JP2009008412A - Failure detection method of physical quantity sensor - Google Patents

Failure detection method of physical quantity sensor Download PDF

Info

Publication number
JP2009008412A
JP2009008412A JP2007167328A JP2007167328A JP2009008412A JP 2009008412 A JP2009008412 A JP 2009008412A JP 2007167328 A JP2007167328 A JP 2007167328A JP 2007167328 A JP2007167328 A JP 2007167328A JP 2009008412 A JP2009008412 A JP 2009008412A
Authority
JP
Japan
Prior art keywords
value
physical quantity
sum
quantity sensor
square
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007167328A
Other languages
Japanese (ja)
Inventor
Hidekazu Furukubo
英一 古久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007167328A priority Critical patent/JP2009008412A/en
Publication of JP2009008412A publication Critical patent/JP2009008412A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve failure detection accuracy of a physical quantity sensor. <P>SOLUTION: A sum-of-squares calculation part 5 calculates a square root value of the sum of squares of acceleration values Gx, Gy, Gz outputted from AD converters 4a, 4b, 4c as a square root value of the sum of squares at a diagnosis time. A comparison part 6 reads out a square root value of the sum of squares before shipping a triaxial acceleration sensor 3 stored in a memory as an initial square root value of the sum of squares, and calculates an absolute value of a difference between the square root value of the sum of squares at the diagnosis time and the initial square root value of the sum of squares. The comparison part 6 discriminates whether the calculated absolute value is below a determination threshold or not, and determines that the triaxial acceleration sensor 3 is failed when the absolute value is below the determination threshold TH. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、加速度等の物理量を検知する物理量センサの故障検出方法に関する。   The present invention relates to a failure detection method for a physical quantity sensor that detects a physical quantity such as acceleration.

従来より、XYZ直交3軸座標系の3軸方向それぞれの加速度を検知する加速度センサの故障検出方法として、3軸方向の加速度の二乗和平方根値を算出し、算出された二乗和平方根値と重力加速度の差分値の絶対値が判定閾値以上である場合に加速度センサが故障していると判定する方法が知られている(特許文献1参照)。
特開2005−291860号公報
Conventionally, as a failure detection method for an acceleration sensor that detects acceleration in each of the three axes of an XYZ orthogonal three-axis coordinate system, a square sum of squares of acceleration in the three axes is calculated, and the calculated square sum of square roots and gravity are calculated. A method is known in which the acceleration sensor is determined to be defective when the absolute value of the acceleration difference value is greater than or equal to a determination threshold (see Patent Document 1).
JP 2005-291860 A

従来の故障検出方法は、3軸方向の加速度の二乗和平方根値と重力加速度の差分値の絶対値に基づいて加速度センサの故障を判定する構成になっているために、出荷時の物理量センサの特性のばらつきと出荷後の経時変化の許容値を考慮して判定閾値を設定しなければならない。具体的には、例えば加速度センサのオフセット精度規格が±0.1Gである場合には、最悪の状態では、3軸方向の加速度の出力(X,Y,Z)は出荷段階で理想状態(0G,0G,1G)から(0.1G,0.1G,1.1G)にずれている可能性がある。そしてこのような状態では、3軸方向の加速度の二乗和平方根値(SUM)は1.000Gから1.109Gに変化し、正常時において二乗和平方根値と重力加速度の差分値(SUM−g)は0.109Gとなるので、判定閾値は特性ばらつき量(0.109G)と経時変化の許容値(本例では0.05G)の和により0.159G以上の値に設定する必要がある。   The conventional failure detection method is configured to determine the failure of the acceleration sensor based on the absolute value of the difference between the square sum of squares of acceleration in the three-axis directions and the gravitational acceleration. The determination threshold value must be set in consideration of the variation in characteristics and the allowable value of change with time after shipment. Specifically, for example, when the offset accuracy standard of the acceleration sensor is ± 0.1 G, in the worst state, the output (X, Y, Z) of acceleration in three axes directions is an ideal state (0G , 0G, 1G) to (0.1G, 0.1G, 1.1G). In such a state, the sum of squares of squares (SUM) of acceleration in three axes changes from 1.000 G to 1.109 G, and the difference between the sum of squares of squares and the gravitational acceleration (SUM-g) is normal. Therefore, the determination threshold value needs to be set to a value of 0.159 G or more by the sum of the characteristic variation amount (0.109 G) and the allowable change with time (0.05 G in this example).

しかしながら、このようにして判定閾値が設定された場合には、3軸方向の加速度の出力(X,Y,Z)が経時変化により理想状態(0G,0G,1G)から(0G,0G,1.1G)に変化、すなわち許容値以上の経時変化があった際には、差分値(0.100)は判定閾値(0.159)以下となるので、加速度センサの故障を検出することができない。またこのようにして判定閾値が設定された場合には、図4(a),(b)に示すように加速度センサのオフセット精度規格(出力精度)の低下に伴い判定閾値が大きくなるので、加速度の出力精度が悪い程、故障の検出精度が低下することになる。このような背景から、故障検出精度が高い加速度センサの故障検出方法の提供が急務となっている。   However, when the determination threshold is set in this way, the output (X, Y, Z) of the acceleration in the three-axis directions changes from the ideal state (0G, 0G, 1G) to (0G, 0G, 1) due to change over time. .1G), that is, when there is a change over time that is greater than or equal to the allowable value, the difference value (0.100) is equal to or less than the determination threshold value (0.159), and therefore a failure of the acceleration sensor cannot be detected. . When the determination threshold value is set in this way, the determination threshold value increases as the offset accuracy standard (output accuracy) of the acceleration sensor decreases as shown in FIGS. 4 (a) and 4 (b). The worse the output accuracy, the lower the failure detection accuracy. Against this background, there is an urgent need to provide a failure detection method for acceleration sensors with high failure detection accuracy.

本発明は、上記課題を解決するためになされたものであり、その目的は、故障検出精度を向上可能な物理量センサの故障検出方法の提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a physical quantity sensor failure detection method capable of improving failure detection accuracy.

本発明に係る物理量センサの故障検出方法は、互いに直交する複数の検出軸を有する物理量センサの故障検出方法であって、物理量センサを出荷する前の複数の検出軸における検出値の二乗和値又は二乗和平方根値を初期二乗和値又は初期二乗和平方根値として算出し,物理量センサ内のメモリに記憶する第1の処理と、物理量センサを使用する際の複数の検出軸における検出値の二乗和値又は二乗和平方根値を診断時二乗和値又は診断時二乗和平方根値として算出する第2の処理と、メモリから初期二乗和値又は初期二乗和平方根値を読み出し、診断時二乗和値又は診断時二乗和平方根値と初期二乗和値又は初期二乗和平方根値の差分の絶対値を算出する第3の処理と、絶対値が所定閾値以下であるか否かを判別し、絶対値が所定閾値以下でない場合、物理量センサが故障していると判定する第4の処理とを有する。   A failure detection method for a physical quantity sensor according to the present invention is a failure detection method for a physical quantity sensor having a plurality of detection axes orthogonal to each other, and is a sum of squares of detection values on a plurality of detection axes before shipping the physical quantity sensor or A first process of calculating a square sum square root value as an initial square sum value or an initial square sum square value and storing it in a memory in the physical quantity sensor, and a square sum of detected values in a plurality of detection axes when using the physical quantity sensor A second process of calculating a value or a square sum of squares value as a square sum value at diagnosis or a square root value at diagnosis and reading out an initial square sum value or an initial square sum square value from a memory, and a square sum value or diagnosis at diagnosis A third process for calculating the absolute value of the difference between the time square sum square root value and the initial square sum value or the initial square sum square root value, and whether or not the absolute value is equal to or less than a predetermined threshold value. Less than If not, and a fourth process for determining the physical quantity sensor is faulty.

本発明に係る物理量センサの故障検出方法によれば、物理量センサを出荷する前の複数の検出軸における検出値の二乗和値又は二乗和平方根値と物理量センサを使用する際の複数の検出軸における検出値の二乗和値又は二乗和平方根値の差分の絶対値が所定閾値以下でない場合、物理量センサが故障していると判定するので、物理量センサの故障検出精度を向上させることができる。   According to the failure detection method of the physical quantity sensor according to the present invention, the square sum value or the square sum square root value of the detection values on the plurality of detection axes before shipping the physical quantity sensor and the plurality of detection axes when the physical quantity sensor is used. If the absolute value of the difference between the square sum value or the square sum square value of the detected values is not less than or equal to the predetermined threshold value, it is determined that the physical quantity sensor is faulty, so that the fault detection accuracy of the physical quantity sensor can be improved.

以下、図面を参照して、本発明の実施形態となる自己診断回路の構成及び動作について説明する。   The configuration and operation of a self-diagnosis circuit according to an embodiment of the present invention will be described below with reference to the drawings.

〔自己診断回路の構成〕
本発明の実施形態となる自己診断回路1は、図1に示すように、増幅器2a,2b,2cにより増幅されたアナログ形態の3軸加速度センサ3の電圧出力値Vx,Vy,Vzをデジタル形態の加速度値Gx,Gy,Gzに変換するAD変換器4a,4b,4cと、AD変換器4a,4b,4cからの出力を利用して所定の演算処理を実行する二乗和算出部5と、二乗和算出部5の演算処理結果を利用して比較処理を実行する比較部6と、比較部6の比較処理結果を利用して3軸加速度センサ3の故障を判定する判定部7とを主な構成要素として備える。
[Configuration of self-diagnosis circuit]
As shown in FIG. 1, a self-diagnosis circuit 1 according to an embodiment of the present invention digitally outputs voltage output values Vx, Vy, and Vz of an analog three-axis acceleration sensor 3 amplified by amplifiers 2a, 2b, and 2c. AD converters 4a, 4b, and 4c that convert the acceleration values Gx, Gy, and Gz, and a square sum calculation unit 5 that executes predetermined arithmetic processing using outputs from the AD converters 4a, 4b, and 4c, The comparison unit 6 that executes the comparison process using the calculation process result of the sum of squares calculation unit 5 and the determination unit 7 that determines the failure of the triaxial acceleration sensor 3 using the comparison process result of the comparison unit 6 are mainly used. As a major component.

比較部6はメモリを備え、このメモリの中には3軸加速度センサ3を出荷する前に算出された3軸の加速度値の二乗和平方根値(又は二乗和値)が初期二乗和平方根値(又は初期二乗和値)(Gt)として記憶されている。本実施形態では、自己診断回路1は、3次元の傾斜計として利用可能な3つの検出軸を有する3軸加速度センサ3の故障を検出する構成になっているが、3軸加速度センサ3を2軸加速度センサに置き換えることにより、回転傾斜計として利用可能な2つの検出軸を有する2軸加速度センサの故障検出にも適用できる。   The comparison unit 6 includes a memory, in which the sum of squares of squares (or the sum of squares) of the triaxial acceleration values calculated before shipping the triaxial acceleration sensor 3 is an initial square sum of squares ( Alternatively, it is stored as an initial square sum value (Gt). In the present embodiment, the self-diagnosis circuit 1 is configured to detect a failure of the three-axis acceleration sensor 3 having three detection axes that can be used as a three-dimensional inclinometer. By replacing it with an axial acceleration sensor, it can also be applied to failure detection of a two-axis acceleration sensor having two detection axes that can be used as a rotary inclinometer.

AD変換器4a,4b,4cは、加速度値Gx,Gy,Gzの絶対値になるように3軸加速度センサ3の電圧出力値Vx,Vy,Vzを変換するようにしてもよい。このような処理によれば、後述する故障検出処理を簡易的、且つ、精度よく行うことができる。   The AD converters 4a, 4b, and 4c may convert the voltage output values Vx, Vy, and Vz of the triaxial acceleration sensor 3 so that the absolute values of the acceleration values Gx, Gy, and Gz are obtained. According to such a process, a failure detection process to be described later can be performed easily and accurately.

〔自己診断回路の動作〕
上記自己診断回路1は、以下に示す故障検出処理を実行することにより、3軸加速度センサ3の故障を精度高く検出する。以下、図2に示すフローチャートを参照して、この故障検出処理を実行する際の自己診断回路1の動作について詳しく説明する。
[Operation of self-diagnosis circuit]
The self-diagnosis circuit 1 detects a failure of the triaxial acceleration sensor 3 with high accuracy by executing a failure detection process described below. Hereinafter, the operation of the self-diagnosis circuit 1 when executing the failure detection process will be described in detail with reference to the flowchart shown in FIG.

図2に示すフローチャートは、3軸加速度センサ3を利用するタイミングで開始となり、故障検出処理はステップS1の処理に進む。なお3軸加速度センサ3が例えば車両に搭載されている場合には、イグニッションスイッチがオン状態に切り替わったタイミング等、車両が走行を開始する前に以下の故障検出処理を実行することが望ましい。車両が走行を開始する前に故障検出処理を実行することにより、振動や運動による加速度等の外乱要因に影響されることなく3軸加速度センサ3の故障検出を精度高く行うことができる。   The flowchart shown in FIG. 2 starts at the timing when the triaxial acceleration sensor 3 is used, and the failure detection process proceeds to step S1. When the triaxial acceleration sensor 3 is mounted on a vehicle, for example, it is desirable to execute the following failure detection process before the vehicle starts traveling, such as the timing when the ignition switch is turned on. By executing the failure detection process before the vehicle starts running, the failure detection of the three-axis acceleration sensor 3 can be performed with high accuracy without being affected by disturbance factors such as vibration and motion acceleration.

ステップS1の処理では、二乗和算出部5が、AD変換器4a,4b,4cから出力された加速度値Gx,Gy,Gzを以下の数式1に代入することにより二乗和平方根値を診断時二乗和平方根値(SUM)として算出し、比較部6に出力する。なお二乗和算出部5は、所定時間毎に診断時二乗和平方根値を複数回算出し、算出された診断時二乗和平方根値の平均値を比較部6に出力するようにしてもよい。このような処理によれば、ノイズ等の外乱要因を平準化し、3軸加速度センサ3の故障を精度高く検出することができる。また二乗和算出部5は、二乗和平方根値の代わりに二乗和値を算出するようにしてもよい。この場合、以後の説明において二乗和平方根値を二乗和値に読み替えるものとする。これにより、ステップS1の処理は完了し、故障検出処理はステップS2の処理に進む。

Figure 2009008412
In the process of step S1, the sum of squares calculation unit 5 substitutes the acceleration values Gx, Gy, and Gz output from the AD converters 4a, 4b, and 4c into the following formula 1 to calculate the square sum of squares at the time of diagnosis. The sum square root value (SUM) is calculated and output to the comparison unit 6. The square sum calculation unit 5 may calculate the square root value at diagnosis at a plurality of times every predetermined time, and output the average value of the calculated root sum square value at diagnosis to the comparison unit 6. According to such processing, disturbance factors such as noise can be leveled and a failure of the triaxial acceleration sensor 3 can be detected with high accuracy. The square sum calculator 5 may calculate a square sum value instead of the square sum square root value. In this case, in the following description, the square sum square root value is read as a square sum value. Thereby, the process of step S1 is completed and a failure detection process progresses to the process of step S2.
Figure 2009008412

ステップS2の処理では、比較部6が、メモリ内に記憶されている初期二乗和平方根値(Gt)を読み出し、ステップS1の処理により算出された診断時二乗和平方根値(SUM)と初期二乗和平方根値の差分の絶対値(|SUM−Gt|)を算出する。そして比較部6は、算出された絶対値が判定閾値TH以下であるか否かを判別し、判別の結果、絶対値が判定閾値TH以下である場合は故障検出処理をステップS3の処理に進め、絶対値が判定閾値TH以上と同じ又はそれ以上である場合には故障検出処理をステップS4の処理に進める。なお上記判定閾値THは3軸加速度センサ3の出力の経時変化の許容量(例えば0.05G)に設定する。   In the process of step S2, the comparison unit 6 reads the initial square sum square root value (Gt) stored in the memory, and the square sum square value at diagnosis (SUM) calculated by the process of step S1 and the initial square sum. The absolute value (| SUM-Gt |) of the difference between the square root values is calculated. Then, the comparison unit 6 determines whether or not the calculated absolute value is equal to or less than the determination threshold value TH. If the absolute value is equal to or less than the determination threshold value TH as a result of the determination, the failure detection process proceeds to step S3. If the absolute value is equal to or greater than the determination threshold value TH, the failure detection process proceeds to the process of step S4. The determination threshold TH is set to an allowable amount of change with time of the output of the triaxial acceleration sensor 3 (for example, 0.05 G).

ステップS3の処理では、判定部7が、3軸加速度センサ3は正常な状態にあると判定し、判定結果を出力する。これにより、ステップS3の処理は完了し、一連の故障検出処理は終了する。   In the process of step S3, the determination unit 7 determines that the triaxial acceleration sensor 3 is in a normal state and outputs a determination result. Thereby, the process of step S3 is completed and a series of failure detection processes are complete | finished.

ステップS4の処理では、判定部7が、3軸加速度センサ3は故障していると判定し、判定結果を出力する。これにより、ステップS4の処理は完了し、一連の故障検出処理は終了する。   In the process of step S4, the determination unit 7 determines that the triaxial acceleration sensor 3 is out of order and outputs a determination result. Thereby, the process of step S4 is completed and a series of failure detection processes are complete | finished.

以上の説明から明らかなように、本発明の実施形態となる自己診断回路1は、3軸加速度センサ3を出荷する前の二乗和平方根値と3軸加速度センサ3を使用する際の二乗和平方根値の差分の絶対値が所定閾値TH以下でない場合、物理量センサが故障していると判定する。このような構成によれば、図3のケース(1),(2)に例示されるように、差分値を算出した段階で3軸加速度センサ3の特性ばらつき量が相殺されるので、判定閾値を経時変化の許容値(本例では0.05G)に設定することにより、3軸加速度センサ3の故障を精度高く検出することができる。またこのような構成によれば、図4(a),(b)に示すように3軸加速度センサ3のオフセット精度規格(出力精度)に関係なく判定閾値を一定値に設定できるので、3軸加速度センサ3の出力精度に関係なく故障検出精度を向上させることができる。なお図4(a),(b)に示す例はそれぞれ、図3のケース(1)及びケース(2)の場合における3軸加速度センサ3の出力精度と必要閾値(故障検出精度)の関係を示す図である。   As is clear from the above description, the self-diagnosis circuit 1 according to the embodiment of the present invention has a square sum square value before shipping the triaxial acceleration sensor 3 and a square sum square root when the triaxial acceleration sensor 3 is used. When the absolute value of the difference between the values is not less than or equal to the predetermined threshold value TH, it is determined that the physical quantity sensor has failed. According to such a configuration, as illustrated in cases (1) and (2) of FIG. 3, the characteristic variation amount of the triaxial acceleration sensor 3 is canceled at the stage of calculating the difference value. Is set to a permissible change over time (0.05 G in this example), a failure of the triaxial acceleration sensor 3 can be detected with high accuracy. Further, according to such a configuration, as shown in FIGS. 4A and 4B, the determination threshold can be set to a constant value regardless of the offset accuracy standard (output accuracy) of the triaxial acceleration sensor 3. The failure detection accuracy can be improved regardless of the output accuracy of the acceleration sensor 3. 4A and 4B show the relationship between the output accuracy of the triaxial acceleration sensor 3 and the necessary threshold value (failure detection accuracy) in the cases (1) and (2) of FIG. FIG.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。このように、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although the embodiment to which the invention made by the present inventor is applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. As described above, it is a matter of course that all other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above embodiments are included in the scope of the present invention.

本発明の実施形態となる自己診断回路の構成を示すブロック図である。It is a block diagram which shows the structure of the self-diagnosis circuit used as embodiment of this invention. 本発明の実施形態となる故障検出処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the failure detection process used as embodiment of this invention. 本願発明と従来技術の故障検出処理により算出される二乗和平方根値を示す図である。It is a figure which shows the square sum square root value computed by the fault detection process of this invention and a prior art. 図3に示すケース(1),(2)の場合の出力精度と必要閾値の関係を示す図である。It is a figure which shows the relationship between the output precision and required threshold value in case (1), (2) shown in FIG.

符号の説明Explanation of symbols

1:自己診断回路
2a,2b,2c:増幅器
3:3軸加速度センサ
4a,4b,4c:AD変換器
5:二乗和算出部
6:比較部
7:判定部
1: Self-diagnosis circuits 2a, 2b, 2c: Amplifier 3: 3-axis acceleration sensors 4a, 4b, 4c: AD converter 5: Sum of squares calculation unit 6: Comparison unit 7: Determination unit

Claims (6)

互いに直交する複数の検出軸を有する物理量センサの故障検出方法であって、
前記物理量センサを出荷する前の前記複数の検出軸における検出値の二乗和値又は二乗和平方根値を初期二乗和値又は初期二乗和平方根値として算出し,物理量センサ内のメモリに記憶する第1の処理と、
前記物理量センサを使用する際の前記複数の検出軸における検出値の二乗和値又は二乗和平方根値を診断時二乗和値又は診断時二乗和平方根値として算出する第2の処理と、
前記メモリから初期二乗和値又は初期二乗和平方根値を読み出し、診断時二乗和値又は診断時二乗和平方根値と初期二乗和値又は初期二乗和平方根値の差分の絶対値を算出する第3の処理と、
前記絶対値が所定閾値以下であるか否かを判別し、絶対値が所定閾値以下でない場合、物理量センサが故障していると判定する第4の処理と
を有することを特徴とする物理量センサの故障検出方法。
A physical quantity sensor failure detection method having a plurality of detection axes orthogonal to each other,
A first sum of squares or a square sum of squares of detected values on the plurality of detection axes before shipping the physical quantity sensor is calculated as an initial square sum or an initial square sum of squares, and is stored in a memory in the physical quantity sensor. And processing
A second process of calculating a square sum value or a square sum square value of detection values in the plurality of detection axes when using the physical quantity sensor as a square sum value at diagnosis or a square sum value at diagnosis.
Reading an initial square sum value or an initial square sum square value from the memory, and calculating an absolute value of a difference between a square sum value at diagnosis or a square sum value at diagnosis and an initial square sum value or an initial square sum square value. Processing,
And determining whether or not the absolute value is less than or equal to a predetermined threshold value. If the absolute value is not less than or equal to the predetermined threshold value, a fourth process for determining that the physical quantity sensor has failed is provided. Fault detection method.
請求項1に記載の物理量センサの故障検出方法において、前記検出値を絶対値に変換した後に二乗和値又は二乗和平方根値を算出することを特徴とする物理量センサの故障検出方法。   2. The physical quantity sensor failure detection method according to claim 1, wherein a square sum value or a square sum square root value is calculated after converting the detected value into an absolute value. 請求項1又は請求項2に記載の物理量センサの故障検出方法において、前記診断時二乗和値又は前記診断時二乗和平方根値を複数回算出し、算出された診断時二乗和値又は診断時二乗和平方根値の平均値を用いて前記絶対値を算出することを特徴とする物理量センサの故障検出方法。   The failure detection method of the physical quantity sensor according to claim 1 or 2, wherein the diagnostic sum of squares value or the square root value of the squared value at the time of diagnosis is calculated a plurality of times, and the calculated square sum value at the time of diagnosis or the squared value at the time of diagnosis. A failure detection method for a physical quantity sensor, wherein the absolute value is calculated using an average value of sum square root values. 請求項1乃至請求項3のうち、いずれか1項に記載の物理量センサの故障検出方法において、前記物理量センサは、3つの検出軸を有する3軸加速度センサであることを特徴とする物理量センサの故障検出方法。   4. The physical quantity sensor failure detection method according to claim 1, wherein the physical quantity sensor is a three-axis acceleration sensor having three detection axes. 5. Fault detection method. 請求項1乃至請求項3のうち、いずれか1項に記載の物理量センサの故障検出方法において、前記物理量センサは、2つの検出軸を有する2軸加速度センサであることを特徴とする物理量センサの故障検出方法。   4. The physical quantity sensor failure detection method according to claim 1, wherein the physical quantity sensor is a biaxial acceleration sensor having two detection axes. 5. Fault detection method. 請求項1乃至請求項5のうち、いずれか1項に記載の物理量センサの故障検出方法において、前記物理量センサは車両に搭載されており、前記車両の走行開始時に前記第2乃至第4の処理を実行することを特徴とする物理量センサの故障検出方法。   6. The physical quantity sensor failure detection method according to claim 1, wherein the physical quantity sensor is mounted on a vehicle, and the second to fourth processes are performed when the vehicle starts to travel. A failure detection method for a physical quantity sensor, characterized in that:
JP2007167328A 2007-06-26 2007-06-26 Failure detection method of physical quantity sensor Pending JP2009008412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167328A JP2009008412A (en) 2007-06-26 2007-06-26 Failure detection method of physical quantity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167328A JP2009008412A (en) 2007-06-26 2007-06-26 Failure detection method of physical quantity sensor

Publications (1)

Publication Number Publication Date
JP2009008412A true JP2009008412A (en) 2009-01-15

Family

ID=40323652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167328A Pending JP2009008412A (en) 2007-06-26 2007-06-26 Failure detection method of physical quantity sensor

Country Status (1)

Country Link
JP (1) JP2009008412A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037332A (en) * 2009-08-07 2011-02-24 Honda Access Corp Antitheft system and method
US8649904B2 (en) 2010-07-12 2014-02-11 Seiko Epson Corporation Robotic device and method of controlling robotic device
CN109682994A (en) * 2018-12-24 2019-04-26 北京强度环境研究所 A kind of ICP acceleration transducer device for testing passing through electric and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010145A (en) * 1996-06-26 1998-01-16 Wako:Kk Acceleration detecting system
JPH1151668A (en) * 1997-08-07 1999-02-26 Toyota Motor Corp Angular speed detector
JPH1164375A (en) * 1997-08-26 1999-03-05 Toyota Motor Corp Vehicle movement controller
JP2005283598A (en) * 2005-05-26 2005-10-13 Matsushita Electric Ind Co Ltd Spiral vibration detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010145A (en) * 1996-06-26 1998-01-16 Wako:Kk Acceleration detecting system
JPH1151668A (en) * 1997-08-07 1999-02-26 Toyota Motor Corp Angular speed detector
JPH1164375A (en) * 1997-08-26 1999-03-05 Toyota Motor Corp Vehicle movement controller
JP2005283598A (en) * 2005-05-26 2005-10-13 Matsushita Electric Ind Co Ltd Spiral vibration detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037332A (en) * 2009-08-07 2011-02-24 Honda Access Corp Antitheft system and method
US8649904B2 (en) 2010-07-12 2014-02-11 Seiko Epson Corporation Robotic device and method of controlling robotic device
US9403274B2 (en) 2010-07-12 2016-08-02 Seiko Epson Corporation Robotic device and method of controlling robotic device
CN109682994A (en) * 2018-12-24 2019-04-26 北京强度环境研究所 A kind of ICP acceleration transducer device for testing passing through electric and system
CN109682994B (en) * 2018-12-24 2022-03-25 北京强度环境研究所 ICP acceleration sensor access inspection device and system

Similar Documents

Publication Publication Date Title
US7650238B2 (en) Environmental characteristic determination
JP5043358B2 (en) Inclination angle calculation method and inclination angle calculation device
EP1593931A4 (en) Difference correcting method for posture determining instrument and motion measuring instrument
KR101106048B1 (en) Method for calibrating sensor errors automatically during operation, and inertial navigation using the same
US20050131602A1 (en) Apparatus for correcting and diagnosing angular rate sensors installed in an automotive vehicle
JP2009505062A5 (en)
JP7361317B2 (en) Signal processing device, inertial force sensor, signal processing method, and program
US20210072278A1 (en) High-precision inertial measurement apparatus and inertial measurement method
JP2009008412A (en) Failure detection method of physical quantity sensor
JP2008070224A (en) On-vehicle angular velocity sensor
WO2024046149A1 (en) Positioning data processing method and system based on vehicle motion parameter
US11293816B2 (en) Inertial measurement apparatus and method with improved thermal and noise performance
JP7401404B2 (en) Measuring device
JP4510887B2 (en) Adaptive control device, use thereof, sensor having this type of control device, and adaptive method for automatically compensating for disturbance signals of sensors
JP5299312B2 (en) Inertial force sensor device
JP2016145709A (en) Temperature correction structure of inertial sensor using system, inertial sensor, inertial sensor using system, and temperature correction method of inertial sensor using system
JP5348041B2 (en) Physical quantity measuring device for rolling bearing units
JP2009276072A (en) Abnormality determination method of acceleration sensor
JP5982222B2 (en) Acceleration detector
CN108489459B (en) Attitude sensing system and inclination angle measuring method
CN211926882U (en) High-precision inertia measuring device
JP4457701B2 (en) Rolling bearing unit with rolling element revolution speed detector
CN114312814B (en) Vehicle sensor fault diagnosis method and vehicle control method
JP4701663B2 (en) Rotation speed detector
CN114323012A (en) Data processing method of double-MEMS (micro-electromechanical systems) inertia measurement unit and double-MEMS inertia measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807