JP2009015341A - Optical fiber - Google Patents

Optical fiber Download PDF

Info

Publication number
JP2009015341A
JP2009015341A JP2008234750A JP2008234750A JP2009015341A JP 2009015341 A JP2009015341 A JP 2009015341A JP 2008234750 A JP2008234750 A JP 2008234750A JP 2008234750 A JP2008234750 A JP 2008234750A JP 2009015341 A JP2009015341 A JP 2009015341A
Authority
JP
Japan
Prior art keywords
core
refractive index
optical fiber
range
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008234750A
Other languages
Japanese (ja)
Inventor
Katsunori Imamura
勝徳 今村
Kazunori Mukasa
和則 武笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2008234750A priority Critical patent/JP2009015341A/en
Publication of JP2009015341A publication Critical patent/JP2009015341A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber having a W-segment type profile having low cumulative dispersion and low loss. <P>SOLUTION: The optical fiber has a first core with a maximum refractive index n<SB>c1</SB>, a second core with a minimum refractive index n<SB>c2</SB>, a third core with a maximum refractive index n<SB>c3</SB>, and a clad with a refractive index n<SB>c</SB>, wherein n<SB>c1</SB>>n<SB>c3</SB>>n<SB>c2</SB>is defined, and dispersion in wavelength 1,550 nm is in a range of ≥+5 ps/nm/km and ≤+15 ps/nm/km and a transmission loss in the wavelength 1, 550 nm is ≤0.19 dB/km. The specific refractive index difference Δ1 of the first core to the clad is in a range of ≥0.35% and ≤0.6%, and the specific refractive index difference Δ2 of the second core to the clad is in a range of ≥-0.40% and ≤0.20%, and the specific refractive index difference Δ3 of the third core to the clad is in a range of ≥0.1% and ≤0.3%. The ratio (2a/2c) of a first core diameter 2a to a third core diameter 2c is in a range of ≥0.35 and ≤0.6, and the ratio (2b/2c) of a second core diameter 2b to the third core diameter 2c is in a range of ≥0.6 and ≤0.9. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、低累積分散、及び、低損失を有する光ファイバに関するものである。   The present invention relates to an optical fiber having low cumulative dispersion and low loss.

分散マネージメント線路で、40Gb/sを越える高速大容量伝送に対応する光伝送路を得るためには、光伝送路中の累積分散を低減する必要がある。単一モードファイバ(single mode fiber:SMF)では、分散が波長1550nmにおいて16ps/nm/km程度と大きいため、伝送中の累積分散の影響により、40Gb/sの高速伝送においては伝送後の波形が著しく劣化してしまう。その点、非零分散シフトファイバ(non-zero dispersion shifted fiber: NZ―DSF)では、波長1550nmにおける分散を5ps/nm/km程度にまで低減しており、高速伝送に適した光ファイバであると言える。しかし、このNZ―DSFを用いて長距離大容量伝送を行う際には、高パワーの光信号を伝送すると、四波混合(four-wave mixing:FWM)が生じてしまうという別の問題が発生する。   In order to obtain an optical transmission line corresponding to high-speed and large-capacity transmission exceeding 40 Gb / s with a dispersion management line, it is necessary to reduce the accumulated dispersion in the optical transmission line. In a single mode fiber (SMF), the dispersion is as large as about 16 ps / nm / km at a wavelength of 1550 nm. Therefore, due to the effect of cumulative dispersion during transmission, the waveform after transmission is high-speed transmission at 40 Gb / s. It will deteriorate significantly. On the other hand, non-zero dispersion shifted fiber (NZ-DSF) is an optical fiber suitable for high-speed transmission because the dispersion at a wavelength of 1550 nm is reduced to about 5 ps / nm / km. I can say that. However, when long-distance and large-capacity transmission is performed using the NZ-DSF, another problem arises that when a high-power optical signal is transmitted, four-wave mixing (FWM) occurs. To do.

そこで、分散マネージメント線路に好適に用いられる光ファイバとして、SMFとNZ−DSFの中間の分散を有するMDF(medial dispersion fiber)が提案され、FWMを発生することなく累積分散を低減することに成功している。このMDFで、大容量化に伴い生じてくる非線形現象の影響を抑制するためには、その実効コア断面積(Aeff)を拡大する必要があり、また、長距離大容量伝送に必須の低損失特性も満たす必要がある。   Therefore, MDF (medial dispersion fiber) having an intermediate dispersion between SMF and NZ-DSF has been proposed as an optical fiber suitable for use in a dispersion management line, and succeeded in reducing cumulative dispersion without generating FWM. ing. In order to suppress the influence of the nonlinear phenomenon that occurs with the increase in capacity with this MDF, it is necessary to increase its effective core area (Aeff), and low loss that is essential for long-distance large-capacity transmission It is also necessary to satisfy the characteristics.

上記要求特性を満たすべく、MDFの1つの形式として、中心に位置する第1コアの屈折率がその外周側に位置する第2コアの屈折率よりも小さい、凹ガイド型プロファイルを有する光ファイバが提案されている。特許文献1には、第1コア及び第2コアのクラッドに対する比屈折率差をそれぞれ−0.1%〜−0.4%、及び、0.6%〜0.7%とした凹ガイド型のプロファイルの光ファイバが記載されており、この構成によって、波長1550nmにおいて、分散が8ps/nm/kmと小さく、かつ伝送損失が0.21dB/km以下である光ファイバが実現されており、低累積分散と低損失の両立に成功している。しかし、この光ファイバにおいても、波長1550nmにおけるAeffは、100μm2程度であり、充分な非線形性は得られていない。 In order to satisfy the above required characteristics, one type of MDF is an optical fiber having a concave guide profile in which the refractive index of the first core located at the center is smaller than the refractive index of the second core located on the outer peripheral side thereof. Proposed. Patent Document 1 discloses a concave guide type in which the relative refractive index difference between the first core and the second core relative to the cladding is -0.1% to -0.4% and 0.6% to 0.7%, respectively. With this configuration, an optical fiber having a dispersion as small as 8 ps / nm / km and a transmission loss of 0.21 dB / km or less at a wavelength of 1550 nm is realized. It has succeeded in achieving both cumulative dispersion and low loss. However, even in this optical fiber, Aeff at a wavelength of 1550 nm is about 100 μm 2 , and sufficient nonlinearity is not obtained.

一方、高速大容量伝送に適した光ファイバとして、中心に位置する第1コアとその外周側に位置し、第1コアよりも低い屈折率を有する第2コアと、第2コアの外周側に位置し、第2コアよりも低い屈折率を有するクラッドから成るデュアルシェイプ型のプロファイルを有する光ファイバも検討されている(例えば、非特許文献1)。この形式の光ファイバでは、波長1550nmにおいて、0.195dB/kmの低損失特性と、8ps/nm/kmの分散と、65μm2のAeffとが実現されている。しかし、この形式の光ファイバでは、伝送損失を0.19dB/km以下にまで低減する技術は未だ開発されていない。 On the other hand, as an optical fiber suitable for high-speed and large-capacity transmission, a first core located at the center, a second core positioned on the outer peripheral side thereof and having a lower refractive index than the first core, and an outer peripheral side of the second core. An optical fiber having a dual-shaped profile formed of a clad positioned and having a lower refractive index than the second core has also been studied (for example, Non-Patent Document 1). In this type of optical fiber, a low loss characteristic of 0.195 dB / km, a dispersion of 8 ps / nm / km, and an Aeff of 65 μm 2 are realized at a wavelength of 1550 nm. However, for this type of optical fiber, a technique for reducing the transmission loss to 0.19 dB / km or less has not yet been developed.

特開2003−232950号公報JP 2003-232950 A 2000年電子情報通信学会総合大会予稿集「超広帯域伝送用分散シフトファイバ(C−3−44)」Proceedings of the 2000 IEICE General Conference “Dispersion Shifted Fiber for Ultra-Wide Band Transmission (C-3-44)”

本発明は、上記2種類の光ファイバの内で、W−セグメント型プロファイルを有する光ファイバを改良し、もって低累積分散と、低損失とを実現できる光ファイバを提供することを目的とする。   An object of the present invention is to improve an optical fiber having a W-segment type profile among the above two types of optical fibers, and to provide an optical fiber capable of realizing low cumulative dispersion and low loss.

本発明の光ファイバは、中心から外周方向に向かって順次に配列された、最大屈折率がnc1の第1コア、最小屈折率がnc2の第2コア、最大屈折率がnc3の第3コア、及び、屈折率がncのクラッドを少なくとも有し、nc1>nc3>nc2である光ファイバにおいて、
波長1550nmにおける分散が+5ps/nm/km以上で+15ps/nm/km以下の範囲にあり、かつ波長1550nmにおける伝送損失が0.19dB/km以下であり、
前記第1コアのクラッドに対する比屈折率差Δ1が0.35%以上で0.6%以下の範囲にあり、
前記第2コアのクラッドに対する比屈折率差Δ2が−0.40%以上で0.20%以下の範囲にあり、
前記第3コアのクラッドに対する比屈折率差Δ3が0.1%以上で0.3%以下の範囲にあり、
前記第3コアの直径(2c)に対する前記第1コアの直径(2a)の比(2a/2c)が0.35以上で0.6以下の範囲にあり、かつ前記第3コアの外形(2c)に対する前記第2コアの直径(2b)の比(2b/2c)が0.6以上で0.9以下の範囲にあることを特徴とする。
The optical fiber according to the present invention includes a first core having a maximum refractive index of nc1, a second core having a minimum refractive index of nc2, and a second core having a maximum refractive index of nc3 , which are sequentially arranged from the center toward the outer periphery. 3 core, and the refractive index has at least a cladding of n c, the optical fiber is n c1> n c3> n c2 ,
The dispersion at a wavelength of 1550 nm is in the range of +5 ps / nm / km to +15 ps / nm / km and the transmission loss at a wavelength of 1550 nm is 0.19 dB / km or less,
The relative refractive index difference Δ1 with respect to the cladding of the first core is in the range of 0.35% to 0.6%,
The relative refractive index difference Δ2 with respect to the cladding of the second core is in the range of −0.40% to 0.20%,
The relative refractive index difference Δ3 with respect to the cladding of the third core is in the range of 0.1% to 0.3%,
The ratio (2a / 2c) of the diameter (2a) of the first core to the diameter (2c) of the third core is in the range of 0.35 to 0.6 and the outer shape (2c) of the third core The ratio (2b / 2c) of the diameter (2b) of the second core with respect to (2) is in the range of 0.6 or more and 0.9 or less.

なお、本明細書で使用する比屈折率差Δ1、Δ2、Δ3、ΔCは以下の式(1)〜(4)により定義される。
Δ1=[(nC1−nC)/nC1]・100 (1)
Δ2=[(nC2−nC)/nC2]・100 (2)
Δ3=[(nC3−nC)/nC3]・100 (3)
ΔC=[(nC−ng)/nC]・100 (4)
ここで、図1に示すW−セグメント型プロファイルの光ファイバでは、nC1は第1コアの最大屈折率、nC2は第2コアの最小屈折率、nC3は第3コアの最大屈折率、ngは純シリカの屈折率、そしてnCはクラッドの屈折率である。
Note that the relative refractive index differences Δ1, Δ2, Δ3, and ΔC used in this specification are defined by the following equations (1) to (4).
Δ1 = [(n C1 −n C ) / n C1 ] · 100 (1)
Δ2 = [(n C2 −n C ) / n C2 ] · 100 (2)
Δ3 = [(n C3 −n C ) / n C3 ] · 100 (3)
ΔC = [(n C −n g ) / n C ] · 100 (4)
In the optical fiber having the W-segment profile shown in FIG. 1, n C1 is the maximum refractive index of the first core, n C2 is the minimum refractive index of the second core, n C3 is the maximum refractive index of the third core, n g is the refractive index of pure silica, and n C is the refractive index of the cladding.

また、本明細書において、カットオフ波長λcとは、ITU−T(国際電気通信連合)
G.650で定義するカットオフ波長λcをいう。その他、本明細書で特に定義しない用語についてはITU−TG.650における定義、測定方法に従うものとする。
In this specification, the cutoff wavelength λc is ITU-T (International Telecommunication Union).
G. The cutoff wavelength λc defined by 650 is referred to. For other terms not specifically defined in this specification, ITU-TG. The definition and measurement method in 650 shall be followed.

本発明のW−セグメント型プロファイルを有する光ファイバは、第1コア、第2コア及び第3コアとクラッドとを有し、典型的には、図1に示した3層コア構造のプロファイルを採用し、好ましくは、クラッドにフッ素を添加し、クラッドの純シリカに対する比屈折率差ΔCを小さな値(例えば、−0.2%以下)に設定することで、波長1550nmにおける分散が+5ps/nm/km以上で+15ps/nm/km以下の範囲にあり、かつ波長1550nmにおける伝送損失が0.19dB/km以下の特性を実現する。つまり、本発明の光ファイバは、W−セグメント型プロファイルを有する光ファイバにおいて、低分散を維持しながら、伝送損失を0.19dB/km以下にまで低減できる効果を奏する。   The optical fiber having the W-segment type profile of the present invention has a first core, a second core, a third core, and a cladding, and typically employs the profile of the three-layer core structure shown in FIG. Preferably, by adding fluorine to the clad and setting the relative refractive index difference ΔC of the clad to pure silica to a small value (for example, −0.2% or less), the dispersion at a wavelength of 1550 nm is +5 ps / nm / The characteristic is that the transmission loss is 0.19 dB / km or less at a wavelength of 1550 nm in the range of km or more and +15 ps / nm / km or less. That is, the optical fiber of the present invention has an effect of reducing transmission loss to 0.19 dB / km or less while maintaining low dispersion in an optical fiber having a W-segment type profile.

以下、図面を参照し、本発明の好適な実施形態例に基づいて本発明を更に説明する。図1(a)及び(b)はそれぞれ、本発明の一実施形態例である、W−セグメント型プロファイルを有する光ファイバの横断面、及び、軸方向断面での屈折率プロファイルを示す。本実施形態例の光ファイバは、中心から外周方向に向かって、第1コア21、第2コア22、第3コア23、及び、クラッド24を有する。尚、クラッド24の外側の線は省略されている。   Hereinafter, the present invention will be further described based on preferred embodiments of the present invention with reference to the drawings. 1 (a) and 1 (b) show a refractive index profile in a cross section and an axial cross section of an optical fiber having a W-segment type profile, respectively, according to an embodiment of the present invention. The optical fiber according to the present embodiment includes a first core 21, a second core 22, a third core 23, and a clad 24 from the center toward the outer peripheral direction. The outer line of the clad 24 is omitted.

クラッド24は、フッ素(F)がドープされて、純シリカ(SiO2)よりも低い屈折率を有する。このようにクラッド24を純シリカ(SiO2)よりも低い屈折率とすることにより、第1コアに添加するゲルマニウム(Ge)の量を少なくすることができることから、低損失の光ファイバが実現できる。また、本実施形態例の光ファイバでは、第1〜第3コアの屈折率が全て純シリカの屈折率よりも低い値に設定してあるが、本発明の光ファイバの屈折率プロファイルはこれに限定されるものではない。 The clad 24 is doped with fluorine (F) and has a lower refractive index than pure silica (SiO 2 ). Thus, by making the clad 24 have a refractive index lower than that of pure silica (SiO 2 ), the amount of germanium (Ge) added to the first core can be reduced, so that a low-loss optical fiber can be realized. . Moreover, in the optical fiber of this embodiment, the refractive indexes of the first to third cores are all set to a value lower than the refractive index of pure silica, but the refractive index profile of the optical fiber of the present invention is It is not limited.

上記構成により、本実施形態例に係る光ファイバでは、波長1550nmにおける分散が+8ps/nm/km以上で+15ps/nm/km以下の範囲にある。また、この光ファイバを直径20mmで曲げたときの波長1550nmにおける曲げ損失が10dB/m以下であり、波長1550nmにおけるPMDが0.1ps/km1/2以下である。更に、波長1550nmにおける分散スロープが0.08ps/nm2/km以下である。 With the above configuration, in the optical fiber according to this embodiment, the dispersion at the wavelength of 1550 nm is in the range of +8 ps / nm / km or more and +15 ps / nm / km or less. Further, when this optical fiber is bent at a diameter of 20 mm, the bending loss at a wavelength of 1550 nm is 10 dB / m or less, and the PMD at a wavelength of 1550 nm is 0.1 ps / km 1/2 or less. Furthermore, the dispersion slope at a wavelength of 1550 nm is 0.08 ps / nm 2 / km or less.

本発明の光ファイバの好ましい態様では、第1コア21の比屈折率差Δ1は、0.35%以上で0.6%以下の範囲にある。第2コア22の比屈折率差Δ2は、−0.40%以上で0.20%以下の範囲にある。第3コア23の比屈折率差Δ3は、0.1%以上で0.3%以下の範囲にある。クラッド24の純シリカ(屈折率ng)に対する比屈折率差ΔCは、低損失を得るために−0.2%以下が好ましく、さらに好ましくは−0.3%以下である。 In a preferred embodiment of the optical fiber of the present invention, the relative refractive index difference Δ1 of the first core 21 is in the range of 0.35% to 0.6%. The relative refractive index difference Δ2 of the second core 22 is in the range of −0.40% to 0.20%. The relative refractive index difference Δ3 of the third core 23 is in the range of 0.1% to 0.3%. The relative refractive index difference ΔC of the clad 24 with respect to pure silica (refractive index ng ) is preferably −0.2% or less, more preferably −0.3% or less in order to obtain a low loss.

また、第3コア23の直径(2c)に対する第1コア21の直径(2a)の比(Ra1=2a/2c)は、0.35以上で0.6以下の範囲にあり、第3コア23の直径(2c)に対する第2コア22の直径(2b)の比(Ra2=2b/2c)は、0.6以上で0.9以下の範囲にある。なお、本発明では、W−セグメント型プロファイルを有する光ファイバの各部の直径は以下のように定義する。図1において、第1コア21の直径2aは、第1コア21にあってクラッドと等しい屈折率を有し、且つ中心を挟んで対向する2つの位置を結ぶ線の長さである。第2コア22の直径2bは、第2コア22と第3コア23との境界領域でクラッド24と等しい屈折率を有し、且つ中心を挟んで対向する2つの位置を結ぶ線の長さである。第3コア23の直径2cは、第3コア23とクラッド24の境界領域でΔ3の1/10の比屈折率差を有し、且つ中心を挟んで対向する2つの位置を結ぶ線の長さである。   The ratio (Ra1 = 2a / 2c) of the diameter (2a) of the first core 21 to the diameter (2c) of the third core 23 is in the range of 0.35 or more and 0.6 or less. The ratio (Ra2 = 2b / 2c) of the diameter (2b) of the second core 22 to the diameter (2c) of the second core 22 is in the range of 0.6 to 0.9. In the present invention, the diameter of each part of the optical fiber having the W-segment profile is defined as follows. In FIG. 1, the diameter 2a of the first core 21 is the length of a line connecting the two positions in the first core 21 that have the same refractive index as that of the clad and that face each other across the center. The diameter 2b of the second core 22 is a length of a line connecting two positions having a refractive index equal to that of the clad 24 in the boundary region between the second core 22 and the third core 23 and facing each other across the center. is there. The diameter 2c of the third core 23 has a relative refractive index difference of 1/10 of Δ3 in the boundary region between the third core 23 and the clad 24, and is the length of a line connecting two positions facing each other across the center. It is.

本実施形態例の光ファイバよると、40Gb/sを超える高速大容量伝送路に対応するために、図1に示すようなW−セグメント型プロファイルを用いて、波長1550nmにおける分散が+5ps/nm/km以上+15ps/nm/km以下であり、かつ伝送損失が0.19dB/km以下である光ファイバが実現できる。なお、入射光の高パワー化に伴うFWM発生を考慮すると、波長1550nmにおける分散が+8ps/nm/km以上であることがより好ましい。   According to the optical fiber of the present embodiment, in order to cope with a high-speed and large-capacity transmission line exceeding 40 Gb / s, dispersion at a wavelength of 1550 nm is +5 ps / nm / using a W-segment type profile as shown in FIG. It is possible to realize an optical fiber having a transmission loss of 0.19 dB / km or less and at least km + 15 ps / nm / km. In consideration of generation of FWM associated with higher power of incident light, the dispersion at a wavelength of 1550 nm is more preferably +8 ps / nm / km or more.

図2(a),(b)に示す比較例の凹ガイド型プロファイルを有する光ファイバは、同図(a)に示すように、中心から外周方向に向かって、第1コア11、第2コア12、第3コア13、及び、クラッド14が順次に配設される。尚、クラッド14の外側の線は省略されている。比較例の光ファイバでは、各コアの比屈折率差Δ1〜Δ3及び直径比率Ra1、Ra2を含むパラメータを変化させたときの、分散、分散スロープ(slope)、実効コア断面積(Aeff)、カットオフ波長(λc)に及ぼす影響は、表1に示すとおりである。

Figure 2009015341
ここで、各パラメータとしては、分散は例えば+5ps/nm/km以上で+15ps/nm/km程度以下が好ましく、分散スロープは小さい方が好ましく、Aeffは大きい方が好ましく、λcは使用波長より小さいことが好ましい。 The optical fiber having the concave guide type profile of the comparative example shown in FIGS. 2 (a) and 2 (b) has a first core 11 and a second core as shown in FIG. 12, the third core 13 and the clad 14 are sequentially disposed. The outer line of the clad 14 is omitted. In the optical fiber of the comparative example, dispersion, dispersion slope (slope), effective core area (Aeff), cut when parameters including relative refractive index differences Δ1 to Δ3 and diameter ratios Ra1 and Ra2 of each core are changed. The influence on the off wavelength (λc) is as shown in Table 1.
Figure 2009015341
Here, as each parameter, the dispersion is preferably +5 ps / nm / km or more and preferably about +15 ps / nm / km or less, the dispersion slope is preferably small, Aeff is preferably large, and λc is smaller than the wavelength used. Is preferred.

表1に示したパラメータのうちでも、特に、第2コアの比屈折率比Δ2は、Aeffや、分散、伝送損失に大きく影響を及ぼす因子である。そこで、第2コアの比屈折率差Δ2と、波長1550nmにおけるAeff、分散及び伝送損失との関係を調べるために、他のパラメータを固定し、Δ2のみを変えて、上記実施形態例の凹ガイド型プロファイルを有する光ファイバを試作した。他のパラメータとしては、Δ1を−0.1%、Δ3を−0.3%、Ra1(=2a/2c)を0.4、Ra2(=2b/2c)を0.8程度に設定した。また第3コアの直径2cは直径20mmで曲げたときの波長1550nmにおける曲げ損失が10dB/m以下になるように調整した。   Among the parameters shown in Table 1, in particular, the relative refractive index ratio Δ2 of the second core is a factor that greatly affects Aeff, dispersion, and transmission loss. Therefore, in order to investigate the relationship between the relative refractive index difference Δ2 of the second core and the Aeff, dispersion, and transmission loss at the wavelength of 1550 nm, other parameters are fixed, only Δ2 is changed, and the concave guide of the above embodiment is used. An optical fiber having a mold profile was fabricated. As other parameters, Δ1 was set to −0.1%, Δ3 was set to −0.3%, Ra1 (= 2a / 2c) was set to 0.4, and Ra2 (= 2b / 2c) was set to about 0.8. The diameter 2c of the third core was adjusted so that the bending loss at a wavelength of 1550 nm when bent at a diameter of 20 mm was 10 dB / m or less.

試作品から得られた、Δ2とAeff及び分散との関係を図3のグラフに示す。同図から、図2に示した凹ガイド型プロファイルで、波長1550nmにおいて、分散を+5ps/nm/km以上で+15ps/nm/km以下に維持しながらAeffを110μm2以上に拡大するためには、Δ2を0.55%以下にする必要があることが判る。ここで、他のパラメータを最適化することにより、分散を所望の範囲に維持しながらAeffをさらに拡大するプロファイルを選択することも可能であるが、伝送損失や曲げ損失を同時に維持することが難しい。 The relationship between Δ2, Aeff, and dispersion obtained from the prototype is shown in the graph of FIG. From the figure, in order to increase Aeff to 110 μm 2 or more while maintaining dispersion at +5 ps / nm / km or more and +15 ps / nm / km or less at a wavelength of 1550 nm in the concave guide profile shown in FIG. It can be seen that Δ2 needs to be 0.55% or less. Here, by optimizing other parameters, it is possible to select a profile that further expands Aeff while maintaining dispersion within a desired range, but it is difficult to simultaneously maintain transmission loss and bending loss. .

図4に、上記試作品で得られた、Δ2と波長1550nmにおける伝送損失との関係を示す。同図から、低損失特性を維持しながらAeffを拡大するためには、Δ2を0.55%以下に設定する必要がある。他の各パラメータに関しても、同様に試作品の特性を測定することにより、表2に示すような主要因及び副要因に基づいて、同表に示す好ましい下限及び上限が決定された。

Figure 2009015341
FIG. 4 shows the relationship between Δ2 and the transmission loss at a wavelength of 1550 nm obtained in the prototype. From the figure, it is necessary to set Δ2 to 0.55% or less in order to increase Aeff while maintaining low loss characteristics. Regarding the other parameters, the preferred lower limit and upper limit shown in the same table were determined based on the main factors and sub-factors shown in Table 2 by measuring the characteristics of the prototype in the same manner.
Figure 2009015341

さらに、パラメータΔ1を種々に変え、他のパラメータを固定して、比較例の光ファイバを試作した。他のパラメータとしては、Δ2を0.5%、Δ3を−0.3%、Ra1(=2a/2c)を0.4,Ra2(2b/2c)を0.8程度に設定した。また第3コアの直径2cは直径20mmで曲げたときの波長1550nmにおける曲げ損失が10dB/m以下になるように調整した。試作品から、図5に示す、Δ1と波長1550nmにおける伝送損失との関係が得られた。同図から、Δ1には伝送損失に関して最適領域が存在することが判明した。すなわち、凹ガイド型プロファイルを有する光ファイバで、より低損失特性を得るためには、Δ1が−0.35%〜0.0%の間の領域に設定されることが好ましい。   Furthermore, the optical fiber of the comparative example was prototyped by changing the parameter Δ1 variously and fixing other parameters. As other parameters, Δ2 was set to 0.5%, Δ3 to −0.3%, Ra1 (= 2a / 2c) to 0.4, and Ra2 (2b / 2c) to about 0.8. The diameter 2c of the third core was adjusted so that the bending loss at a wavelength of 1550 nm when bent at a diameter of 20 mm was 10 dB / m or less. From the prototype, the relationship between Δ1 and the transmission loss at the wavelength of 1550 nm shown in FIG. 5 was obtained. From the figure, it has been found that Δ1 has an optimum region regarding transmission loss. That is, in order to obtain a lower loss characteristic in an optical fiber having a concave guide type profile, Δ1 is preferably set in a region between −0.35% and 0.0%.

図1に示した、本発明の実施形態例のW−セグメント型プロファイルを有する光ファイバについて、Δ1〜Δ3及びRa1,Ra2から成る各パラメータを変化させたときの、分散、分散スロープ、Aeff、λcに及ぼす影響は、表3に示すとおりである。

Figure 2009015341
With respect to the optical fiber having the W-segment type profile of the embodiment of the present invention shown in FIG. 1, dispersion, dispersion slope, Aeff, λc when each parameter composed of Δ1 to Δ3 and Ra1, Ra2 is changed. Table 3 shows the effect of the above.
Figure 2009015341

種々のパラメータを有する試作品を製作して、その特性を調べた。それらの特性から、各パラメータの最適範囲(下限及び上限)は、表4に示すような主要因、副要因により、同表に示したように決定された。

Figure 2009015341
Prototypes with various parameters were produced and their characteristics were investigated. From these characteristics, the optimum range (lower limit and upper limit) of each parameter was determined as shown in the same table by the main factor and sub-factor as shown in Table 4.
Figure 2009015341

表5及び表6はそれぞれ、表2及び表4に示した範囲で各パラメータの値の幾つかを選択して製作された、凹ガイド型プロファイルを有する比較例の光ファイバの試作品、及び、W−セグメント型プロファイルを有する上記実施形態の光ファイバの試作品の構成及びその特性を示す。

Figure 2009015341
Figure 2009015341
Tables 5 and 6 are prototypes of comparative optical fibers having a concave guide profile, respectively, produced by selecting several values of each parameter within the ranges shown in Tables 2 and 4. The structure of the prototype of the optical fiber of the said embodiment which has a W-segment type | mold profile, and its characteristic are shown.
Figure 2009015341
Figure 2009015341

なお、表5、表6における分散、分散スロープ(slope)、Aeff、20mmで曲げたときの損失(曲げ@20Φ)、伝送損失(損失)、及び、PMDは全て波長1550nmにおける値である。
試作品は、分散、分散スロープ、Aeff、λc、20mmで曲げたときの損失、伝送損失、及び、PMDの何れの特性においても、良好な値が得られた。
In Tables 5 and 6, the dispersion, dispersion slope (slope), Aeff, loss when bent at 20 mm (bending @ 20Φ), transmission loss (loss), and PMD are all values at a wavelength of 1550 nm.
In the prototype, good values were obtained for any of dispersion, dispersion slope, Aeff, λc, loss when bent at 20 mm, transmission loss, and PMD.

(a)は本発明の一実施形態例に係る、W−セグメント型プロファイルを有する光ファイバの断面図、(b)はその軸方向断面で見た屈折率分布を示すグラフ。(A) is sectional drawing of the optical fiber which has a W-segment type | mold profile based on one embodiment of this invention, (b) is a graph which shows the refractive index distribution seen in the axial cross section. (a)は比較例の凹ガイド型プロファイルを有する光ファイバの断面図、(b)はその軸方向断面で見た屈折率分布を示すグラフ。(A) is sectional drawing of the optical fiber which has the concave guide type profile of a comparative example, (b) is a graph which shows the refractive index distribution seen in the axial direction cross section. 図2の光ファイバのΔ2と、Aeff及び分散との関係を示すグラフ。The graph which shows (DELTA) 2 of the optical fiber of FIG. 2, Aeff, and a relationship with dispersion | distribution. 図2の光ファイバのΔ2と損失との関係を示すグラフ。3 is a graph showing the relationship between Δ2 and loss of the optical fiber of FIG. 2. 図2の光ファイバのΔ1と損失との関係を示すグラフ。The graph which shows (DELTA) 1 of the optical fiber of FIG. 2, and the relationship between loss.

符号の説明Explanation of symbols

21:第1コア
22:第2コア
23:第3コア
24:クラッド
11:第1コア
12:第2コア
13:第3コア
14:クラッド
21: 1st core 22: 2nd core 23: 3rd core 24: Clad 11: 1st core 12: 2nd core 13: 3rd core 14: Clad

Claims (6)

中心から外周方向に向かって順次に配列された、最大屈折率がnc1の第1コア、最小屈折率がnc2の第2コア、最大屈折率がnc3の第3コア、及び、屈折率がncのクラッドを少なくとも有し、nc1>nc3>nc2である光ファイバにおいて、
波長1550nmにおける分散が+5ps/nm/km以上で+15ps/nm/km以下の範囲にあり、かつ波長1550nmにおける伝送損失が0.19dB/km以下であり、
前記第1コアのクラッドに対する比屈折率差Δ1が0.35%以上で0.6%以下の範囲にあり、
前記第2コアのクラッドに対する比屈折率差Δ2が−0.40%以上で0.20%以下の範囲にあり、
前記第3コアのクラッドに対する比屈折率差Δ3が0.1%以上で0.3%以下の範囲にあり、
前記第3コアの直径(2c)に対する前記第1コアの直径(2a)の比(2a/2c)が0.35以上で0.6以下の範囲にあり、かつ前記第3コアの直径(2c)に対する前記第2コアの直径(2b)の比(2b/2c)が0.6以上で0.9以下の範囲にあることを特徴とする光ファイバ。
A first core having a maximum refractive index of n c1, a second core having a minimum refractive index of n c2, a third core having a maximum refractive index of n c3 , and a refractive index, which are sequentially arranged from the center toward the outer periphery. In an optical fiber having at least n c claddings and n c1 > n c3 > n c2
The dispersion at a wavelength of 1550 nm is in the range of +5 ps / nm / km to +15 ps / nm / km and the transmission loss at a wavelength of 1550 nm is 0.19 dB / km or less,
The relative refractive index difference Δ1 with respect to the cladding of the first core is in the range of 0.35% to 0.6%,
The relative refractive index difference Δ2 with respect to the cladding of the second core is in the range of −0.40% to 0.20%,
The relative refractive index difference Δ3 with respect to the cladding of the third core is in the range of 0.1% to 0.3%,
The ratio (2a / 2c) of the diameter (2a) of the first core to the diameter (2c) of the third core is in the range of 0.35 to 0.6 and the diameter (2c) of the third core The ratio (2b / 2c) of the diameter (2b) of the second core to (2) is in the range of 0.6 or more and 0.9 or less.
波長1550nmにおける分散が+8ps/nm/km以上で+15ps/nm/km以下の範囲にある、請求項1に記載の光ファイバ。   The optical fiber according to claim 1, wherein dispersion at a wavelength of 1550 nm is in a range of +8 ps / nm / km or more and +15 ps / nm / km or less. 直径20mmで曲げたときの波長1550nmにおける曲げ損失が10dB/m以下であり、波長1550nmにおけるPMDが0.1ps/km1/2以下である、請求項1又は2に記載の光ファイバ。 The optical fiber according to claim 1 or 2, wherein a bending loss at a wavelength of 1550 nm when bent at a diameter of 20 mm is 10 dB / m or less, and a PMD at a wavelength of 1550 nm is 0.1 ps / km 1/2 or less. 波長1550nmにおける分散スロープが0.08ps/nm2/km以下である、請求項1〜3の何れか一に記載の光ファイバ。 Dispersion slope at a wavelength of 1550nm is equal to or less than 0.08ps / nm 2 / km, an optical fiber according to any one of claims 1 to 3. クラッドがフッ素(F)を含むことを特徴とする、請求項1〜4の何れか一に記載の光ファイバ。   The optical fiber according to claim 1, wherein the clad contains fluorine (F). 前記クラッドの純シリカに対する比屈折率差ΔCが−0.2%以下である、請求項1〜5の何れか一に記載の光ファイバ。   The optical fiber according to claim 1, wherein a relative refractive index difference ΔC of the cladding with respect to pure silica is −0.2% or less.
JP2008234750A 2008-09-12 2008-09-12 Optical fiber Pending JP2009015341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008234750A JP2009015341A (en) 2008-09-12 2008-09-12 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008234750A JP2009015341A (en) 2008-09-12 2008-09-12 Optical fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004046063A Division JP4219830B2 (en) 2004-02-23 2004-02-23 Optical fiber

Publications (1)

Publication Number Publication Date
JP2009015341A true JP2009015341A (en) 2009-01-22

Family

ID=40356219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008234750A Pending JP2009015341A (en) 2008-09-12 2008-09-12 Optical fiber

Country Status (1)

Country Link
JP (1) JP2009015341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010176123A (en) * 2009-01-27 2010-08-12 Draka Comteq Bv Single-mode optical fiber having enlarged effective area
JP2013035722A (en) * 2011-08-09 2013-02-21 Furukawa Electric Co Ltd:The Methods for manufacturing optical fiber base material and optical fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104751A (en) * 2001-07-26 2003-04-09 Fujikura Ltd Method of manufacturing optical fiber preform
JP2003188822A (en) * 2001-10-10 2003-07-04 Furukawa Electric Co Ltd:The Optical transmission line and optical transmission system using the optical transmission line
WO2004011975A1 (en) * 2002-07-31 2004-02-05 Corning Incorporated Non-zero dispersion shifted optical fiber having large effective area, low slope and low zero dispersion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104751A (en) * 2001-07-26 2003-04-09 Fujikura Ltd Method of manufacturing optical fiber preform
JP2003188822A (en) * 2001-10-10 2003-07-04 Furukawa Electric Co Ltd:The Optical transmission line and optical transmission system using the optical transmission line
WO2004011975A1 (en) * 2002-07-31 2004-02-05 Corning Incorporated Non-zero dispersion shifted optical fiber having large effective area, low slope and low zero dispersion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010176123A (en) * 2009-01-27 2010-08-12 Draka Comteq Bv Single-mode optical fiber having enlarged effective area
JP2013035722A (en) * 2011-08-09 2013-02-21 Furukawa Electric Co Ltd:The Methods for manufacturing optical fiber base material and optical fiber

Similar Documents

Publication Publication Date Title
JP4999063B2 (en) Optical fiber
JP6148688B2 (en) Mode delay managed minority mode fiber optic links.
JPWO2007034923A1 (en) Optical fiber
US8315494B2 (en) Optical fiber
JP2013061620A (en) Optical fiber
JP2006293117A (en) Optical fiber and optical communication system using same
US6983094B2 (en) Optical fiber and optical transmission system using such optical fiber
JP4219830B2 (en) Optical fiber
JP2017062486A (en) Optical fiber
JPH1172640A (en) Dispersion shift fiber
JP2014041338A (en) Optical fiber, and optical transmission line
JP3869305B2 (en) Optical transmission line
JP2009015341A (en) Optical fiber
JP2001356223A (en) Connecting structure for dispersion compensating optical fiber
JP4101148B2 (en) Optical fiber and optical signal processing apparatus using the optical fiber
JP4776174B2 (en) Optical fiber and optical signal processing apparatus using the optical fiber
JPH11223741A (en) Distributed flat optical fiber
JP3479272B2 (en) Dispersion shifted optical fiber and optical communication system
JPH11119046A (en) Dispersion-shifted optical fiber
JP4219825B2 (en) Nonlinear dispersion-shifted optical fiber
JP2000275461A (en) Dispersed shift optical fiber
JP4205455B2 (en) Optical fiber and optical transmission system using the same
JP4087412B2 (en) Dispersion-shifted optical fiber
JP2005003794A (en) Optical fiber and optical transmission line using the same
JP3816271B2 (en) Dispersion-shifted optical fiber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100409

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120214

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120323