングされている被覆材が傷ついて積層体と導通したりする恐れがある。そのため、積層体に巻き線を直接巻きつけず、樹脂テープを積層体に巻くなどの手段が用いられる。
In a laminate using such a soft magnetic metal ribbon, a Co-based metal ribbon may be used as the metal ribbon. The Co-based metal ribbon not only has a higher antenna characteristic Q value, but also has better corrosion resistance than the Fe-based metal ribbon, so that the occurrence of rust can be suppressed.
However, when winding the winding around this laminate, there is a risk that the winding will break at the ridges of the laminate, or the coating material coated on the winding may be damaged and become conductive with the laminate. is there. Therefore, means such as winding a resin tape around the laminated body without directly winding the winding around the laminated body is used.

樹脂テープを巻きつける場合、厚みが10μm以下の薄い樹脂テープは高価であり、かつ樹脂テープの厚さが薄いと巻き線を巻きつける際の張力によって樹脂テープが破断し積層体との絶縁がとれなくなる恐れも有る。このため、巻きつける樹脂テープはある程度の厚さにならざろう得ない。
そのため、アンテナ用磁心となる積層体と巻き線との間にできる磁気的なギャップが大きくなる。この磁気的なギャップが大きいほど、アンテナ特性Q値が低下する。また、使用する樹脂テープも特殊なものを使用する必要があり、非常に高価である。また、樹脂テープを巻きつけるコストも高いという問題がある。
また、安価な方法として樹脂を積層体の全体に被覆させる方法もあるが、樹脂は表面張力により面の中央部が厚くなりやすく、反対に稜部では薄くなりやすい。絶縁層として樹脂厚さが最も必要な部分であるため、稜部で樹脂の十分な厚さを確保するにはかなりの樹脂を塗布しなければならず、結果として上記と同様に磁気的なギャップが大きくなり、アンテナ特性Q値が低下してしまう。
When a resin tape is wound, a thin resin tape with a thickness of 10 μm or less is expensive, and if the thickness of the resin tape is thin, the resin tape breaks due to the tension when winding the winding, and insulation from the laminate is obtained. There is also the danger of disappearing. For this reason, it is inevitable that the resin tape to be wound has a certain thickness.
For this reason, a magnetic gap formed between the laminated body serving as the antenna magnetic core and the winding becomes large. The antenna characteristic Q value decreases as the magnetic gap increases. Moreover, it is necessary to use a special resin tape, which is very expensive. There is also a problem that the cost of winding the resin tape is high.
Further, as an inexpensive method, there is a method of covering the entire laminate with resin, but the resin tends to be thick at the center of the surface due to surface tension, and conversely thin at the ridge. Since the resin thickness is the most necessary part for the insulating layer, a considerable amount of resin must be applied to secure a sufficient thickness of the resin at the ridge, resulting in a magnetic gap as above. Increases, and the antenna characteristic Q value decreases.

従って、本発明は、安易な工程で製造が可能であり、かつ、アンテナ特性を向上させることが可能な積層体、およびそれを用いたアンテナ用磁心を提供することを課題とする。   Therefore, an object of the present invention is to provide a laminate that can be manufactured by an easy process and that can improve antenna characteristics, and a magnetic core for an antenna using the laminate.

本発明は、厚さ100μm以下のCo基金属薄帯を積層した積層体であって、稜部を面取り加工していることを特徴とする。この積層体は、表面に直接コイルが巻かれるものが好ましい。ここで稜部とは、その名のとおり積層体の角や辺となる尖った部分を指す。   The present invention is a laminate in which Co-based metal ribbons having a thickness of 100 μm or less are laminated, and the ridges are chamfered. The laminate is preferably one in which a coil is wound directly on the surface. Here, the ridge portion indicates a pointed portion that becomes a corner or a side of the laminate as the name suggests.

Co基金属薄帯はCoが50原子%以上のものが好ましい。また、稜部の面取り寸法が10μm以上であるものが好ましい。   The Co-based metal ribbon preferably has a Co content of 50 atomic% or more. Moreover, the thing whose chamfering dimension of a ridge part is 10 micrometers or more is preferable.

この積層体は表面に直接コイルが巻かれるものが好ましい。もしくは、この積層体は稜部に30μm以下の樹脂が被覆され、その樹脂の上にコイルが巻かれるものが好ましい。   This laminate preferably has a coil wound directly on the surface. Alternatively, it is preferable that the laminated body is coated with a resin of 30 μm or less on the ridge portion and a coil is wound on the resin.

これらの積層体を用いてアンテナ用磁心とすることができる。   An antenna magnetic core can be formed using these laminates.

本発明によると、断面積の小さいアンテナ用磁心として用いる場合、巻きつけるコイルの導線が、面取り加工した面に沿って緩やかな曲率で曲がり、積層体の側面にも近接した状態で巻かれることになるため、アンテナ特性Qが向上する。
また、本発明のアンテナでは、樹脂を被覆させても稜部で樹脂が薄くならないため、巻き線の保護に樹脂テープを用いる必要がない。樹脂テープを用いると量産で一様に巻きつけることが難しく、アンテナ特性にバラツキが発生する。本発明では巻き線の保護は不用、もしくは薄く樹脂を吹付ける樹脂塗布手段を用いることもでき、量産においてもアンテナ特性のバラツキが極力抑えられる。
According to the present invention, when used as a magnetic core for an antenna having a small cross-sectional area, the winding wire of the coil to be wound is bent with a gentle curvature along the chamfered surface, and is wound in a state close to the side surface of the laminate. Therefore, the antenna characteristic Q is improved.
Moreover, in the antenna of this invention, even if it coat | covers resin, since resin does not become thin at a ridge part, it is not necessary to use a resin tape for protection of a winding. When resin tape is used, it is difficult to wrap uniformly in mass production, and variations in antenna characteristics occur. In the present invention, the protection of the winding is unnecessary, or a resin coating means that sprays the resin thinly can be used, and variations in antenna characteristics can be suppressed as much as possible even in mass production.

本発明者らが検討した結果、図1、図2に示すように積層体の稜部を面取りしたため、巻き線を積層体の表面に沿って巻きつけることで前記の問題を解消した。
つまり稜部を面取りしたことで、従来は鋭い稜部の先端が巻き線を傷つけたり断線させたりしていたが、これらの問題を起こすことなくアンテナ用磁心を得ることができた。
また、稜部を面取り加工することで巻きつけるコイルが積層体の周囲に沿って巻かれ、コイルと積層体の間に隙間がなくなる。このため、アンテナ特性Q値が向上する。また、樹脂テープを巻く必要も無く、さらに、樹脂テープを巻いたものよりアンテナ特性のバラツキが少なくなり、一定の特性をもつアンテナを供給できる。
As a result of the study by the present inventors, the ridge portion of the laminate was chamfered as shown in FIGS. 1 and 2, and thus the above problem was solved by winding the winding along the surface of the laminate.
In other words, by chamfering the ridge portion, the tip of the sharp ridge portion conventionally damaged or disconnected the winding, but the antenna core could be obtained without causing these problems.
In addition, the coil to be wound by chamfering the ridge portion is wound along the periphery of the laminate, and there is no gap between the coil and the laminate. For this reason, the antenna characteristic Q value is improved. Further, there is no need to wind a resin tape, and furthermore, the variation in antenna characteristics is less than that of a resin tape wound, and an antenna having a certain characteristic can be supplied.

面取り加工の手段としては、ヤスリやサンドペーパーによる方法も有効であるが、量産性、面取り加工量の安定性や再現性に問題があるため、少量品や特注品に限られる。飛来する研磨砥粒を含んだ風に積層体を当てることにより研磨するショットブラストやビーズブラストを用いることが好ましい。そのため、均一に稜部を加工するためには砥粒の飛来方向に対して、積層体の各稜部の加工が平均化されるように積層体の方向を適時動かしながらの加工が好ましい。バレル研磨はセラミック電子部品の面取り加工で実績が豊富であり、量産性、再現性に優れている。   As a means for chamfering, a method using a file or sandpaper is also effective, but there are problems in mass productivity, stability of the chamfering processing amount, and reproducibility, so that it is limited to a small quantity product or a special order product. It is preferable to use shot blasting or bead blasting which is polished by applying the laminate to a wind containing flying abrasive grains. Therefore, in order to uniformly process the ridges, it is preferable to perform processing while moving the direction of the laminated body in a timely manner so that the processing of each ridge part of the laminated body is averaged with respect to the flying direction of the abrasive grains. Barrel polishing has a good track record in chamfering ceramic electronic parts, and is excellent in mass production and reproducibility.

面取り寸法が積層体の積層方向の厚みtに対して10μm以上とすることが好ましい。ここで面取り寸法とは、図2に示すように、C面取りや丸いRをとるために削る部分で、積層体の辺となる先端の部分からの幅Wを指すものとする。面取り寸法Wが10μm未満であると、巻き線が断線したり、表面の絶縁被覆が剥れて積層体と導通したりする可能性が有る。但し、樹脂を積層体の周囲に塗布する場合は、面取り寸法Wが10μm未満であってもよい。
また、原理的に面取り加工を厚さの1/2を超えると、実質的に面取り加工の上限を超えることになり、積層体の幅または長さが減少することになり、製品の寸法精度の管理の点で好ましくない。面取り寸法は、稜部の膜厚を十分確保するためには大きい方が良いが、加工時間の長時間化によるコスト増の要因となるため、複数回塗布含めて、要求される耐蝕信頼性とコストを考慮して仕様が決定されるものである。金属薄帯に非常に硬い非晶質金属薄帯を用いた場合、面取り寸法は50μm以下とすることが好ましい。
The chamfer dimension is preferably 10 μm or more with respect to the thickness t in the stacking direction of the stacked body. Here, as shown in FIG. 2, the chamfer dimension refers to a width W from a tip portion serving as a side of the laminate, which is a portion to be cut to obtain C chamfering or round R. If the chamfer dimension W is less than 10 μm, the winding may be disconnected, or the insulating coating on the surface may be peeled off and may be electrically connected to the laminate. However, when the resin is applied around the laminate, the chamfer dimension W may be less than 10 μm.
In principle, if chamfering exceeds 1/2 the thickness, the upper limit of chamfering will be substantially exceeded, and the width or length of the laminate will be reduced. It is not preferable in terms of management. The chamfer dimension should be large in order to ensure sufficient film thickness at the ridges, but it will increase the cost due to the long processing time. The specification is determined in consideration of the cost. When a very hard amorphous metal ribbon is used for the metal ribbon, the chamfer dimension is preferably 50 μm or less.

用いる金属薄帯として、厚さ100μm以下のCo系非晶質薄帯が好ましい。ケイ素鋼板よりも薄いため、渦電流損失が非常に小さく、小さな体積で高いアンテナ特性を得るための材料として最適である。また、Fe基非晶質薄帯は非常に錆びやすく、必ず耐蝕性を保つために被覆処理することが必須であるが、Co基非晶質薄帯であれば樹脂被覆はなくとも耐蝕性は十分に満足する。そのため、巻き線と積層体との間の磁気的ギャップを極力少なく出来る。   As the metal ribbon to be used, a Co-based amorphous ribbon having a thickness of 100 μm or less is preferable. Since it is thinner than a silicon steel plate, eddy current loss is very small, and it is optimal as a material for obtaining high antenna characteristics with a small volume. In addition, Fe-based amorphous ribbons are very rusting and must be coated to maintain corrosion resistance. However, with Co-based amorphous ribbons, corrosion resistance is not required even if there is no resin coating. Satisfied enough. Therefore, the magnetic gap between the winding and the laminate can be reduced as much as possible.

Co基金属薄帯として、合金組成がCoaSibBcMd(但し、MはCr,Mo,Mn,Zr,Hfの1種以上の元素であり、原子%で、50≦a≦80、5≦b≦30、2≦c≦15、1≦d≦10)で表されるものが好ましい。Co量は、好ましくは原子%で60%以上70%以下が好ましい。この合金組成のCo基金属薄帯を積層体の最上面と最下面に使用することで、耐蝕性に優れたアンテナ用磁心を得ることが出来る。
Co量aは50原子%(以下、%と記載のものは原子%を表す)より少ないと耐蝕性が低下してしまい、長期安定性に優れた積層体を得ることが出来ない。また、80%超では後述するSi、Bなどが不足するため、非晶質金属薄帯を得ることが工業的に難しくなる。Co量aが50原子%以上であれば、一部を他の遷移元素と置換してもよい。置換する遷移元素としてFe,Niなどが好ましい。
Si量bは非晶質の薄帯を得るために有用な元素である。5%以上添加することでその効果が得られる。但し、30%を超えてしまうと飽和磁束密度が下がってしまうため、上限を30%以下とする。
B量cもSiと同様に非晶質の薄帯を得るために有用な元素である。2%以上添加することでその効果が得られる。15%より多いと添加しても非晶質形成能などの改善効果が見られず、また軟磁気特性を悪化させるため、上限は15%とする。
Mは軟磁気特性の改善に有効な元素である。また、10%超だと飽和磁束密度が低下してしまうため、上限を10%とする。さらにこのましい上限は7%である。
As the Co-based metal ribbon, the alloy composition is CoaSibBcMd (where M is one or more elements of Cr, Mo, Mn, Zr, and Hf, and in atomic percent, 50 ≦ a ≦ 80, 5 ≦ b ≦ 30, Those represented by 2 ≦ c ≦ 15 and 1 ≦ d ≦ 10) are preferable. The amount of Co is preferably 60% to 70% in atomic percent. By using the Co-based metal ribbon having this alloy composition on the uppermost surface and the lowermost surface of the laminate, an antenna magnetic core having excellent corrosion resistance can be obtained.
If the Co amount a is less than 50 atomic% (hereinafter, what is described as% represents atomic%), the corrosion resistance is lowered, and a laminate having excellent long-term stability cannot be obtained. On the other hand, if it exceeds 80%, Si, B, etc., which will be described later, are insufficient, and it is industrially difficult to obtain an amorphous metal ribbon. If the Co amount a is 50 atomic% or more, a part thereof may be substituted with another transition element. Fe, Ni, etc. are preferable as the transition element to be substituted.
Si amount b is an element useful for obtaining an amorphous ribbon. The effect is acquired by adding 5% or more. However, if it exceeds 30%, the saturation magnetic flux density decreases, so the upper limit is made 30% or less.
B amount c is also an element useful for obtaining an amorphous ribbon similar to Si. The effect is acquired by adding 2% or more. If it exceeds 15%, an improvement effect such as an amorphous forming ability is not seen even if added, and the soft magnetic property is deteriorated, so the upper limit is made 15%.
M is an element effective for improving soft magnetic properties. Moreover, since saturation magnetic flux density will fall when it exceeds 10%, an upper limit shall be 10%. Furthermore, this upper limit is 7%.

Cは角形性および飽和磁束密度の向上に効果があるため、全体で3原子%以下であれば含んでも良い。3原子%より多いと脆化と熱安定性が低下してしまう。また、不可避な不純物としてS,P,Sn,Cu,Al,Tiから少なくとも1種以上の元素を0.50%以下含有してもよい。   Since C is effective in improving the squareness and saturation magnetic flux density, it may be contained if it is 3 atomic% or less as a whole. When it exceeds 3 atomic%, embrittlement and thermal stability are deteriorated. Further, as an inevitable impurity, at least one element selected from S, P, Sn, Cu, Al, and Ti may be contained in an amount of 0.50% or less.

金属薄帯同士は、樹脂により層間を接着してもよいし、カシメにより一体化してもよい。バレル研磨により面取り加工を行う場合は、積層体にかかるせん断力が大きく、金属薄帯同士が剥離する可能性があるため、カシメよりも樹脂による接着が好ましい。樹脂による接着であれば、金属薄帯同士の層間を電気的に絶縁できる。樹脂としては、ポリイミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂などが使用できる。樹脂は、液体状のものを塗布するのが生産性の点から良好である。   The metal ribbons may be bonded together with a resin, or may be integrated by caulking. When chamfering is performed by barrel polishing, since the shearing force applied to the laminate is large and the metal ribbons may be peeled off, adhesion with a resin is preferable to caulking. If it is adhesion | attachment by resin, the interlayer of metal strips can be electrically insulated. As the resin, polyimide resin, polyamideimide resin, epoxy resin, or the like can be used. The resin is preferably applied in a liquid form from the viewpoint of productivity.

(実施例1)
Co系非晶質金属薄帯として、平均厚さ18μm、幅50mm、長さ300mの日立金属製ACO−5材を用いた。このCo系非晶質金属薄帯の表面にポリアミド酸溶液を平均の塗布厚さが1ミクロン(塗布厚さバラツキを0.5ミクロン)になるように塗布し、乾燥した。
このポリアミド酸溶液を塗布したCo系非晶質金属薄帯を、幅20mm、長さ50mmの矩形状に切断し、厚さ2ミリのステンレス板2枚の間に20枚積み重ねた。尚、積層した非晶質金属薄帯20枚の内、上下端面のCo系非晶質金属薄帯には、ステンレス板接触面側にポリアミド酸樹脂を塗布していないCo系非晶質金属薄帯を用い、Co系非晶質金属薄帯と金型が固着するのを防止した。
前記積層体を温度400℃に設定したポットプレスにセットし、上下プレスの温度が再度400℃の表示となった後、50MPaの圧力で10分保持した。その後、積層体を取り出し、室温まで冷却した。
この積層体を、窒素中400℃で1時間、その後、同雰囲気200℃で300A/mの磁場中で4時間磁場中熱処理を行った。その後、この積層体を、タ゛イサーにて切断し、幅2mm、長さ18mmの積層体20ケを得た。
こうして出来た積層磁心にバレル研磨を施し、角の部分および辺の部分を主に切削してコーナー形状とした。バレル研磨は、研磨用のバレルには、株式会社チップトン製の遠心バレル研磨機HS−1−4Vを用い、メディアはHS−2を使用した。稜部の面取り寸法は3,6,10,30μmとしてバレル研磨を行い、有機フィルムを介さずに直接コイルを巻き、巻いたコイルをほどいて、コイル導線にキズなどの損傷が無いかを20倍の実体顕微鏡で評価した。
アンテナ特性Q値の低下率を併記する。測定には、2UEW線0.05mm径の導線を500ターンを巻いてアンテナとし、134kHzにおけるQ値を測定した。
Example 1
As the Co-based amorphous metal ribbon, Hitachi Metals' ACO-5 material having an average thickness of 18 μm, a width of 50 mm, and a length of 300 m was used. The polyamic acid solution was applied to the surface of the Co-based amorphous metal ribbon so that the average coating thickness was 1 micron (coating thickness variation was 0.5 micron) and dried.
The Co-based amorphous metal ribbon coated with the polyamic acid solution was cut into a rectangular shape having a width of 20 mm and a length of 50 mm, and 20 sheets were stacked between two 2 mm-thick stainless steel plates. Of the 20 laminated amorphous metal ribbons, the Co-based amorphous metal ribbons on the upper and lower end surfaces are coated with a Co-based amorphous metal ribbon not coated with polyamic acid resin on the stainless steel plate contact surface side. A band was used to prevent the Co-based amorphous metal ribbon and the mold from sticking.
The laminate was set in a pot press set at a temperature of 400 ° C., and the temperature of the upper and lower presses again became 400 ° C., and then held at a pressure of 50 MPa for 10 minutes. Thereafter, the laminate was taken out and cooled to room temperature.
This laminate was heat-treated in a magnetic field at 400 ° C. for 1 hour in nitrogen, and then in a magnetic field of 300 A / m at 200 ° C. for 4 hours in the same atmosphere. Thereafter, this laminate was cut with a dicer to obtain 20 laminates having a width of 2 mm and a length of 18 mm.
The laminated magnetic core thus obtained was barrel-polished, and the corner portion and the side portion were mainly cut into a corner shape. For barrel polishing, a centrifugal barrel polishing machine HS-1-4V manufactured by Chipton Co., Ltd. was used as the polishing barrel, and HS-2 was used as the media. Chamfer dimensions of the ridges are 3, 6, 10, and 30 μm, barrel polishing is performed, the coil is wound directly without using an organic film, the wound coil is unwound, and the coil conductor is not damaged by 20 times. Were evaluated with a stereomicroscope.
The reduction rate of the antenna characteristic Q value is also shown. For the measurement, a QUE value at 134 kHz was measured by winding a 2 UEW wire 0.05 mm diameter conducting wire to form an antenna.

(比較例1)
比較のため、面取り加工をせず積層体に樹脂フィルムを巻き、その上にコイル導線を巻いたものも同時に評価した。表1に測定結果を記す。実施例1のものに比べてQ値が3〜4程低い値であった。樹脂テープは基材と粘着層からなり、この粘着層の厚さは安定に接着力を得るためには少なくとも20μm以上の厚さが必要である。そのため、樹脂テープの総厚さは30μm以上となる。また、テープ一層を巻きつけた後、コイルを巻くと、コイルとコアの間隔は少なくとも30μm以上、現実的は、テープの巻き始めと巻き終わりは重複する。その部分では、膜厚が2倍の60μm以上であり、重複部分は巻いた樹脂テープの全体の20〜30%占めることから、コイルと積層磁心の間隔は、平均して30μmを超えてしまい、アンテナ特性Qが悪化する。
(Comparative Example 1)
For comparison, a resin film was wound around the laminate without chamfering, and a coil conductor was wound around the resin film was also evaluated. Table 1 shows the measurement results. The Q value was about 3 to 4 lower than that of Example 1. The resin tape is composed of a base material and an adhesive layer, and the thickness of the adhesive layer needs to be at least 20 μm or more in order to obtain a stable adhesive force. Therefore, the total thickness of the resin tape is 30 μm or more. Further, when the coil is wound after winding one tape layer, the distance between the coil and the core is at least 30 μm or more, and practically, the winding start and winding end overlap. In that portion, the film thickness is 60 μm or more, which is twice as much, and the overlapping portion occupies 20 to 30% of the entire wound resin tape, so the interval between the coil and the laminated magnetic core exceeds 30 μm on average, Antenna characteristic Q deteriorates.

Figure 2009017394
Figure 2009017394

(実施例2)
実施例1と同様にして、Co系非晶質金属薄帯からなる18mm×2mmの積層体20ケを得た。
こうして出来た積層磁心にバレル研磨を施し、角の部分および辺の部分を主に切削して面取り寸法R=3μmのコーナー形状とした。バレル研磨は、研磨用のバレルには、株式会社チップトン製の遠心バレル研磨機HS−1−4Vを用い、メディアはHS−2を使用した。
この稜部をバレル研磨した積層体の全面をエポキシ樹脂で被覆した。エポキシ樹脂は、株式会社武蔵塗料製造製のパナコSMGブラック8552NHを用い、希釈溶剤を用いてスプレー塗装ができる粘度にした後、スプレー塗装した。積層体の主面の両側をそれぞれ塗装後、160℃で20分乾燥硬化させた。硬化後断面を切断観察し、塗布膜厚さを評価した結果、主面で約10μmであり、稜部でも同等であった。
この塗布した樹脂の上にコイルを巻きアンテナ特性Q値を測定した。測定には、2UEW線0.05mm径の導線を500ターンを巻いてアンテナとし、134kHzにおけるQ値を測定したところ、実施例1ほどではないが、稜部を面取りせず樹脂フィルムを巻いてその上にコイルを巻いた従来のものよりは高いQ値(Q=56)が得られた。
実施例1のように、稜部に面取り加工を行った積層体に直接巻き線を巻く方が高いアンテナ特性が得られるが、直接巻き線を安定に巻くにはコアの表面の平滑性や平坦性を相当管理する必要であり、平滑性や平坦性を得るためのバレル研磨などの研磨工数が多大となる。
実施例2で示したように、面取り寸法が10μm未満であっても樹脂塗装と組み合わせて巻き線を施すことで、樹脂テープを巻くものと比較して工数を簡略化し、かつアンテナ特性を安定かつ向上させることができる。
(Example 2)
In the same manner as in Example 1, 20 laminates of 18 mm × 2 mm made of a Co-based amorphous metal ribbon were obtained.
The laminated magnetic core thus obtained was subjected to barrel polishing, and the corner portion and the side portion were mainly cut into a corner shape with a chamfered dimension R = 3 μm. For barrel polishing, a centrifugal barrel polishing machine HS-1-4V manufactured by Chipton Co., Ltd. was used as the polishing barrel, and HS-2 was used as the media.
The entire surface of the laminate obtained by barrel-polishing this ridge was covered with an epoxy resin. As the epoxy resin, Panaco SMG Black 8552NH manufactured by Musashi Paint Co., Ltd. was used. Each side of the main surface of the laminate was painted and then dried and cured at 160 ° C. for 20 minutes. As a result of cutting and observing the cross section after curing and evaluating the coating film thickness, it was about 10 μm on the main surface and the same on the ridge.
A coil was wound on the coated resin, and the antenna characteristic Q value was measured. For the measurement, a 2UEW wire 0.05 mm diameter conducting wire was wound around 500 turns to make an antenna, and the Q value at 134 kHz was measured. A higher Q value (Q = 56) was obtained than the conventional one having a coil wound thereon.
As in Example 1, it is possible to obtain higher antenna characteristics by directly winding a laminate having chamfered ridges. However, in order to stably wind the direct winding, the core surface is smooth and flat. Therefore, the number of polishing steps such as barrel polishing for obtaining smoothness and flatness is increased.
As shown in Example 2, even when the chamfer dimension is less than 10 μm, by applying winding in combination with resin coating, the man-hours can be simplified and the antenna characteristics can be stabilized and compared with those wound with resin tape. Can be improved.

Figure 2009017394
Figure 2009017394

本発明の稜部で面取りを行ったアンテナ用磁心の積層体の模式図である。It is a schematic diagram of the laminated body of the magnetic core for antennas which chamfered by the ridge part of this invention. 図1のアンテナ用磁心の端部の拡大図である。It is an enlarged view of the edge part of the antenna magnetic core of FIG.

符号の説明Explanation of symbols

1:金属薄帯、2:積層体   1: Metal ribbon, 2: Laminate

Claims (6)

厚さ100μm以下のCo基金属薄帯を積層した積層体であって、稜部を面取り加工していることを特徴とする積層体。 A laminate in which Co-based metal ribbons having a thickness of 100 μm or less are laminated, wherein the ridges are chamfered. 稜部の面取り寸法が10μm以上であることを特長とする請求項1に記載の積層体。 The laminate according to claim 1, wherein a chamfer dimension of the ridge portion is 10 μm or more. 前記Co基金属薄帯はCoが50原子%以上であることを特徴とする請求項1又は請求項2に記載の積層体。 The laminate according to claim 1 or 2, wherein the Co-based metal ribbon has Co of 50 atomic% or more. 前記積層体は表面に直接コイルが巻かれることを特徴とする請求項1乃至請求項3に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein a coil is wound directly on a surface of the laminate. 前記積層体は稜部に30μm以下の樹脂が被覆され、その樹脂の上にコイルが巻かれることを特徴とする請求項1乃至請求項3に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the laminate is coated with a resin of 30 µm or less on a ridge, and a coil is wound on the resin. 請求項1乃至請求項5に記載の積層体を用いたアンテナ用磁心。
An antenna magnetic core using the laminate according to claim 1.
JP2007178781A 2007-07-06 2007-07-06 Laminate and antenna core Pending JP2009017394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007178781A JP2009017394A (en) 2007-07-06 2007-07-06 Laminate and antenna core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007178781A JP2009017394A (en) 2007-07-06 2007-07-06 Laminate and antenna core

Publications (1)

Publication Number Publication Date
JP2009017394A true JP2009017394A (en) 2009-01-22

Family

ID=40357696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007178781A Pending JP2009017394A (en) 2007-07-06 2007-07-06 Laminate and antenna core

Country Status (1)

Country Link
JP (1) JP2009017394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108597849A (en) * 2018-06-13 2018-09-28 蓝沛光线(上海)电子科技有限公司 A kind of low-loss antifreeze plate preparation process and antifreeze plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116887A (en) * 2003-10-09 2005-04-28 Mitsui Chemicals Inc Magnetic laminate using magnetic casting metal strip of low ratio and its application
JP2005184424A (en) * 2003-12-19 2005-07-07 Mitsubishi Materials Corp Magnetic core for antenna and antenna provided with the magnetic core
JP2005235988A (en) * 2004-02-19 2005-09-02 Mitsuo Ebisawa Shuttle for coil winding and device and method for winding toroidal coil using the same
JP2007019950A (en) * 2005-07-08 2007-01-25 Alps Electric Co Ltd Slim transmission/reception device
JP2007043588A (en) * 2005-08-05 2007-02-15 Murata Mfg Co Ltd Coil antenna
JP2007116582A (en) * 2005-10-24 2007-05-10 Matsushita Electric Ind Co Ltd Chip antenna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116887A (en) * 2003-10-09 2005-04-28 Mitsui Chemicals Inc Magnetic laminate using magnetic casting metal strip of low ratio and its application
JP2005184424A (en) * 2003-12-19 2005-07-07 Mitsubishi Materials Corp Magnetic core for antenna and antenna provided with the magnetic core
JP2005235988A (en) * 2004-02-19 2005-09-02 Mitsuo Ebisawa Shuttle for coil winding and device and method for winding toroidal coil using the same
JP2007019950A (en) * 2005-07-08 2007-01-25 Alps Electric Co Ltd Slim transmission/reception device
JP2007043588A (en) * 2005-08-05 2007-02-15 Murata Mfg Co Ltd Coil antenna
JP2007116582A (en) * 2005-10-24 2007-05-10 Matsushita Electric Ind Co Ltd Chip antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108597849A (en) * 2018-06-13 2018-09-28 蓝沛光线(上海)电子科技有限公司 A kind of low-loss antifreeze plate preparation process and antifreeze plate

Similar Documents

Publication Publication Date Title
KR100831804B1 (en) Inductive device and method for manufacturing same
JP4471037B2 (en) Antenna core, method for manufacturing antenna core, and antenna
CN108140479B (en) Magnetic sheet, module including the same, and portable device including the same
JP5823572B2 (en) Detection system
CN105074838A (en) Magnetic sheet, electronic device using same, and method for manufacturing magnetic sheet
US11594356B2 (en) Magnetic field shielding sheet, method for manufacturing magnetic field shielding sheet, and antenna module using same
TWI707372B (en) Magnetic core and its manufacturing method, and coil component
JP2012105092A (en) Antenna core, antenna using the antenna core, and manufacturing method of the antenna core
JP2004048136A (en) Thin antenna
JP5177641B2 (en) Laminated body and antenna
US9466882B2 (en) Antenna magnetic core, antenna using same, and detection system
JP2009017394A (en) Laminate and antenna core
JP4603511B2 (en) Magnetic metal ribbon laminate and antenna using the same
JP2009253104A (en) Laminated body, and antenna
JP5029956B2 (en) Magnetic core for antenna, method for manufacturing the same, and antenna
JP2009017395A (en) Laminate and antenna core
JP2009253543A (en) Multi-layer antenna
WO2024024958A1 (en) Sheet-shaped magnetic member
JP2009016550A (en) Laminate and antenna
JP3512109B2 (en) Composite magnetic ribbon for press working, method for manufacturing the same, and electromagnetic shield member using the same
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
KR20230142337A (en) Magnetic sheet, multilayer magnetic sheet, and magnetic sheet manufacturing method
KR20230139779A (en) Magnetic sheet, winding magnetic sheet, and multilayer magnetic sheet
JP2005116887A (en) Magnetic laminate using magnetic casting metal strip of low ratio and its application
JPH11195522A (en) Thin type magnetic core and interface or switching power supply using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110304