JP2009013641A - Aseismatic reinforcing structure - Google Patents

Aseismatic reinforcing structure Download PDF

Info

Publication number
JP2009013641A
JP2009013641A JP2007175797A JP2007175797A JP2009013641A JP 2009013641 A JP2009013641 A JP 2009013641A JP 2007175797 A JP2007175797 A JP 2007175797A JP 2007175797 A JP2007175797 A JP 2007175797A JP 2009013641 A JP2009013641 A JP 2009013641A
Authority
JP
Japan
Prior art keywords
reinforcing
existing building
staircase
slab
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007175797A
Other languages
Japanese (ja)
Other versions
JP4976938B2 (en
Inventor
Hiromi Suzuki
裕美 鈴木
Yasuhiro Hayabe
安弘 早部
Kazuhiro Kaneda
和浩 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2007175797A priority Critical patent/JP4976938B2/en
Publication of JP2009013641A publication Critical patent/JP2009013641A/en
Application granted granted Critical
Publication of JP4976938B2 publication Critical patent/JP4976938B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aseismatic reinforcing structure capable of efficiently improving shear proof stress of an existing building and comparatively freely planning a vertical moving line after aseismatic repair. <P>SOLUTION: The aseismatic reinforcing structure formed by after-fitting a reinforcing structure R to the existing building T is characterized in that the reinforcing structure R is provided with reinforcing stairs 3 extended along a structure plane to be reinforced of the existing building T and that seismic shearing force is transmitted from the upper floor side to the lower floor side by the reinforcing stairs 3. A reinforcing slab 4 may be interposed between the existing building T and the reinforcing stairs 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、既存建物の耐震補強構造に関する。   The present invention relates to a seismic reinforcement structure for an existing building.

既存建物に対する耐震補強を行いつつバリアフリー化を図ることが可能な耐震補強構造が特許文献1に開示されている。これは、高度経済成長期に建築された階段室型共同住宅(団地型集合住宅)に対する耐震補強を目的とするものであり、柱と梁とからなる外フレームを階段室型共同住宅の外側に構築し、階段室型共同住宅と外フレームとの間に廊下を新設することで、階段室型共同住宅と外フレームとの一体化を図っている。
特開2004−124527号公報
Patent Document 1 discloses an earthquake-resistant reinforcement structure capable of achieving barrier-free while performing earthquake-proof reinforcement for an existing building. The purpose of this is to provide seismic reinforcement for staircase-type apartment houses (compartment-type apartment houses) built during the period of high economic growth. The outer frame consisting of columns and beams is placed outside the staircase-type apartment house. By constructing and building a corridor between the staircase-type apartment house and the outer frame, the staircase-type apartment house and the outer frame are integrated.
JP 2004-124527 A

特許文献1の耐震補強構造では、既存の階段を撤去した後の階段室を利用してエレベータまたは階段を新設することを必須の構成要件としていることから、耐震改修後の垂直動線を自由に設定することができない。また、特許文献1の耐震補強構造は、その外フレーム(架構)が正面視矩形枠状を呈していることから、せん断剛性が低く、既存建物の保有耐力を効率よく向上させることができない。   In the seismic reinforcement structure of Patent Document 1, it is an indispensable component requirement to newly install an elevator or stairs using the staircase after the existing stairs are removed. Cannot be set. Moreover, since the outer frame (frame) of the seismic reinforcement structure of Patent Document 1 has a rectangular frame shape when viewed from the front, the shear rigidity is low and the existing building's possession strength cannot be improved efficiently.

このような観点から、本発明は、既存建物の保有耐力を効率よく向上させることが可能で、しかも、耐震改修後の垂直動線を比較的自由に計画することが可能な耐震補強構造を提供することを課題とする。   From such a point of view, the present invention provides an earthquake-proof reinforcement structure that can efficiently improve the holding strength of an existing building and that can relatively freely plan a vertical flow line after the earthquake-proof repair. The task is to do.

このような課題を解決する本発明は、既存建物に補強構造体を後付けしてなる耐震補強構造であって、前記補強構造体が、前記既存建物の補強すべき構面に沿って延在する補強階段を具備しており、前記補強階段によって、地震時せん断力が上階側から下階側へと伝達されることを特徴とする耐震補強構造。   The present invention for solving such a problem is an earthquake-proof reinforcement structure formed by retrofitting a reinforcement structure to an existing building, and the reinforcement structure extends along a construction surface of the existing building to be reinforced. A seismic reinforcement structure comprising a reinforcing staircase, wherein the shearing force during an earthquake is transmitted from the upper floor side to the lower floor side by the reinforcing staircase.

要するに、既存建物の補強すべき構面に付設した補強階段をブレースとして機能させ、既存建物に作用した地震力の一部を補強構造体を通して伝達させる点に特徴がある。   In short, it is characterized in that a reinforcing staircase attached to a structural surface of an existing building to be reinforced functions as a brace and a part of seismic force acting on the existing building is transmitted through the reinforcing structure.

本発明によれば、補強階段がブレースとなって地震時せん断力を下層階へ伝達するので、既存建物の保有耐力を効率よく向上させることが可能となる。また、本発明によれば、既存建物の補強すべき構面に沿って補強階段を設置しているので、耐震改修後の垂直動線を、既存建物の階段室の位置や数等にとらわれることなく比較的自由に計画することが可能となる。なお、本発明は、階段室のない既存建物にも適用することができる。   According to the present invention, since the reinforcing staircase becomes a brace and transmits the shearing force during an earthquake to the lower floor, it is possible to efficiently improve the holding strength of the existing building. Further, according to the present invention, since the reinforcing staircase is installed along the construction surface of the existing building to be reinforced, the vertical flow line after the seismic retrofit can be captured by the position and number of the staircase rooms of the existing building. It becomes possible to plan relatively freely. In addition, this invention is applicable also to the existing building without a staircase.

ところで、耐震補強のみを目的とする補強部材(例えば、枠付きブレースなど)を用いて既存建物を改修すると、補強部材の存在が際立ってしまい、耐震改修を行ったことが一目で明らかになってしまうことから、既存建物の古さや強度不足であったことなどが露呈してしまうが、本発明によれば、補強階段の存在に目を奪われるので、耐震補強を行ったことが認識され難く、改修後のファサードに違和感がなくなる。   By the way, when an existing building is refurbished using a reinforcing member (for example, a brace with a frame) for the purpose of seismic reinforcement only, the presence of the reinforcing member becomes conspicuous, and it has become clear at a glance that the seismic renovation was performed. As a result, the oldness of the existing building and the lack of strength are revealed. However, according to the present invention, the presence of the reinforcing staircase makes it difficult to recognize that the earthquake-proof reinforcement has been performed. , The renovated facade will not feel strange.

補強階段の平面形式に制限はないが、ブレースとして機能させることを考慮すると、折返し部のない「直階段」であることが望ましい。また、補強階段の構造形式に制限はなく、複数の踏板を連続させてなる「スラブ階段」としてもよいが、好適には、階段勾配で傾斜して前記既存建物の躯体に接合される支持桁と、前記支持桁に支持される踏板とを備える「側桁階段」や「ささら桁階段」であることが望ましい。なお、補強階段が支持桁を具備している場合には、支持桁によって、地震時せん断力が上階側から下階側へと伝達されることになる。   There is no limitation on the planar form of the reinforcing staircase, but considering that it functions as a brace, a “straight staircase” with no folded portion is desirable. Further, there is no restriction on the structural form of the reinforcing staircase, and it may be a “slab staircase” in which a plurality of treads are continuous. Preferably, the supporting girder is inclined with a staircase slope and joined to the frame of the existing building. And a “side girder staircase” or a “sagara girder staircase”. In addition, when the reinforcement staircase is equipped with the support beam, the shear force at the time of an earthquake will be transmitted from the upper floor side to the lower floor side by the support beam.

既存建物の躯体(柱、梁、壁、スラブなどの構造要素)に補強階段を直付けしても、既存建物の保有耐力を向上させることができるが、前記補強構造体が、前記構面に沿って基礎から立ち上がる複数の鉛直構造要素を備えている場合には、隣り合う鉛直構造要素の一方に前記補強階段の上端部を接続し、他方に前記補強階段の下端部を接続するとよい。このようにすると、既存建物に作用した地震力の一部が鉛直構造要素を介して基礎に伝達されることになるので、既存建物にかかる負担を低減することが可能となる。なお、鉛直構造要素には、少なくとも、柱、壁柱、耐震壁が含まれる。また、基礎は、新設したものでも、既存のものでもよい。   Even if a reinforcing staircase is directly attached to the frame of an existing building (structural elements such as columns, beams, walls, slabs, etc.), the existing building's holding strength can be improved. In the case where a plurality of vertical structural elements rising from the foundation are provided, the upper end of the reinforcing staircase may be connected to one of the adjacent vertical structural elements, and the lower end of the reinforcing staircase may be connected to the other. If it does in this way, since a part of seismic force which acted on the existing building will be transmitted to a foundation via a vertical structural element, it will become possible to reduce the burden concerning an existing building. The vertical structural element includes at least a column, a wall column, and a seismic wall. The foundation may be newly established or existing.

前記既存建物と前記補強階段との間に補強スラブを介設してもよい。このようにすると、前記既存建物と前記補強階段との間の力のやり取りが補強スラブを介して行われることになる。また、補強スラブのレベルを既存のスラブと合せて設置すると、より力の伝達が円滑になって合理的である。更にこの補強スラブを前記既存建物の補強すべき構面に沿う廊下として用いることで、新たな水平動線が付加されて、利用者の利便性が向上させることができる。   A reinforcing slab may be interposed between the existing building and the reinforcing stairs. If it does in this way, exchange of force between the existing building and the reinforcement staircase will be performed via a reinforcement slab. Moreover, if the level of the reinforcing slab is installed in combination with the existing slab, the transmission of force becomes smoother and rational. Furthermore, by using this reinforcing slab as a corridor along the construction surface of the existing building to be reinforced, a new horizontal flow line is added, and the convenience for the user can be improved.

前記既存建物に凹部が形成されている場合には、前記凹部に挿入された状態で前記既存建物の躯体と接合される差込部を前記補強スラブに形成するとよい。このようにすると、補強スラブの面内せん断抵抗によって、既存建物に作用するせん断力を確実に補強階段へ伝達することが可能となり、ひいては、既存建物の保有耐力を効率よく向上させることが可能となる。すなわち、既存建物の凹部に補強スラブの差込部を挿入すると、補強スラブの面内せん断力が凹部と差込部の圧縮力として伝達されることになり、また、偏心モーメントが凹部と差込部のせん断力として伝達されることになるので、接合部に引張力が生じない仕組みとなる。   When the recessed part is formed in the said existing building, it is good to form the insertion part joined to the housing of the said existing building in the state inserted in the said recessed part in the said reinforcement slab. In this way, the in-plane shear resistance of the reinforced slab can surely transmit the shearing force acting on the existing building to the reinforcing staircase, which in turn can effectively improve the existing building's proof strength. Become. In other words, when the insertion part of the reinforcement slab is inserted into the recess of the existing building, the in-plane shear force of the reinforcement slab is transmitted as the compression force of the recess and the insertion part, and the eccentric moment is inserted into the recess. Since this is transmitted as the shearing force of the part, it becomes a mechanism in which no tensile force is generated at the joint.

なお、耐震改修の際に凹部を新設してもよいが、既存建物に形成されていた既存の階段室を凹部とし、前記階段室の壁面に前記差込部を接合することが望ましい。既存の階段室を凹部とすれば、既存建物に対する改築工事を小規模にすることが可能となる。   In addition, although a recessed part may be newly provided in the case of earthquake-proof repair, it is desirable to make the existing staircase formed in the existing building into a recessed part, and to join the said insertion part to the wall surface of the said staircase. If the existing staircase is used as a recess, the renovation work for the existing building can be made smaller.

本発明に係るによれば、既存建物の保有耐力を効率よく向上させることが可能となり、しかも、耐震改修後の垂直動線を比較的自由に計画することが可能となる。   According to the present invention, it is possible to efficiently improve the holding strength of an existing building, and it is possible to plan a vertical flow line after earthquake-proof repair relatively freely.

本実施形態に係る耐震補強構造は、図1に示すように、既存建物Tと、この既存建物Tに後付けされた補強構造体Rと、この補強構造体Rの後側に設けられたエレベータEとを備えて構成されている。なお、以下の説明における「前」「後」は図1の状態を基準とし、既存建物Tのベランダ側を「前側」とし、階段室T1側を「後側」とする。 As shown in FIG. 1, the seismic reinforcement structure according to the present embodiment includes an existing building T, a reinforcement structure R retrofitted to the existing building T, and an elevator E provided on the rear side of the reinforcement structure R. And is configured. Incidentally, "front", "rear" in the following description are with respect to the state of FIG. 1, a veranda side of an existing building T is "front side", the stairwells T1 side and "rear side".

既存建物Tは、供用を開始している多層階建ての階段室型共同住宅であり、後側の外壁面に開口する複数の階段室(凹部)T1,T1,…を備えている。階段室T1に設置されていた既存の折返し階段(図示略)は撤去されている。   The existing building T is a multi-storey staircase-type apartment house that has been in service, and includes a plurality of staircases (concave portions) T1, T1,. The existing folded staircase (not shown) installed in the staircase room T1 has been removed.

既存建物Tの躯体は、その構成に制限はないが、鉄筋コンクリート製の壁式ラーメン構造であり、桁行方向(長手方向)に沿って形成された柱梁構造(ラーメン構造)と、梁間方向(短手方向)に沿って形成された構造壁(耐震壁)とを備えて構成されている。なお、以下の実施形態では、桁行方向の耐震強度が不足していることで既存不適格となっている既存建物Tを想定し、桁行方向の耐震強度を補強する場合を例示する。つまり、既存建物Tの補強すべき構面(以下、「補強構面」という。)が既存建物Tの桁行方向に沿って形成された外壁面に沿っている場合を例示する。   The structure of the existing building T is not limited in structure, but it is a reinforced concrete wall-type ramen structure. It consists of a column beam structure (ramen structure) formed along the crossing direction (longitudinal direction) and an inter-beam direction (short). And a structural wall (seismic wall) formed along the hand direction. In addition, in the following embodiment, the case where the existing building T which becomes the existing unqualified because the seismic strength in the row direction is insufficient is assumed and the seismic strength in the direction of the row is reinforced. That is, the case where the structural surface to be reinforced of the existing building T (hereinafter referred to as “reinforcing structural surface”) is along the outer wall surface formed along the crossing direction of the existing building T is illustrated.

補強構造体Rは、既存建物Tに作用した地震力の一部を負担するものであり、既存建物Tの桁行方向に間隔をあけて並設された複数の基礎1,1,…と、基礎1,1,…から立ち上がる複数の鉛直構造要素2,2,…と、既存建物Tの補強構面に沿って延在する複数の補強階段3,3,…と、上下方向に間隔をあけて並設された複数段の補強スラブ4,4,…と、この補強スラブ4,4,…の桁行方向の両端部に設けられた妻柱5,5と、を具備している。なお、補強階段3や補強スラブ4には、図示せぬ防護柵が設置される。   The reinforcing structure R bears a part of the seismic force acting on the existing building T, and includes a plurality of foundations 1, 1,... A plurality of vertical structural elements 2, 2,... Rising from 1, 1,... And a plurality of reinforcing stairs 3, 3,. Are provided with a plurality of reinforcing slabs 4, 4,... Arranged in parallel, and end posts 5, 5 provided at both ends of the reinforcing slabs 4, 4,. A protective fence (not shown) is installed on the reinforcing stairs 3 and the reinforcing slab 4.

基礎1は、耐震改修のために新設されたものであり、図2の(b)に示すように、既存建物Tの基礎T2の後方に構築されている。基礎1の構造形式に特に制限はないが、本実施形態では、杭11と、その杭頭部に形成されたフーチング12とを備えて構成されている。杭11は、現場打ち杭であってもよいし、既製杭であってもよい。   The foundation 1 is newly established for earthquake-resistant repair, and is constructed behind the foundation T2 of the existing building T as shown in FIG. Although there is no restriction | limiting in particular in the structure type of the foundation 1, In this embodiment, it comprises the pile 11 and the footing 12 formed in the pile head. The pile 11 may be an on-site pile or an off-the-shelf pile.

鉛直構造要素2は、補強階段3と補強スラブ4とを支持するものであり、既存建物Tの補強構面に沿って立設されていて、本実施形態では、既存建物Tの天端と略同じ高さ位置にまで達している。図2の(a)に示すように、鉛直構造要素2,2,…のうち、桁行方向の両端部に位置する鉛直構造要素2は、一本の補強柱21からなり、その他の鉛直構造要素2は、下端部において互いに連結された一対の補強柱21,21からなる。補強柱21は、基礎1に接合されており、鉛直構造要素2の下端部には、根巻き22が施されている。補強柱21の構造形式等に特に制限はなく、鋼管、鉄骨、鉄筋コンクリート、鉄骨鉄筋コンクリート、充填型鋼管コンクリートなどの中から適宜なものを選択すればよい。なお、基礎1と補強柱21とは、剛接合としてもよいし、半剛接合としてもよい。   The vertical structural element 2 supports the reinforcing staircase 3 and the reinforcing slab 4 and is erected along the reinforcing structural surface of the existing building T. In this embodiment, the vertical structural element 2 is substantially the same as the top end of the existing building T. It has reached the same height position. As shown in FIG. 2 (a), among the vertical structural elements 2, 2,..., The vertical structural elements 2 located at both ends in the column direction are composed of one reinforcing column 21 and other vertical structural elements. 2 consists of a pair of reinforcement pillars 21 and 21 mutually connected in the lower end part. The reinforcing column 21 is joined to the foundation 1, and a root winding 22 is applied to the lower end portion of the vertical structural element 2. There is no particular limitation on the structure type of the reinforcing column 21, and an appropriate one may be selected from steel pipes, steel frames, reinforced concrete, steel reinforced concrete, filled steel pipe concrete, and the like. The foundation 1 and the reinforcing column 21 may be rigidly joined or semi-rigidly joined.

補強階段3は、上下階の移動手段(垂直動線)としての役割に加えて、既存建物Tの保有耐力(せん断耐力)を向上させるブレースとしての役割を担うものであり、桁行方向に隣り合う鉛直構造要素2,2の一方に上端部が接続され、他方に下端部が接続されていて、既存建物T(図2の(b)参照)に作用した地震時せん断力を上階側から下階側へと伝達する。本実施形態の補強階段3は、隣接階を直線状に繋ぐ直階段であり、補強柱21と補強スラブ4とで形成された正面視矩形状の枠体の対角線に沿って配置されていて、下階の踊場43とその斜め上方に位置する上階の踊場43とに通じている(図3参照)。   The reinforcing staircase 3 plays a role as a brace for improving the holding strength (shear strength) of the existing building T in addition to the role as a moving means (vertical flow line) on the upper and lower floors, and is adjacent to the direction of the beam. The upper end part is connected to one of the vertical structural elements 2 and 2, and the lower end part is connected to the other, and the shear force acting on the existing building T (see FIG. 2B) is lowered from the upper floor side. Communicate to the floor side. The reinforcing staircase 3 of the present embodiment is a straight staircase that connects adjacent floors in a straight line, and is arranged along a diagonal line of a rectangular frame in front view formed by the reinforcing pillar 21 and the reinforcing slab 4, It leads to a lower level landing 43 and an upper level landing 43 located obliquely above (see FIG. 3).

補強階段3の位置、個数、向き(傾斜方向)などに制限はないが、本実施形態では、複数の補強階段3,3,…が、最上階(最上層)を除く各階(各層)において左右対称となるように配置されている。なお、いずれの補強階段3も、既存建物Tの外側に向かう方向が「上り」となるように配置されている。また、本実施形態では、一階の中央部に配置された補強階段3が、上階(本実施形態では、二階および三階)に配置された補強階段3と踊場43を介して直線状に連なっており、多層階に跨る直階段を形成している。複数の補強階段3,3,…により形成された直階段は、中央の鉛直構造要素2の左右に一組ずつ形成されており、V字状に対向している。また、補強構造体Rの両端部には、最上階を除く各階に補強階段3が配置されている。   Although there is no restriction | limiting in the position, the number, direction (inclination direction), etc. of the reinforcement staircase 3, in this embodiment, several reinforcement staircases 3, 3, ... are right and left in each floor (each layer) except a top floor (top layer). They are arranged symmetrically. All the reinforcing stairs 3 are arranged so that the direction toward the outside of the existing building T is “up”. Moreover, in this embodiment, the reinforcement staircase 3 arrange | positioned in the center part of the first floor becomes linear form via the reinforcement staircase 3 arrange | positioned on the upper floor (this embodiment 2nd floor and 3rd floor) and the landing 43. It is connected and forms a straight staircase that straddles multiple floors. A straight staircase formed by a plurality of reinforcing stairs 3, 3,... Is formed on the left and right sides of the central vertical structural element 2, and faces in a V shape. Further, at both ends of the reinforcing structure R, reinforcing stairs 3 are arranged on each floor except the top floor.

図3を参照して、補強階段3の構成をより詳細に説明する。この図に示すように、補強階段3は、階段勾配で傾斜する第一支持桁31および第二支持桁32と、この両支持桁31,32に支持される踏板33,33,…とを備えて構成されている。支持桁31,32は、いずれもH形鋼からなり、踏板33,33,…を挟んで対向している。   With reference to FIG. 3, the structure of the reinforcement staircase 3 is demonstrated in detail. As shown in this figure, the reinforcing staircase 3 includes a first support girder 31 and a second support girder 32 that are inclined with a staircase gradient, and treads 33, 33,. Configured. The support girders 31 and 32 are both made of H-shaped steel and are opposed to each other with the treads 33, 33,.

第一支持桁31は、桁行方向に隣り合う補強柱21,21を含む構面(補強構面に平行な構面)内に配置されており、桁行方向に隣り合う補強柱21,21の一方に第一支持桁31の上端部が接続され、他方に第一支持桁31の下端部が接続されている。より詳細に、第一支持桁31は、補強柱21,21と補強スラブ4の梁材41b,41bとで形成された正面視矩形状の架構の対角線に沿って配置されている。補強柱21と第一支持桁31の接合方法に制限はなく、例えば、溶接やボルト接合等の方法を用いることができる。第二支持桁32は、第一支持桁31と平行に設けられており、その上下端が踊場43に接続されている。   The first support girder 31 is disposed in a construction surface (a construction surface parallel to the reinforcement construction surface) including the reinforcement columns 21 and 21 adjacent in the row direction, and one of the reinforcement columns 21 and 21 adjacent in the row direction. The upper end of the first support beam 31 is connected to the other end, and the lower end of the first support beam 31 is connected to the other end. More specifically, the first support girder 31 is arranged along a diagonal line of a frame having a rectangular shape in front view formed by the reinforcing columns 21 and 21 and the beam members 41 b and 41 b of the reinforcing slab 4. There is no restriction | limiting in the joining method of the reinforcement pillar 21 and the 1st support beam 31, For example, methods, such as welding and bolt joining, can be used. The second support girder 32 is provided in parallel with the first support girder 31, and the upper and lower ends thereof are connected to the landing 43.

図1に示すように、補強スラブ4,4,…は、最上段の補強スラブ4を除き、既存建物Tと補強階段3との間に介設されている。図4を参照して、補強スラブ4の構成をより詳細に説明する。なお、図4に示す補強スラブ4は、五階の補強スラブ4である。   As shown in FIG. 1, the reinforcing slabs 4, 4,... Are interposed between the existing building T and the reinforcing stairs 3 except for the uppermost reinforcing slab 4. With reference to FIG. 4, the structure of the reinforcement slab 4 is demonstrated in detail. In addition, the reinforcement slab 4 shown in FIG. 4 is the reinforcement slab 4 of the fifth floor.

補強スラブ4は、図4の(a)に示すように、既存建物Tの補強構面に沿って横方向に延在する廊下部41と、既存建物Tの既存の階段室(凹部)T1に挿入される差込部42と、廊下部41から後方に向かって張り出す踊場43とを備えて構成されている。補強スラブ4は、既存建物Tのスラブと同じレベル(高さ)に設置される(図2の(b)参照)。   As shown in FIG. 4A, the reinforcing slab 4 is formed in a corridor lower part 41 extending in the lateral direction along the reinforcing structure of the existing building T and an existing staircase (recessed part) T1 of the existing building T. The insertion part 42 to be inserted and a landing 43 that protrudes rearward from the corridor 41 are configured. The reinforcing slab 4 is installed at the same level (height) as the slab of the existing building T (see FIG. 2B).

廊下部41は、差込部42と補強階段3とを繋ぐ水平動線を形成するものであり、既存建物Tと鉛直構造要素2との間に配置されており、かつ、既存建物Tおよび鉛直構造要素2に接合されている。なお、以下の説明においては、廊下部41のうち、差込部42または踊場43と交差する部位(鉛直構造要素2の前側に位置する部位)を交差部41Aと称し、桁行方向に隣り合う交差部41A,41Aを繋ぐ部位を渡り部41Bと称する。   The corridor 41 forms a horizontal flow line that connects the insertion portion 42 and the reinforcing staircase 3, and is disposed between the existing building T and the vertical structural element 2, and the existing building T and the vertical It is joined to the structural element 2. In the following description, a portion of the corridor 41 that intersects the insertion portion 42 or the landing 43 (a portion located on the front side of the vertical structural element 2) is referred to as a crossing portion 41A and is adjacent to the column direction. A portion connecting the portions 41A and 41A is referred to as a crossing portion 41B.

廊下部41は、既存建物Tの補強構面に沿って延在していて、第一接合部S1,S1および第二接合部S2,S2において既存建物Tの躯体に接合されている。第一接合部S1は、廊下部41の桁行方向の端部に設けられており、第二接合部S2は、差込部42,42の間に位置する鉛直構造要素2の前側(既存建物T側)に設けられている。なお、廊下部41は、図5の(a)に示すように、既存建物Tの躯体に打ち込まれたアンカー44と、既存建物Tと廊下部41との間に充填された充填材45とを利用して、既存建物Tに接合されている。   The corridor 41 extends along the reinforcing structure of the existing building T, and is joined to the frame of the existing building T at the first joints S1, S1 and the second joints S2, S2. The first joint S1 is provided at the end of the corridor 41 in the row direction, and the second joint S2 is a front side (existing building T) of the vertical structural element 2 located between the plugs 42 and 42. Side). As shown in FIG. 5A, the corridor 41 includes an anchor 44 driven into the frame of the existing building T and a filler 45 filled between the existing building T and the corridor 41. Utilized and joined to the existing building T.

廊下部41の構成に制限はないが、本実施形態では、図4の(b)に示すように、既存建物Tの補強構面に沿って配置される第一の梁材41aと、鉛直構造要素2,2に架設される第二の梁材41bと、梁材41a,41bに架設される床板41c(図5の(a)および(b)参照)と、この床板41c上に敷設される表層材41dとを備えて構成されている。図5の(a)および(b)に示すように、梁材41a,41bは、H形鋼からなり、床板41cは、リブ付き鋼板からなる。また、表層材41dは、モルタルなどのセメント系材料からなる。なお、図示は省略するが、廊下部41を鉄筋コンクリートスラブなどとしても差し支えない。   Although there is no restriction | limiting in the structure of the corridor 41, in this embodiment, as shown in FIG.4 (b), the 1st beam material 41a arrange | positioned along the reinforcement structural surface of the existing building T, and a vertical structure A second beam member 41b laid on the elements 2 and 2, a floor plate 41c (see (a) and (b) of FIG. 5) laid on the beam members 41a and 41b, and laid on the floor plate 41c. A surface layer material 41d is provided. As shown in FIGS. 5A and 5B, the beam members 41a and 41b are made of H-section steel, and the floor plate 41c is made of a ribbed steel plate. The surface layer material 41d is made of a cement-based material such as mortar. In addition, although illustration is abbreviate | omitted, the corridor lower part 41 may be used as a reinforced concrete slab.

図4の(a)に示すように、差込部42は、既存建物Tの出入口T3と廊下部41とを繋ぐ水平動線を形成するとともに、既存建物Tと補強構造体Rとの間の力のやり取りを確実ならしめるためのものであり、鉛直構造要素2の前側において廊下部41(交差部41A)に接続されている。差込部42は、廊下部41から階段室T1の奥に向かって張り出していて、その突端に設けられた第三接合部S3において階段室T1に残置された床スラブT5(既存建物Tの躯体)に接合され、両側縁部に設けられた第四接合部S4,S4において階段室T1の壁面(既存建物Tの躯体)に接合されている。なお、水平力は、主として第四接合部S4における圧縮力とせん断力(階段室T1の壁面と差込部43の間の圧縮力とせん断力)を介して伝達されるため、第三接合部S3を省略してもよい。   As shown to (a) of FIG. 4, the insertion part 42 forms the horizontal flow line which connects the entrance T3 of the existing building T, and the corridor lower part 41, and between the existing building T and the reinforcement structure R In order to ensure the exchange of force, the front side of the vertical structural element 2 is connected to the lower corridor 41 (intersection 41A). The insertion part 42 protrudes from the corridor 41 toward the back of the staircase T1, and the floor slab T5 (the frame of the existing building T) left in the staircase T1 at the third joint S3 provided at the projecting end thereof. ) And are joined to the wall surface of the staircase T1 (the frame of the existing building T) at the fourth joints S4 and S4 provided on both side edges. Since the horizontal force is transmitted mainly through the compressive force and shear force (compressive force and shear force between the wall surface of the staircase T1 and the insertion portion 43) in the fourth joint portion S4, the third joint portion. S3 may be omitted.

差込部42の構成に制限はないが、本実施形態では、図4の(b)に示すように、廊下部41から張り出す一対の第一の梁材42a,42aと、第一の梁材42a,42aを連結するように設けられた一対の第二の梁材42b,42bと、梁材42a,42bに架設される床板42c(図5の(c)および(d)参照)と、この床板42c上に敷設される表層材42dとを備えて構成されている。図5の(c)に示すように、廊下部41の上面と差込部42の上面とは、面一になっている。また、図5の(c)および(d)に示すように、差込部42は、アンカー44と充填材45とを利用して既存建物Tの躯体に接合されている。また、差込部42を鉄筋コンクリートスラブとしても勿論差し支えない。   Although there is no restriction | limiting in the structure of the insertion part 42, in this embodiment, as shown in FIG.4 (b), a pair of 1st beam members 42a and 42a projecting from the corridor lower part 41, and a 1st beam A pair of second beam members 42b and 42b provided to connect the members 42a and 42a, and a floor plate 42c (see FIGS. 5C and 5D) installed on the beam members 42a and 42b, And a surface layer material 42d laid on the floor plate 42c. As shown in FIG. 5C, the upper surface of the corridor lower portion 41 and the upper surface of the insertion portion 42 are flush with each other. In addition, as shown in FIGS. 5C and 5D, the insertion portion 42 is joined to the frame of the existing building T using an anchor 44 and a filler 45. Of course, the insertion part 42 may be a reinforced concrete slab.

図4の(a)に示すように、踊場43は、補強階段3と廊下部41またはエレベータEとを繋ぐ水平動線を形成するものであり、鉛直構造要素2の位置において廊下部41(交差部41A)から後方に向かって張り出している。なお、補強構造体Rの桁行方向の中央部に位置する踊場43は、エレベータEの接続床版63(図1参照)に接続され、その他の踊場43は、補強階段3に接続される。踊場43の構成に制限はないが、本実施形態では、図4の(b)に示すように、廊下部41から張り出す一対の第一の梁材43a,43aと、第一の梁材43a,43aを連結するように設けられた第二の梁材43bと、梁材43a,43bに架設される床板43c(図5の(c)参照)と、この床板43c上に敷設される表層材43dとを備えて構成されている。なお、図5の(c)に示すように、廊下部41の上面と踊場43の上面とは、面一になっている。   As shown in FIG. 4A, the landing 43 forms a horizontal flow line that connects the reinforcing staircase 3 and the corridor 41 or the elevator E, and the corridor 41 (intersection) at the position of the vertical structural element 2. It protrudes rearward from the portion 41A). The landing 43 located in the center of the reinforcing structure R in the direction of travel is connected to the connecting floor slab 63 of the elevator E (see FIG. 1), and the other landings 43 are connected to the reinforcing staircase 3. Although there is no restriction | limiting in the structure of the landing 43, in this embodiment, as shown to (b) of FIG. 4, a pair of 1st beam members 43a and 43a projecting from the corridor lower part 41, and the 1st beam member 43a , 43a, a second beam member 43b provided to connect the beam members 43a, 43b, a floor plate 43c (see FIG. 5C), and a surface layer material laid on the floor plate 43c. 43d. In addition, as shown in FIG.5 (c), the upper surface of the corridor lower part 41 and the upper surface of the landing 43 are the same surface.

図1に示す妻柱5は、既存建物Tの桁行方向の端部と補強構造体Rとの間の力のやり取りを確実ならしめるために設けられたものであり、補強スラブ4,4,…の前側(既存建物T側)において補強スラブ4,4,…を上下に連結し、かつ、既存建物Tの妻壁面に接合される(図4の(a)参照)。なお、図示は省略するが、妻柱5は、既存建物Tの妻壁面に打ち込まれたアンカーを利用して既存建物Tに接合される。また、妻柱5の下端部は、方立51を介して鉛直構造要素2に接続されている。   1 is provided to ensure the exchange of force between the end of the existing building T in the direction of the row and the reinforcing structure R, and the reinforcing slabs 4, 4,... Are connected vertically to each other on the front side (existing building T side) and joined to the wall surface of the existing building T (see FIG. 4A). In addition, although illustration is abbreviate | omitted, the end pillar 5 is joined to the existing building T using the anchor driven into the end wall surface of the existing building T. Further, the lower end portion of the end post 5 is connected to the vertical structural element 2 through a vertical 51.

エレベータEは、既存建物Tのバリアフリー化を実現するとともに、既存建物Tの外部に新たな垂直動線を付加するものであり、補強構造体Rを挟んで既存建物Tと対峙するような位置に設けられていて、その出入口が廊下部41に面している。エレベータEの設置位置は、補強構造体Rに接続可能な範囲で自由に計画することができるが、本実施形態のエレベータEは、既存建物Tの桁行方向の中央部に設置されており、中央の階段室T1に対峙している。エレベータEの構成にも制限はないが、本実施形態では、エレベータシャフトを形成する柱梁架構61と、この柱梁架構61を支持するエレベータ基礎62と、補強構造体Rの中央部に位置する踊場43,43,…に接続される接続床版63,63,…と、エレベータシャフトの中を昇降する籠体64と、この籠体64を昇降させる図示せぬ昇降装置と、を備えて構成されている。   The elevator E realizes barrier-free of the existing building T and adds a new vertical flow line to the outside of the existing building T, and is positioned so as to face the existing building T across the reinforcing structure R The entrance is facing the lower part 41 of the corridor. The installation position of the elevator E can be freely planned as long as it can be connected to the reinforcing structure R. However, the elevator E according to the present embodiment is installed in the center portion of the existing building T in the direction of the row, Facing the staircase T1. Although there is no restriction | limiting also in the structure of the elevator E, In this embodiment, it is located in the center part of the column beam frame 61 which forms an elevator shaft, the elevator foundation 62 which supports this column beam frame 61, and the reinforcement structure R The connecting floor slabs 63, 63, ... connected to the landings 43, 43, ..., a housing 64 that moves up and down in the elevator shaft, and a lifting device (not shown) that lifts and lowers the housing 64 are configured. Has been.

このように構成された耐震補強構造においては、既存建物Tに作用した地震力が、補強構造体Rによって負担されることになる。また、既存建物Tに桁行方向に作用した地震時水平力や地震時せん断力は、補強スラブ4を介して鉛直構造要素2と補強階段3とに伝達され、さらに、補強階段3によって上階側から下階側へと伝達されるとともに、鉛直構造要素2によって基礎1に伝達されることになる。ちなみに、桁行方向の地震時水平力が既存建物Tに作用した場合の補強構造体Rとの力のやり取りは、廊下部41の接合部S1,S2(図4の(a)参照)におけるせん断力と、差込部42の接合部S4(図4の(a)参照)における圧縮力とを介して行われることになる。なお、補強階段3等を介して1階の基礎スラブ4まで伝達された地震力は、接合部S1,S2におけるせん断力と、接合部S4における圧縮力とを介して既存建物Tに伝達されることになる。   In the seismic reinforcement structure thus configured, the seismic force acting on the existing building T is borne by the reinforcement structure R. Further, the horizontal force and the shearing force acting on the existing building T in the longitudinal direction are transmitted to the vertical structural element 2 and the reinforcing staircase 3 through the reinforcing slab 4, and further on the upper floor side by the reinforcing staircase 3. To the lower floor side and to the foundation 1 by the vertical structural element 2. By the way, the exchange of force with the reinforcing structure R when the horizontal force at the time of the earthquake in the crossing direction acts on the existing building T is the shear force at the joints S1 and S2 of the corridor 41 (see FIG. 4A). And the compressive force at the joint S4 (see FIG. 4A) of the plug-in portion 42. In addition, the seismic force transmitted to the foundation slab 4 on the first floor through the reinforcing staircase 3 and the like is transmitted to the existing building T through the shearing force at the joints S1 and S2 and the compressive force at the joint S4. It will be.

また、既存建物Tの端部に位置する鉛直構造要素2(補強柱21)に発生した引抜力は、方立51を介して妻柱5に伝達され、さらに、既存建物Tに伝達される。   Further, the pulling force generated in the vertical structural element 2 (reinforcing column 21) located at the end of the existing building T is transmitted to the wife column 5 through the vertical 51 and further transmitted to the existing building T.

次に、本実施形態に係る耐震補強構造の施工方法を、図6〜図11を参照して詳細に説明する。なお、図6は、耐震改修前の既存建物Tを示す図である。   Next, the construction method of the earthquake-proof reinforcement structure which concerns on this embodiment is demonstrated in detail with reference to FIGS. In addition, FIG. 6 is a figure which shows the existing building T before earthquake-proof repair.

本実施形態に係る耐震補強構造の施工方法は、凹部形成工程(図7)と、補強構造体構築工程(図8〜図10)と、エレベータ設置工程(図11)とを含んでいる。   The construction method of the seismic reinforcement structure according to the present embodiment includes a recess formation process (FIG. 7), a reinforcement structure construction process (FIGS. 8 to 10), and an elevator installation process (FIG. 11).

凹部形成工程は、図7の(a)および(b)に示すように、既存建物Tに、補強構造体Rの差込部42を挿入するための凹部を形成する工程である。本実施形態では、既存建物Tの階段室T1に設置された既存の折返し階段T6(図6参照)を撤去することで、既存建物Tに凹部を形成する(図7参照)。本実施形態では、既存の階段室T1を凹部としているので、既存建物Tに対する改築工事を小規模にすることが可能となる。   The recess forming step is a step of forming a recess for inserting the insertion portion 42 of the reinforcing structure R into the existing building T as shown in FIGS. 7A and 7B. In this embodiment, the recessed part is formed in the existing building T by removing the existing folding staircase T6 (see FIG. 6) installed in the staircase T1 of the existing building T (see FIG. 7). In the present embodiment, since the existing staircase T1 is a recess, it is possible to reduce the remodeling work for the existing building T.

補強構造体構築工程は、既存建物Tの既存基礎T2の後方に基礎1を新設する基礎構築工程(図8参照)と、基礎1上に補強構造体Rの地上部分を構築する地上部構築工程(図9,図10参照)とを備えている。   The reinforcement structure construction process includes a foundation construction process (see FIG. 8) for newly establishing the foundation 1 behind the existing foundation T2 of the existing building T, and a ground part construction process for constructing the ground portion of the reinforcement structure R on the foundation 1. (See FIGS. 9 and 10).

基礎構築工程では、図8の(b)に示すように、既存建物Tから所定距離だけ離れた位置に杭11を構築し、その後、杭11の杭頭部にフーチング12を構築する。また、エレベータEの設置位置に合せて、エレベータ基礎62を構築する。   In the foundation construction step, as shown in FIG. 8B, the pile 11 is constructed at a position away from the existing building T by a predetermined distance, and then the footing 12 is constructed on the pile head of the pile 11. Further, the elevator foundation 62 is constructed in accordance with the installation position of the elevator E.

地上部構築工程では、図10の(a)および(b)に示すように、基礎1上に鉛直構造要素2を立設するとともに、補強階段3および補強スラブ4を既存建物Tと鉛直構造要素2とに接合する。本実施形態では、まず、図9の(a)および(b)に示すように、工場等において予め構築した差込部42を階段室T1に設置する。具体的には、階段室T1の壁面に予め打ち込んでおいたアンカー44(図5の(c)および(d)参照)に合せて差込部42を階段室T1に挿入し、その後、差込部42の先端部と階段室T1の床スラブT5との間および差込部42の両側縁部と階段室T1の壁面との間に充填材45(図5の(c)および(d)参照)を充填して、差込部42を既存建物Tに接合すればよい。なお、階段室T1の壁面等に設けた受け材に差込部42を仮支持させておき、表層材42dを打設する際や他の接合部S1,S2に充填材を充填する際に充填材45を充填してもよい。   In the above-ground construction process, as shown in FIGS. 10A and 10B, the vertical structural element 2 is erected on the foundation 1, and the reinforcing stairs 3 and the reinforcing slab 4 are connected to the existing building T and the vertical structural element. 2 to join. In this embodiment, first, as shown to (a) and (b) of FIG. 9, the insertion part 42 previously constructed | assembled in the factory etc. is installed in staircase T1. Specifically, the insertion portion 42 is inserted into the staircase T1 in accordance with the anchor 44 (see (c) and (d) of FIG. 5) that has been driven in advance on the wall surface of the staircase T1, and then inserted. Filler 45 (see (c) and (d) of FIG. 5) between the tip of the portion 42 and the floor slab T5 of the staircase T1 and between the side edges of the insertion portion 42 and the wall surface of the staircase T1. ) And the insertion part 42 may be joined to the existing building T. The insertion portion 42 is temporarily supported on a receiving material provided on the wall surface of the staircase T1 and filled when the surface layer material 42d is placed or when the other joint portions S1 and S2 are filled with the filler. The material 45 may be filled.

既存建物Tの階数に対応する数の差込部42を階断室T1に設置したら、鉛直構造要素2と廊下部41の交差部41Aと踊場43とを含むユニットUを立設し、交差部41Aを差込部42または既存建物Tの躯体に接合する。ユニットUは、鉛直構造要素2に交差部41Aと踊場43とを接合したものであり、工場等において構築される。なお、図5の(a)に示すアンカー44は、ユニットUを設置する前に既存建物Tの躯体に打ち込んでおく。また、既存建物Tの桁行方向の端部に位置するユニットUには、妻柱5(図1参照)を取り付けておき、ユニットUを基礎1上に立設した後に、既存建物Tの妻壁面に妻柱5を接合する。   After installing the number of plug-in portions 42 corresponding to the number of floors of the existing building T in the cut-off room T1, a unit U including the vertical structural element 2, the intersection 41A of the corridor 41 and the landing 43 is erected, and the intersection 41A is joined to the insertion part 42 or the frame of the existing building T. The unit U is obtained by joining the intersection 41A and the landing 43 to the vertical structural element 2, and is constructed in a factory or the like. Note that the anchor 44 shown in FIG. 5A is driven into the frame of the existing building T before the unit U is installed. In addition, the end U of the existing building T is attached to the end U of the existing building T with the end pillar 5 (see FIG. 1), and after the unit U is erected on the foundation 1, the end wall of the existing building T The wife pillar 5 is joined to

続いて、図10の(a)に示すように、隣り合うユニットU,U間に、補強階段3と、廊下部41の渡り部41Bとを架設する。補強階段3の上端部および下端部は、それぞれ、鉛直構造要素2と踊場43とに接合する。   Subsequently, as illustrated in FIG. 10A, the reinforcing staircase 3 and the transition portion 41 </ b> B of the corridor lower portion 41 are installed between the adjacent units U and U. The upper end and lower end of the reinforcing staircase 3 are joined to the vertical structural element 2 and the landing 43, respectively.

その後、図5の(a)に示すように、廊下部41の床板41c、差込部42の床板42cおよび踊場43の床板43cの上面に、それぞれ、表層材41d,42d,43dを敷設する。   Then, as shown to (a) of FIG. 5, surface layer material 41d, 42d, and 43d are laid | laid on the upper surface of the floor board 41c of the corridor 41, the floor board 42c of the insertion part 42, and the floor board 43c of the landing 43, respectively.

エレベータ設置工程は、図11の(a)および(b)に示すように、補強構造体RにエレベータEを付設する工程である。具体的には、エレベータ基礎62上に柱梁架構61を立設する工程、柱梁架構61と補強構造体Rの踊場43との間に接続床版63を架設する工程、柱梁架構61の内部に籠体64(図1参照)を設置する工程などを備えている。なお、既存建物Tの外部にエレベータEを設置すると、既存建物Tに機械室等を設ける工事が不要になるので、既存建物Tに対する改築工事を小規模にすることが可能となる。   The elevator installation step is a step of attaching the elevator E to the reinforcing structure R as shown in FIGS. 11 (a) and 11 (b). Specifically, the step of erecting the column beam frame 61 on the elevator foundation 62, the step of laying the connection floor slab 63 between the column beam frame 61 and the landing 43 of the reinforcing structure R, the column beam frame 61 A step of installing a casing 64 (see FIG. 1) inside is provided. If the elevator E is installed outside the existing building T, it is not necessary to install a machine room or the like in the existing building T, so that it is possible to reduce the remodeling work for the existing building T.

なお、本実施形態で例示した施工手順は、施工現場の状況、既存建物Tの形状や構造、補強構造体Rの規模や構造などに応じて適宜変更することが可能である。   In addition, the construction procedure illustrated in this embodiment can be appropriately changed according to the situation at the construction site, the shape and structure of the existing building T, the scale and structure of the reinforcing structure R, and the like.

以上説明した耐震補強構造によれば、既存建物Tに作用した地震力の一部を補強構造体Rが負担するようになり、さらに、補強階段3がブレースとして機能することになるので、既存建物Tの保有耐力(せん断耐力)を効率よく向上させることが可能となる。   According to the seismic reinforcement structure described above, the reinforcing structure R will bear a part of the seismic force acting on the existing building T, and the reinforcing staircase 3 will function as a brace. It becomes possible to efficiently improve the retained strength (shear strength) of T.

しかも、既存建物Tに作用した地震力の一部が補強階段3および補強スラブ4を介して鉛直構造要素2に伝達され、さらに、鉛直構造要素2を介して基礎1に伝達されることになるので、既存建物Tにかかる負担を低減することが可能となる。   Moreover, part of the seismic force acting on the existing building T is transmitted to the vertical structural element 2 through the reinforcing stairs 3 and the reinforcing slab 4, and further transmitted to the foundation 1 through the vertical structural element 2. Therefore, it is possible to reduce the burden on the existing building T.

本実施形態においては、既存建物Tに階段室T1に補強スラブ4の一部(差込部42)を差し込んでいるので、既存建物Tと補強構造体Rとの間の力のやり取りが確実なものとなり、さらには、補強階段3が廊下部41の幅の分だけ既存建物Tから離れているために生じる廊下部41の面内せん断力および当該面内せん断力に起因して発生する偏心モーメントを、既存建物Tに伝達することが可能となるので、既存建物Tの保有耐力を効率よく向上させることが可能となる。   In this embodiment, since a part of the reinforcing slab 4 (insertion part 42) is inserted into the staircase T1 in the existing building T, exchange of force between the existing building T and the reinforcing structure R is ensured. Furthermore, the reinforcing staircase 3 is separated from the existing building T by the width of the corridor 41 and the in-plane shear force of the corridor 41 and the eccentric moment generated due to the in-plane shear force. Can be transmitted to the existing building T, so that the holding strength of the existing building T can be improved efficiently.

一方、補強階段3の存在が際立つことになるが、補強階段3がブレースの機能を兼ね備えていることについては認識され難くなるので、改修後のファサードに違和感がなくなり、耐震補強を行ったことを公言したくないという消費者のニーズに応えることが可能となる。また、複数の補強階段3,3,…をバランスよく配置しているので、景観に溶け込み易い外観となる。   On the other hand, the presence of the reinforcing staircase 3 will stand out, but it will be difficult to recognize that the reinforcing staircase 3 has the function of braces, so that the facade after the renovation will no longer feel uncomfortable and the earthquake-proof reinforcement has been performed. It becomes possible to meet the needs of consumers who do not want to profess. Moreover, since several reinforcement staircases 3, 3, ... are arrange | positioned with sufficient balance, it becomes the external appearance which is easy to melt into scenery.

また、既存建物Tの外部において補強構面に沿うように補強階段3を設置しているので、耐震改修後の垂直動線を、既存建物Tの既存の階段室T1の位置や数等にとらわれることなく比較的自由に計画することが可能となる。加えて、本実施形態においては、補強スラブ4の廊下部41によって新たな水平動線が付加されることになるので、建物利用者の利便性も向上する。   In addition, since the reinforcing staircase 3 is installed outside the existing building T so as to follow the reinforcing structural surface, the vertical flow line after the seismic retrofit is limited by the position and number of the existing staircase room T1 of the existing building T. It is possible to plan relatively freely without any problems. In addition, in this embodiment, since a new horizontal flow line is added by the corridor lower part 41 of the reinforcement slab 4, the convenience of a building user is also improved.

さらに、廊下部41の上面、差込部42の上面および踊場43の上面を面一にしてフラットな水平動線を形成しているので、既存建物Tのバリアフリー化を実現することが可能となる。   Furthermore, since the upper surface of the corridor 41, the upper surface of the insertion part 42, and the upper surface of the landing 43 are flush with each other to form a flat horizontal flow line, it is possible to realize barrier-free of the existing building T. Become.

本実施形態のように、既存建物Tの外部にエレベータEを設置すれば、既存の階段室T1の位置とは無関係に新たな垂直動線を付加することが可能となり、ひいては、建物利用者の利便性が向上する。   If the elevator E is installed outside the existing building T as in this embodiment, it becomes possible to add a new vertical flow line regardless of the position of the existing staircase T1. Convenience is improved.

前記した耐震補強構造の構成は、適宜変更しても差し支えない。
例えば、本実施形態では、既存建物Tの外部に補強構造体RやエレベータEを設置したが、例えば、建物の内部に吹き抜け空間が設けられている場合や床を壊して吹き抜けを設けた場合には、既存建物の内部に補強構造体RやエレベータEを設置してもよい。
The configuration of the above-described seismic reinforcement structure may be changed as appropriate.
For example, in the present embodiment, the reinforcing structure R and the elevator E are installed outside the existing building T. For example, when the atrium space is provided inside the building or when the atrium is broken and the atrium is provided. May install a reinforcing structure R or an elevator E inside an existing building.

また、新設した基礎1上に鉛直構造要素2を立設した場合を例示したが、既存の基礎T2を利用できる場合には、既存の基礎T2上に鉛直構造要素2を立設してもよい。なお、地震力を基礎1に伝達する必要がない場合には、鉛直構造要素2を省略してもよい。   Moreover, although the case where the vertical structural element 2 was erected on the newly established foundation 1 was illustrated, the vertical structural element 2 may be erected on the existing foundation T2 when the existing foundation T2 can be used. . In addition, when it is not necessary to transmit seismic force to the foundation 1, the vertical structural element 2 may be omitted.

本実施形態では、補強スラブ4を介して補強階段3を既存建物Tの躯体に接合した場合を例示したが、補強スラブ4を省略し、補強階段3を既存建物Tの躯体に直接接合してもよい。この場合には、既存建物Tの柱梁架構の対角方向に補強階段3を配置することが望ましい。   In this embodiment, although the case where the reinforcement staircase 3 was joined to the frame of the existing building T via the reinforcement slab 4 was illustrated, the reinforcement slab 4 was abbreviate | omitted and the reinforcement staircase 3 was directly joined to the frame of the existing building T. Also good. In this case, it is desirable to arrange the reinforcing stairs 3 in the diagonal direction of the column beam frame of the existing building T.

また、補強階段3の形態を鋼製の「側桁階段(ささら桁階段)」としたが、複数の踏板を連続させてなる鉄筋コンクリート製の「スラブ階段」としてもよい。   Moreover, although the form of the reinforcing staircase 3 is a steel “side girder staircase (sara girder staircase)”, it may be a “slab staircase” made of reinforced concrete in which a plurality of treads are continuous.

本実施形態では、既存建物Tの階段室T1に補強スラブ4の差込部42を差し込む場合を例示したが、階段室T1を利用できない場合などにおいては、差込部42を省略してもよい。なお、階段室T1が存在していない場合や利用できない場合には、耐震改修の際に、差込部42を挿入可能な凹部を既存建物Tに新設すればよい。   In this embodiment, although the case where the insertion part 42 of the reinforcement slab 4 was inserted in the staircase T1 of the existing building T was illustrated, when the staircase T1 cannot be used, the insertion part 42 may be omitted. . In addition, when the staircase T1 does not exist or cannot be used, a concave portion into which the insertion portion 42 can be inserted may be newly provided in the existing building T at the time of earthquake-proof repair.

なお、既存建物Tが、階段室型共同住宅である場合を例示したが、本発明の適用範囲を限定する趣旨ではなく、これ以外の形態の既存建物にも適用することができる。また、鉄筋コンクリート製の壁式ラーメン構造に限らず、例えば、壁式鉄筋コンクリート構造、コンクリート系ラーメン構造(RC造)、鉄骨系ラーメン構造(S造)、鉄骨系複合構造(SRC造、CFT造)の既存建物にも本発明を適用することができる。   In addition, although the case where the existing building T is a staircase type apartment house was illustrated, it is not the meaning which limits the application range of this invention, and can also apply to the existing building of a form other than this. In addition to the reinforced concrete wall-type ramen structure, for example, a wall-type reinforced concrete structure, a concrete-type ramen structure (RC structure), a steel-type ramen structure (S-type), and a steel-type composite structure (SRC-type, CFT-type) The present invention can also be applied to existing buildings.

本発明の実施形態に係る耐震補強構造を示す分解斜視図である。It is a disassembled perspective view which shows the earthquake-proof reinforcement structure which concerns on embodiment of this invention. (a)は本発明の実施形態に係る耐震補強構造を示す正面図、(b)は(a)のX−X線断面図である。(A) is a front view which shows the earthquake-proof reinforcement structure which concerns on embodiment of this invention, (b) is XX sectional drawing of (a). 補強構造体を示す拡大斜視図である。It is an expansion perspective view which shows a reinforcement structure. 図2の(a)のY−Y線断面図である。It is the YY sectional view taken on the line of (a) of FIG. (a)は図4のA−A線断面図、(b)は図4のB−B線断面図、(c)は図4のC−C線断面図、(d)は図4のD−D線断面図である。4A is a sectional view taken along line AA in FIG. 4, FIG. 4B is a sectional view taken along line BB in FIG. 4, FIG. 4C is a sectional view taken along line CC in FIG. FIG. 耐震改修前の既存建物を示す断面図であって、(a)は(b)のW1−W1線断面図、(b)は(a)のZ1−Z1線断面図である。It is sectional drawing which shows the existing building before earthquake-proof repair, Comprising: (a) is the W1-W1 sectional view taken on the line of (b), (b) is the Z1-Z1 sectional view taken on the line of (a). 本発明の実施形態に係る耐震補強構造の構築方法を説明するための断面図であって、(a)は(b)のW2−W2線断面図、(b)は(a)のZ2−Z2線断面図である。It is sectional drawing for demonstrating the construction method of the earthquake-proof reinforcement structure which concerns on embodiment of this invention, Comprising: (a) is W2-W2 sectional view taken on the line of (b), (b) is Z2-Z2 of (a). It is line sectional drawing. 図7に続く工程を説明するための断面図であって、(a)は(b)のW3−W3線断面図、(b)は(a)のZ3−Z3線断面図である。8A and 8B are cross-sectional views for explaining the process following FIG. 7, where FIG. 8A is a cross-sectional view taken along line W3-W3 in FIG. 7B, and FIG. 8B is a cross-sectional view taken along line Z3-Z3 in FIG. 図8に続く工程を説明するための断面図であって、(a)は(b)のW4−W4線断面図、(b)は(a)のZ4−Z4線断面図である。It is sectional drawing for demonstrating the process following FIG. 8, Comprising: (a) is W4-W4 sectional view taken on the line of (b), (b) is Z4-Z4 sectional view taken on the line of (a). 図9に続く工程を説明するための断面図であって、(a)は(b)のW5−W5線断面図、(b)は(a)のZ5−Z5線断面図である。FIGS. 10A and 10B are cross-sectional views for explaining the process following FIG. 9, where FIG. 10A is a cross-sectional view taken along line W5-W5 in FIG. 9B, and FIG. 図10に続く工程を説明するための断面図であって、(a)は(b)のW6−W6線断面図、(b)は(a)のZ6−Z6線断面図である。FIG. 11 is a cross-sectional view for explaining a process following FIG. 10, where (a) is a cross-sectional view taken along line W6-W6 in (b), and (b) is a cross-sectional view taken along line Z6-Z6 in (a).

符号の説明Explanation of symbols

T 既存建物
T1 階段室(凹部)
R 補強構造体
1 基礎
2 鉛直構造要素
3 補強階段
4 補強スラブ
41 廊下部
42 差込部
43 踊場
5 妻柱
E エレベータ
T Existing building T1 Staircase (recess)
R Reinforcement structure 1 Foundation 2 Vertical structural element 3 Reinforcement staircase 4 Reinforcement slab 41 Corridor part 42 Insertion part 43 Landing place 5 Wife pillar E Elevator

Claims (7)

既存建物に補強構造体を後付けしてなる耐震補強構造であって、
前記補強構造体が、前記既存建物の補強すべき構面に沿って延在する補強階段を具備しており、
前記補強階段によって、地震時せん断力が上階側から下階側へと伝達されることを特徴とする耐震補強構造。
It is a seismic reinforcement structure that is retrofitted to an existing building,
The reinforcing structure has a reinforcing staircase extending along a structural surface of the existing building to be reinforced;
A seismic reinforcement structure in which shear force during an earthquake is transmitted from the upper floor side to the lower floor side by the reinforcing stairs.
前記補強構造体は、前記構面に沿って基礎から立ち上がる複数の鉛直構造要素を備えており、
隣り合う鉛直構造要素の一方に前記補強階段の上端部が接続され、他方に前記補強階段の下端部が接続されていることを特徴とする請求項1に記載の耐震補強構造。
The reinforcing structure includes a plurality of vertical structural elements that rise from a foundation along the surface.
The seismic reinforcement structure according to claim 1, wherein an upper end portion of the reinforcing staircase is connected to one of adjacent vertical structural elements, and a lower end portion of the reinforcing staircase is connected to the other.
前記補強階段が、直階段であることを特徴とする請求項1または請求項2に記載の耐震補強構造。   The seismic reinforcement structure according to claim 1 or 2, wherein the reinforcing staircase is a straight staircase. 前記補強階段は、階段勾配で傾斜して前記既存建物の躯体に接合される支持桁と、前記支持桁に支持される踏板とを備えており、
前記支持桁によって、地震時せん断力が上階側から下階側へと伝達されることを特徴とする請求項1乃至請求項3のいずれか一項に記載の耐震補強構造。
The reinforcing staircase includes a support girder that is inclined with a staircase slope and joined to the frame of the existing building, and a tread that is supported by the support girder,
The earthquake resistant reinforcement structure according to any one of claims 1 to 3, wherein a shearing force during an earthquake is transmitted from the upper floor side to the lower floor side by the support girders.
前記補強構造体が、前記既存建物と前記補強階段との間に介設される補強スラブを備えていることを特徴とする請求項1乃至請求項4のいずれか一項に記載の耐震補強構造。   The seismic reinforcing structure according to any one of claims 1 to 4, wherein the reinforcing structure includes a reinforcing slab interposed between the existing building and the reinforcing staircase. . 前記既存建物に凹部が形成されており、
前記補強スラブが、前記凹部に挿入された状態で前記既存建物の躯体と接合される差込部を備えていることを特徴とする請求項5に記載の耐震補強構造。
A recess is formed in the existing building,
The seismic reinforcement structure according to claim 5, wherein the reinforcing slab includes an insertion portion that is joined to the housing of the existing building in a state of being inserted into the recess.
前記凹部が、前記既存建物に形成されていた既存の階段室であり、
前記差込部が、前記階段室の壁面に接合されていることを特徴とする請求項6に記載の耐震補強構造。
The concave portion is an existing staircase formed in the existing building;
The seismic reinforcement structure according to claim 6, wherein the insertion portion is joined to a wall surface of the staircase.
JP2007175797A 2007-07-04 2007-07-04 Seismic reinforcement structure Expired - Fee Related JP4976938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007175797A JP4976938B2 (en) 2007-07-04 2007-07-04 Seismic reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007175797A JP4976938B2 (en) 2007-07-04 2007-07-04 Seismic reinforcement structure

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2012037187A Division JP5433035B2 (en) 2012-02-23 2012-02-23 Seismic reinforcement structure
JP2012037188A Division JP5433036B2 (en) 2012-02-23 2012-02-23 Seismic reinforcement structure

Publications (2)

Publication Number Publication Date
JP2009013641A true JP2009013641A (en) 2009-01-22
JP4976938B2 JP4976938B2 (en) 2012-07-18

Family

ID=40354867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007175797A Expired - Fee Related JP4976938B2 (en) 2007-07-04 2007-07-04 Seismic reinforcement structure

Country Status (1)

Country Link
JP (1) JP4976938B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084982A (en) * 2009-10-19 2011-04-28 Penta Ocean Construction Co Ltd Method for expanding housing complex with stairway room
JP2011157783A (en) * 2010-02-03 2011-08-18 Toda Constr Co Ltd Method and structure for arranging footing beam and pile supporting overhanging part of building
CN106978910A (en) * 2017-05-23 2017-07-25 华东建筑设计研究院有限公司 Masonry house increases the method for staircase and the staircase of masonry house newly
JP2018100542A (en) * 2016-12-21 2018-06-28 株式会社富士ピー・エス Earthquake resistant and vibration control reinforcement construction method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497068A (en) * 1990-08-14 1992-03-30 Misawa Homes Co Ltd Production of unit type stair
JPH07119318A (en) * 1993-10-26 1995-05-09 Shimizu Corp Multistory building
JPH11159153A (en) * 1997-11-26 1999-06-15 Sato Kogyo Co Ltd Extending method for elevating facility for dwelling unit access and execution procedure therefor
JP2003013619A (en) * 2001-06-29 2003-01-15 Sekisui House Ltd External stairs for apartment house
JP2004124527A (en) * 2002-10-03 2004-04-22 Oriental Construction Co Ltd Barrier-free construction method of staircase type apartment house by outer frame construction
JP2007162354A (en) * 2005-12-14 2007-06-28 Miracle Three Corporation Reinforcing method for existing building, and building reinforced by the method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497068A (en) * 1990-08-14 1992-03-30 Misawa Homes Co Ltd Production of unit type stair
JPH07119318A (en) * 1993-10-26 1995-05-09 Shimizu Corp Multistory building
JPH11159153A (en) * 1997-11-26 1999-06-15 Sato Kogyo Co Ltd Extending method for elevating facility for dwelling unit access and execution procedure therefor
JP2003013619A (en) * 2001-06-29 2003-01-15 Sekisui House Ltd External stairs for apartment house
JP2004124527A (en) * 2002-10-03 2004-04-22 Oriental Construction Co Ltd Barrier-free construction method of staircase type apartment house by outer frame construction
JP2007162354A (en) * 2005-12-14 2007-06-28 Miracle Three Corporation Reinforcing method for existing building, and building reinforced by the method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084982A (en) * 2009-10-19 2011-04-28 Penta Ocean Construction Co Ltd Method for expanding housing complex with stairway room
JP2011157783A (en) * 2010-02-03 2011-08-18 Toda Constr Co Ltd Method and structure for arranging footing beam and pile supporting overhanging part of building
JP2018100542A (en) * 2016-12-21 2018-06-28 株式会社富士ピー・エス Earthquake resistant and vibration control reinforcement construction method
CN106978910A (en) * 2017-05-23 2017-07-25 华东建筑设计研究院有限公司 Masonry house increases the method for staircase and the staircase of masonry house newly

Also Published As

Publication number Publication date
JP4976938B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5643205B2 (en) Unit building system
EP1992750A1 (en) Prefabricated reinforced-concrete single-family dwelling and method for erecting said dwelling
US20120079776A1 (en) Building and method of constructing a building
RU2376424C1 (en) Ready-built and solid-cast building construction system
EP2646632B1 (en) A multi-storey apartment building and method of constructing such building
KR102111337B1 (en) Building Core System using Precast Concrete Panel with Column in the Center
JP6166560B2 (en) Extension structure of seismic isolation building
KR20190135671A (en) Building Core System using Precast Concrete Box Shaped Modules with Connection Hardware at Corners And Core System Construction Method Using Thereof
KR102050046B1 (en) Building Core System using Precast Concrete Segmented Boxes with Tongue and Groove Joint
JP4976938B2 (en) Seismic reinforcement structure
JP2020037775A (en) Non-brace steel frame building construction method and column base unit
JP6948800B2 (en) Building and how to build a building
JP5433035B2 (en) Seismic reinforcement structure
JP2011080358A (en) Column-beam joint structure of building, building, and joining method
JP5433036B2 (en) Seismic reinforcement structure
US20140196398A1 (en) Masonry building and method for constructing masonry building
JP2003003690A (en) Base isolation building and method for base isolation of exisiting building
US20070283632A1 (en) Ring Beam Structure And Method Of Constructing A Timber Frame
JP4439938B2 (en) Wall type reinforced concrete structure and its construction method
JP5541520B2 (en) Underground construction
CN211421380U (en) Assembled concrete beam column connection structure
WO2012106650A1 (en) Precast construction method and apparatus
RU2597901C1 (en) Reconstructed building and method for low-rise building reconstruction
JP7442268B2 (en) underground structure
JP2788027B2 (en) Wall structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180420

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees