JP2009007745A - Axial-force transmission structure for permanent sub-substructural column and foundation pile, and construction method for permanent sub-substructural column - Google Patents

Axial-force transmission structure for permanent sub-substructural column and foundation pile, and construction method for permanent sub-substructural column Download PDF

Info

Publication number
JP2009007745A
JP2009007745A JP2007167493A JP2007167493A JP2009007745A JP 2009007745 A JP2009007745 A JP 2009007745A JP 2007167493 A JP2007167493 A JP 2007167493A JP 2007167493 A JP2007167493 A JP 2007167493A JP 2009007745 A JP2009007745 A JP 2009007745A
Authority
JP
Japan
Prior art keywords
foundation pile
pillar
axial force
force transmission
transmission structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007167493A
Other languages
Japanese (ja)
Inventor
Keiji Nakanishi
啓二 中西
Hiroyuki Hotta
洋之 堀田
Yutaka Katsura
豊 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2007167493A priority Critical patent/JP2009007745A/en
Publication of JP2009007745A publication Critical patent/JP2009007745A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an axial-force transmission structure for a permanent sub-substructural column and a foundation pile, and a construction method for the permanent sub-substructural column which can reduce cost by decreasing the length of the embedment of the permanent sub-substructural column in the foundation pile, and allows the permanent sub-substructural column to be accurately installed with ease. <P>SOLUTION: In this axial-force transmission structure 11 for the permanent sub-substructural column and the foundation pile, the foundation pile 2 and the permanent sub-substructural column 10 which are installed in the ground are integrally connected to each other, and an axial force N acting on the permanent sub-substructural column 10 is transmitted to the foundation pile 2. The axial-force transmission structure is equipped with a bearing 12 which is provided on the side of the lower end 10c of the permanent sub-substructural column 10 embedded in the foundation pile 2 so as to transmit the axial force N acting on the permanent sub-substructural column 10 to the foundation pile 2 by bearing pressure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、構真柱と基礎杭の軸力伝達構造及び構真柱の施工方法に関する。   The present invention relates to an axial force transmission structure for a structural pillar and a foundation pile, and a construction method for the structural pillar.

従来、例えばビルなどの地下階を備える建築物を構築する方法として、建築物を上層階から地下階へと順に構築してゆく逆打ち工法が多用されている。この逆打ち工法では、地盤に掘削孔を形成し、この掘削孔内に例えばH型鋼や十字型鋼、鋼管内にコンクリートを充填して一体化した充填鋼管コンクリート(CFT)などの構真柱を建て込み、構真柱の下端側を掘削孔内の深部に形成される(地中に設けられる)基礎杭に埋設させて一体化する。そして、掘削孔を土砂で埋め戻した後に、施工の進捗に応じ地盤を根切りしながら上方から下方に向けて本設の鉄骨梁を構真柱に順次取り付けて地下階を構築してゆく。   2. Description of the Related Art Conventionally, as a method for constructing a building including an underground floor such as a building, a counter-spinning method in which a building is constructed in order from an upper floor to an underground floor is frequently used. In this reverse casting method, excavation holes are formed in the ground, and built-up columns such as H-shaped steel, cross-shaped steel, and filled steel pipe concrete (CFT) that is integrated by filling concrete into the steel pipe are built. The lower end of the structural column is buried in a foundation pile (provided in the ground) formed deep in the excavation hole and integrated. After the excavation hole is backfilled with earth and sand, the basement floor is constructed by sequentially attaching the main steel beams to the construction column from the top to the bottom while rooting the ground according to the progress of construction.

また、このような逆打ち工法は、一般に、掘削孔内に鉄筋篭を挿入設置し、鉄筋篭の内部に下端側を挿入するように構真柱を建て込んだ段階で、トレミー管等でコンクリートを打設して基礎杭(鉄筋コンクリート杭)を形成し、構真柱と基礎杭を一体形成するいわゆる先建て工法と、掘削孔内に鉄筋篭を挿入設置した段階でコンクリートを打設し、打設したコンクリートが硬化するまでの間に構真柱を建て込んでこの構真柱の下端側をコンクリートに押入れ埋設させることで互いを一体形成するいわゆる後建て工法とに分類されている。   In addition, such a reverse driving method is generally performed by inserting a reinforcing bar into the excavation hole and building a concrete column so that the lower end is inserted into the inside of the reinforcing bar. To form a foundation pile (reinforced concrete pile), and the so-called pre-built method in which the structural pillar and the foundation pile are integrally formed, and the concrete is placed at the stage where the reinforcing rod is inserted and installed in the excavation hole. It is categorized as a so-called post-construction method in which a built-up column is built before the installed concrete hardens and the lower end side of the built-up column is pushed into the concrete and embedded in the concrete.

また、例えば図13及び図14に示すように、構真柱1の基礎杭2に埋設される下端1a側には、構真柱1の軸線O1直交方向外側に突出するように複数のスタッド3が取り付けられ、一般に、逆打ち工法の設計においては、構真柱1に作用する軸力Nの基礎杭2への伝達を構真柱1の垂直面1bと基礎杭2のコンクリートの付着、及び構真柱1に取り付けたスタッド3のせん断抵抗で行なうものとしている(例えば、特許文献1参照)。
特開2002−356863号公報
For example, as shown in FIG. 13 and FIG. 14, a plurality of studs 3 are projected on the lower end 1 a side embedded in the foundation pile 2 of the true pillar 1 so as to protrude outward in the direction orthogonal to the axis O 1 of the true pillar 1. In general, in the design of the reverse driving method, the axial force N acting on the structural pillar 1 is transmitted to the foundation pile 2 by attaching the concrete between the vertical surface 1b of the structural pillar 1 and the foundation pile 2; This is performed by the shear resistance of the stud 3 attached to the true pillar 1 (see, for example, Patent Document 1).
JP 2002-356863 A

しかしながら、上記のように構真柱1と基礎杭2の軸力伝達が構真柱1の垂直面1bと基礎杭2のコンクリートの付着やスタッド3のせん断抵抗で行なわれるものとして扱うことにより、基礎杭2への構真柱1の埋設長t1(ひいては構真柱1自体の長さ)を長くする必要が生じ、逆打ち工法のコスト高を招くという問題があった。   However, as described above, the axial force transmission between the structural pillar 1 and the foundation pile 2 is handled by the vertical surface 1b of the structural pillar 1 and the concrete adhesion of the foundation pile 2 and the shear resistance of the stud 3, There is a problem in that it is necessary to increase the embedment length t1 of the structural pillar 1 in the foundation pile 2 (and hence the length of the structural pillar 1 itself), which increases the cost of the reverse driving method.

すなわち、基礎杭2のコンクリートに埋め込まれたスタッド3は、構真柱1と基礎杭2の付着で軸力Nを伝達している間、せん断抵抗が発現せず、構真柱1と基礎杭2の付着が切れて構真柱1が沈下するとともにせん断抵抗が発現することになる。そして、このように付着とせん断抵抗を重ね合わせて軸力Nを伝達できないために、付着を大きくとるように基礎杭2への構真柱1の埋設長t1を長くする必要が生じたり、付着が切れた後の軸力伝達を好適に行えるようにスタッド3の設置数が多くなって(特に直径が16mmを超えるスタッド3を現場打ちすることが困難であるためにスタッド3の設置数が多くなって)、基礎杭2への構真柱1の埋設長t1が長く必要になるという問題があった。   That is, the stud 3 embedded in the concrete of the foundation pile 2 does not exhibit shear resistance while transmitting the axial force N by the adhesion of the construction column 1 and the foundation pile 2, and the construction column 1 and the foundation pile. The adhesion of 2 is cut off, and the true pillar 1 sinks and the shear resistance is developed. Since the axial force N cannot be transmitted by superimposing adhesion and shear resistance in this way, it is necessary to lengthen the buried length t1 of the construction pillar 1 to the foundation pile 2 so as to increase adhesion, or adhesion The number of studs 3 is increased so that the axial force can be suitably transmitted after the breakage occurs (especially, it is difficult to hit the stud 3 having a diameter exceeding 16 mm in the field, so the number of studs 3 is large. There has been a problem that the burying length t1 of the construction pillar 1 to the foundation pile 2 is required to be long.

一方、先建て工法においては、構真柱1の建て込みを行う際、一般に構真柱1と掘削孔4(掘削孔壁)の間にジャッキを設置し、このジャッキによって構真柱1の垂直精度を確保するようにしているが、ジャッキが地盤Gの強度が弱い地表面G1に近いところに設置されるため、十分に構真柱1をジャッキで保持できなかったり、トレミー管でコンクリートを打設した際にコンクリートで構真柱1の下端1a側が押され、構真柱1に傾斜や湾曲などが発生し、構真柱1の垂直精度が確保できない場合があった。   On the other hand, in the prefabricated construction method, when the built-up column 1 is installed, a jack is generally installed between the built-up column 1 and the drilling hole 4 (excavation hole wall), and the vertical of the built-up column 1 by this jack. Although the accuracy is ensured, the jack is installed close to the ground surface G1 where the strength of the ground G is weak. When installed, the lower end 1a side of the construction pillar 1 is pushed with concrete, and the construction pillar 1 may be inclined or curved, and the vertical accuracy of the construction pillar 1 may not be ensured.

また、後建て工法においても、先行して打設したコンクリートへの構真柱1の挿入時に、抵抗のアンバランスによって構真柱1が掘削孔4の中心からずれることがあり、やはり構真柱1の垂直精度が確保できない場合があった。   Also, in the post-construction method, when the construction column 1 is inserted into the previously placed concrete, the construction column 1 may be displaced from the center of the excavation hole 4 due to unbalanced resistance. In some cases, the vertical accuracy of 1 could not be secured.

本発明は、上記事情に鑑み、構真柱の基礎杭への埋設長を短くして低コスト化を図ることが可能になり、また、精度よく構真柱を容易に設置することが可能な構真柱と基礎杭の軸力伝達構造及び構真柱の施工方法を提供することを目的とする。   In view of the above circumstances, the present invention makes it possible to reduce the embedment length of a structural pillar in a foundation pile and reduce the cost, and to easily install the structural pillar with high accuracy. The purpose is to provide an axial force transmission structure of the structural pillar and foundation pile and a construction method of the structural pillar.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の構真柱と基礎杭の軸力伝達構造は、地中に設けられる基礎杭と構真柱とを一体に接続するとともに前記構真柱に作用した軸力を前記基礎杭に伝達する構真柱と基礎杭の軸力伝達構造であって、前記基礎杭に埋設される前記構真柱の下端側に設けられて前記構真柱に作用した軸力を支圧で前記基礎杭に伝達する支圧部を備えることを特徴とする。   The axial force transmission structure of the structural pillar and foundation pile of the present invention integrally connects the foundation pile and the structural pillar provided in the ground, and transmits the axial force acting on the structural pillar to the foundation pile. An axial force transmission structure between a structural pillar and a foundation pile, which is provided on a lower end side of the structural pillar embedded in the foundation pile and acts on the foundation pile by supporting the axial force acting on the structural pillar. It is characterized by having a pressure bearing part to transmit.

この発明においては、構真柱と基礎杭の軸力伝達を支圧部による支圧で行うことによって、従来の構真柱と基礎杭の付着によって軸力を伝達するための付着面積と比較し、支圧部の支圧面積を小さくして軸力を伝達することが可能になる。これにより、構真柱の基礎杭への埋設長を短くすることが可能になる。   In this invention, the axial force transmission between the structural pillar and the foundation pile is performed by the bearing pressure, so that it is compared with the adhesion area for transmitting the axial force by the adhesion between the structural pillar and the foundation pile. The axial force can be transmitted by reducing the bearing area of the bearing section. Thereby, it becomes possible to shorten the embedding length to the foundation pile of a structural pillar.

また、本発明の構真柱と基礎杭の軸力伝達構造においては、前記構真柱が断面略H型あるいは断面略十字型に形成されており、前記支圧部は、前記構真柱の軸線略直交方向に延びる支圧板で構成されていることが望ましい。   Moreover, in the axial force transmission structure of the structural pillar and the foundation pile according to the present invention, the structural pillar is formed in a substantially H-shaped cross section or a substantially cross-shaped cross section, and the bearing portion is formed of the structural pillar. It is desirable that the bearing plate be configured to extend in a direction substantially orthogonal to the axis.

この発明においては、断面略H型あるいは断面略十字型に形成された構真柱に対し、この構真柱の軸線略直交方向に延びるように支圧板を取り付けて支圧部を構成でき、このように支圧板を設けることで、確実に構真柱に作用した軸力を支圧力で基礎杭に伝達することができる。また、このとき、小さな支圧面積で確実に軸力を伝達できるため、支圧板を小さく形成することも可能になり、このような小さな支圧板を設けることで、例えば掘削孔に先行して打設したコンクリートに構真柱を挿入する際(すなわち後建て工法に適用する場合)に、スライムなどの脆弱部や空気を巻き込むことを防止でき、支圧板をコンクリートに密着させて、確実に支圧で軸力伝達を行えるように構真柱を設置することが可能になる。   In the present invention, a supporting column can be configured by attaching a supporting plate so as to extend in a direction substantially orthogonal to the axis of the structured column with respect to the structured column formed in a substantially H-shaped section or a substantially cross-shaped section. By providing the bearing plate in this way, it is possible to reliably transmit the axial force acting on the structural column to the foundation pile with the bearing pressure. At this time, since the axial force can be reliably transmitted with a small bearing area, it is possible to make the bearing plate small, and by providing such a small bearing plate, for example, striking ahead of the excavation hole. When inserting the structural pillar into the installed concrete (that is, when applying to the post-construction method), it is possible to prevent fragile parts such as slime and air from getting caught, and the bearing plate is brought into close contact with the concrete to ensure bearing It is possible to install a construction pillar so that axial force can be transmitted with.

さらに、本発明の構真柱と基礎杭の軸力伝達構造において、前記支圧板には、前記構真柱の軸線方向の上下に貫通する貫通孔が設けられていることがより望ましい。   Furthermore, in the axial force transmission structure of the frame pillar and foundation pile according to the present invention, it is more preferable that the bearing plate is provided with a through-hole penetrating vertically in the axial direction of the frame pillar.

この発明においては、支圧板に貫通孔を設けることによって、例えば掘削孔に先行して打設したコンクリートに構真柱を挿入する際に、コンクリートをこの貫通孔を通じて下方から上方に流通させることができる。これにより、支圧板の下方にスライムなどの脆弱部や空気が巻き込まれることを確実に防止でき、支圧板をコンクリートに密着させて、確実に支圧で軸力伝達を行えるように構真柱を設置することが可能になる。   In the present invention, by providing a through-hole in the bearing plate, for example, when inserting a structural pillar into concrete placed prior to the excavation hole, the concrete can be circulated from below to above through the through-hole. it can. This ensures that fragile parts such as slime and air are prevented from getting caught under the support plate, and the support column is brought into close contact with the concrete so that the axial force can be transmitted reliably. It becomes possible to install.

また、本発明の構真柱と基礎杭の軸力伝達構造においては、前記構真柱が有底筒状の鋼管を備えて形成されており、前記支圧部は、前記構真柱の下端を形成する前記鋼管の底面部で構成され、該底面部が前記構真柱の軸線中心に径方向外側に向かうに従い漸次上方に向けて傾斜するように形成されていてもよい。   Further, in the axial force transmission structure of the structural pillar and the foundation pile according to the present invention, the structural pillar is formed with a bottomed cylindrical steel pipe, and the bearing portion is a lower end of the structural pillar. The bottom surface portion of the steel pipe forming the bottom surface portion may be formed so as to be gradually inclined upward toward the radially outer side with respect to the axial center of the stem column.

この発明においては、例えば有底筒状の鋼管内にコンクリートを充填して一体化したCFTで構真柱が形成されているような場合においても、鋼管の底面部(支圧部)によって構真柱に作用する軸力を支圧で基礎杭に伝達することができる。また、このとき、底面部が構真柱の軸線中心に径方向外側に向かうに従い漸次上方に向けて傾斜するように形成されていることによって、例えば掘削孔に先行して打設したコンクリートに構真柱を挿入する際に、コンクリートをこの底面部に沿って外側に押し退けて、構真柱を設置することができる。これにより、底面部(支圧部)の下方にスライムなどの脆弱部や空気が巻き込まれることを確実に防止でき、底面部をコンクリートに密着させて、確実に支圧で軸力伝達を行えるように構真柱を設置することが可能になる。   In the present invention, for example, even when the construction column is formed of a CFT integrated with concrete in a bottomed cylindrical steel pipe, the construction is performed by the bottom surface portion (supporting section) of the steel pipe. The axial force acting on the column can be transmitted to the foundation pile by supporting pressure. Further, at this time, the bottom surface portion is formed so as to be gradually inclined upward toward the radial center at the axial center of the structural pillar. When inserting the true pillar, the concrete pillar can be installed by pushing the concrete outward along the bottom surface. As a result, it is possible to reliably prevent fragile parts such as slime and air from getting caught under the bottom part (supporting part), and to make sure that the bottom part is in close contact with the concrete so that axial force can be transmitted by supporting pressure. It is possible to install a true pillar in

さらに、本発明の構真柱と基礎杭の軸力伝達構造においては、前記基礎杭が鉄筋篭とコンクリートからなる鉄筋コンクリート杭とされており、前記鉄筋篭の少なくとも杭頭側に位置する部分に設けられて杭頭補強を施すための二重のフープ筋を含んで構成されていることがより望ましい。   Furthermore, in the axial force transmission structure of the structural pillar and the foundation pile according to the present invention, the foundation pile is a reinforced concrete pile made of reinforced concrete and concrete, and is provided at a portion located at least on the pile head side of the reinforced concrete. More preferably, it is configured to include a double hoop for applying pile head reinforcement.

この発明においては、構真柱の基礎杭への埋設長が短くなることで基礎杭の杭頭側が構真柱からの曲げに抵抗できなくなるおそれが生じるが、鉄筋篭の少なくとも杭頭側に位置する部分に設けられて杭頭補強を施すための二重のフープ筋を含んで構成されていることで、構真柱の埋設長を短くした場合においても、基礎杭の杭頭側が構真柱からの曲げに抵抗できなくなるおそれを解消し、好適に構真柱を基礎杭に接続して支持させることが可能になる。   In this invention, there is a possibility that the pile head side of the foundation pile will not be able to resist bending from the construction column by shortening the embedding length of the foundation pillar to the foundation pile, but it is located at least on the pile head side of the reinforcing bar The pile head side of the foundation pile is still in the built-up column even when the buried column length of the built-up column is shortened by including a double hoop reinforcement for the pile head reinforcement provided at the part to be It is possible to eliminate the possibility of being unable to resist bending from the side, and to suitably connect and support the frame column to the foundation pile.

また、本発明の構真柱と基礎杭の軸力伝達構造においては、前記基礎杭が鉄筋篭とコンクリートからなる鉄筋コンクリート杭とされており、少なくとも杭頭側に位置する部分に設けられて杭頭補強を施すための補強鋼管を含んで構成されていてもよい。   Further, in the axial force transmission structure of the structural pillar and the foundation pile according to the present invention, the foundation pile is a reinforced concrete pile made of reinforced concrete and concrete, and is provided at least in a portion located on the pile head side. You may be comprised including the reinforcement steel pipe for giving reinforcement.

この発明においては、少なくとも杭頭側に位置する部分に設けられて杭頭補強を施すための補強鋼管を含んで構成されていることで、構真柱の埋設長を短くした場合においても、基礎杭の杭頭側が構真柱からの曲げに抵抗できなくなるおそれを解消し、好適に構真柱を基礎杭に接続して支持させることが可能になる。   In this invention, even if the burial length of the structural pillar is shortened by including a reinforced steel pipe that is provided at least in the portion located on the pile head side and is used to reinforce the pile head, This eliminates the possibility that the pile head side of the pile cannot resist bending from the true pillar, and it is possible to suitably connect and support the true pillar to the foundation pile.

さらに、本発明の構真柱と基礎杭の軸力伝達構造においては、前記構真柱に、前記鉄筋篭と、該鉄筋篭及び前記構真柱の下端側を囲繞するように設けた前記補強鋼管とが連結部材を介して一体に取り付けられていることがより望ましい。   Furthermore, in the axial force transmission structure of the frame pillar and foundation pile of the present invention, the reinforcement provided on the frame column so as to surround the reinforcing bar rod and the lower end side of the reinforcing rod rod and the frame column. It is more desirable that the steel pipe is integrally attached via a connecting member.

この発明においては、構真柱の埋設長を短くした場合においても、補強鋼管によって好適に構真柱を基礎杭に接続して支持させることが可能になるとともに、地盤を掘削して掘削孔を形成し、この掘削孔内に構真柱を建て込む際に、掘削孔内に配設されたケーシングで補強鋼管を案内させながら建て込むことが可能になり、補強鋼管で垂直精度を確保しながら構真柱を建て込むことが可能になる。これにより、基礎杭の杭頭補強のために設けた補強鋼管を構真柱の垂直精度の確保に併用することが可能になる。   In this invention, even when the burial length of the shin column is shortened, the reinforced steel pipe can be suitably connected to the foundation pile and supported by the reinforcing steel pipe, and the excavation hole is formed by excavating the ground. It is possible to form and build a structural pillar in this drilling hole while guiding the reinforcing steel pipe with the casing arranged in the drilling hole, while ensuring vertical accuracy with the reinforcing steel pipe It becomes possible to build a true pillar. Thereby, it becomes possible to use together the reinforcement steel pipe provided for the pile head reinforcement of a foundation pile for ensuring the vertical accuracy of a structural pillar.

本発明の構真柱の施工方法は、上層階から地下階の順に建築物を構築してゆくための構真柱の施工方法であって、地盤を掘削して掘削孔を形成し、上記の鉄筋篭と補強鋼管とが連結部材を介して一体に取り付けられた構真柱を、前記掘削孔内に配設されたケーシングで前記補強鋼管を案内させながら前記掘削孔内に建て込むようにしたことを特徴とする。   The construction method of the construction pillar of the present invention is a construction method of the construction pillar for constructing a building in order from the upper floor to the underground floor, and excavates the ground to form a drilling hole, A structural pillar in which a reinforcing bar and a reinforcing steel pipe are integrally attached via a connecting member is built in the excavation hole while guiding the reinforcing steel pipe with a casing provided in the excavation hole. It is characterized by that.

この発明においては、支圧部を備えることによって構真柱の基礎杭への埋設長を短くすることができ、また、補強鋼管によって構真柱を設置した状態で基礎杭の杭頭側に補強を施すことができる。
また、地盤を掘削して掘削孔を形成し、この掘削孔内に構真柱を建て込む際に、掘削孔内に配設されたケーシングで補強鋼管を案内させながら建て込むことで、補強鋼管で垂直精度を確保しながら構真柱を建て込むことが可能になり、基礎杭の杭頭補強のために設けた補強鋼管を構真柱の垂直精度の確保に併用することが可能になる。
In this invention, by providing the bearing section, it is possible to shorten the embedded length of the structural pillar to the foundation pile, and to reinforce the pile head side of the foundation pile in a state where the structural pillar is installed by the reinforcing steel pipe. Can be applied.
In addition, when excavating the ground to form a drilling hole, and building a structural pillar in the drilling hole, the reinforcing steel pipe is built by guiding the reinforcing steel pipe with a casing disposed in the drilling hole. This makes it possible to build a structural column while ensuring vertical accuracy, and it is possible to use a reinforced steel pipe provided to reinforce the pile head of a foundation pile in order to ensure vertical accuracy of the structural column.

本発明の構真柱と基礎杭の軸力伝達構造及び構真柱の施工方法によれば、構真柱の基礎杭への埋設長を短くして低コスト化を図ることが可能になる。また、精度よく構真柱を容易に設置することが可能になる。   According to the axial force transmission structure of the structural pillar and the foundation pile and the construction method of the structural pillar of the present invention, it is possible to reduce the cost by shortening the embedding length of the structural pillar to the foundation pile. In addition, it is possible to easily install the true pillar with high accuracy.

以下、図1及び図2を参照し、本発明の第1実施形態に係る構真柱と基礎杭の軸力伝達構造について説明する。本実施形態は、建築物を上層階から地下階へと構築してゆく逆打ち工法に用いる構真柱と基礎杭の軸力伝達構造に関するものである。   Hereinafter, with reference to FIG.1 and FIG.2, the axial force transmission structure of the construction pillar and foundation pile which concerns on 1st Embodiment of this invention is demonstrated. The present embodiment relates to an axial force transmission structure of a structural pillar and a foundation pile used in a reverse driving method for constructing a building from an upper floor to an underground floor.

本実施形態の構真柱10は、図1及び図2に示すように(図13及び図14に示した従来の構真柱1と同様に)、断面略十字型に形成されており、断面十字型に形成された構真柱本体(ウェブ10a)と、ウェブ10aの4つの端部にそれぞれ設けられたフランジ10bとを備えて構成されている。また、各フランジ10bは、ウェブ10aの4つの端部にそれぞれ直交して取り付けられている。   As shown in FIGS. 1 and 2 (similar to the conventional prism 1 shown in FIGS. 13 and 14), the frame pillar 10 of the present embodiment is formed in a substantially cross-shaped cross section. The frame is composed of a cross pillar-shaped main body (web 10a) and flanges 10b provided at four ends of the web 10a. In addition, each flange 10b is attached orthogonally to the four end portions of the web 10a.

また、構真柱10には、地中(地盤G内)に設けられる鉄筋コンクリート杭の基礎杭2に埋設状態で配置される下端10c側に、基礎杭2と構真柱10を一体に接続するとともに構真柱10に作用した軸力Nを基礎杭2に伝達するための軸力伝達構造(構真柱と基礎杭の軸力伝達構造)11が設けられている。そして、本実施形態において、軸力伝達構造11はスタッド3と支圧板(支圧部)12とで構成されている。   Moreover, the foundation pile 2 and the construction pillar 10 are integrally connected to the construction pillar 10 at the lower end 10c side arranged in the foundation pile 2 of the reinforced concrete pile provided in the ground (in the ground G). In addition, an axial force transmission structure (an axial force transmission structure of the structural pillar and the foundation pile) 11 for transmitting the axial force N acting on the structural pillar 10 to the foundation pile 2 is provided. And in this embodiment, the axial force transmission structure 11 is comprised with the stud 3 and the bearing plate (supporting part) 12. As shown in FIG.

スタッド3は、各フランジ10bの外面(垂直面)に一端が接続され、構真柱10の軸線O1直交方向外側に突出して設けられるとともに、フランジ10bの外面に沿う水平方向と構真柱10の軸線O1方向に所定の間隔をあけて複数並設されている。   One end of the stud 3 is connected to the outer surface (vertical surface) of each flange 10b, and is provided to protrude outward in the direction orthogonal to the axis O1 of the built-up column 10, and the horizontal direction along the outer surface of the flange 10b and the built-up column 10 A plurality are arranged in parallel with a predetermined interval in the direction of the axis O1.

一方、本実施形態の支圧板12は、矩形平板状に形成されており、構真柱10の下端10c側のウェブ10aの一面及び他面にそれぞれ一端を接続し、一面及び他面に直交する水平方向に突設(構真柱10の軸線O1直交方向に延設)されるとともに、ウェブ10aの一面及び他面にそれぞれ沿って配設されている。すなわち、本実施形態においては、図2に示すように、複数の支圧板12がウェブ10aに取り付けられて、平面視十字状に配設されている。   On the other hand, the bearing plate 12 of the present embodiment is formed in a rectangular flat plate shape, one end is connected to one surface and the other surface of the web 10a on the lower end 10c side of the structural pillar 10, and is orthogonal to the one surface and the other surface. It protrudes in the horizontal direction (extends in the direction perpendicular to the axis O1 of the structural pillar 10) and is disposed along one surface and the other surface of the web 10a. That is, in the present embodiment, as shown in FIG. 2, a plurality of bearing plates 12 are attached to the web 10a and arranged in a cross shape in plan view.

ついで、上記の構真柱10を設置する方法及び構真柱10に作用する軸力Nを基礎杭2に伝達する方法について説明するとともに、本実施形態の構真柱と基礎杭の軸力伝達構造11の作用及び効果について説明する。   Next, a method for installing the above-described structural pillar 10 and a method for transmitting the axial force N acting on the structural pillar 10 to the foundation pile 2 will be described, and the axial force transmission between the structural pillar and the foundation pile according to the present embodiment. The operation and effect of the structure 11 will be described.

本実施形態の構真柱10を施工する際には、はじめに、地盤Gを掘削して掘削孔4を形成し、この掘削孔4内に基礎杭2の図示せぬ鉄筋篭を挿入設置する。ついで、トレミー管を掘削孔4内に挿入し、鉄筋篭が埋設されるように掘削孔4の深部にコンクリートを打設する。ついで、地表面G1に設置したガイドを用いて、打設したコンクリートが硬化するまでの間に、構真柱10を掘削孔4内に挿入するとともに構真柱10の下端10c側をコンクリートに押し込み、軸力伝達構造11がコンクリートに埋設されるように構真柱10を設置する。   When constructing the structural pillar 10 of this embodiment, first, the ground G is excavated to form the excavation hole 4, and a reinforcing bar rod (not shown) of the foundation pile 2 is inserted and installed in the excavation hole 4. Next, the tremy pipe is inserted into the excavation hole 4 and concrete is placed in the deep part of the excavation hole 4 so that the reinforcing bar is buried. Next, using the guide installed on the ground surface G1, until the cast concrete is hardened, the structural pillar 10 is inserted into the excavation hole 4 and the lower end 10c side of the structural pillar 10 is pushed into the concrete. The structural pillar 10 is installed so that the axial force transmission structure 11 is embedded in the concrete.

このとき、支圧板12が水平方向に突設されているため、コンクリートへの挿入時にこの支圧板12によってスライムなどの脆弱部や空気などが巻き込まれてしまうおそれがある。しかしながら、本実施形態においては、複数の支圧板12を平面視十字状に配設して、支圧板12を小さく形成することで、スライムなどの脆弱部や空気などの巻き込みが生じないようにしている。これにより、軸力伝達構造11をコンクリートと鉄筋篭からなる基礎杭2に挿入するとともに、支圧板12が確実にコンクリートに密着した状態で埋設される。   At this time, since the bearing plate 12 protrudes in the horizontal direction, there is a possibility that weak portions such as slime or air may be caught by the bearing plate 12 when inserted into the concrete. However, in the present embodiment, the plurality of bearing plates 12 are arranged in a cross shape in plan view, and the bearing plate 12 is formed to be small so that a fragile portion such as slime or air is not involved. Yes. Thereby, while inserting the axial force transmission structure 11 in the foundation pile 2 which consists of concrete and a reinforcing bar, the bearing plate 12 is embed | buried in the state closely_contact | adhered to concrete.

そして、このように設置した構真柱10は、コンクリートが硬化して基礎杭2が形成されるとともに、このコンクリートの内部に埋設されたスタッド3及び支圧板12の軸力伝達構造11によって基礎杭2と一体に接続される。ついで、基礎杭2と構真柱10が一体に接続した段階で、掘削孔4を土砂で埋め戻し、施工の進捗に応じ地盤Gを根切りしながら上方から下方に向けて本設の鉄骨梁を構真柱10に順次取り付けて地下階の構築が行われる。   And the construction pillar 10 installed in this way is the foundation pile by the concrete hardening and the foundation pile 2 being formed, and the axial force transmission structure 11 of the stud 3 and the bearing plate 12 embedded in the concrete. 2 is integrally connected. Next, when the foundation pile 2 and the structural pillar 10 are integrally connected, the excavation hole 4 is backfilled with earth and sand, and the steel beam is installed from above to below while rooting the ground G according to the progress of construction. The basement floor is constructed by sequentially attaching to the construction pillar 10.

ここで、地下階の構築とともに構真柱10に作用する軸力Nは、軸力伝達構造11によって基礎杭2に伝達される。このとき、図13及び図14に示した従来の構真柱1の外面(垂直面1b)とコンクリートの付着、及びスタッド3のせん断抵抗で軸力Nを基礎杭2に伝達する場合には、付着とせん断抵抗を重ね合わせて軸力Nを伝達できないために、付着を大きくとるようにしたり、スタッド3の設置数が多くなって、構真柱1の基礎杭2への埋設長t1が長く必要になり、コスト高を招くという問題があった。   Here, the axial force N acting on the structural pillar 10 together with the construction of the underground floor is transmitted to the foundation pile 2 by the axial force transmission structure 11. At this time, when the axial force N is transmitted to the foundation pile 2 by the adhesion of the outer surface (vertical surface 1b) of the conventional structural pillar 1 shown in FIGS. 13 and 14 and the concrete, and the shear resistance of the stud 3, Since the axial force N cannot be transmitted by superimposing adhesion and shear resistance, the adhesion is increased, the number of studs 3 is increased, and the embedding length t1 of the structural pillar 1 in the foundation pile 2 is long. There was a problem that it was necessary and incurred high costs.

これに対し、本実施形態の軸力伝達構造11においては、構真柱10に作用した軸力Nが支圧板12による支圧で基礎杭2に伝達されることになる。そして、このように支圧で軸力Nを伝達させる場合には、例えば支圧許容応力度と従来の付着による付着許容応力度の比が30:1となるため、支圧板12の必要面積(支圧板12の下面の支圧面積)が小さくて済み、支圧板12を小さく形成しても確実に軸力Nが支圧板12によって基礎杭2に伝達される。また、このように支圧板12で軸力Nを伝達させる場合には、構真柱10の沈下量が少なく抑えられ、さらに、構真柱10に沈下が生じ、スタッド3にせん断抵抗が発現した際に、このせん断抵抗に支圧板12の支圧を重ね合わせて軸力Nが伝達される。このため、図1に示すように、本実施形態の軸力伝達構造11によれば、スタッド3の設置数を図13に示した従来の構真柱1よりも少なくすることができ、且つ付着に依存しないため、構真柱10の埋設長t2を従来の構真柱1の埋設長t1よりも短くしても、ひいては構真柱10の長さを短くしても、軸力Nが確実に基礎杭2に伝達されて支持される。   On the other hand, in the axial force transmission structure 11 of the present embodiment, the axial force N applied to the structural pillar 10 is transmitted to the foundation pile 2 by the support pressure by the support pressure plate 12. When the axial force N is transmitted by the bearing pressure in this way, for example, the ratio of the allowable bearing stress and the allowable adhesion stress due to the conventional adhesion is 30: 1. Therefore, the required area of the bearing plate 12 ( The bearing area on the lower surface of the bearing plate 12 is small, and even if the bearing plate 12 is formed small, the axial force N is reliably transmitted to the foundation pile 2 by the bearing plate 12. Further, when the axial force N is transmitted by the bearing plate 12 in this way, the amount of settlement of the structural pillar 10 is suppressed, and further, the structural pillar 10 is subsidized, and the stud 3 exhibits shear resistance. At this time, the axial force N is transmitted by superimposing the support pressure of the support plate 12 on this shear resistance. For this reason, as shown in FIG. 1, according to the axial force transmission structure 11 of this embodiment, the number of studs 3 can be set smaller than that of the conventional structural pillar 1 shown in FIG. Therefore, even if the embedded length t2 of the structural pillar 10 is shorter than the embedded length t1 of the conventional structural pillar 1, even if the length of the structural pillar 10 is shortened, the axial force N is ensured. Is transmitted to and supported by the foundation pile 2.

したがって、本実施形態の構真柱10と基礎杭2の軸力伝達構造11においては、断面略十字型の構真柱10に支圧板12を設けることで、確実に構真柱10に作用した軸力Nを支圧力で基礎杭2に伝達することができる。また、従来の付着によって軸力Nを伝達するための付着面積と比較し、支圧板12の支圧面積を小さくしても確実に軸力Nを伝達することが可能になる。さらに、このように支圧で軸力Nを伝達することで、スタッド3のせん断抵抗と重ね合わせることができる。これにより、スタッド3の設置数を減らし、構真柱10の基礎杭2への埋設長t2及び構真柱10自体の長さを短くすることが可能になり、低コスト化を図ることが可能になる。   Therefore, in the structural pillar 10 and the axial force transmission structure 11 of the foundation pile 2 according to the present embodiment, by providing the bearing plate 12 on the structural pillar 10 having a substantially cross-sectional cross section, it acts on the structural pillar 10 with certainty. The axial force N can be transmitted to the foundation pile 2 with a support pressure. In addition, the axial force N can be reliably transmitted even if the bearing area of the bearing plate 12 is reduced as compared with the adhesion area for transmitting the axial force N by conventional adhesion. Furthermore, by transmitting the axial force N by the bearing pressure in this way, it can be superposed on the shear resistance of the stud 3. As a result, the number of studs 3 can be reduced, the length t2 of the built-up column 10 embedded in the foundation pile 2 and the length of the built-up column 10 itself can be shortened, and the cost can be reduced. become.

また、支圧板12を小さく形成しても軸力Nを確実に伝達できるため、掘削孔4に先行して打設したコンクリートに構真柱10を挿入する際(すなわち後建て工法に適用する場合)に、支圧板12を設けることでスライムなどの脆弱部や空気を巻き込むことを防止でき、支圧板12を確実にコンクリートに密着させ、確実に支圧で軸力伝達を行えるように構真柱10を設置することが可能になる。   In addition, since the axial force N can be reliably transmitted even if the bearing plate 12 is formed small, when the structural pillar 10 is inserted into the concrete cast prior to the excavation hole 4 (that is, when applied to the post-construction method). ), It is possible to prevent fragile parts such as slime and air from being caught, and to make sure that the support plate 12 is in close contact with the concrete and that the axial force can be transmitted with the support pressure. 10 can be installed.

以上、本発明に係る構真柱と基礎杭の軸力伝達構造の第1実施形態について説明したが、本発明は上記の第1実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、本実施形態では、支圧板12を断面略十字型の構真柱10に設け、この構真柱10に作用した軸力Nを支圧板12で基礎杭2に伝達するものとしたが、支圧板12は、断面略H型の構真柱に設けられてもよく、この場合、例えば断面略H型の構真柱のウェブに支圧板12を取り付けることによって本実施形態と同様の効果を得ることができる。   As mentioned above, although 1st Embodiment of the axial force transmission structure of the construction pillar and foundation pile which concerns on this invention was described, this invention is not limited to said 1st Embodiment, The range which does not deviate from the meaning It can be changed as appropriate. For example, in the present embodiment, the bearing plate 12 is provided on the structural pillar 10 having a substantially cross-shaped cross section, and the axial force N acting on the structural pillar 10 is transmitted to the foundation pile 2 by the bearing plate 12. The bearing plate 12 may be provided on a prism with a substantially H-shaped cross section. In this case, for example, by attaching the bearing plate 12 to a web having a substantially H-shaped cross-section, the same effect as that of the present embodiment can be obtained. Obtainable.

また、本実施形態では、矩形平板状の支圧板12が構真柱10の軸線O1直交方向に延設するように構真柱10に取り付けられているものとしたが、支圧板12は、構真柱10の軸線O1に略直交する方向に延設されていればよく、例えば支圧板12の下面が構真柱10の軸線O1を中心に径方向外側に向かうに従い漸次上方に傾斜するように支圧板12を形成したり、設置してもよい。この場合には、構真柱10を先行して打設したコンクリートに押し込む際に、支圧板12の下面が傾斜していることでコンクリートを下面に沿って外側に押し出しながら構真柱10の下端10c側をコンクリートに埋設させることができ、これにより、本実施形態よりもさらに確実にスライムなどの脆弱部や空気などの巻き込みが生じないようにすることができ、支圧板12をより確実にコンクリートに密着した好適な状態で埋設することが可能になる。   Further, in the present embodiment, the rectangular plate-shaped bearing plate 12 is attached to the frame column 10 so as to extend in the direction orthogonal to the axis O1 of the frame column 10. It only needs to extend in a direction substantially perpendicular to the axis O1 of the true column 10, and for example, the lower surface of the bearing plate 12 is inclined upward gradually toward the outer side in the radial direction around the axis O1 of the true column 10. The bearing plate 12 may be formed or installed. In this case, when the structural pillar 10 is pushed into the concrete placed in advance, the lower surface of the bearing plate 12 is inclined so that the concrete is pushed outward along the lower surface while the lower end of the structural pillar 10 is pushed down. 10c side can be embedded in concrete, and thereby, it is possible to prevent the fragile portion such as slime and the entrainment of air and the like from occurring more securely than in the present embodiment, and the bearing plate 12 can be more reliably made concrete. It is possible to embed in a suitable state in close contact with.

また、本実施形態では、構真柱1と基礎杭2の軸力伝達構造11が、スタッド3と支圧板12とで構成されているものとしたが、スタッド3を備えずに軸力伝達構造11が構成されてもよい。   In the present embodiment, the axial force transmission structure 11 of the structural pillar 1 and the foundation pile 2 is composed of the stud 3 and the bearing plate 12. However, the axial force transmission structure without the stud 3 is provided. 11 may be configured.

一方、本実施形態のように、構真柱10の埋設長t2を短くし、且つ支圧板12による支圧で軸力Nを伝達するようにした場合には、基礎杭2に伝達した軸力Nによって基礎杭2の杭頭2a側を外側に広げるような力Fや構真柱10からの大きな曲げ力Mが杭頭2a側に作用することになる。このため、構真柱10からの曲げなどに抵抗できるように基礎杭2の杭頭2a側を補強することが望ましく、例えば図3及び図4に示すように、基礎杭2の鉄筋篭13の少なくとも杭頭2a側に位置する部分に二重のフープ筋14を設け、この二重のフープ筋14を軸力伝達構造11の構成要素に含むようにしてもよい。この場合には、二重のフープ筋14によって杭頭2a側に補強が施されるため、構真柱10の埋設長t2を短くした場合においても、基礎杭2の杭頭2a側が構真柱10からの曲げなどに抵抗できなくなるおそれを解消し、好適に構真柱10を基礎杭2に接続して支持させることが可能になる。なお、図3において、符号15は、地盤Gを根切りした後に構築される建築物の基礎を示している。   On the other hand, when the embedded length t2 of the structural pillar 10 is shortened and the axial force N is transmitted by the bearing pressure by the bearing plate 12 as in this embodiment, the axial force transmitted to the foundation pile 2 is reduced. A force F that spreads the pile head 2a side of the foundation pile 2 outward due to N and a large bending force M from the structural pillar 10 act on the pile head 2a side. For this reason, it is desirable to reinforce the pile head 2a side of the foundation pile 2 so that it can resist bending from the structural pillar 10, for example, as shown in FIG. 3 and FIG. A double hoop muscle 14 may be provided at least in a portion located on the pile head 2 a side, and the double hoop muscle 14 may be included in the component of the axial force transmission structure 11. In this case, since the reinforcement is applied to the pile head 2a side by the double hoop bars 14, the pile head 2a side of the foundation pile 2 is connected to the built-up column even when the embedded length t2 of the built-up column 10 is shortened. This eliminates the possibility of being unable to resist bending from 10, and enables the structural pillar 10 to be suitably connected to and supported by the foundation pile 2. In addition, in FIG. 3, the code | symbol 15 has shown the foundation of the building constructed | assembled after rooting the ground G. FIG.

また、例えば図5及び図6に示すように、基礎杭2の少なくとも杭頭2a側に位置する部分に補強鋼管16を設け、この補強鋼管16を軸力伝達構造11の構成要素に含むようにしてもよい。この場合には、補強鋼管16によって杭頭補強が施されるため、上記の二重のフープ筋14と同様に、構真柱10の埋設長t2を短くした場合においても、基礎杭2の杭頭2a側が構真柱10からの曲げなどに抵抗できなくなるおそれを解消し、好適に構真柱10を基礎杭2に接続して支持させることが可能になる。   Further, for example, as shown in FIGS. 5 and 6, a reinforcing steel pipe 16 is provided at least on a portion located on the pile head 2 a side of the foundation pile 2, and this reinforcing steel pipe 16 is included in the components of the axial force transmission structure 11. Good. In this case, since the pile head reinforcement is applied by the reinforcing steel pipe 16, the pile of the foundation pile 2 can be obtained even when the embedded length t2 of the stem column 10 is shortened, as in the case of the double hoop bars 14. The possibility that the head 2a side cannot resist bending or the like from the true pillar 10 is eliminated, and the true pillar 10 can be suitably connected to the foundation pile 2 and supported.

ついで、図7及び図8を参照し、本発明の第2実施形態に係る構真柱と基礎杭の軸力伝達構造について説明する。本実施形態は、第1実施形態と同様に、断面略十字型の構真柱に支圧板を設けて軸力伝達構造が構成されている。よって、ここでは、第1実施形態に共通する構成に対して同一符号を付し、その詳細についての説明を省略する。   Next, with reference to FIG. 7 and FIG. 8, an axial force transmission structure for the structural pillar and the foundation pile according to the second embodiment of the present invention will be described. In the present embodiment, as in the first embodiment, an axial force transmission structure is configured by providing a supporting pressure plate on a true pillar having a substantially cross-shaped cross section. Therefore, here, the same reference numerals are given to the components common to the first embodiment, and the detailed description thereof is omitted.

本実施形態の軸力伝達構造20の支圧板(支圧部21)は、図7及び図8に示すように、平板状に形成されており、その軸線を構真柱10の軸線O1と同軸上に配し、上面を構真柱10の下端10cに接続して設けられている。また、この支圧板21には、構真柱10の軸線O1を中心とした周方向に複数の貫通孔22が形成されている。本実施形態においては、支圧板21に円形状の4つの貫通孔22が構真柱10の軸線O1方向の上下に貫通して形成され、これら貫通孔22はそれぞれ周方向に隣り合うウェブ10aの間に配されるように設けられている。   As shown in FIGS. 7 and 8, the bearing plate (bearing portion 21) of the axial force transmission structure 20 of the present embodiment is formed in a flat plate shape, and its axis is coaxial with the axis O <b> 1 of the stem 10. The upper surface is provided so as to be connected to the lower end 10c of the stem column 10. In addition, a plurality of through holes 22 are formed in the bearing plate 21 in the circumferential direction around the axis O <b> 1 of the structural pillar 10. In the present embodiment, four circular through holes 22 are formed in the bearing plate 21 so as to penetrate up and down in the direction of the axis O1 of the structural pillar 10, and these through holes 22 are respectively formed on the webs 10a adjacent in the circumferential direction. It is provided to be placed between them.

この構真柱10を施工する際には、第1実施形態と同様に、掘削孔4内に図示せぬ鉄筋篭を挿入設置し、地表面G1に設置したガイドを用い、打設したコンクリートが硬化するまでの間に、構真柱10の下端10c側をコンクリートに押し込み、本実施形態の軸力伝達構造20がコンクリートに埋設されるように構真柱10を設置する。このとき、本実施形態の軸力伝達構造20は、構真柱10の下端10cに取り付けた支圧板21に貫通孔22が設けられているため、構真柱10の建て込み時に、これら貫通孔22を通じて下方のコンクリートが支圧板21の上方に流通する。これにより、スライムなどの脆弱部や空気などが巻き込まれることがなく、確実にコンクリートに密着した状態で支圧板21がコンクリートに埋設される。   When constructing this structural pillar 10, similarly to the first embodiment, a concrete rod placed by using a guide installed on the ground surface G <b> 1 by inserting a reinforcing bar rod (not shown) into the excavation hole 4. Prior to hardening, the lower end 10c side of the structural pillar 10 is pushed into the concrete, and the structural pillar 10 is installed so that the axial force transmission structure 20 of the present embodiment is embedded in the concrete. At this time, in the axial force transmission structure 20 of the present embodiment, since the through-hole 22 is provided in the bearing plate 21 attached to the lower end 10c of the structural pillar 10, when the structural pillar 10 is built, these through-holes are provided. The lower concrete flows through the support plate 21 through 22. Thereby, the brittle part such as slime or the air is not caught, and the bearing plate 21 is embedded in the concrete in a state of being in close contact with the concrete.

そして、このように設置した構真柱10は、第1実施形態と同様に、構真柱10に作用した軸力Nが支圧板21による支圧力として基礎杭2に伝達される。これにより、構真柱10の沈下量が少なく抑えられる。また、構真柱10に僅かに沈下が生じスタッド3にせん断抵抗が発現した際に、このせん断抵抗と支圧板21による支圧を重ね合わせて軸力Nが伝達されるため、構真柱10の埋設長t2を従来の構真柱1の埋設長t1よりも短くしても、ひいては構真柱10の長さを短くしても、軸力Nが確実に基礎杭2に伝達されて支持される。   And the built-up pillar 10 installed in this way transmits the axial force N which acted on the built-up pillar 10 to the foundation pile 2 as a support pressure by the support plate 21 similarly to 1st Embodiment. As a result, the amount of settlement of the structural pillar 10 can be reduced. Further, when the structural pillar 10 slightly sinks and a shear resistance is developed in the stud 3, the axial force N is transmitted by superimposing the shear resistance and the bearing pressure by the bearing plate 21. Even if the embedment length t2 is shorter than the embedment length t1 of the conventional structural pillar 1, even if the structural pillar 10 is shortened, the axial force N is reliably transmitted to the foundation pile 2 for support. Is done.

したがって、本実施形態の構真柱10と基礎杭2の軸力伝達構造20においては、構真柱10に支圧板21を設けることで、確実に構真柱10に作用した軸力Nを支圧力で基礎杭2に伝達することができ、これにより、スタッド3の設置数を減らし、構真柱10の基礎杭2への埋設長t2及び構真柱10自体の長さを短くすることが可能になり、低コスト化を図ることが可能になる。   Therefore, in the axial force transmission structure 20 of the frame pillar 10 and the foundation pile 2 according to the present embodiment, the bearing force plate 21 is provided on the frame pillar 10 so that the axial force N acting on the frame pillar 10 is reliably supported. It can be transmitted to the foundation pile 2 by pressure, thereby reducing the number of studs 3 installed and shortening the length t2 of the built-up column 10 embedded in the foundation pile 2 and the length of the built-up column 10 itself. This makes it possible to reduce the cost.

また、支圧板21に貫通孔22が設けられていることによって、掘削孔4に先行して打設したコンクリートに構真柱10を挿入する際(すなわち後建て工法に適用する場合)に、コンクリートをこの貫通孔22を通じて下方から上方に流通させることができる。これにより、支圧板21の下方にスライムなどの脆弱部や空気が巻き込まれることを確実に防止でき、支圧板21をコンクリートに密着させて、確実に支圧で軸力伝達を行えるように構真柱10を設置することが可能になる。   Further, since the through-hole 22 is provided in the bearing plate 21, the concrete is inserted when the structural pillar 10 is inserted into the concrete cast prior to the excavation hole 4 (that is, when applied to the post-construction method). Can be circulated through the through hole 22 from below to above. As a result, it is possible to reliably prevent fragile portions such as slime and air from being caught under the support plate 21 and to make sure that the support plate 21 is in close contact with the concrete so that the axial force can be transmitted with the support pressure. The pillar 10 can be installed.

なお、本発明は上記の第2実施形態に限定されるものではなく、第1実施形態の適用可能な変更例を含め、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、本実施形態では、支圧板21が平板状に形成されているものとしたが、支圧板21の下面(支圧面)が構真柱10の軸線O1を中心に径方向外側に向かうに従い漸次上方に傾斜するように(例えば支圧板21が皿状に)形成されていてもよい。この場合には、構真柱10を先行して打設したコンクリートに押し込む際に、貫通孔22を備えることに加え、支圧板21の下面が傾斜していることでコンクリートをこの下面に沿って外側に押し出しながら構真柱10の下端10c側をコンクリートに埋設させることができ、これにより、本実施形態よりもさらに確実にスライムなどの脆弱部や空気などの巻き込みが生じないようにすることが可能になる。   In addition, this invention is not limited to said 2nd Embodiment, It can change suitably in the range which does not deviate from the meaning including the change example which can apply 1st Embodiment. For example, in the present embodiment, the bearing plate 21 is formed in a flat plate shape, but gradually, the lower surface (bearing surface) of the bearing plate 21 gradually moves outward in the radial direction around the axis O1 of the structural pillar 10. You may form so that it may incline upwards (for example, the pressure bearing plate 21 is plate shape). In this case, when the structural pillar 10 is pushed into the concrete placed in advance, in addition to providing the through-hole 22, the bottom surface of the bearing plate 21 is inclined so that the concrete extends along this bottom surface. The lower end 10c side of the structural pillar 10 can be embedded in the concrete while extruding to the outside, and thereby, the fragile part such as slime and the entrainment of air and the like can be prevented more reliably than in the present embodiment. It becomes possible.

また、本実施形態では、支圧板21に円形状の貫通孔22が4つ設けられているものとしたが、支圧板21の下方にスライムなどの脆弱部や空気が巻き込まれることを確実に防止できれば、特に貫通孔22の形状や数を限定する必要はない。   Further, in the present embodiment, four circular through-holes 22 are provided in the bearing plate 21, but it is possible to reliably prevent fragile parts such as slime and air from being caught under the bearing plate 21. If possible, it is not particularly necessary to limit the shape and number of the through holes 22.

ついで、図9及び図10を参照し、本発明の第3実施形態に係る構真柱と基礎杭の軸力伝達構造について説明する。なお、ここでは、第1及び第2実施形態に共通する構成に対して同一符号を付し、その詳細についての説明を省略する。   Next, with reference to FIG. 9 and FIG. 10, an axial force transmission structure for a structural pillar and a foundation pile according to a third embodiment of the present invention will be described. Here, the same reference numerals are given to the components common to the first and second embodiments, and the detailed description thereof is omitted.

本実施形態の構真柱30は、図9及び図10に示すように、断面円形に形成された有底筒状の鋼管30aの内部にコンクリート30bを充填して一体化した充填鋼管コンクリート(CFT)とされている。また、本実施形態の軸力伝達構造31は、スタッド3と支圧部とで構成されており、構真柱30の下端30cを形成する鋼管30aの底面部32が支圧部とされている。また、この底面部32は、構真柱30の軸線O1中心に径方向外側に向かうに従い漸次上方に向けて傾斜するように所定の曲率をもって形成されている。   As shown in FIGS. 9 and 10, the structural pillar 30 of this embodiment is a filled steel pipe concrete (CFT) in which a concrete tube 30 b is filled and integrated into a bottomed cylindrical steel pipe 30 a having a circular cross section. ). Moreover, the axial force transmission structure 31 of this embodiment is comprised by the stud 3 and the bearing pressure part, and the bottom face part 32 of the steel pipe 30a which forms the lower end 30c of the stem pillar 30 is made into the bearing pressure part. . In addition, the bottom surface portion 32 is formed with a predetermined curvature so as to be gradually inclined upward toward the outer side in the radial direction about the center of the axis O1 of the prism 30.

一方、スタッド3は、鋼管30aの下端30c側の外面に一端が接続され、構真柱30の軸線O1に直交する径方向外側に突出して設けられており、周方向と構真柱30の軸線O1方向に所定の間隔をあけて複数並設されている。   On the other hand, one end of the stud 3 is connected to the outer surface of the steel pipe 30a on the lower end 30c side, and is provided so as to protrude outward in the radial direction orthogonal to the axis O1 of the construction column 30. The circumferential direction and the axis of the construction column 30 are provided. A plurality are arranged in parallel at a predetermined interval in the O1 direction.

このように構成した本実施形態の構真柱30を施工する際には、第1及び第2実施形態と同様、掘削孔4内に鉄筋篭13を挿入設置し、地表面G1に設置したガイドを用い、打設したコンクリートが硬化するまでの間に、構真柱30の下端30c側を基礎杭2のコンクリートに押し込み、本実施形態の軸力伝達構造31がコンクリートに埋設されるように構真柱30を設置する。このとき、本実施形態の軸力伝達構造31においては、鋼管30aの底面部(支圧部)32が構真柱30の軸線O1中心に径方向外側に向かうに従い漸次上方に向けて傾斜するように形成されているため、構真柱30の建て込み時に、コンクリートを底面部32に沿って外側に押し出しながら構真柱30の下端30c側がコンクリートに埋設される。これにより、スライムなどの脆弱部や空気などが巻き込まれることがなく、確実に底面部32をコンクリートに密着させた状態で、構真柱30が基礎杭2のコンクリートに埋設される。   When constructing the structural pillar 30 of the present embodiment configured as described above, the rebar bar 13 is inserted into the excavation hole 4 and installed on the ground surface G1 as in the first and second embodiments. Until the cast concrete is hardened, the lower end 30c side of the structural pillar 30 is pushed into the concrete of the foundation pile 2 so that the axial force transmission structure 31 of this embodiment is embedded in the concrete. The true pillar 30 is installed. At this time, in the axial force transmission structure 31 of the present embodiment, the bottom surface portion (supporting pressure portion) 32 of the steel pipe 30a is gradually inclined upward toward the outer side in the radial direction about the axis O1 center of the stem column 30. Therefore, when the structural pillar 30 is built, the lower end 30c side of the structural pillar 30 is embedded in the concrete while pushing the concrete outward along the bottom surface portion 32. Thereby, the framing pillar 30 is embedded in the concrete of the foundation pile 2 in a state in which the weak part such as slime or air is not caught and the bottom surface part 32 is securely adhered to the concrete.

そして、このように設置した構真柱30は、構真柱30に作用した軸力Nが底面部32による支圧力として基礎杭2に伝達される。このため、軸力伝達構造31の必要表面積が小さくて済み、構真柱30の基礎杭2への埋設長t2を短くしても、すなわち、構真柱30の長さを従来よりも短く形成しても、確実に軸力Nが基礎杭2に伝達されて支持される。これにより、低コスト化が図られる。   Then, in the structural column 30 installed in this way, the axial force N acting on the structural column 30 is transmitted to the foundation pile 2 as a support pressure by the bottom surface portion 32. For this reason, the required surface area of the axial force transmission structure 31 is small, and even if the embedding length t2 of the structural pillar 30 in the foundation pile 2 is shortened, that is, the length of the structural pillar 30 is formed shorter than before. Even so, the axial force N is reliably transmitted to the foundation pile 2 and supported. Thereby, cost reduction is achieved.

したがって、本実施形態の構真柱30と基礎杭2の軸力伝達構造31においては、有底筒状の鋼管30a内にコンクリート30bを充填して一体化したCFTで構真柱30が形成されている場合においても、鋼管30aの底面部(支圧部)32によって構真柱30に作用する軸力Nを支圧で基礎杭2に伝達することができる。また、このとき、底面部32が構真柱30の軸線O1中心に径方向外側に向かうに従い漸次上方に向けて傾斜するように形成されていることによって、掘削孔4に先行して打設したコンクリートに構真柱30を挿入する際(すなわち後建て工法に適用する場合)に、コンクリートをこの底面部32に沿って外側に押し退けて、構真柱30を設置することができる。これにより、底面部32の下方にスライムなどの脆弱部や空気が巻き込まれることを確実に防止でき、底面部32をコンクリートに密着させて、確実に支圧で軸力伝達を行えるように構真柱30を設置することが可能になる。   Therefore, in the structural pillar 30 and the axial force transmission structure 31 of the foundation pile 2 according to the present embodiment, the structural pillar 30 is formed of CFT in which the concrete 30b is filled and integrated in the bottomed tubular steel pipe 30a. Even in this case, the axial force N acting on the structural pillar 30 can be transmitted to the foundation pile 2 by supporting pressure by the bottom surface portion (supporting pressure portion) 32 of the steel pipe 30a. Further, at this time, the bottom surface portion 32 is formed so as to be gradually inclined upward toward the outer side in the radial direction at the center of the axis O1 of the stem column 30, so that it is placed in advance in the excavation hole 4. When inserting the structural pillar 30 into the concrete (that is, when applied to the post-construction method), the structural pillar 30 can be installed by pushing the concrete outward along the bottom surface portion 32. As a result, it is possible to reliably prevent fragile portions such as slime and air from getting caught under the bottom surface portion 32, and to make sure that the bottom surface portion 32 is brought into close contact with the concrete so that the axial force can be reliably transmitted by supporting pressure. The pillar 30 can be installed.

なお、本発明は上記の第3実施形態に限定されるものではなく、第1及び第2実施形態の適用可能な変更例を含め、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、本実施形態では、構真柱30が、断面円形に形成された有底筒状の鋼管30aの内部にコンクリート30bを充填して一体化したCFTであるものとしたが、有底筒状の鋼管30aのみで構真柱30を構成してもよく、この場合においても、鋼管30aの底面部32を支圧部として、本実施形態と同様の効果を得ることができる。   Note that the present invention is not limited to the above-described third embodiment, and can be modified as appropriate without departing from the spirit of the present invention, including modifications to which the first and second embodiments can be applied. For example, in this embodiment, the structural pillar 30 is a CFT in which a concrete 30b is filled and integrated into a bottomed cylindrical steel pipe 30a formed in a circular cross section. In this case, the bottom wall 32 of the steel pipe 30a can be used as a bearing part to obtain the same effect as that of the present embodiment.

また、本実施形態では、底面部(支圧部)32が所定の曲率をもって形成されているものとしたが、底面部32は、構真柱30の軸線O1中心に径方向外側に向かうに従い漸次上方に向けて傾斜するように形成されていればよく、例えば平面状の傾斜面を備えて形成されてもよい。   In the present embodiment, the bottom surface portion (supporting portion) 32 is formed with a predetermined curvature. However, the bottom surface portion 32 gradually increases toward the outer side in the radial direction around the center of the axis O1 of the stem column 30. What is necessary is just to be formed so that it may incline toward the upper direction, for example, may be provided with a planar inclined surface.

ついで、図11及び図12を参照し、本発明の第4実施形態に係る構真柱と基礎杭の軸力伝達構造及び本発明に係る構真柱の施工方法について説明する。本実施形態では、第1実施形態と同様に、構真柱10が断面略十字型に形成され、この構真柱10にスタッド3及び支圧板(支圧部)12が取り付けられている。よって、ここでは、第1実施形態に共通する構成に対して同一符号を付し、その詳細についての説明を省略する。   Next, with reference to FIG. 11 and FIG. 12, the axial force transmission structure of the structural pillar and the foundation pile according to the fourth embodiment of the present invention and the construction method of the structural pillar according to the present invention will be described. In the present embodiment, as in the first embodiment, the true pillar 10 is formed in a substantially cross-shaped cross section, and the stud 3 and the bearing plate (bearing portion) 12 are attached to the true pillar 10. Therefore, here, the same reference numerals are given to the components common to the first embodiment, and the detailed description thereof is omitted.

また、図11に示すように、構真柱10には、第1実施形態の図5及び図6で示した基礎杭2の鉄筋篭13と、基礎杭2の杭頭2a側に補強を施すための補強鋼管16とが、連結部材33を介して一体に取り付けられている。補強鋼管16は、鉄筋篭13及び構真柱10の下端10c側を囲繞するように設けられている。そして、本実施形態の軸力伝達構造34は、スタッド3と支圧板12と補強鋼管16で構成されている。   As shown in FIG. 11, the structural pillar 10 is reinforced on the reinforcing bar 13 of the foundation pile 2 shown in FIGS. 5 and 6 of the first embodiment and the pile head 2 a side of the foundation pile 2. The reinforcing steel pipe 16 is attached integrally with the connecting member 33. The reinforcing steel pipe 16 is provided so as to surround the reinforcing bar 13 and the lower end 10 c side of the structural pillar 10. The axial force transmission structure 34 according to this embodiment includes the stud 3, the bearing plate 12, and the reinforcing steel pipe 16.

このように構成した本実施形態の構真柱10を施工する際には、図12に示すように、掘削孔4内に、トレミー管などを用いて基礎杭2のコンクリート2bを打設する。ついで、地表面G1にガイド35を設置するとともにこのガイド35を用いて、鉄筋篭13と補強鋼管16が連結部材33を介して一体に取り付けられた構真柱10を掘削孔4に挿入する。   When constructing the structural pillar 10 of the present embodiment configured as described above, the concrete 2b of the foundation pile 2 is placed in the excavation hole 4 using a tremy pipe or the like, as shown in FIG. Next, a guide 35 is installed on the ground surface G 1, and using this guide 35, the built-up column 10 in which the reinforcing bar 13 and the reinforcing steel pipe 16 are integrally attached via the connecting member 33 is inserted into the excavation hole 4.

このとき、本実施形態においては、掘削孔4の形成時に設置したケーシング36の内部に構真柱10を挿入するとともに、構真柱10の下端10c側に一体に取り付けられた補強鋼管16がケーシング36に係合する。そして、ケーシング36の内径に対し補強鋼管16の外径が僅かに小さくなるようにケーシング36と補強鋼管16を精度よく形成しておくことで、補強鋼管16がケーシング36に係合するとともに、この補強鋼管16が連結部材33を介して一体に取り付けられた構真柱10の下端10c側が、軸線O1を垂直方向に配するように位置決めされる。また、このとき、構真柱10の補強鋼管16で位置決めされた下端10c側よりも上部が、ガイド35によって軸線O1を垂直方向に配するように位置決めされているため、構真柱10は、補強鋼管16とガイド35によって確実に軸線O1を垂直方向に配して保持されることになる。   At this time, in the present embodiment, the built-up column 10 is inserted into the casing 36 installed when the excavation hole 4 is formed, and the reinforcing steel pipe 16 integrally attached to the lower end 10c side of the built-up column 10 includes the casing. 36 is engaged. The casing 36 and the reinforcing steel pipe 16 are accurately formed so that the outer diameter of the reinforcing steel pipe 16 is slightly smaller than the inner diameter of the casing 36, whereby the reinforcing steel pipe 16 is engaged with the casing 36, and this The bottom end 10c side of the structural pillar 10 to which the reinforcing steel pipe 16 is integrally attached via the connecting member 33 is positioned so that the axis O1 is arranged in the vertical direction. At this time, since the upper part of the construction column 10 from the lower end 10c side positioned by the reinforcing steel pipe 16 is positioned by the guide 35 so as to arrange the axis O1 in the vertical direction, the construction column 10 is The axis O1 is securely arranged in the vertical direction and held by the reinforcing steel pipe 16 and the guide 35.

そして、このように垂直精度を確保した状態の構真柱10を掘削孔4内に挿入してゆき、構真柱10の下端10c側をコンクリート2bに挿入して所定の埋設長t2で埋設させる。また、所定の埋設長t2で構真柱10の下端10c側をコンクリート2bに挿入するとともに、軸力伝達構造34がコンクリート2bに埋設され、且つ鉄筋篭13及び補強鋼管16が所定位置に配置される。このとき、ケーシング36によって補強鋼管16が案内されながら構真柱10が建て込まれてゆき、これにより、垂直精度を確保した状態を維持してコンクリート2bに挿入される。また、コンクリート2bへの挿入とともに抵抗のアンバランスが生じても、補強鋼管16がケーシング16で位置決めされて構真柱10の下端10c側が保持されているため、構真柱10が掘削孔4の中心からずれるようなことがなく、確実に構真柱10の垂直精度が保持される。   And the construction pillar 10 of the state which ensured the vertical accuracy in this way is inserted in the excavation hole 4, the lower end 10c side of the construction pillar 10 is inserted in the concrete 2b, and it is embed | buried by predetermined | prescribed embedding length t2. . In addition, the lower end 10c side of the structural pillar 10 is inserted into the concrete 2b with a predetermined embedding length t2, the axial force transmission structure 34 is embedded in the concrete 2b, and the reinforcing bar 13 and the reinforcing steel pipe 16 are disposed at predetermined positions. The At this time, the structural pillar 10 is built while the reinforcing steel pipe 16 is guided by the casing 36, and thereby, the state is maintained while maintaining the vertical accuracy, and is inserted into the concrete 2b. Even if resistance imbalance occurs with the insertion into the concrete 2 b, the reinforcing steel pipe 16 is positioned by the casing 16 and the lower end 10 c side of the structural pillar 10 is held, so that the structural pillar 10 is located in the excavation hole 4. There is no deviation from the center, and the vertical accuracy of the prism 10 is reliably maintained.

そして、本実施形態においては、上記のように構真柱10の建て込みと同時に、基礎杭2の鉄筋篭13が所定位置に配置されるため、従来のように鉄筋篭13の設置と構真柱10の建て込みをそれぞれ個別に行う必要がなくなり、施工効率の向上が図られる。また、構真柱10の建て込み時に、構真柱10の垂直精度を確保するために用いられた補強鋼管16は、第1実施形態に示したように、所定位置に配置された後、杭頭補強に用いられ、構真柱10の埋設長t2を短くした場合においても、基礎杭2の杭頭2a側が構真柱10からの曲げなどに抵抗できなくなるおそれを解消し、好適に構真柱10を基礎杭2に接続して支持させるという効果を発揮することになる。   And in this embodiment, since the reinforcing bar 13 of the foundation pile 2 is arrange | positioned in a predetermined position simultaneously with the construction of the construction pillar 10 as mentioned above, installation and construction of the reinforcing bar 13 are conventionally performed. There is no need to individually build the pillars 10 and construction efficiency is improved. In addition, the reinforcing steel pipe 16 used for securing the vertical accuracy of the structural pillar 10 when the structural pillar 10 is built is placed in a predetermined position as shown in the first embodiment. It is used for head reinforcement, and even when the embedding length t2 of the structural pillar 10 is shortened, the pile head 2a side of the foundation pile 2 can be prevented from resisting bending from the structural pillar 10, etc. The effect of connecting and supporting the column 10 to the foundation pile 2 will be exhibited.

したがって、本実施形態の構真柱10の施工方法においては、掘削孔4内に構真柱10を建て込む際に、掘削孔4内に配設されたケーシング36で、構真柱10に一体に取り付けられた補強鋼管16を案内させながら建て込むことで、垂直精度を確保しながら構真柱10を建て込むことが可能になり、基礎杭2の杭頭補強のために設けた補強鋼管16を構真柱10の垂直精度の確保に併用することが可能になる。   Therefore, in the construction method of the true pillar 10 of this embodiment, when the true pillar 10 is built in the excavation hole 4, the casing 36 disposed in the excavation hole 4 is integrated with the true pillar 10. It is possible to build the structural pillar 10 while ensuring vertical accuracy by guiding the reinforcing steel pipe 16 attached to the reinforced steel pipe 16, and the reinforcing steel pipe 16 provided for reinforcing the pile head of the foundation pile 2. Can be used together to ensure the vertical accuracy of the structural pillar 10.

また、構真柱10に、補強鋼管16とともに基礎杭2の鉄筋篭13を一体に取り付けることで、構真柱10の建て込みと同時に、基礎杭2の鉄筋篭13を所定位置に配置でき、従来のように鉄筋篭13の設置と構真柱10の建て込みをそれぞれ個別に行う必要がなくなり、施工効率を大幅に向上させることが可能になる。   Moreover, by attaching the reinforcing bar 13 of the foundation pile 2 together with the reinforcing steel pipe 16 to the structural pillar 10, the reinforcing bar 13 of the basic pile 2 can be arranged at a predetermined position simultaneously with the construction of the structural pillar 10. There is no need to install the reinforcing bar 13 and the built-in pillar 10 individually as in the conventional case, and the construction efficiency can be greatly improved.

なお、本発明に係る構真柱と基礎杭の軸力伝達構造及び構真柱の施工方法は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   In addition, the axial force transmission structure and the construction method of the construction pillar according to the present invention are not limited to the above-described embodiment, and can be appropriately changed without departing from the scope of the invention.

本発明の第1実施形態に係る構真柱と基礎杭の軸力伝達構造を示す斜視図である。It is a perspective view which shows the axial force transmission structure of the construction pillar and foundation pile which concern on 1st Embodiment of this invention. 図1のX−X線矢視図である。FIG. 2 is a view taken along line XX in FIG. 1. 本発明の第1実施形態に係る構真柱と基礎杭の軸力伝達構造の変形例を示す斜視図である。It is a perspective view which shows the modification of the axial force transmission structure of the construction column and foundation pile which concerns on 1st Embodiment of this invention. 図3のX−X線矢視図である。FIG. 4 is a view taken along line XX in FIG. 3. 本発明の第1実施形態に係る構真柱と基礎杭の軸力伝達構造の変形例を示す斜視図である。It is a perspective view which shows the modification of the axial force transmission structure of the construction column and foundation pile which concerns on 1st Embodiment of this invention. 図5のX−X線矢視図である。FIG. 6 is a view taken along line XX in FIG. 5. 本発明の第2実施形態に係る構真柱と基礎杭の軸力伝達構造を示す斜視図である。It is a perspective view which shows the axial force transmission structure of a construction pillar and foundation pile which concerns on 2nd Embodiment of this invention. 図7のX−X線矢視図である。It is a XX arrow directional view of FIG. 本発明の第3実施形態に係る構真柱と基礎杭の軸力伝達構造を示す斜視図である。It is a perspective view which shows the axial force transmission structure of the construction pillar and foundation pile which concern on 3rd Embodiment of this invention. 図9のX−X線矢視図である。It is the XX arrow directional view of FIG. 本発明の第4実施形態に係る構真柱と基礎杭の軸力伝達構造を示す図である。It is a figure which shows the axial force transmission structure of a construction pillar and foundation pile which concern on 4th Embodiment of this invention. 本発明の構真柱の施工方法を用いて、構真柱を掘削孔内に建て込んでいる状態を示す図である。It is a figure which shows the state which built the construction pillar in the excavation hole using the construction method of the construction pillar of this invention. 従来の構真柱と基礎杭の軸力伝達構造を示す斜視図である。It is a perspective view which shows the conventional axial pillar and the axial force transmission structure of a foundation pile. 図13のX−X線矢視図である。It is a XX arrow directional view of FIG.

符号の説明Explanation of symbols

1 構真柱
1a 下端
1b 垂直面
2 基礎杭
2a 杭頭
2b コンクリート
3 スタッド
4 掘削孔
10 構真柱
10a ウェブ
10b フランジ
10c 下端
11 軸力伝達構造
12 支圧板(支圧部)
13 鉄筋篭
14 二重のフープ筋
15 基礎
16 補強鋼管
20 軸力伝達構造
21 支圧板(支圧部)
22 貫通孔
30 構真柱
30a 鋼管
30b コンクリート
30c 下端
31 軸力伝達構造
32 底面部(支圧部)
33 連結部材
34 軸力伝達構造
35 ガイド
36 ケーシング
G 地盤
G1 地表面
N 軸力
O1 軸線
t1 埋設長
t2 埋設長
DESCRIPTION OF SYMBOLS 1 Construction pillar 1a Lower end 1b Vertical surface 2 Foundation pile 2a Pile head 2b Concrete 3 Stud 4 Excavation hole 10 Construction pillar 10a Web 10b Flange 10c Lower end 11 Axial force transmission structure 12 Bearing plate (bearing part)
13 Reinforcing bar 14 Double hoop 15 Base 16 Reinforced steel pipe 20 Axial force transmission structure 21 Bearing plate (bearing portion)
22 Through-hole 30 Construction column 30a Steel pipe 30b Concrete 30c Lower end 31 Axial force transmission structure 32 Bottom face part (supporting part)
33 Connecting member 34 Axial force transmission structure 35 Guide 36 Casing G Ground G1 Ground surface N Axial force O1 Axis t1 Buried length t2 Buried length

Claims (8)

地中に設けられる基礎杭と構真柱とを一体に接続するとともに前記構真柱に作用した軸力を前記基礎杭に伝達する構真柱と基礎杭の軸力伝達構造であって、
前記基礎杭に埋設される前記構真柱の下端側に設けられて前記構真柱に作用した軸力を支圧で前記基礎杭に伝達する支圧部を備えることを特徴とする構真柱と基礎杭の軸力伝達構造。
An axial force transmission structure of the structural pillar and the foundation pile that integrally connects the foundation pile and the structural pillar provided in the ground and transmits the axial force acting on the structural pillar to the foundation pile,
A structural pillar provided with a bearing part that is provided on the lower end side of the structural pillar embedded in the foundation pile and transmits axial force acting on the structural pillar to the foundation pile by supporting pressure. And axial force transmission structure of foundation pile.
請求項1記載の構真柱と基礎杭の軸力伝達構造において、
前記構真柱が断面略H型あるいは断面略十字型に形成されており、前記支圧部は、前記構真柱の軸線略直交方向に延びる支圧板で構成されていることを特徴とする構真柱と基礎杭の軸力伝達構造。
In the axial force transmission structure of the structural pillar and foundation pile according to claim 1,
The true pillar is formed in a substantially H-shaped cross section or a substantially cross-shaped cross section, and the bearing section is constituted by a bearing plate extending in a direction substantially orthogonal to the axis of the true pillar. Axial force transmission structure of true pillar and foundation pile.
請求項2記載の構真柱と基礎杭の軸力伝達構造において、
前記支圧板には、前記構真柱の軸線方向の上下に貫通する貫通孔が設けられていることを特徴とする構真柱と基礎杭の軸力伝達構造。
In the axial force transmission structure of the structural pillar and foundation pile according to claim 2,
An axial force transmission structure between the structural pillar and the foundation pile, wherein the bearing plate is provided with a through-hole penetrating vertically in the axial direction of the structural pillar.
請求項1記載の構真柱と基礎杭の軸力伝達構造において、
前記構真柱が有底筒状の鋼管を備えて形成されており、前記支圧部は、前記構真柱の下端を形成する前記鋼管の底面部で構成され、該底面部が前記構真柱の軸線中心に径方向外側に向かうに従い漸次上方に向けて傾斜するように形成されていることを特徴とする構真柱と基礎杭の軸力伝達構造。
In the axial force transmission structure of the structural pillar and foundation pile according to claim 1,
The construction column is formed with a bottomed cylindrical steel pipe, and the bearing portion is formed by a bottom surface portion of the steel pipe that forms a lower end of the construction column. An axial force transmission structure for a built-up column and a foundation pile, which is formed so as to be gradually inclined upward toward the radially outer side in the axial center of the column.
請求項1から請求項4のいずれかに記載の構真柱と基礎杭の軸力伝達構造において、
前記基礎杭が鉄筋篭とコンクリートからなる鉄筋コンクリート杭とされており、前記鉄筋篭の少なくとも杭頭側に位置する部分に設けられて杭頭補強を施すための二重のフープ筋を含んで構成されていることを特徴とする構真柱と基礎杭の軸力伝達構造。
In the axial force transmission structure of the structural pillar and foundation pile according to any one of claims 1 to 4,
The foundation pile is a reinforced concrete pile made of reinforced concrete and concrete, and includes a double hoop that is provided at least on the pile head side of the reinforced concrete to reinforce the pile head. Axial force transmission structure of structural pillar and foundation pile characterized by
請求項1から請求項5のいずれかに記載の構真柱と基礎杭の軸力伝達構造において、
前記基礎杭が鉄筋篭とコンクリートからなる鉄筋コンクリート杭とされており、少なくとも杭頭側に位置する部分に設けられて杭頭補強を施すための補強鋼管を含んで構成されていることを特徴とする構真柱と基礎杭の軸力伝達構造。
In the axial force transmission structure of the structural pillar and foundation pile according to any one of claims 1 to 5,
The foundation pile is a reinforced concrete pile made of reinforced concrete and concrete, and includes a reinforced steel pipe that is provided at least on a portion located on the pile head side and for reinforcing the pile head. Axial force transmission structure of structural pillar and foundation pile.
請求項6記載の構真柱と基礎杭の軸力伝達構造において、
前記構真柱に、前記鉄筋篭と、該鉄筋篭及び前記構真柱の下端側を囲繞するように設けた前記補強鋼管とが連結部材を介して一体に取り付けられていることを特徴とする構真柱と基礎杭の軸力伝達構造。
In the axial pillar structure of the structural pillar and foundation pile according to claim 6,
The reinforcing column and the reinforcing steel pipe provided so as to surround the reinforcing bar and the lower end side of the structured column are integrally attached to the structural column through a connecting member. Axial force transmission structure of structural pillar and foundation pile.
上層階から地下階の順に建築物を構築してゆくための構真柱の施工方法であって、
地盤を掘削して掘削孔を形成し、請求項7記載の構真柱と基礎杭の軸力伝達構造を備えた構真柱を、前記掘削孔内に配設されたケーシングで前記補強鋼管を案内させながら前記掘削孔内に建て込むようにしたことを特徴とする構真柱の施工方法。
It is a construction method of a construction pillar for building a building from the upper floor to the basement floor,
The excavation hole is formed by excavating the ground, and the reinforcing column having the axial columnar force transmission structure of the structural column and the foundation pile according to claim 7 is attached to the reinforcing steel pipe with a casing disposed in the excavation hole. A construction method for a structural pillar, characterized in that it is built in the excavation hole while being guided.
JP2007167493A 2007-06-26 2007-06-26 Axial-force transmission structure for permanent sub-substructural column and foundation pile, and construction method for permanent sub-substructural column Pending JP2009007745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167493A JP2009007745A (en) 2007-06-26 2007-06-26 Axial-force transmission structure for permanent sub-substructural column and foundation pile, and construction method for permanent sub-substructural column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167493A JP2009007745A (en) 2007-06-26 2007-06-26 Axial-force transmission structure for permanent sub-substructural column and foundation pile, and construction method for permanent sub-substructural column

Publications (1)

Publication Number Publication Date
JP2009007745A true JP2009007745A (en) 2009-01-15

Family

ID=40323099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167493A Pending JP2009007745A (en) 2007-06-26 2007-06-26 Axial-force transmission structure for permanent sub-substructural column and foundation pile, and construction method for permanent sub-substructural column

Country Status (1)

Country Link
JP (1) JP2009007745A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119714A (en) * 2011-12-06 2013-06-17 Ohbayashi Corp Reversely driven column, and arrangement method of studs in reversely driven column
JP2013159986A (en) * 2012-02-06 2013-08-19 Taisei Corp Basement column
JP2013241731A (en) * 2012-05-17 2013-12-05 Sansei:Kk Pile head joint structure of winged steel pipe pile, and method of constructing the same
JP2014020097A (en) * 2012-07-18 2014-02-03 Mitsubishi Heavy Ind Ltd Seismic isolator supporting structure and construction method for the same
JP2015063889A (en) * 2013-08-29 2015-04-09 清水建設株式会社 Column jointed structure
JP2017089292A (en) * 2015-11-12 2017-05-25 清水建設株式会社 Construction method of junction between columns
JP2017095888A (en) * 2015-11-19 2017-06-01 大成建設株式会社 Steel column-pile junction structure
CN107034876A (en) * 2017-05-23 2017-08-11 上海建工建集团有限公司 Stanchion connecting node and its construction method in one pile for one column construction
JP2020148088A (en) * 2015-11-19 2020-09-17 大成建設株式会社 Joint structure of steel column and pile

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688342A (en) * 1992-09-08 1994-03-29 Ohbayashi Corp Constructing method of post
JPH108482A (en) * 1996-06-24 1998-01-13 Taisei Corp Joined structure between construction center column and pile and posteriorly constructing method for construction center column
JPH11264134A (en) * 1998-03-17 1999-09-28 Shimizu Corp Execution method of cft structure construction stud
JP2000240069A (en) * 1999-02-18 2000-09-05 Nkk Corp Faying structure and faying method between cast-in- place steel pipe concrete pile and src column
JP2002054164A (en) * 2000-08-10 2002-02-20 Nippon Steel Corp Center of column and construction method therefor
JP2002129583A (en) * 2000-10-20 2002-05-09 Shimizu Corp Building construction method and stress transmission device
JP2002138574A (en) * 2000-11-02 2002-05-14 Shimizu Corp Building construction method and building
JP2002322652A (en) * 2001-04-27 2002-11-08 Toda Constr Co Ltd Joining construction method for pile head part to building frame and its joint part structure
JP2005264446A (en) * 2004-03-16 2005-09-29 East Japan Railway Co Method of joining cast-in place pile and steel pipe column
JP2006057371A (en) * 2004-08-23 2006-03-02 Sumitomo Mitsui Construction Co Ltd Rc structural body and axial power transmission structure of permanent substructural column
JP2007031970A (en) * 2005-07-22 2007-02-08 Jfe Steel Kk Joining structure of underground steel column structure to pile, burying pipe body and these construction method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688342A (en) * 1992-09-08 1994-03-29 Ohbayashi Corp Constructing method of post
JPH108482A (en) * 1996-06-24 1998-01-13 Taisei Corp Joined structure between construction center column and pile and posteriorly constructing method for construction center column
JPH11264134A (en) * 1998-03-17 1999-09-28 Shimizu Corp Execution method of cft structure construction stud
JP2000240069A (en) * 1999-02-18 2000-09-05 Nkk Corp Faying structure and faying method between cast-in- place steel pipe concrete pile and src column
JP2002054164A (en) * 2000-08-10 2002-02-20 Nippon Steel Corp Center of column and construction method therefor
JP2002129583A (en) * 2000-10-20 2002-05-09 Shimizu Corp Building construction method and stress transmission device
JP2002138574A (en) * 2000-11-02 2002-05-14 Shimizu Corp Building construction method and building
JP2002322652A (en) * 2001-04-27 2002-11-08 Toda Constr Co Ltd Joining construction method for pile head part to building frame and its joint part structure
JP2005264446A (en) * 2004-03-16 2005-09-29 East Japan Railway Co Method of joining cast-in place pile and steel pipe column
JP2006057371A (en) * 2004-08-23 2006-03-02 Sumitomo Mitsui Construction Co Ltd Rc structural body and axial power transmission structure of permanent substructural column
JP2007031970A (en) * 2005-07-22 2007-02-08 Jfe Steel Kk Joining structure of underground steel column structure to pile, burying pipe body and these construction method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119714A (en) * 2011-12-06 2013-06-17 Ohbayashi Corp Reversely driven column, and arrangement method of studs in reversely driven column
JP2013159986A (en) * 2012-02-06 2013-08-19 Taisei Corp Basement column
JP2013241731A (en) * 2012-05-17 2013-12-05 Sansei:Kk Pile head joint structure of winged steel pipe pile, and method of constructing the same
JP2014020097A (en) * 2012-07-18 2014-02-03 Mitsubishi Heavy Ind Ltd Seismic isolator supporting structure and construction method for the same
JP2015063889A (en) * 2013-08-29 2015-04-09 清水建設株式会社 Column jointed structure
JP2017089292A (en) * 2015-11-12 2017-05-25 清水建設株式会社 Construction method of junction between columns
JP2017095888A (en) * 2015-11-19 2017-06-01 大成建設株式会社 Steel column-pile junction structure
JP2020148088A (en) * 2015-11-19 2020-09-17 大成建設株式会社 Joint structure of steel column and pile
CN107034876A (en) * 2017-05-23 2017-08-11 上海建工建集团有限公司 Stanchion connecting node and its construction method in one pile for one column construction

Similar Documents

Publication Publication Date Title
JP2009007745A (en) Axial-force transmission structure for permanent sub-substructural column and foundation pile, and construction method for permanent sub-substructural column
JP4800899B2 (en) Pile head joint structure and construction method
JP2006207124A (en) Steel-made pier structural body and its construction method
KR20060092552A (en) The non-strut down framework construction method of having used cast in place concrete pile
JP6418876B2 (en) Foundation structure
JP2009097176A (en) Banking structure and its construction method
KR101648704B1 (en) Underground wall structure
JP2006328716A (en) Structure and method for underpinning of existing structure and method of constructing new structure near existing structure
JP2008231799A (en) Base isolation structure
JP5358423B2 (en) Column and pile connection structure
JP2006104747A (en) Pier stud connection structure and pier stud connecting method
KR100803558B1 (en) A reinforcing single column drilled pier foundation and construction method thereof
JP2007297861A (en) Joint part structure of bridge pier with pile
JP5215030B2 (en) Structure
JP2009287172A (en) Method for constructing base-isolated building by inverted construction method
JP2008138488A (en) Construction method of underground structure, and underground structure
JP5008683B2 (en) Pile head reinforcement member and pile head reinforcement structure using it
KR20180131042A (en) Pile and method for constucting same
JP2004027727A (en) Foundation pile and construction method for foundation pile
KR101238640B1 (en) Pre-founded Column having Bearing-Shear Band for Top-Down or Common Construction
JP2006207306A (en) Frame body, and connection structure of frame body and pile
KR101255610B1 (en) Structure construction method and structure of use it
JP2007051500A (en) Joint structure of column and pile
KR101762207B1 (en) The speed up construction method using hemispherical joint
JP5659275B2 (en) Column and pile connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120410