JP2009007434A - Thermo-optic conversion system of rare earth compound - Google Patents

Thermo-optic conversion system of rare earth compound Download PDF

Info

Publication number
JP2009007434A
JP2009007434A JP2007168684A JP2007168684A JP2009007434A JP 2009007434 A JP2009007434 A JP 2009007434A JP 2007168684 A JP2007168684 A JP 2007168684A JP 2007168684 A JP2007168684 A JP 2007168684A JP 2009007434 A JP2009007434 A JP 2009007434A
Authority
JP
Japan
Prior art keywords
energy
rare earth
orbit
temperature
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007168684A
Other languages
Japanese (ja)
Inventor
Kiyoaki Tanaka
清明 田中
Ryoko Makita
良子 蒔田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2007168684A priority Critical patent/JP2009007434A/en
Publication of JP2009007434A publication Critical patent/JP2009007434A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermo-optic conversion system of a rare earth compound that directly takes out a light energy from a heat source and uses a low-temperature waste heat as the heat source. <P>SOLUTION: The system for taking out a light energy corresponding to difference in energy between orbits comprises heating a rare earth compound to a temperature higher than a normal temperature in an environment and transmitting electrons collected in a 5d orbit to a 4f orbit that has an energy level lower than that of the 5d orbit and has a vacancy. The light energy is an ultraviolet light. The rare earth compound whose temperature is lowered after light energy removal is returned to an original state in which the temperature is lowered to the normal temperature in the environment by radiational cooling etc., and reheated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は希土類化合物の熱光変換システムに関する。   The present invention relates to a heat-light conversion system for rare earth compounds.

従来、紫外線領域の発光デバイスとしては、ZnO、GaN等多くの化合物がある(非特許文献1,2)。また、熱からエネルギーを取り出す方法として、熱を電気に変換する熱電素子が存在する。
Solid State Communications, Vol.103,No.8,pp.459−463,1997 NATURE VOL 386 27 MARCH 1977 pp.3549
Conventionally, as a light emitting device in the ultraviolet region, there are many compounds such as ZnO and GaN (Non-patent Documents 1 and 2). As a method for extracting energy from heat, there is a thermoelectric element that converts heat into electricity.
Solid State Communications, Vol. 103, no. 8, pp. 459-463, 1997 NATURE VOL 386 27 MARCH 1977 pp. 3549

しかし、上記従来の発光デバイスの化合物からは、該化合物の温度変化により熱エネルギーから光エネルギーを直接取り出すということはできなかった。また、上記従来の熱電素子は、本発明とは原理が異なり、発光はしないし、また、200℃以下では使用できてない。
本発明は、上記従来技術では不可能であった、熱エネルギーを光エネルギーに直接変え得る、また、100℃乃至200℃程度の低温度廃熱から、有効にエネルギーを取り出し得る希土類化合物の熱光変換システムを提供することを解決すべき目的としている。
However, it has not been possible to directly extract light energy from heat energy from the compound of the above conventional light emitting device due to temperature change of the compound. Further, the above-described conventional thermoelectric element is different in principle from the present invention, does not emit light, and cannot be used at 200 ° C. or lower.
The present invention can directly convert heat energy into light energy, which is impossible with the above-described prior art, and can effectively extract energy from low-temperature waste heat of about 100 ° C. to 200 ° C. Providing a conversion system is the purpose to be solved.

第1発明の希土類化合物熱光変換システムは、
希土類化合物を環境下の常温よりも高い温度まで加熱し、5d軌道に集まった電子を、該軌道よりも低いエネルギー準位で空席のある4f軌道に遷移させることにより両者のエネルギー差に相当する光エネルギーを取り出すシステムである。
したがって、第1発明の希土類化合物熱光変換システムによれば、希土類化合物を加熱して該化合物の温度を変化させたとき起こる、電子のエネルギー準位間の遷移を利用して、光エネルギーを直接取り出すことができる。
第2発明の希土類化合物熱光変換システムは、
第1発明の希土類熱光変換システムにより光エネルギーを取り出した後に温度が下がった希土類化合物を、放冷、空冷、水冷またはペルチエ素子等と組み合わせた方法により、環境下の常温程度まで低下させて希土類化合物を元の状態に戻し、これを再度加熱して5d軌道に集まった電子を4f軌道に遷移させることにより両者のエネルギー差に相当する光エネルギーを取り出すシステムである。
本発明で使用する希土類化合物では、環境下の常温(以下「常温」という。)以下で希土類元素の電子は配位する原子の2p軌道に遷移する。これを加熱し、例えば、160℃程度にすると、配位する原子の2p軌道に遷移した電子が、希土類元素の常温での状態から、数eV上にある軌道をほぼ埋めるほど移動する。この変化は可逆的な変化であり、第2発明によれば、希土類化合物の温度を循環的に変化させ、高温時に光エネルギーを取り出せば、熱源のある限り作動する、循環的エネルギー供給システムができるのである。当該熱源には、高温度の廃熱とともに、100乃至200℃の低温度廃熱も利用できるため諸分野の廃熱の有効活用によりエネルギー効率の向上が可能である。
一般に希土類原子においては、電子が存在する軌道としてはf-軌道のエネルギーが最も高く、その数eV上にあるd軌道には電子は存在しない。本発明者らの開発したX線原子軌道解析法(XAO法)を使用して、希土類化合物の電子密度を測定したところ、驚いたことに、f軌道に余席があるにも関わらず、その数eV上にあるd軌道に電子が満席になるまで詰まっていた。常温から100Kまで冷却すると、f電子が配位する分子に移動することは既に本発明者らが発表しているが(非特許文献3)、逆に常温より温度を上げると、配位する分子の電子が希土類原子の前記d軌道に大量に移動したのである。このことは、常温より上まで希土類化合物を加熱し、前記d軌道に集まった電子を、空席のあるf軌道に遷移させると、両者のエネルギー差に相当する紫外光が取り出せることを示している。
MOLECULAR PHYSICS,1985,VOL.54,No.6,1293-1306
The rare earth compound heat-light conversion system of the first invention comprises:
Light corresponding to the energy difference between the two rare earth compounds is heated to a temperature higher than ambient temperature in the environment, and electrons collected in the 5d orbital are transferred to a vacant 4f orbital at a lower energy level than the orbital. It is a system to extract energy.
Therefore, according to the rare earth compound thermo-optic conversion system of the first invention, the light energy is directly converted using the transition between the energy levels of electrons that occurs when the rare earth compound is heated to change the temperature of the compound. It can be taken out.
The rare earth compound heat-light conversion system of the second invention is:
The rare earth compound whose temperature has been lowered after taking out the light energy by the rare earth thermal light conversion system of the first invention is reduced to about room temperature in the environment by a method of cooling, air cooling, water cooling, Peltier element, etc. This is a system that takes out the light energy corresponding to the energy difference between the two by returning the compound to its original state and heating it again to transition the electrons collected in the 5d orbit to the 4f orbit.
In the rare earth compound used in the present invention, the electron of the rare earth element transitions to the 2p orbit of the coordinating atom below the ambient temperature in the environment (hereinafter referred to as “room temperature”). When this is heated to, for example, about 160 ° C., the electrons that have transitioned to the 2p orbit of the coordinating atoms move from the state of the rare earth element at room temperature to the extent that the orbit above several eV is almost filled. This change is a reversible change. According to the second invention, if the temperature of the rare earth compound is changed cyclically and light energy is taken out at a high temperature, a cyclic energy supply system that operates as long as the heat source is present can be formed. It is. As the heat source, low-temperature waste heat of 100 to 200 ° C. can be used in addition to high-temperature waste heat. Therefore, energy efficiency can be improved by effectively using waste heat in various fields.
In general, in rare earth atoms, the f-orbital has the highest energy in the orbit where electrons exist, and no electron exists in the d orbital that is several eV above. Using the X-ray atomic orbit analysis method (XAO method) developed by the present inventors, the electron density of the rare earth compound was measured. The electrons were stuck in the d orbit, which was several eV above, until the electrons were full. The inventors have already announced that f electrons move to coordinated molecules when cooled from room temperature to 100K (Non-patent Document 3), but conversely, molecules that coordinate when the temperature is raised from room temperature. This electron has moved to the d orbit of the rare earth atom in large quantities. This indicates that when the rare earth compound is heated to above room temperature and the electrons collected in the d orbital are shifted to the f orbital having a vacant seat, ultraviolet light corresponding to the energy difference between the two can be extracted.
MOLECULAR PHYSICS, 1985, Vol. 54, no. 6,1293-1306

以下、本発明を具体化した実施例を図面を参照しつつ説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings.

(1)図1では、配位する分子のひとつである配位分子中の2p電子のエネルギー準位と、5d(j=3/2)軌道のエネルギー準位が近いことを示している。
(2)配位分子中の2p電子が、100K乃至200Kで5d(j=3/2)軌道に遷移する(図21))。
(3)(2)の後、エネルギーの近い対称性が同じである(量子力学的に許容される)5d(j=5/2)軌道に遷移し(図22))、その軌道を満たす。軌道の上の数字はその軌道を占有する電子数(上限は1)である。5d(j=5/2)G8軌道は4重に縮重した軌道であるので、ここには最大4個までの電子が存在でき、この図では合計1x4=4個の電子が存在し、満席状態である。
(3)これまで空席であった5d(j=5/2)G8軌道に電子が、配位する分子から遷移してきたので、本来なら4f(j=5/2)G8軌道の方が4f(j=5/2)G軌道よりエネルギーが低いのであるが、全く同じ方向に伸びる軌道に負の電荷を持つ電子が満席まで詰まったため、4f(j=5/2)G8軌道が不安定になり、エネルギーが高くなっている(図23))。これは逆に5d(j=5/2)G8軌道に電子が存在することを強く支持する結果である。この図の下から上に向かう矢印(4))はエネルギーが相対的に低くなった、4f(j=5/2)G軌道から4f(j=5/2)G8軌道に、熱励起により電子が遷移することを示している。(この場合、両軌道を占有する電子数の比から、両者のエネルギー差は、68meVと見積もられる。) したがって、エネルギー発生の仕組みは、希土類化合物内での、温度による分子内電子遷移を利用するものである。そのため、外部から5d(j=5/2)G8軌道と4f(j=5/2)G8軌道のエネルギー差に相当するエネルギーを供給することなく、紫外光が取り出せる。
室温以下では、希土類元素4fG8軌道のエネルギーは、同G7軌道より低いが、希土類元素の4fG8電子の一部がB原子のp軌道に移動する。このp電子が他のp電子と共に、温度上昇に伴い、希土類原子の5dG8に遷移し、同軌道をほぼ満席になるまで占有する。この電子を数eV下にある、Ce4fG8軌道に遷移させれば、その差のエネルギーが取り出せる。この後、結晶を冷却すれば、エネルギーサイクルは完成する。ただし、光を放出した希土類化合物はエネルギーを失い、温度が低下するので、冷却過程は省略することもできる。尚、X線解析法によってのみ、各原子軌道を占有する電子数を特定することができる。また、この解析法はわれわれが独自に開発したものであり、今後一般への普及を図る予定であるが、現在は他の人には同様の解析はできない。
(1) FIG. 1 shows that the energy level of the 2p electron in the coordination molecule, which is one of the coordinated molecules, is close to the energy level of the 5d (j = 3/2) orbital.
(2) 2p electrons in the coordination molecule transition to 5d (j = 3/2) orbitals at 100K to 200K (Fig. 21)).
(3) After (2), transition to a 5d (j = 5/2) orbit having the same energy symmetry (quantum mechanically allowed) (FIG. 22)), and the orbit is satisfied. The number above the orbit is the number of electrons occupying the orbit (upper limit is 1). The 5d (j = 5/2) G 8 orbit is a quadruple degenerate orbit, so there can be up to 4 electrons, and in this figure there are a total of 1x4 = 4 electrons, It is full.
(3) Since electrons have transitioned from the coordinated molecule to the previously unoccupied 5d (j = 5/2) G 8 orbit, the 4f (j = 5/2) G 8 orbit was originally The energy is lower than 4f (j = 5/2) G 7 orbit, but electrons with negative charge are fully packed in the orbit extending in the same direction, so 4f (j = 5/2) G 8 orbit is It is unstable and energy is high (Figure 23)). This is a result that strongly supports the existence of electrons in the 5d (j = 5/2) G 8 orbit. The arrow (4)) from the bottom to the top of this figure shows thermal excitation from 4f (j = 5/2) G 7 orbit to 4f (j = 5/2) G 8 orbit, where the energy is relatively low. Shows that the electrons transition. (In this case, from the ratio of the number of electrons occupying both orbitals, the energy difference between the two is estimated to be 68 meV.) Therefore, the mechanism of energy generation uses intramolecular electronic transition due to temperature in the rare earth compound. Is. Therefore, without supplying energy corresponding to the energy difference between the outside from 5d (j = 5/2) G 8 orbital and 4f (j = 5/2) G 8 track, retrieve the ultraviolet light.
Hereinafter room temperature, the energy of the rare earth element 4FG 8 track is lower than the G 7 trajectory, part of 4FG 8 electrons of the rare earth element is moved to the p-orbital of the B atoms. This p-electron, together with other p-electrons, transitions to the rare earth atom 5dG 8 as the temperature rises, occupying the orbit until it is almost full. If this electron is shifted to the Ce4fG 8 orbit, which is several eV below, the difference energy can be extracted. After this, if the crystal is cooled, the energy cycle is completed. However, since the rare earth compound emitting light loses energy and the temperature decreases, the cooling process can be omitted. The number of electrons occupying each atomic orbital can be specified only by the X-ray analysis method. This analysis method was originally developed by us and is planned to be widely used in the future. However, other people cannot do the same analysis now.

本発明の熱光変換システムは、従来の紫外光の利用法のすべてに応用可能であるが、100乃至200℃程度の低温度廃熱は、工場、発電所等の大規模な廃熱から、家庭からの小規模な廃熱にも適用できる。社会のあらゆるところに存在する廃熱の、徹底的な活用が可能になれば、エネルギー問題および地球環境問題の解決に大きく寄与する。また、発光する紫外線を、太陽光発電システムの光源として活用すれば、太陽光がえられない時間・場所での太陽光発電が可能になる。たとえば、温熱水の通る下水道に本システムを設置すれば、家庭の下水道から取り出される紫外光を照射して発電することにも利用可能性がある。   The heat-light conversion system of the present invention can be applied to all conventional methods of using ultraviolet light, but low-temperature waste heat of about 100 to 200 ° C. is from large-scale waste heat of factories, power plants, etc. It can also be applied to small-scale waste heat from households. If exhaust heat that exists in every part of society can be used thoroughly, it will greatly contribute to solving energy and global environmental problems. In addition, if ultraviolet rays that emit light are used as a light source of a solar power generation system, it is possible to generate solar power at times and places where sunlight cannot be obtained. For example, if this system is installed in a sewer through which hot water passes, it may be used to generate power by irradiating ultraviolet light extracted from the home sewer.

室温における希土類化合物の配位分子と希土類元素の原子軌道の、一般的なエネルギー準位の関係を示す図である。希土類元素に配位する分子(この場合はB原子(ホウ素原子))中の2p電子は、希土類元素の原子軌道の中で、電子により占有される軌道のうち、最もエネルギーの高い4f軌道よりも、電子に占有されていない軌道のうちで最低のエネルギーを持つ5d軌道の方により近いことを示している。この図は立方対称場の図であるが、近似的にはこのような関係は、希土類原子を含む化合物で一般的に見られる関係である。低温(室温から100Kまで)では、Ce-4f電子がB-2p軌道に遷移(移動)する。希土類元素の4f電子軌道は7種類の方向を向くことができるので、配位分子の数も鉄原子等のd電子系に比べると多いという特徴がある。このため、配位分子からの電子の供給は容易である。It is a figure which shows the relationship of the general energy level of the coordination molecule | numerator of the rare earth compound and the atomic orbital of rare earth elements at room temperature. The 2p electrons in the molecule coordinated to the rare earth element (in this case, the B atom (boron atom)) are more than the highest energy 4f orbit among the orbitals occupied by the electrons in the rare earth element atomic orbitals. This indicates that the 5d orbit with the lowest energy among the orbits not occupied by electrons is closer. Although this figure is a diagram of a cubic symmetric field, approximately such a relationship is generally found in compounds containing rare earth atoms. At low temperatures (from room temperature to 100K), Ce-4f electrons transition (move) to B-2p orbitals. Since the 4f electron orbit of rare earth elements can be oriented in seven different directions, the number of coordination molecules is larger than that of d-electron systems such as iron atoms. For this reason, the supply of electrons from the coordination molecule is easy. 希土類化合物における電子構造を示す説明図である。室温よりも希土類化合物の温度が高くなると、低温とは逆にB-2pにあった電子が1)5d(j=3/2)軌道に遷移した後、同じG8の対称性をもつ、2)5d(j=5/2)G8に移動する。しかし、全く同じ方向に伸びる5d(j=5/2)G8軌道に電子が満席になるまで詰まったので、3)これまで安定であった4f(j=5/2) G8軌道が不安定になり、5d(j=5/2)G8軌道に電子と軌道の伸びる方向の異なる4f(j=5/2) G軌道と、エネルギー準位の逆転が起こることを示している。図2中の数字は、X線回折法により求めた各軌道を占有する電子数であるが、各軌道の電子数からこの過程を推定した。It is explanatory drawing which shows the electronic structure in a rare earth compound. When the temperature of the rare earth compound becomes higher than room temperature, the electrons in B-2p, contrary to the low temperature, 1) transition to the 5d (j = 3/2) orbit and then have the same G 8 symmetry, 2 ) Go to 5d (j = 5/2) G 8 . However, the 5d (j = 5/2) G 8 orbit extending in exactly the same direction was packed until the electrons were full, so 3) the previously stable 4f (j = 5/2) G 8 orbit was not It becomes stable and shows that the energy level inversion occurs in the 5d (j = 5/2) G 8 orbit and the 4f (j = 5/2) G 7 orbit in which the directions of the electrons and the orbits are different. The numbers in FIG. 2 are the number of electrons occupying each orbit obtained by the X-ray diffraction method, and this process was estimated from the number of electrons in each orbit.

Claims (3)

希土類化合物を環境下の常温よりも高い温度まで加熱し、5d軌道に集まった電子を、該軌道よりも低いエネルギー準位で空席のある4f軌道に遷移させることにより両者のエネルギー差に相当する光エネルギーを取り出すシステム。 Light corresponding to the energy difference between the two rare earth compounds is heated to a temperature higher than normal ambient temperature, and electrons gathered in the 5d orbital are shifted to a 4f orbital with a vacant seat at an energy level lower than the orbital. A system to extract energy. 前記システムにより光エネルギーを取り出した後に温度が下がった希土類化合物を、放冷、空冷、水冷またはペルチエ素子等と組み合わせた方法により、環境下の常温程度まで低下させて希土類化合物を元の状態に戻し、これを再度加熱して5d軌道に集まった電子を4f軌道に遷移させることにより両者のエネルギー差に相当する光エネルギーを取り出すシステム。 The rare earth compound whose temperature has been lowered after taking out the light energy by the above system is lowered to the normal temperature in the environment by returning it to the original state by cooling, air cooling, water cooling or a method combined with a Peltier element etc. This is a system that takes out the light energy corresponding to the energy difference between them by heating them again and shifting the electrons collected in the 5d orbit to the 4f orbit. 請求項1、2記載の光エネルギーが紫外光であることを特徴とする請求項1、2記載の光エネルギーを取り出すシステム。 The light energy according to claim 1 or 2, wherein the light energy according to claim 1 or 2 is ultraviolet light.
JP2007168684A 2007-06-27 2007-06-27 Thermo-optic conversion system of rare earth compound Pending JP2009007434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168684A JP2009007434A (en) 2007-06-27 2007-06-27 Thermo-optic conversion system of rare earth compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168684A JP2009007434A (en) 2007-06-27 2007-06-27 Thermo-optic conversion system of rare earth compound

Publications (1)

Publication Number Publication Date
JP2009007434A true JP2009007434A (en) 2009-01-15

Family

ID=40322840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168684A Pending JP2009007434A (en) 2007-06-27 2007-06-27 Thermo-optic conversion system of rare earth compound

Country Status (1)

Country Link
JP (1) JP2009007434A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096034A (en) * 1998-09-22 2000-04-04 Sumitomo Metal Mining Co Ltd Sun radiation screening material, coating solution for sun radiation screening membrane and sun radiation screening membrane
JP2004059875A (en) * 2002-07-31 2004-02-26 Sumitomo Metal Mining Co Ltd Masterbatch containing heat ray shielding ingredient, heat ray shielding transparent resin molding applied with the masterbatch and laminate thereof
JP2004162020A (en) * 2002-09-25 2004-06-10 Sumitomo Metal Mining Co Ltd Heat radiation shielding component dispersion, process for its preparation and heat radiation shielding film forming coating liquid, heat radiation shielding film and heat radiation shielding resin form which are obtained using the dispersion
JP2004176393A (en) * 2002-11-27 2004-06-24 Bridgestone Kbg Co Ltd Joint structure of shaft portal part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096034A (en) * 1998-09-22 2000-04-04 Sumitomo Metal Mining Co Ltd Sun radiation screening material, coating solution for sun radiation screening membrane and sun radiation screening membrane
JP2004059875A (en) * 2002-07-31 2004-02-26 Sumitomo Metal Mining Co Ltd Masterbatch containing heat ray shielding ingredient, heat ray shielding transparent resin molding applied with the masterbatch and laminate thereof
JP2004162020A (en) * 2002-09-25 2004-06-10 Sumitomo Metal Mining Co Ltd Heat radiation shielding component dispersion, process for its preparation and heat radiation shielding film forming coating liquid, heat radiation shielding film and heat radiation shielding resin form which are obtained using the dispersion
JP2004176393A (en) * 2002-11-27 2004-06-24 Bridgestone Kbg Co Ltd Joint structure of shaft portal part

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
JPN6012042837; Nuclear Instruments & Methods in Physics Research,Section B, Volume 246,Issue 2,, Page 402-408 *
JPN6012042839; OPTICS COMMUINICATIONS, Vol.204,No.1/6,, P.247-251 *
JPN6012042840; JOURNAL OF NON-CRYSTALLINE SOLIDS, Vol.345&346,, P.338-342 *
JPN6012042842; 光アライアンス, Vol.10,No.12,, P.29-31 *
JPN6012042844; Bulletin of the Chemical Society of Japan, Vol.57,No.5,, P.1209-1294 *
JPN6012042846; Physica Status Solidi (a) Applied Research, Vol.142,No.1,, P.237-244 *
JPN6012042848; Journal of Alloys and Compounds,Vol.189,No.1,P.L1-L3 Vol.189,No.1,, P.L1-L3 *
JPN6012042850; Journal of Alloys and Compounds, Vol.245,No.1/2,, P.L18-L20 *
JPN6012042851; Journal of the American Chemical Society, Vol.127,No.22,, P.8002-8003 *
JPN6012042853; 希土類錯体の新展開 平成7年度研究成果報告書, , P.131-136 *
JPN6012042854; Journal of Alloys and Compounds, Vol.249,No.1/2,, P.213-216 *
JPN6012042856; OPTICS COMMUINICATIONS, Vol.212,No.1/3,, P.97-100 *
JPN6012042858; Journal of Solid State Chemistry, Vol.175,No.2,, P.284-288 *
JPN6012042859; Molecular Physics, Vol.54,No.6,, P.1293-1306 *
JPN6012042861; Solid State Communications, Vol.103,No.8,, P.459-463 *
JPN6012042862; 日本セラミックス協会第20回秋季シンポジウム講演予稿集, , P.431-432 *
JPN6012042863; 日本結晶学会年会講演要旨集 2007, , P.28 *

Similar Documents

Publication Publication Date Title
Wang et al. Passivating detrimental DX centers in CH3NH3PbI3 for reducing nonradiative recombination and elongating carrier lifetime
Shukla et al. Exergetic assessment of BIPV module using parametric and photonic energy methods: a review
Mehrpooya et al. Parametric design and performance evaluation of a novel solar assisted thermionic generator and thermoelectric device hybrid system
Wang et al. Materials design of solar cell absorbers beyond perovskites and conventional semiconductors via combining tetrahedral and octahedral coordination
Wu et al. Photoswitchable phase change materials for unconventional thermal energy storage and upgrade
CN103201941B (en) Make by using the heat in various source to carry out the method and apparatus of thermal cycle generating and there is the vehicle of described device by electric polarization material
Oku Solar cells and energy materials
Ogbonnaya et al. Numerical integration of solar, electrical and thermal exergies of photovoltaic module: A novel thermophotovoltaic model
Park et al. Modeling grain boundaries in polycrystalline halide perovskite solar cells
Wang et al. Chip-scale solar thermal electrical power generation
Mondal et al. Dark Excitons of the Perovskites and Sensitization of Molecular Triplets
Kandi et al. State of the art and future prospects for TEG-PCM Systems: A review
Krishna et al. Inorganic and methane clathrates: Versatility of guest–host compounds for energy harvesting
Hajji et al. Efficient cooling system for an indirectly coupled CPV‐CTE hybrid system
Strubbe et al. Thermodynamic limits to energy conversion in solar thermal fuels
JP2009007434A (en) Thermo-optic conversion system of rare earth compound
JP5767395B2 (en) New compound semiconductors and their utilization
Ding et al. Helium incorporation induced direct-gap silicides
Lin et al. A novel economic-cost and thermal comparative case study between segmented and non-segmented thin-film solar annular thermoelectric generator
Jantke et al. Slicing Diamond for More sp3 Group 14 Allotropes Ranging from Direct Bandgaps to Poor Metals
Belmiloud et al. Transforming III-V binaries into stable ternary materials for solar cells applications
Aly et al. Theoretical comparative study of quantum dot solar cell behavior for single and multi-intermediate bands
Notaro Silicon carbide thin film radiators and gallium antimonide photovoltaic device layers on ceramic substrates for solar-thermophotovoltaic application
Ma et al. Multilayer Approach for Ultralow Lattice Thermal Conductivity in Low-Dimensional Solids
Vähäkangas ELECTRONIC STRUCTURE AND STABILITY OF CESIUM HALIDE PEROVSKITE POLYMORPHS

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100609

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100617

A131 Notification of reasons for refusal

Effective date: 20120904

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20121105

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129