JP2009009888A - Vehicle power source device - Google Patents

Vehicle power source device Download PDF

Info

Publication number
JP2009009888A
JP2009009888A JP2007172012A JP2007172012A JP2009009888A JP 2009009888 A JP2009009888 A JP 2009009888A JP 2007172012 A JP2007172012 A JP 2007172012A JP 2007172012 A JP2007172012 A JP 2007172012A JP 2009009888 A JP2009009888 A JP 2009009888A
Authority
JP
Japan
Prior art keywords
heat exchange
battery
liquid
air
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007172012A
Other languages
Japanese (ja)
Other versions
JP5078463B2 (en
Inventor
Hideo Shimizu
秀男 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007172012A priority Critical patent/JP5078463B2/en
Publication of JP2009009888A publication Critical patent/JP2009009888A/en
Application granted granted Critical
Publication of JP5078463B2 publication Critical patent/JP5078463B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle power source device in which a battery can be cooled down efficiently in an optimal condition while making small a power consumption and the battery can be cooled down efficiently and prevent an abnormal temperature rise even under conditions of charging and discharging in a large current and a high external temperature. <P>SOLUTION: The vehicle power source device is provided with a plurality of unit cells 1 arranged in a predetermined distance, a cooling duct 3 which is arranged between the unit cells 1 and coveys air for cooling the unit cells 1, a cooling fan 4 for conveying air compulsorily into the cooling duct 3, a heat exchanging pipe 5 arranged between the unit cells 1, a liquid circulating unit 6 for circulating a heat exchanging liquid to the heat exchanging pipe 5 and cools or warms the unit cells 1, and a controlling circuit 7 for controlling the cooling fan 4 and the liquid circulating unit 6. The controlling circuit 7 detects a battery temperature or a heat generation amount and cools down the battery by switching into a driving status where the cooling fan 4 only is driven and a liquid circulating drive status where the liquid circulating unit 6 only is driven, and a cooling fan and liquid circulating status where both of the cooling fan 4 and the liquid circulating unit 6 are driven. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主としてハイブリッドカー等の電動車両に搭載されて、車両を走行させるモータに電力を供給する車両用の電源装置に関し、とくに電池を強制冷却する車両用の電源装置に関する。   The present invention relates to a vehicle power supply device that is mounted on an electric vehicle such as a hybrid car and supplies electric power to a motor that drives the vehicle, and more particularly to a vehicle power supply device that forcibly cools a battery.

車両用の電源装置は、多数の素電池を直列に接続して出力電圧を高く、出力電力を大きくしている。この電源装置は、大電流で充放電されるので電池の温度が上昇する。また、極めて高温な環境でも使用されることから、電池を強制冷却する必要がある。現在のハイブリッドカーに搭載される電源装置は、電池の間に送風ダクトを設けて、ここに強制送風して電池を冷却している。この構造の電源装置は、空気を介して電池を冷却するので、電池温度が異常に上昇したときに速やかに冷却するのが難しい。また、熱容量の小さい空気を送風して冷却するので、多数の電池を均一な温度に冷却するのが難しい。この欠点を解消する電源装置として、電池にヒートパイプを接触させて、ヒートパイプで冷却する構造が開発されている。(特許文献1参照)
特開2003−197277号公報
In a vehicle power supply device, a large number of unit cells are connected in series to increase output voltage and output power. Since this power supply device is charged and discharged with a large current, the temperature of the battery rises. Further, since the battery is used even in an extremely high temperature environment, it is necessary to forcibly cool the battery. The power supply device mounted on the current hybrid car is provided with a blower duct between the batteries, forcibly blows air here to cool the battery. Since the power supply device with this structure cools the battery via air, it is difficult to quickly cool the battery when the battery temperature rises abnormally. Moreover, since air with a small heat capacity is blown and cooled, it is difficult to cool a large number of batteries to a uniform temperature. As a power supply device that solves this drawback, a structure in which a heat pipe is brought into contact with a battery and cooled by the heat pipe has been developed. (See Patent Document 1)
JP 2003-197277 A

特許文献1の電源装置は、電池を、これに接触するヒートパイプで冷却する。ヒートパイプは、電池ボックスの外部に引き出している部分に放熱器を設けている。この放熱器は、ファンで強制送風される空気で冷却される。ヒートパイプは、端部を放熱器で冷却して、電池に接触する部分で電池を冷却する。   The power supply apparatus of patent document 1 cools a battery with the heat pipe which contacts this. The heat pipe is provided with a radiator at a portion drawn out of the battery box. This radiator is cooled by air forcedly blown by a fan. The end of the heat pipe is cooled by a radiator, and the battery is cooled at a portion that contacts the battery.

以上の電源装置は、電池の熱をヒートパイプでボックスの外部に伝導し、外部に設けた放熱器で放熱している。この構造の電源装置は、電池の表面に空気を強制送風する機構に比較して、電池の温度差を小さくできる。ただ、この電源装置は、ヒートパイプを介して電池を冷却するので、全ての電池を均一な温度に冷却するために、多数のヒートパイプを均一に冷却する必要がある。ヒートパイプに温度差ができると、温度が高くなるヒートパイプに接触する電池の温度が高くなるからである。多数のヒートパイプは、各々に放熱器を設けて、放熱器を空気で強制冷却することから、全てのヒートパイプを均一に冷却することが難しい。また、この電源装置は、強制送風される空気で放熱器を冷却し、冷却された放熱器でヒートパイプを冷却し、さらにヒートパイプで電池を冷却するので、空気を電池に直接に強制送風して冷却する構造に比較すると、電池の冷却効率が低く、現実にはヒートパイプの放熱器を冷却するためのファンの消費電力が大きくなる。   The above power supply device conducts the heat of the battery to the outside of the box with a heat pipe and dissipates heat with a radiator provided outside. The power supply device with this structure can reduce the temperature difference of the battery as compared with a mechanism for forcibly blowing air to the surface of the battery. However, since this power supply device cools the battery via the heat pipe, it is necessary to uniformly cool a large number of heat pipes in order to cool all the batteries to a uniform temperature. This is because if the temperature difference is generated in the heat pipe, the temperature of the battery in contact with the heat pipe that increases in temperature increases. Many heat pipes are each provided with a radiator, and the radiator is forcibly cooled with air. Therefore, it is difficult to uniformly cool all the heat pipes. In addition, this power supply device cools the radiator with forced air, cools the heat pipe with the cooled radiator, and cools the battery with the heat pipe, so the air is forced directly to the battery. The cooling efficiency of the battery is lower than that of the cooling structure, and the power consumption of the fan for cooling the heat pipe radiator is increased.

また、モータで走行する電動車両は、外気温度が非常に高い夏季において、イグニッションスイッチをオンに切り換えた直後に、電池温度が異常に高くなって、電池で車両を走行できないことがある。外気温度が高いので、空気で電池を冷却できないからである。ヒートパイプを空気で冷却する電源装置は、高温の空気でヒートパイプが冷却できず、電池を冷却できない。この構造は、ヒートパイプに強制送風する空気を、車両に搭載するエアコンで冷却してヒートパイプを冷却できる。ただ、エアコンを始動して空気を冷却するまでに時間がかかり、この間に電池を冷却できない。このため、イグニッションスイッチをオンに切り換えた直後に電池の温度が高いと、エアコンで冷却することもできない。   Further, in an electric vehicle that runs with a motor, in summer when the outside air temperature is very high, the battery temperature may become abnormally high immediately after the ignition switch is turned on, and the vehicle may not run with the battery. This is because the battery cannot be cooled with air because the outside air temperature is high. A power supply device that cools a heat pipe with air cannot cool the battery because the heat pipe cannot be cooled with high-temperature air. This structure can cool the heat pipe by cooling the air forcedly blown to the heat pipe with an air conditioner mounted on the vehicle. However, it takes time to start the air conditioner and cool the air, and the battery cannot be cooled during this time. For this reason, if the temperature of the battery is high immediately after the ignition switch is turned on, it cannot be cooled by the air conditioner.

本発明は、従来の以上の欠点を解決すると共に、さらに優れた特徴を実現することを目的に開発されたもので、本発明の重要な目的は、電力消費を小さくしながら電池を最適な状態で効率よく冷却でき、電池が異常な温度になる状態においても効果的に冷却でき、さらに大電流における充放電や外気温度の高い状態においても、電池を効率よく冷却して異常な温度上昇を防止できる車両用の電源装置を提供することにある。   The present invention has been developed with the aim of solving the above-mentioned drawbacks and realizing more excellent features. An important object of the present invention is to optimize the battery while reducing power consumption. Cools efficiently, even when the battery is at an abnormal temperature, and effectively cools the battery even when charging / discharging at a large current or when the outside air temperature is high to prevent an abnormal temperature rise An object of the present invention is to provide a power supply device for a vehicle.

本発明の車両用の電源装置は、前述の目的を達成するために以下の構成を備える。
車両用の電源装置は、所定の間隔で配列されてなる複数の素電池1と、素電池1の間に設けられて素電池1を冷却する空気を送風する冷却ダクト3と、この冷却ダクト3に強制送風する冷却ファン4と、素電池1の間に配設している熱交換パイプ5と、この熱交換パイプ5に熱交換液を循環して素電池1を冷却又は加温する液体循環機6と、素電池1の温度、もしくは発熱量を検出して冷却ファン4と液体循環機6とを制御する制御回路7とを備える。制御回路7は、素電池1の温度、もしくは発熱量を検出して、冷却ファン4のみを運転するファン運転状態と、液体循環機6のみを運転する液体循環機運転状態と、冷却ファン4と液体循環機6の両方を運転するファン及び液体循環機運転状態とに切り換えて素電池1を冷却する。
The vehicle power supply device of the present invention has the following configuration in order to achieve the above-described object.
The power supply device for a vehicle includes a plurality of unit cells 1 arranged at predetermined intervals, a cooling duct 3 that is provided between the unit cells 1 and blows air that cools the unit cells 1, and the cooling duct 3. A cooling fan 4 forcibly blowing air, a heat exchange pipe 5 disposed between the unit cells 1, and a liquid circulation for cooling or heating the unit cell 1 by circulating a heat exchange liquid through the heat exchange pipe 5. And a control circuit 7 that controls the cooling fan 4 and the liquid circulation device 6 by detecting the temperature of the unit cell 1 or the amount of heat generated. The control circuit 7 detects the temperature of the unit cell 1 or the amount of heat generated, and operates a fan operating state in which only the cooling fan 4 is operated, a liquid circulator operating state in which only the liquid circulator 6 is operated, The unit cell 1 is cooled by switching between a fan that operates both the liquid circulator 6 and a liquid circulator operating state.

本発明の請求項2の車両用の電源装置は、素電池1が、上端面に電極端子10を設けている角型電池で、積層してなる角型電池の隙間の最上部に空気ダクト17を設けている。   The power supply device for a vehicle according to claim 2 of the present invention is a prismatic battery in which the unit cell 1 is provided with the electrode terminal 10 on the upper end surface, and the air duct 17 is provided at the uppermost part of the gap between the stacked rectangular batteries. Is provided.

本発明の請求項3の車両用の電源装置は、素電池1が角型電池で、複数の角型電池を積層して電池ブロック2としており、積層している角型電池の隙間に複数列の熱交換パイプ5を配管して、この熱交換パイプ5を、隣接する角型電池を絶縁状態に分離するセパレータに併用し、さらに熱交換パイプ5の間に冷却ダクト3を設けている。   According to a third aspect of the present invention, there is provided a power supply device for a vehicle in which the unit cell 1 is a prismatic battery, and a plurality of prismatic batteries are stacked to form a battery block 2. This heat exchange pipe 5 is used together with a separator that separates adjacent square batteries into an insulating state, and a cooling duct 3 is provided between the heat exchange pipes 5.

さらに、本発明の請求項4の車両用の電源装置は、電池ブロック2の両側に一対の送風ダクト8を設けており、一対の送風ダクト8には角型電池の間に設けている冷却ダクト3の両端を連結して、送風ダクト8から冷却ダクト3に空気を送風して素電池1を冷却する構造としている。さらに、この電源装置は、送風ダクト8の外側または内側に一対の循環チャンバー9を設けており、この循環チャンバー9に熱交換パイプ5の両端を連結して、循環チャンバー9と熱交換パイプ5とに熱交換液を循環する構造としている。   Further, the vehicle power supply device according to claim 4 of the present invention is provided with a pair of air ducts 8 on both sides of the battery block 2, and the pair of air ducts 8 are provided between the square batteries. 3 is connected to cool the unit cell 1 by blowing air from the blower duct 8 to the cooling duct 3. Further, this power supply device is provided with a pair of circulation chambers 9 on the outside or inside of the air duct 8, and both ends of the heat exchange pipe 5 are connected to the circulation chamber 9, so that the circulation chamber 9, the heat exchange pipe 5, The heat exchange liquid is circulated in the interior.

さらに、本発明の請求項5の車両用の電源装置は、冷却ダクト3の空気と、熱交換パイプ5の熱交換液とを逆方向に流動して電池を冷却している。   Furthermore, the power supply device for a vehicle according to claim 5 of the present invention cools the battery by flowing the air in the cooling duct 3 and the heat exchange liquid in the heat exchange pipe 5 in the opposite directions.

さらに、本発明の請求項6の車両用の電源装置は、熱交換液が、水、不凍液、油のいずれかで、液体循環機6が、熱交換液を循環する循環ポンプ11と、熱交換液を冷却する熱交換器12とを備えている。   Further, the power supply device for a vehicle according to claim 6 of the present invention is configured such that the heat exchanging liquid is water, antifreeze liquid, or oil, and the liquid circulator 6 circulates the heat exchanging liquid and the heat exchange liquid. And a heat exchanger 12 for cooling the liquid.

さらにまた、本発明の請求項7の車両用の電源装置は、熱交換液が冷媒で、液体循環機6が、冷媒を加圧するコンプレッサ14と、このコンプレッサ14で加圧された冷媒を冷却して液化させる凝縮器15と、この凝縮器15で液化された冷媒を熱交換パイプ5に供給する膨張装置16とを備えている。この液体循環機6は、膨張装置16から供給される液化された冷媒が熱交換パイプ5で気化されて、冷媒の気化熱で熱交換パイプ5を冷却している。   Furthermore, in the power supply device for a vehicle according to claim 7 of the present invention, the heat exchange liquid is a refrigerant, and the liquid circulator 6 cools the compressor 14 that pressurizes the refrigerant, and the refrigerant pressurized by the compressor 14. And a condenser 15 for liquefying, and an expansion device 16 for supplying the refrigerant liquefied by the condenser 15 to the heat exchange pipe 5. In the liquid circulator 6, the liquefied refrigerant supplied from the expansion device 16 is vaporized by the heat exchange pipe 5, and the heat exchange pipe 5 is cooled by the heat of vaporization of the refrigerant.

本発明の電源装置は、電力消費を少なくしながら電池を最適な状態で冷却できる特徴がある。それは、本発明の電源装置が、空気と熱交換液の両方で電池を冷却するからである。空気による冷却は少ない電力消費で電池を冷却でき、熱交換液による冷却は電池から奪う熱エネルギーを大きくできる。このため、電池の温度が低く、あるいは発熱量が少ない通常の冷却状態においては、電池を低消費電力の空気で冷却し、電池の発熱量が大きくて、空気による冷却では電池温度が異常に高くなる状態では、熱交換液でもって熱エネルギーを大量に吸収して電池の温度上昇を阻止し、さらに電池が異常な状態となって温度上昇が激しくなる状態では、空気と熱交換液の両方で最大に熱エネルギーを吸収して電池の温度上昇を制限する。   The power supply device of the present invention is characterized in that the battery can be cooled in an optimum state while reducing power consumption. This is because the power supply device of the present invention cools the battery with both air and heat exchange liquid. Cooling with air can cool the battery with low power consumption, and cooling with heat exchange liquid can increase the heat energy taken from the battery. For this reason, in a normal cooling state where the temperature of the battery is low or the amount of heat generated is small, the battery is cooled with air with low power consumption, and the amount of heat generated by the battery is large. In such a state, the heat exchange liquid absorbs a large amount of heat energy to prevent the battery temperature from rising, and when the battery becomes abnormal and the temperature rises severely, both the air and the heat exchange liquid Absorb heat energy to the maximum to limit battery temperature rise.

本発明の電源装置は、空気と熱交換液の得意とする冷却特性を生かして、空気と熱交換液とで電池を最適な状態に冷却するので、電池の発熱量が大きくなって、電池温度が異常に高くなる状態となっても、効果的に冷却して電池の温度上昇を小さくできる。さらにまた、電池が大電流で充放電され、また、外気温度が高くなって、空気では効率よく冷却できない状態においても、電池を効率よく冷却して温度上昇を小さくできる特徴が実現できる。   Since the power supply apparatus of the present invention cools the battery to the optimum state with the air and the heat exchange liquid, taking advantage of the cooling characteristics that the air and the heat exchange liquid are good at, the calorific value of the battery increases and the battery temperature Even if the battery becomes abnormally high, the battery can be effectively cooled to reduce the temperature rise of the battery. Furthermore, even when the battery is charged / discharged with a large current and the outside air temperature is high, and the air cannot be cooled efficiently, the battery can be efficiently cooled to reduce the temperature rise.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための車両用の電源装置を例示するものであって、本発明は電源装置を以下のものに特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the following embodiment exemplifies a power supply device for a vehicle for embodying the technical idea of the present invention, and the present invention does not specify the power supply device as follows.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Further, in this specification, for easy understanding of the scope of claims, numbers corresponding to the members shown in the embodiments are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

図1ないし図6は第1の実施例を示し、図7ないし図12は第2の実施例を示す。これらの実施例に示す電源装置は、主として、エンジンとモータの両方で走行するハイブリッドカーや、モータのみで走行する電気自動車などの電動車両の電源に最適である。ただし、ハイブリッドカーや電気自動車以外の車両に使用され、また電動車両以外の大出力が要求される用途にも使用できる。   1 to 6 show a first embodiment, and FIGS. 7 to 12 show a second embodiment. The power supply apparatus shown in these embodiments is most suitable for the power source of an electric vehicle such as a hybrid car that travels with both an engine and a motor and an electric vehicle that travels with only a motor. However, it can be used for vehicles other than hybrid cars and electric vehicles, and can also be used for applications requiring high output other than electric vehicles.

図に示す電源装置は、所定の間隔で配列している複数の素電池1と、素電池1の間に設けられて素電池1を冷却する空気を送風する冷却ダクト3と、この冷却ダクト3に強制送風する冷却ファン4と、素電池1の間に配設している熱交換パイプ5と、この熱交換パイプ5に熱交換液を循環して電池を冷却又は加温する液体循環機6と、電池の温度を検出して冷却ファン4と液体循環機6とを制御する制御回路7とを備える。   The power supply device shown in the figure includes a plurality of unit cells 1 arranged at predetermined intervals, a cooling duct 3 that is provided between the unit cells 1 and blows air that cools the unit cells 1, and the cooling duct 3. A cooling fan 4 that forcibly blows air, a heat exchange pipe 5 disposed between the unit cells 1, and a liquid circulator 6 that circulates a heat exchange liquid through the heat exchange pipe 5 to cool or heat the battery. And a control circuit 7 for detecting the temperature of the battery and controlling the cooling fan 4 and the liquid circulator 6.

図の電源装置は、素電池1を角型電池としている。ただし、本発明は、素電池を角型電池には特定しない。電池を円筒形電池とし、複数の円筒形電池を所定の間隔で配列して、電池の間に冷却ダクトを設けて空気で電池を冷却し、さらに電池の間に熱交換パイプを配管して、熱交換パイプで電池を冷却できるからである。素電池1は、リチウムイオン二次電池である。ただし、素電池は、ニッケル水素電池やニッケルカドミウム電池等の充電できる他の電池、さらに燃料電池とすることもできる。図に示す角型電池は、所定の厚さを有する四角形の柱体で、上端面には正負の電極端子10を突出させている。隣接して配列される素電池1は、図示しないが、正負の電極端子に金属板からなるバスバーを接続して、互いに直列に接続される。素電池を直列に接続する電源装置は、出力電圧を高くして出力を大きくできる。ただし、電源装置は、素電池を並列と直列に接続することもできる。   In the illustrated power supply device, the unit cell 1 is a square battery. However, the present invention does not specify a unit cell as a prismatic battery. The battery is a cylindrical battery, a plurality of cylindrical batteries are arranged at a predetermined interval, a cooling duct is provided between the batteries to cool the battery with air, and a heat exchange pipe is connected between the batteries. This is because the battery can be cooled by the heat exchange pipe. The unit cell 1 is a lithium ion secondary battery. However, the unit cell can be a rechargeable battery such as a nickel metal hydride battery or a nickel cadmium battery, or a fuel cell. The rectangular battery shown in the figure is a rectangular column having a predetermined thickness, and positive and negative electrode terminals 10 are projected from the upper end surface. Although not shown, the unit cells 1 arranged adjacent to each other are connected in series by connecting bus bars made of metal plates to positive and negative electrode terminals. A power supply device in which unit cells are connected in series can increase the output voltage by increasing the output voltage. However, the power supply device can also connect the cells in parallel and in series.

図の電源装置は、角型電池である複数の素電池1を間に隙間ができるように積層して電池ブロック2としている。この電池ブロック2は、角型電池の間の隙間に、複数列の熱交換パイプ5を配管している。熱交換パイプ5は、隣接する角型電池の対向面に挟着されて、隣接する角型電池を絶縁状態に分離している。隣接する素電池1を絶縁状態に分離する熱交換パイプ5は、プラスチック等の絶縁材でパイプを成形している。ただし、電池ブロックは、角型電池の表面に絶縁層を設けて、絶縁状態に分離することもできる。絶縁層は、プラスチック製の収縮チューブや絶縁塗料で設けることができる。この構造は、熱交換パイプを金属パイプとして、隣接する角型電池を絶縁状態に分離できる。また、角型電池の表面を絶縁層で絶縁し、さらに絶縁材からなる熱交換パイプや表面を絶縁層で被覆する熱交換パイプで隣接する角型電池を絶縁状態に分離することもできる。角型電池の間にできる隙間に熱交換パイプ5を配設し、この熱交換パイプ5で角型電池を一定の間隔に配置する電池ブロック2は、熱交換パイプ5をセパレータに併用できる。   In the illustrated power supply apparatus, a plurality of unit cells 1 that are rectangular batteries are stacked so as to have a gap therebetween, thereby forming a battery block 2. The battery block 2 has a plurality of rows of heat exchange pipes 5 arranged in the gaps between the square batteries. The heat exchange pipe 5 is sandwiched between opposing surfaces of adjacent square batteries, and separates the adjacent square batteries into an insulated state. A heat exchange pipe 5 that separates adjacent unit cells 1 into an insulating state is formed of an insulating material such as plastic. However, the battery block can be separated into an insulating state by providing an insulating layer on the surface of the square battery. The insulating layer can be provided by a plastic shrink tube or insulating paint. This structure can separate adjacent square batteries into an insulated state by using a heat exchange pipe as a metal pipe. In addition, it is possible to insulate the adjacent square battery into an insulated state by insulating the surface of the square battery with an insulating layer, and further by using a heat exchange pipe made of an insulating material or a heat exchange pipe covering the surface with an insulating layer. In the battery block 2 in which the heat exchange pipes 5 are arranged in the gaps formed between the square batteries and the square batteries are arranged at regular intervals by the heat exchange pipes 5, the heat exchange pipes 5 can be used as separators.

電池ブロック2は、角型電池の間の隙間に熱交換パイプ5を配管して、熱交換パイプ5の間を冷却ダクト3としている。冷却ダクト3は、ここに空気を送風して電池を冷却する。素電池1は、冷却ダクト3の空気で冷却され、また熱交換パイプ5で冷却される。従来の電源装置において、角型電池を積層している電池ブロックは、角型電池を冷却するために電池の間にセパレータを配設し、このセパレータで冷却ダクトを設けている。冷却ダクトを設けるセパレータは、隣接する角型電池の隙間を一定の間隔に保持するために、複数のリブを平行に設けてリブの間を冷却ダクトとしている。本発明の電源装置は、角型電池の間隔を一定に保持するリブに代わって熱交換パイプ5を配管し、この熱交換パイプ5で角型電池を冷却する。すなわち、熱交換パイプ5は、角型電池を一定の間隔に保持するセパレータの作用と、電池を冷却するふたつの作用をする。   In the battery block 2, a heat exchange pipe 5 is provided in a gap between the square batteries, and a space between the heat exchange pipes 5 is a cooling duct 3. The cooling duct 3 cools the battery by blowing air here. The unit cell 1 is cooled by the air in the cooling duct 3 and is cooled by the heat exchange pipe 5. In a conventional power supply device, in a battery block in which square batteries are stacked, a separator is provided between the batteries in order to cool the square battery, and a cooling duct is provided by the separator. A separator provided with a cooling duct has a plurality of ribs provided in parallel to form a cooling duct between the ribs in order to keep a gap between adjacent square batteries at a constant interval. In the power supply device of the present invention, the heat exchange pipe 5 is provided in place of the rib that keeps the interval between the square batteries constant, and the square battery is cooled by the heat exchange pipe 5. That is, the heat exchange pipe 5 has two functions of a separator that holds the square battery at a constant interval and a battery that cools the battery.

角型電池は、冷却ダクト3に送風される空気と、熱交換パイプ5に循環される熱交換液の両方で冷却される。空気は少ない消費電力で素電池1を冷却でき、熱交換液は素電池1を冷却する熱エネルギーを大きくできる。したがって、本発明の電源装置は、電池の発熱量が少なく状態では空気で冷却し、電池の発熱量が大きくなると熱交換液で冷却する。さらに電池の発熱量が大きくなると空気と熱交換液の両方で冷却する。   The square battery is cooled by both the air blown to the cooling duct 3 and the heat exchange liquid circulated through the heat exchange pipe 5. The air can cool the unit cell 1 with low power consumption, and the heat exchange liquid can increase the thermal energy for cooling the unit cell 1. Therefore, the power supply device of the present invention is cooled with air when the amount of heat generated by the battery is small, and is cooled with the heat exchange liquid when the amount of heat generated by the battery is large. Further, when the calorific value of the battery increases, the battery is cooled with both air and heat exchange liquid.

図1ないし図6の電源装置は、電池ブロック2の両側に一対の送風ダクト8を設けて、一対の送風ダクト8には角型電池の間に設けている冷却ダクト3の両端を連結している。この電源装置は、送風ダクト8から冷却ダクト3に空気を送風して素電池1の角型電池を空気で冷却する。さらに、この電源装置は、送風ダクト8の外側に一対の循環チャンバー9を設けており、この循環チャンバー9に熱交換パイプ5の両端を連結して、循環チャンバー9と熱交換パイプ5とに熱交換液を循環する構造としている。図7ないし図12の電源装置は、電池ブロック2の上下に一対の送風ダクト8を設けて、一対の送風ダクト8に冷却ダクト3の両端を連結している。さらに、この電源装置は、送風ダクト8の外側に一対の循環チャンバー9を設けて、この循環チャンバー9に熱交換パイプ5の両端を連結している。以上の電源装置は、送風ダクト8の外側に循環チャンバー9を設けているが、送風ダクトの内側に循環チャンバーを設けることもできる。   1 to 6 includes a pair of air ducts 8 on both sides of the battery block 2, and the pair of air ducts 8 are connected to both ends of a cooling duct 3 provided between the prismatic batteries. Yes. This power supply device blows air from the blower duct 8 to the cooling duct 3 to cool the prismatic battery of the unit cell 1 with air. Further, this power supply device is provided with a pair of circulation chambers 9 on the outside of the air duct 8, and both ends of the heat exchange pipe 5 are connected to the circulation chamber 9 so that the circulation chamber 9 and the heat exchange pipe 5 are heated. The replacement liquid is circulated. In the power supply device of FIGS. 7 to 12, a pair of air ducts 8 are provided above and below the battery block 2, and both ends of the cooling duct 3 are connected to the pair of air ducts 8. Furthermore, this power supply device is provided with a pair of circulation chambers 9 on the outside of the air duct 8, and both ends of the heat exchange pipe 5 are connected to the circulation chamber 9. In the above power supply device, the circulation chamber 9 is provided outside the air duct 8, but a circulation chamber can also be provided inside the air duct.

一対の送風ダクト8は、一方が空気を冷却ダクト3に供給する吸入ダクト8A、他方が冷却ダクト3の空気を外部に排気する排気ダクト8Bとなる。一方の送風ダクト8は、冷却ファン4に連結される。冷却ファン4は、図4と図9に示すように、送風ダクト8の吸入ダクト8Aに空気を供給し、あるいは、図4と図9の鎖線で示すように、排気ダクト8Bから空気を吸引して、送風ダクト8に空気を強制送風する。冷却ファン4で強制送風される空気は、吸入ダクト8A→冷却ダクト3→排気ダクト8Bに送風されて、素電池1である角型電池を冷却する。   One of the pair of air ducts 8 is an intake duct 8A that supplies air to the cooling duct 3, and the other is an exhaust duct 8B that exhausts air from the cooling duct 3 to the outside. One air duct 8 is connected to the cooling fan 4. The cooling fan 4 supplies air to the suction duct 8A of the blower duct 8 as shown in FIGS. 4 and 9, or sucks air from the exhaust duct 8B as shown by the chain line in FIGS. Then, air is forcibly blown into the air duct 8. The air forcedly blown by the cooling fan 4 is blown to the suction duct 8 </ b> A → the cooling duct 3 → the exhaust duct 8 </ b> B, and cools the square battery as the unit cell 1.

さらに、一対の循環チャンバー9は、一方が熱交換パイプ5に熱交換液を供給する流入チャンバー9A、他方が熱交換パイプ5から熱交換液を排出する排出チャンバー9Bとなる。図5の電源装置は、流入チャンバー9Aと排出チャンバー9Bを、循環ポンプ11と熱交換器12からなる液体循環機6に連結している。循環ポンプ11は、熱交換液を、熱交換器12→流入チャンバー9A→熱交換パイプ5→排出チャンバー9B→循環ポンプ11に循環させる。熱交換器12は、循環される熱交換液に強制送風して空気で冷却する。熱交換器12に循環される熱交換液は、水、不凍液、油のいずれかである。この液体循環機6は、循環ポンプ11と熱交換器12に強制送風する冷却ファン13を運転して熱交換液を冷却する。   Further, one of the pair of circulation chambers 9 is an inflow chamber 9 </ b> A that supplies heat exchange liquid to the heat exchange pipe 5, and the other is an exhaust chamber 9 </ b> B that discharges heat exchange liquid from the heat exchange pipe 5. In the power supply device of FIG. 5, the inflow chamber 9 </ b> A and the exhaust chamber 9 </ b> B are connected to the liquid circulator 6 including the circulation pump 11 and the heat exchanger 12. The circulation pump 11 circulates the heat exchange liquid in the heat exchanger 12 → the inflow chamber 9 </ b> A → the heat exchange pipe 5 → the discharge chamber 9 </ b> B → the circulation pump 11. The heat exchanger 12 forcibly blows air to the circulated heat exchange liquid and cools it with air. The heat exchange liquid circulated through the heat exchanger 12 is water, antifreeze liquid, or oil. The liquid circulator 6 operates a cooling fan 13 that forcibly blows air to the circulation pump 11 and the heat exchanger 12 to cool the heat exchange liquid.

図11の電源装置は、熱交換パイプ5に循環する熱交換液を冷媒として、流入チャンバー9Aと排出チャンバー9Bを循環させる液体循環機6に連結している。この液体循環機6は、気化した冷媒を加圧するコンプレッサ14と、このコンプレッサ14で加圧された冷媒を冷却して液化させる凝縮器15と、この凝縮器15で液化された冷媒を熱交換パイプ5に供給する膨張装置16とを備える。膨張装置16は、例えば、膨張弁もしくはキャピラリーチューブ等である。この液体循環機6は、膨張装置16から供給される液化された冷媒を熱交換パイプ5で気化して、冷媒の気化熱で熱交換パイプ5を冷却する。この液体循環機6は、熱交換パイプ5を低温に冷却して電池を極めて効率よく冷却できる。コンプレッサ14はモータで運転され、あるいはハイブリッドカーにおいてはエンジンで運転することもできる。エンジンで運転されるコンプレッサは、電磁クラッチを介してエンジンに連結される。この液体循環機6は、コンプレッサ14を運転し、さらに凝縮器15を冷却するファンを運転して冷媒で熱交換パイプ5を冷却する。この液体循環機6は、冷媒をコンプレッサ14→凝縮器15→膨張装置16→流入チャンバー9A→熱交換パイプ5→排出チャンバー9B→コンプレッサ14に循環して、熱交換パイプ5で電池を冷却する。   The power supply device of FIG. 11 is connected to a liquid circulator 6 that circulates the inflow chamber 9A and the exhaust chamber 9B using a heat exchange liquid that circulates in the heat exchange pipe 5 as a refrigerant. The liquid circulator 6 includes a compressor 14 that pressurizes the vaporized refrigerant, a condenser 15 that cools and liquefies the refrigerant pressurized by the compressor 14, and a heat exchange pipe that liquefies the refrigerant liquefied by the condenser 15. 5 and an expansion device 16 for supplying to the apparatus 5. The expansion device 16 is, for example, an expansion valve or a capillary tube. The liquid circulator 6 vaporizes the liquefied refrigerant supplied from the expansion device 16 with the heat exchange pipe 5 and cools the heat exchange pipe 5 with the heat of vaporization of the refrigerant. The liquid circulator 6 can cool the battery very efficiently by cooling the heat exchange pipe 5 to a low temperature. The compressor 14 can be operated by a motor, or can be operated by an engine in a hybrid car. A compressor operated by the engine is connected to the engine via an electromagnetic clutch. The liquid circulator 6 operates the compressor 14 and further operates a fan that cools the condenser 15 to cool the heat exchange pipe 5 with the refrigerant. The liquid circulator 6 circulates the refrigerant through the compressor 14, the condenser 15, the expansion device 16, the inflow chamber 9 A, the heat exchange pipe 5, the discharge chamber 9 B, and the compressor 14, and cools the battery through the heat exchange pipe 5.

制御回路7は、電池の温度や電池の発熱を検出して、冷却ファン4のみを運転するファン運転状態と、液体循環機6のみを運転する液体循環機運転状態と、冷却ファン4と液体循環機6の両方を運転するファン及び液体循環機運転状態とに切り換えて電池を冷却する。制御回路7は、電池の温度を検出し、電池の温度が第1の設定温度よりも低い状態では、ファン運転状態として、冷却ファン4を運転状態として液体循環機6の運転を停止し、電池の温度が第1の設定温度よりも高い第2の設定温度よりも低い状態では、液体循環機運転状態として、冷却ファン4の運転を停止して液体循環機6を運転状態とし、さらに電池の温度が第2の設定温度よりも高い状態では、冷却ファン4と液体循環機6の両方を運転するファン及び液体循環機運転状態とする。第1の設定温度は、たとえば40℃、第2の設定温度は、たとえば50℃とする。ただし、第1の設定温度は、30℃ないし50℃とすることができ、また、第2の設定温度は、第1の設定温度よりも5℃ないし20℃高く設定することもできる。この制御回路7は、電池の温度が第1の設定温度よりも低い状態にあって、電池を空気で冷却する必要がある状態、たとえば電池の温度が35℃よりも高く、第1の設定温度よりも低い状態では、電池を空気のみで冷却し、電池の温度が第1の設定温度よりも高く、第2の設定温度よりも低い状態では、電池を熱交換液のみで冷却し、さらに、電池の温度が第2の設定温度よりも高くなると、電池を空気と熱交換液の両方で冷却する。   The control circuit 7 detects battery temperature and battery heat generation, and operates a fan operating state in which only the cooling fan 4 is operated, a liquid circulator operating state in which only the liquid circulator 6 is operated, and the cooling fan 4 and liquid circulation. The battery is cooled by switching between a fan that operates both the machine 6 and a liquid circulator operating state. The control circuit 7 detects the battery temperature. When the battery temperature is lower than the first set temperature, the control circuit 7 sets the cooling fan 4 to the operating state and stops the operation of the liquid circulator 6 as the fan operating state. In the state where the temperature is lower than the second set temperature, which is higher than the first set temperature, the operation of the cooling fan 4 is stopped and the liquid circulator 6 is set to the operation state as the liquid circulator operation state. In a state where the temperature is higher than the second set temperature, the fan and the liquid circulator operating state are set to operate both the cooling fan 4 and the liquid circulator 6. The first set temperature is, for example, 40 ° C., and the second set temperature is, for example, 50 ° C. However, the first set temperature can be set to 30 ° C. to 50 ° C., and the second set temperature can be set 5 ° C. to 20 ° C. higher than the first set temperature. The control circuit 7 is in a state where the battery temperature is lower than the first set temperature and the battery needs to be cooled with air, for example, the battery temperature is higher than 35 ° C. The battery is cooled only with air, the battery temperature is higher than the first set temperature and lower than the second set temperature, the battery is cooled only with the heat exchange liquid, When the temperature of the battery becomes higher than the second set temperature, the battery is cooled by both air and heat exchange liquid.

さらに、制御回路7は、電池の温度のみでなく、電池の発熱量を検出して、冷却ファン4と液体循環機6の運転状態を制御することもできる。電池の発熱量は、電池の充電電流や放電電流から検出する。電池の発熱量が第1の設定値よりも小さい状態では、冷却ファン4のみを運転するファン運転状態とし、電池の発熱量が第1の設定値よりも大きい第2の設定値よりも小さい状態では、液体循環機6のみを運転する液体循環機運転状態とし、さらに電池の発熱量が第2の設定値よりも大きくなると、冷却ファン4と液体循環機6の両方を運転するファン及び液体循環機運転状態とする。この制御回路7は、電池の発熱量が第1の設定値よりも小さい状態にあって、電池を空気で冷却する必要がある状態では、電池を空気のみで冷却し、電池の発熱量が第1の設定値よりも大きく、第2の設定値よりも小さい状態では、電池を熱交換液のみで冷却し、さらに、電池の発熱量が第2の設定値よりも大きくなると、電池を空気と熱交換液の両方で冷却する。この制御回路7は、電池の発熱量で冷却ファン4と液体循環機6の運転を制御するので、電池の発熱量が大きくなって温度が上昇するのに先だって、電池を冷却できる。たとえば、ハイブリッドカーが急発進/減速を繰り返し、連続して大きな電流で充放電されるとき、電池の発熱量は大きくなるが、この状態を事前に検出して電池を冷却できる。このため、電池を大電流で長い時間充電しなから、電池の温度上昇を少なくできる特徴がある。   Furthermore, the control circuit 7 can detect not only the temperature of the battery but also the amount of heat generated by the battery to control the operation state of the cooling fan 4 and the liquid circulator 6. The amount of heat generated by the battery is detected from the charging current or discharging current of the battery. In a state where the heat generation amount of the battery is smaller than the first set value, the fan operation state in which only the cooling fan 4 is operated is set, and the heat generation amount of the battery is smaller than the second set value which is larger than the first set value. Then, when the liquid circulator operation state in which only the liquid circulator 6 is operated is set, and the heat generation amount of the battery becomes larger than the second set value, the fan and the liquid circulator that operate both the cooling fan 4 and the liquid circulator 6 are used. The machine is in operation. The control circuit 7 cools the battery only with air when the heat generation amount of the battery is smaller than the first set value and the battery needs to be cooled with air. In a state larger than the set value of 1 and smaller than the second set value, the battery is cooled only by the heat exchange liquid, and when the heat generation amount of the battery becomes larger than the second set value, the battery is taken as air. Cool with both heat exchange fluids. Since the control circuit 7 controls the operation of the cooling fan 4 and the liquid circulator 6 by the heat generation amount of the battery, the battery can be cooled before the heat generation amount of the battery increases and the temperature rises. For example, when the hybrid car repeats sudden start / deceleration and is continuously charged and discharged with a large current, the amount of heat generated by the battery increases, but this state can be detected in advance to cool the battery. For this reason, since the battery is not charged with a large current for a long time, there is a feature that the temperature rise of the battery can be reduced.

さらに、制御回路7は、電池の温度と発熱量の両方を検出し、電池の温度が第1の設定温度よりも高くなり、あるいは発熱量が第1の設定値よりも大きい状態にあって、電池を空気で冷却する必要がある状態では、電池を空気のみで冷却し、電池の温度が第1の設定温度よりも高くて第2の設定温度よりも低い状態、あるいは発熱量が第1の設定値よりも大きくて第2の設定値よりも小さい状態では、電池を熱交換液のみで冷却し、さらに、電池の温度が第2の設定温度よりも高く、あるいは発熱量が第2の設定値よりも高くなると、電池を空気と熱交換液の両方で冷却することができる。この制御回路7は、電池の温度と発熱量の両方で冷却ファン4と液体循環機6の運転を制御するので、電池の温度上昇を制限しながら、電池を効率よく冷却できる。   Further, the control circuit 7 detects both the battery temperature and the heat generation amount, and the battery temperature is higher than the first set temperature or the heat generation amount is larger than the first set value. In a state where the battery needs to be cooled with air, the battery is cooled only with air, the battery temperature is higher than the first set temperature and lower than the second set temperature, or the amount of heat generated is the first. In a state larger than the set value and smaller than the second set value, the battery is cooled only with the heat exchange liquid, and the battery temperature is higher than the second set temperature or the amount of heat generated is the second set value. When higher than the value, the battery can be cooled with both air and heat exchange liquid. Since the control circuit 7 controls the operation of the cooling fan 4 and the liquid circulator 6 based on both the battery temperature and the calorific value, the battery can be efficiently cooled while limiting the temperature rise of the battery.

さらに、制御回路7は、電池を冷却する空気温度と、熱交換液の温度を検出して、空気温度と熱交換液の温度から冷却ファン4と液体循環機6の運転を制御することもできる。熱交換液の温度は、外気温度に比較して変化が緩やかになる。したがって、外気温度が高くなるとき、熱交換液の温度が外気温度よりも低くなることがある。外気温度が、電池を効率よく冷却できない温度まで高くなって、熱交換液の温度が低い状態では、冷却ファン4を運転することなく、液体循環機6を運転して、電池を効率よく冷却できる。また、熱交換液を冷媒とする液体循環機6は、冷媒の気化熱で熱交換パイプ5を冷却するので、熱交換パイプ5の温度を外気温度よりも相当に低くできる。したがって、熱交換液を冷媒として、液体循環機6をコンプレッサ14と凝縮器15と膨張装置16で構成する電源装置は、外気温度が電池を効率よく冷却できない温度まで高くなっても、液体循環機6を運転して電池を好ましい温度まで冷却できる。この電源装置は、たとえば外気温度が40℃と相当に高くなり、また電池の発熱量が大きくなっても、電池を正常な温度に冷却できる特徴がある。   Further, the control circuit 7 can detect the temperature of the air for cooling the battery and the temperature of the heat exchange liquid, and can control the operation of the cooling fan 4 and the liquid circulator 6 from the air temperature and the temperature of the heat exchange liquid. . The temperature of the heat exchange liquid changes more slowly than the outside air temperature. Therefore, when the outside air temperature becomes high, the temperature of the heat exchange liquid may become lower than the outside air temperature. When the outside air temperature rises to a temperature at which the battery cannot be efficiently cooled and the temperature of the heat exchange liquid is low, the battery can be efficiently cooled by operating the liquid circulator 6 without operating the cooling fan 4. . In addition, the liquid circulator 6 using the heat exchange liquid as a refrigerant cools the heat exchange pipe 5 with the heat of vaporization of the refrigerant, so that the temperature of the heat exchange pipe 5 can be considerably lower than the outside air temperature. Therefore, the power supply device in which the heat exchanger liquid is used as the refrigerant and the liquid circulator 6 is constituted by the compressor 14, the condenser 15, and the expansion device 16 can be used even if the outside air temperature rises to a temperature at which the battery cannot be efficiently cooled. 6 can be operated to cool the battery to a preferred temperature. This power supply device has a feature that the battery can be cooled to a normal temperature even when the outside air temperature becomes as high as 40 ° C., for example, and the heat generation amount of the battery increases.

本発明の電源装置は、空気と熱交換液の両方で電池を冷却する。この電源装置は、図4ないし図6、及び図10ないし図12に示すように、冷却ダクト3の空気と、熱交換パイプ5の熱交換液とを逆方向に流動して電池を冷却することで、流入側と排出側とでの局部的な温度差を少なくできる。それは、空気も熱交換液も流入側の温度が低く、排出側の温度が高くなることから、その温度差で電池に温度差ができるが、空気と熱交換液を互いに逆方向に流動させると、空気と熱交換液とが互いに反対側を効率よく冷却して温度差を少なくするからである。   The power supply device of the present invention cools the battery with both air and heat exchange liquid. As shown in FIGS. 4 to 6 and FIGS. 10 to 12, the power supply device cools the battery by flowing the air in the cooling duct 3 and the heat exchange liquid in the heat exchange pipe 5 in opposite directions. Thus, the local temperature difference between the inflow side and the discharge side can be reduced. This is because the temperature on the inflow side of both the air and the heat exchange liquid is low and the temperature on the discharge side is high.Therefore, a temperature difference can occur in the battery due to the temperature difference, but if the air and the heat exchange liquid flow in opposite directions, This is because air and the heat exchange liquid efficiently cool the opposite sides to reduce the temperature difference.

さらに、本発明の電源装置は、図13に示すように、互いに積層している角型電池の隙間の最上部に空気ダクト17を設ける構造によって、熱交換液や冷却された熱交換パイプ5の結露水に起因する絶縁低下を防止できる特徴がある。とくに、角型電池は、上端面に電極端子10を設けているので、電極端子10の近傍における絶縁低下を防止して、安全性を向上でき、また漏電による電池の無駄な消費を防止できる。   Furthermore, as shown in FIG. 13, the power supply device of the present invention has a structure in which an air duct 17 is provided at the uppermost portion of the gap between the stacked square batteries, so that the heat exchange liquid and the cooled heat exchange pipe 5 There is a feature that can prevent insulation deterioration due to condensed water. In particular, since the square battery is provided with the electrode terminal 10 on the upper end surface, it is possible to prevent a decrease in insulation in the vicinity of the electrode terminal 10, improve safety, and prevent wasteful consumption of the battery due to electric leakage.

さらに、図14に示す電源装置は、電極端子10の下方に熱交換パイプ5を配管している。この電源装置は、熱交換パイプ5でもって電極端子10の下方を効率よく冷却できる。角型電池は、電極端子10の下方の発熱量が大きいので、この構造によって発熱量の大きい部分を熱交換パイプ5で効率よく冷却して、電池の温度むらを少なくできる。   Further, the power supply device shown in FIG. 14 has a heat exchange pipe 5 provided below the electrode terminal 10. This power supply device can efficiently cool the lower part of the electrode terminal 10 with the heat exchange pipe 5. Since the square battery has a large amount of heat generation below the electrode terminal 10, this structure can efficiently cool the portion with a large amount of heat generation with the heat exchange pipe 5 to reduce the temperature unevenness of the battery.

本発明の第1の実施例にかかる車両用の電源装置の斜視図である。It is a perspective view of the power supply device for vehicles concerning the 1st example of the present invention. 図1に示す車両用の電源装置の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the power supply device for vehicles shown in FIG. 図1に示す車両用の電源装置の垂直縦断面図である。It is a vertical longitudinal cross-sectional view of the power supply device for vehicles shown in FIG. 図3に示す車両用の電源装置のA−A線断面図である。It is the sectional view on the AA line of the power supply device for vehicles shown in FIG. 図3に示す車両用の電源装置のB−B線断面図である。FIG. 4 is a cross-sectional view of the vehicle power supply device shown in FIG. 3 taken along line BB. 図3に示す車両用の電源装置のC−C線断面図である。It is CC sectional view taken on the line of the power supply device for vehicles shown in FIG. 本発明の第2の実施例にかかる車両用の電源装置の斜視図である。It is a perspective view of the power supply device for vehicles concerning the 2nd example of the present invention. 図7に示す車両用の電源装置の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the power supply device for vehicles shown in FIG. 図7に示す車両用の電源装置の水平断面図である。It is a horizontal sectional view of the power supply device for vehicles shown in FIG. 図9に示す車両用の電源装置のA−A線断面図である。FIG. 10 is a cross-sectional view taken along line AA of the vehicle power supply device shown in FIG. 9. 図9に示す車両用の電源装置のB−B線断面図である。FIG. 10 is a cross-sectional view of the vehicle power supply device shown in FIG. 9 taken along the line BB. 図9に示す車両用の電源装置のC−C線断面図である。It is CC sectional view taken on the line of the power supply device for vehicles shown in FIG. 本発明の他の実施例にかかる車両用の電源装置の垂直縦断面図である。It is a vertical longitudinal cross-sectional view of the power supply device for vehicles concerning the other Example of this invention. 本発明の他の実施例にかかる車両用の電源装置の垂直横断面図である。It is a vertical cross-sectional view of the power supply device for vehicles concerning the other Example of this invention.

符号の説明Explanation of symbols

1…素電池
2…電池ブロック
3…冷却ダクト
4…冷却ファン
5…熱交換パイプ
6…液体循環機
7…制御回路
8…送風ダクト 8A…吸入ダクト
8B…排気ダクト
9…循環チャンバー 9A…流入チャンバー
9B…排出チャンバー
10…電極端子
11…循環ポンプ
12…熱交換器
13…冷却ファン
14…コンプレッサ
15…凝縮器
16…膨張装置
17…空気ダクト
DESCRIPTION OF SYMBOLS 1 ... Unit cell 2 ... Battery block 3 ... Cooling duct 4 ... Cooling fan 5 ... Heat exchange pipe 6 ... Liquid circulator 7 ... Control circuit 8 ... Air blow duct 8A ... Intake duct
8B ... Exhaust duct 9 ... Circulation chamber 9A ... Inflow chamber
9B ... Discharge chamber 10 ... Electrode terminal 11 ... Circulation pump 12 ... Heat exchanger 13 ... Cooling fan 14 ... Compressor 15 ... Condenser 16 ... Expansion device 17 ... Air duct

Claims (7)

所定の間隔で配列されてなる複数の素電池(1)と、素電池(1)の間に設けられて素電池(1)を冷却する空気を送風する冷却ダクト(3)と、この冷却ダクト(3)に強制送風する冷却ファン(4)と、素電池(1)の間に配設している熱交換パイプ(5)と、この熱交換パイプ(5)に熱交換液を循環して素電池(1)を冷却又は加温する液体循環機(6)と、素電池(1)の温度、もしくは発熱量を検出して冷却ファン(4)と液体循環機(6)とを制御する制御回路(7)とを備え、
制御回路(7)が、素電池(1)の温度、もしくは発熱量を検出して、冷却ファン(4)のみを運転するファン運転状態と、液体循環機(6)のみを運転する液体循環機運転状態と、冷却ファン(4)と液体循環機(6)の両方を運転するファン及び液体循環機運転状態とに切り換えて素電池(1)を冷却するようにしてなる車両用の電源装置。
A plurality of unit cells (1) arranged at predetermined intervals, a cooling duct (3) provided between the unit cells (1) for blowing air for cooling the unit cells (1), and the cooling duct Cooling fan (4) forcibly blowing air to (3), heat exchange pipe (5) arranged between unit cells (1), and heat exchange liquid are circulated through this heat exchange pipe (5). A liquid circulator (6) that cools or heats the unit cell (1), and controls the cooling fan (4) and the liquid circulator (6) by detecting the temperature of the unit cell (1) or the amount of heat generated. A control circuit (7),
The control circuit (7) detects the temperature of the unit cell (1) or the amount of heat generated, and the fan operating state in which only the cooling fan (4) is operated, and the liquid circulator that operates only the liquid circulator (6) A power supply device for a vehicle configured to cool the unit cell (1) by switching between an operating state and a fan that operates both the cooling fan (4) and the liquid circulator (6) and the liquid circulator operating state.
素電池(1)が角型電池で、複数の角型電池が積層されて電池ブロック(2)としており、積層している角型電池の隙間に複数列の熱交換パイプ(5)が配管されて、熱交換パイプ(5)が隣接する角型電池を絶縁状態に分離するセパレータに併用され、さらに熱交換パイプ(5)の間に冷却ダクト(3)を設けている請求項1に記載される車両用の電源装置。   The unit cell (1) is a prismatic battery, and a plurality of prismatic batteries are stacked to form a battery block (2), and a plurality of rows of heat exchange pipes (5) are arranged in the gaps between the stacked prismatic batteries. The heat exchange pipe (5) is used in combination with a separator that separates adjacent rectangular batteries into an insulating state, and a cooling duct (3) is provided between the heat exchange pipes (5). A power supply device for a vehicle. 素電池(1)が、上端面に電極端子(10)を設けている角型電池で、積層してなる角型電池の隙間の最上部に空気ダクト(17)を設けている請求項1に記載される車両用の電源装置。   The unit cell (1) is a prismatic battery having an electrode terminal (10) provided on an upper end surface, and an air duct (17) is provided at the uppermost part of a gap between the stacked prismatic batteries. The vehicle power supply described. 電池ブロック(2)の両側に一対の送風ダクト(8)を設けており、一対の送風ダクト(8)には角型電池の間に設けている冷却ダクト(3)の両端が連結され、送風ダクト(8)から冷却ダクト(3)に空気を送風して素電池(1)を冷却する構造としており、
さらに、送風ダクト(8)の外側または内側に一対の循環チャンバー(9)を設けており、この循環チャンバー(9)に熱交換パイプ(5)の両端を連結して、循環チャンバー(9)と熱交換パイプ(5)とに熱交換液を循環する構造としてなる請求項2に記載される車両用の電源装置。
A pair of air ducts (8) are provided on both sides of the battery block (2), and both ends of the cooling duct (3) provided between the square batteries are connected to the pair of air ducts (8), Air is blown from the duct (8) to the cooling duct (3) to cool the unit cell (1),
Further, a pair of circulation chambers (9) are provided outside or inside the air duct (8), and both ends of the heat exchange pipe (5) are connected to the circulation chamber (9) to connect the circulation chamber (9). The power supply device for a vehicle according to claim 2, wherein the heat exchange liquid is circulated through the heat exchange pipe (5).
冷却ダクト(3)の空気と、熱交換パイプ(5)の熱交換液とを逆方向に流動して電池を冷却する請求項2に記載される車両用の電源装置。   The vehicle power supply device according to claim 2, wherein the battery is cooled by flowing air in the cooling duct (3) and heat exchange liquid in the heat exchange pipe (5) in opposite directions. 熱交換液が、水、不凍液、油のいずれかで、液体循環機(6)が熱交換液を循環する循環ポンプ(11)と、熱交換液を冷却する熱交換器(12)とを備える請求項1に記載される車両用の電源装置。   The heat exchange liquid is water, antifreeze liquid, or oil, and the liquid circulator (6) includes a circulation pump (11) for circulating the heat exchange liquid and a heat exchanger (12) for cooling the heat exchange liquid. The power supply device for vehicles according to claim 1. 熱交換液が冷媒で、液体循環機(6)が冷媒を加圧するコンプレッサ(14)と、このコンプレッサ(14)で加圧された冷媒を冷却して液化させる凝縮器(15)と、この凝縮器(15)で液化された冷媒を熱交換パイプ(5)に供給する膨張装置(16)とを備え、膨張装置(16)から供給される液化された冷媒が熱交換パイプ(5)で気化されて、冷媒の気化熱で熱交換パイプ(5)が冷却されるようにしてなる請求項1に記載される車両用の電源装置。   The heat exchange liquid is a refrigerant and the liquid circulator (6) compresses the refrigerant (14), the condenser (15) that cools and liquefies the refrigerant pressurized by the compressor (14), and the condensation And an expansion device (16) for supplying the refrigerant liquefied in the vessel (15) to the heat exchange pipe (5), and the liquefied refrigerant supplied from the expansion device (16) is vaporized in the heat exchange pipe (5). The vehicle power supply device according to claim 1, wherein the heat exchange pipe (5) is cooled by the heat of vaporization of the refrigerant.
JP2007172012A 2007-06-29 2007-06-29 Power supply for vehicle Expired - Fee Related JP5078463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007172012A JP5078463B2 (en) 2007-06-29 2007-06-29 Power supply for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007172012A JP5078463B2 (en) 2007-06-29 2007-06-29 Power supply for vehicle

Publications (2)

Publication Number Publication Date
JP2009009888A true JP2009009888A (en) 2009-01-15
JP5078463B2 JP5078463B2 (en) 2012-11-21

Family

ID=40324756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007172012A Expired - Fee Related JP5078463B2 (en) 2007-06-29 2007-06-29 Power supply for vehicle

Country Status (1)

Country Link
JP (1) JP5078463B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252746A (en) * 2008-04-08 2009-10-29 Soc De Vehicules Electriques (Sas) Battery having flexible power generation element, and system for mechanical and thermal conditioning of the element
WO2010095260A1 (en) * 2009-02-23 2010-08-26 トヨタ自動車株式会社 Battery system and automobile
WO2011060074A2 (en) * 2009-11-11 2011-05-19 Coda Automotive, Inc. Battery thermal management systems and methods
KR101097226B1 (en) 2010-02-01 2011-12-21 에스비리모티브 주식회사 Battery pack
WO2012042642A1 (en) * 2010-09-30 2012-04-05 株式会社 日立製作所 Electricity storage device
JP2013062207A (en) * 2011-09-15 2013-04-04 Nissan Motor Co Ltd Secondary battery cooling device
WO2013183889A1 (en) * 2012-06-08 2013-12-12 에스케이이노베이션 주식회사 Battery pack
WO2015025206A1 (en) 2013-08-20 2015-02-26 Toyota Jidosha Kabushiki Kaisha Temperature controller for battery
CN106299543A (en) * 2016-10-21 2017-01-04 江苏理工学院 A kind of graphene battery group heat management system
WO2017026169A1 (en) * 2015-08-07 2017-02-16 株式会社デンソー Battery pack
CN109244594A (en) * 2018-10-17 2019-01-18 浙江大学 A kind of power battery thermal management system and power battery thermal management method
WO2019093065A1 (en) * 2017-11-09 2019-05-16 株式会社デンソー Evaporator
CN109980312A (en) * 2017-12-27 2019-07-05 郑州宇通客车股份有限公司 A kind of temperature equalization control system of vehicle-mounted liquid cooling battery case
JP2020009694A (en) * 2018-07-11 2020-01-16 パナソニックIpマネジメント株式会社 Cooling device, battery temperature adjustment system, and vehicle
KR20200095247A (en) * 2019-01-31 2020-08-10 삼성에스디아이 주식회사 Battery Pack
CN112640187A (en) * 2019-03-01 2021-04-09 法雷奥日本株式会社 Cooling module of battery for vehicle
WO2021117908A1 (en) * 2019-12-12 2021-06-17 Apb株式会社 Battery system
JP2021093339A (en) * 2019-12-12 2021-06-17 Apb株式会社 Battery system
CN113437392A (en) * 2021-07-01 2021-09-24 张南溪 Water-cooled condenser group of new energy automobile
CN116454477A (en) * 2023-06-16 2023-07-18 深圳市雅晶源科技有限公司 Temperature control module and temperature control method for outdoor energy storage power supply battery
WO2023201923A1 (en) * 2022-04-18 2023-10-26 宁德时代新能源科技股份有限公司 Water cooling plate assembly, water cooling system, battery and box body thereof, and electric device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263564B (en) * 2020-01-15 2021-10-08 西南交通大学 Electronic equipment thermal management system and method using phase change material in extreme environment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562718A (en) * 1991-09-04 1993-03-12 Nec Eng Ltd Charging method for storage battery
JPH11273983A (en) * 1998-03-20 1999-10-08 Nissan Diesel Motor Co Ltd Apparatus for cooling capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562718A (en) * 1991-09-04 1993-03-12 Nec Eng Ltd Charging method for storage battery
JPH11273983A (en) * 1998-03-20 1999-10-08 Nissan Diesel Motor Co Ltd Apparatus for cooling capacitor

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252746A (en) * 2008-04-08 2009-10-29 Soc De Vehicules Electriques (Sas) Battery having flexible power generation element, and system for mechanical and thermal conditioning of the element
WO2010095260A1 (en) * 2009-02-23 2010-08-26 トヨタ自動車株式会社 Battery system and automobile
US8643341B2 (en) 2009-02-23 2014-02-04 Toyota Jidosha Kabushiki Kaisha Battery system and automobile
WO2011060074A3 (en) * 2009-11-11 2011-10-06 Coda Automotive, Inc. Battery thermal management systems and methods
WO2011060074A2 (en) * 2009-11-11 2011-05-19 Coda Automotive, Inc. Battery thermal management systems and methods
KR101097226B1 (en) 2010-02-01 2011-12-21 에스비리모티브 주식회사 Battery pack
US8852779B2 (en) 2010-02-01 2014-10-07 Samsung Sdi Co., Ltd. Battery pack
WO2012042642A1 (en) * 2010-09-30 2012-04-05 株式会社 日立製作所 Electricity storage device
US9325040B2 (en) 2010-09-30 2016-04-26 Hitachi, Ltd. Electric storage apparatus including battery modules, first cooling passage, and second cooling passage used to cool battery module after replacement
JP2013062207A (en) * 2011-09-15 2013-04-04 Nissan Motor Co Ltd Secondary battery cooling device
WO2013183889A1 (en) * 2012-06-08 2013-12-12 에스케이이노베이션 주식회사 Battery pack
KR20130137928A (en) * 2012-06-08 2013-12-18 에스케이이노베이션 주식회사 Battery pack
US11075426B2 (en) 2012-06-08 2021-07-27 SK Innovation Co., Lt.d Battery pack
KR102028919B1 (en) * 2012-06-08 2019-10-07 에스케이이노베이션 주식회사 Battery pack
US10403941B2 (en) 2013-08-20 2019-09-03 Toyota Jidosha Kabushiki Kaisha Temperature controller for battery
WO2015025206A1 (en) 2013-08-20 2015-02-26 Toyota Jidosha Kabushiki Kaisha Temperature controller for battery
WO2017026169A1 (en) * 2015-08-07 2017-02-16 株式会社デンソー Battery pack
CN106299543A (en) * 2016-10-21 2017-01-04 江苏理工学院 A kind of graphene battery group heat management system
WO2019093065A1 (en) * 2017-11-09 2019-05-16 株式会社デンソー Evaporator
CN109980312A (en) * 2017-12-27 2019-07-05 郑州宇通客车股份有限公司 A kind of temperature equalization control system of vehicle-mounted liquid cooling battery case
JP2020009694A (en) * 2018-07-11 2020-01-16 パナソニックIpマネジメント株式会社 Cooling device, battery temperature adjustment system, and vehicle
CN110718724A (en) * 2018-07-11 2020-01-21 松下知识产权经营株式会社 Cooling device, battery temperature control system, and vehicle
JP7033730B2 (en) 2018-07-11 2022-03-11 パナソニックIpマネジメント株式会社 Cooling device, battery temperature control system and vehicle
CN109244594A (en) * 2018-10-17 2019-01-18 浙江大学 A kind of power battery thermal management system and power battery thermal management method
KR102591304B1 (en) * 2019-01-31 2023-10-19 삼성에스디아이 주식회사 Battery Pack
KR20200095247A (en) * 2019-01-31 2020-08-10 삼성에스디아이 주식회사 Battery Pack
KR102425695B1 (en) * 2019-01-31 2022-07-28 삼성에스디아이 주식회사 Battery Pack
KR20220107134A (en) * 2019-01-31 2022-08-02 삼성에스디아이 주식회사 Battery Pack
US11641040B2 (en) 2019-01-31 2023-05-02 Samsung Sdi Co., Ltd. Battery pack
CN112640187A (en) * 2019-03-01 2021-04-09 法雷奥日本株式会社 Cooling module of battery for vehicle
WO2021117908A1 (en) * 2019-12-12 2021-06-17 Apb株式会社 Battery system
JP2021093339A (en) * 2019-12-12 2021-06-17 Apb株式会社 Battery system
US11637334B2 (en) 2019-12-12 2023-04-25 Apb Corporation Cell system
JP7462592B2 (en) 2019-12-12 2024-04-05 Apb株式会社 Battery System
CN113437392A (en) * 2021-07-01 2021-09-24 张南溪 Water-cooled condenser group of new energy automobile
CN113437392B (en) * 2021-07-01 2023-07-07 东莞市诺高汽车空调设备有限公司 New energy automobile water-cooled condenser group
WO2023201923A1 (en) * 2022-04-18 2023-10-26 宁德时代新能源科技股份有限公司 Water cooling plate assembly, water cooling system, battery and box body thereof, and electric device
CN116454477B (en) * 2023-06-16 2023-08-29 深圳市雅晶源科技有限公司 Temperature control module and temperature control method for outdoor energy storage power supply battery
CN116454477A (en) * 2023-06-16 2023-07-18 深圳市雅晶源科技有限公司 Temperature control module and temperature control method for outdoor energy storage power supply battery

Also Published As

Publication number Publication date
JP5078463B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5078463B2 (en) Power supply for vehicle
JP5142605B2 (en) Power supply for vehicle
JP5137480B2 (en) Power supply for vehicle
JP5938115B2 (en) Battery module, battery temperature management system, and vehicle including the system
JP5456371B2 (en) Battery system for vehicle and vehicle equipped with this battery system
JP5362269B2 (en) Battery pack for vehicles
JP4353240B2 (en) Power system
JP5585621B2 (en) Power supply for vehicle
JP4963902B2 (en) Power supply
JP5417932B2 (en) Power supply for vehicle
JP5535520B2 (en) Battery system for vehicle
JP2010050000A (en) Power source device for vehicle
US11511648B2 (en) Power source device and electric vehicle equipped with power source device
JP2004014520A (en) Fluid cooling type battery pack system
JP2009037934A (en) Power supply device for vehicle
JP2006278337A (en) Battery module
JP2011023179A (en) Battery pack, vehicle equipped therewith, and bus bar for battery pack
JP2011049137A (en) Battery pack
JP2010129392A (en) Battery system
JP2013152821A (en) Battery temperature control apparatus
KR101263245B1 (en) Battery cooling apparatus
KR101515114B1 (en) Battery Pack Using Perfluorinated Solution as Coolant
KR101219389B1 (en) Battery cooling apparatus using intermediate heat exchanger
WO2020022087A1 (en) Battery temperature adjustment device
KR20120062308A (en) Secondary battery cooling apparatus and heating system using heat generated from secondary battery operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees