JP2009002771A - Shape measurement method of article and measuring instrument - Google Patents

Shape measurement method of article and measuring instrument Download PDF

Info

Publication number
JP2009002771A
JP2009002771A JP2007163467A JP2007163467A JP2009002771A JP 2009002771 A JP2009002771 A JP 2009002771A JP 2007163467 A JP2007163467 A JP 2007163467A JP 2007163467 A JP2007163467 A JP 2007163467A JP 2009002771 A JP2009002771 A JP 2009002771A
Authority
JP
Japan
Prior art keywords
measured
shape
support plate
sample support
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007163467A
Other languages
Japanese (ja)
Other versions
JP5286699B2 (en
Inventor
Hitoshi Sannomiya
仁志 三宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007163467A priority Critical patent/JP5286699B2/en
Publication of JP2009002771A publication Critical patent/JP2009002771A/en
Application granted granted Critical
Publication of JP5286699B2 publication Critical patent/JP5286699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method and a measuring instrument capable of sufficiently securing measurement precision as a whole even when connecting a plurality of data indicating a part of an outer shape of an object to be measured such as an intermediate raw material 14. <P>SOLUTION: The intermediate raw material 14 is supported on a specimen support plate 19 providing measurement reference parts 27a, 27b on a part capable of being measured by a gage head 24. A part of a surface shape of the intermediate raw material 14 and the surface shapes of the measurement reference parts 27a, 27b are measured while changing an inclined angle of the specimen support plate 19. Thereafter, a plurality of measured data are connected through the measured data of the surface shapes of the measurement reference parts 27a, 27b. Highly reliable measurement result can be obtained concerning the outer shape of the object to be measured regardless of shape precision of the object to be measured such as the intermediate raw material 14. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明に係る物品の形状測定方法及び測定装置は、例えばラジアルニードル軸受用の籠型保持器を構成する為の中間素材の如く、比較的小型の物品の外形を精度良く測定する為に利用する。   The method and apparatus for measuring the shape of an article according to the present invention is used to accurately measure the outer shape of a relatively small article such as an intermediate material for constructing a saddle type cage for a radial needle bearing. .

自動車用変速機や各種機械装置の回転支持部のうち、大きなラジアル荷重が加わる部分にラジアルニードル軸受が組み込まれている。例えば自動車の自動変速装置を構成する遊星歯車式変速機は、特許文献1等に記載されて周知の様に、遊星歯車をキャリアに対し、ラジアルニードル軸受により回転自在に支持している。図6は、この様なキャリアに対し遊星歯車を回転自在に支持する、遊星歯車の回転支持装置の1例を示している。この図6に示した構造の場合、キャリア1を構成する互いに平行な1対の支持板2a、2bの円周方向複数個所に、支持軸3の両端部を支持固定している。そして、この支持軸3の中間部周囲に遊星歯車4を、ラジアルニードル軸受5により、回転自在に支持している。   A radial needle bearing is incorporated in a portion to which a large radial load is applied among rotation support portions of a transmission for automobiles and various mechanical devices. For example, a planetary gear type transmission that constitutes an automatic transmission of an automobile supports a planetary gear rotatably with respect to a carrier by a radial needle bearing as described in Patent Document 1 and the like. FIG. 6 shows an example of a planetary gear rotation support device that rotatably supports the planetary gear with respect to such a carrier. In the case of the structure shown in FIG. 6, both end portions of the support shaft 3 are supported and fixed at a plurality of locations in the circumferential direction of a pair of support plates 2 a and 2 b that are parallel to each other constituting the carrier 1. A planetary gear 4 is rotatably supported by a radial needle bearing 5 around an intermediate portion of the support shaft 3.

このラジアルニードル軸受5は、複数本のニードル6、6を保持器7により転動自在に保持すると共に、上記支持軸3の中間部外周面を凸円筒面状の内輪軌道8とし、上記遊星歯車4の内周面を凹円筒面状の外輪軌道9として、上記各ニードル6、6の転動面を、これら内輪軌道8及び外輪軌道9に転がり接触させている。又、上記遊星歯車4の軸方向両端面と上記両支持板2a、2bの内側面との間に、それぞれフローティングワッシャ10a、10bを配置して、上記遊星歯車4の軸方向両端面と上記両支持板2a、2bの内側面との間に作用する摩擦力の低減を図っている。   The radial needle bearing 5 holds a plurality of needles 6 and 6 by a cage 7 so that the needles 6 and 6 can roll, and the outer peripheral surface of the intermediate portion of the support shaft 3 is a convex cylindrical surface-shaped inner ring raceway 8. The inner peripheral surface 4 is a concave cylindrical outer ring raceway 9, and the rolling surfaces of the needles 6 and 6 are in rolling contact with the inner ring raceway 8 and the outer ring raceway 9. Further, floating washers 10a and 10b are disposed between the both axial end surfaces of the planetary gear 4 and the inner side surfaces of the two support plates 2a and 2b, respectively. The frictional force acting between the inner surfaces of the support plates 2a and 2b is reduced.

上記ラジアルニードル軸受5を構成する上記保持器7は、例えば図7〜8に詳示する様に、軸方向(図7〜8の左右方向)に互いに間隔をあけて配置した、それぞれが円環状(円筒状又は円輪状)である1対のリム部11、11と、複数本の柱部12、12とを備える。これら各柱部12、12は、円周方向に亙って間欠的に配置され、それぞれの両端部を上記両リム部11、11の互いに対向する内側面の外径寄り部分に連続させている。又、上記各柱部12、12は、軸方向中間部が径方向内方に向け台形状に折れ曲がった形状を有する。そして、円周方向に隣り合うこれら各柱部12、12の円周方向両側縁と上記両リム部11、11の互いに対向する内側面とにより四辺を囲まれる空間部分を、それぞれポケット13、13とし、これら各ポケット13、13に上記各ニードル6、6を、転動自在に保持している。   The cage 7 constituting the radial needle bearing 5 is arranged in an axial direction (left-right direction in FIGS. 7 to 8) with a space between each other, as shown in detail in FIGS. A pair of rim portions 11, 11 that are (cylindrical or annular) and a plurality of column portions 12, 12 are provided. These column parts 12 and 12 are intermittently arranged in the circumferential direction, and both end parts thereof are made to be continuous with the outer diameter portions of the inner side surfaces of the rim parts 11 and 11 facing each other. . Moreover, each said pillar part 12 and 12 has the shape where the axial direction intermediate part bent in the trapezoid shape toward radial inside. And the space part surrounded by four sides by the circumferential direction both-sides edge of each of these pillar parts 12 and 12 adjacent to the circumferential direction and the mutually opposing inner side surfaces of the said rim | limb parts 11 and 11 is made into pockets 13 and 13, respectively. The needles 6 and 6 are held in the pockets 13 and 13 so as to roll freely.

この様に構成する上記保持器7は、特許文献2等に記載されて従来から周知の様に、帯状の金属板(一般的には鋼板若しくはステンレス鋼板)を円筒状に丸めて成る。即ち、帯状の金属板にプレス加工、ロール成形等の塑性加工を施す事により、保持器として基本的な断面形状を有する第一段階の中間素材とした後、この第一段階の中間素材に剪断加工を施す事により、上記各ニードル6、6を転動自在に保持する為のポケット13、13を打ち抜き成形し、第二段階の中間素材とする。更に、この第二段階の中間素材を所定長さに切断し、図9に示す様な第三段階の中間素材14とする。   The cage 7 configured as described above is formed by rolling a strip-shaped metal plate (generally, a steel plate or a stainless steel plate) into a cylindrical shape as described in Patent Document 2 and the like, as is conventionally known. That is, by applying plastic working such as press forming and roll forming to the band-shaped metal plate, it becomes a first stage intermediate material having a basic cross-sectional shape as a cage, and then the first stage intermediate material is sheared. By performing the processing, the pockets 13 and 13 for holding the needles 6 and 6 so as to freely roll are punched and formed as an intermediate material in the second stage. Further, the second stage intermediate material is cut into a predetermined length to obtain a third stage intermediate material 14 as shown in FIG.

そして、この第三段階の中間素材14を円筒状に丸め、両端部を突き合わせ溶接して、図6〜8に示す様な保持器7とする。尚、図示の例の場合、上記保持器7の径方向位置を規制する為に、この保持器7の外周面を前記外輪軌道9(図6参照)に近接対向させている。そして、運転時には、この様に近接対向させた保持器7の外周面を上記外輪軌道9に案内(外輪案内)させる事で、この保持器7の径方向に関する位置決めを図り、振動や異音が発生する事を防止する様にしている。   And this intermediate | middle raw material 14 of a 3rd step is rounded cylindrically, both ends are butt-welded and it is set as the holder | retainer 7 as shown to FIGS. In the case of the illustrated example, in order to regulate the radial position of the retainer 7, the outer peripheral surface of the retainer 7 is brought close to and opposed to the outer ring raceway 9 (see FIG. 6). During operation, the outer circumferential surface of the cage 7 that is closely opposed in this way is guided to the outer ring raceway 9 (outer ring guidance), thereby positioning the cage 7 in the radial direction, and vibration and noise are generated. I try to prevent it from occurring.

又、上記保持器7は、上記各柱部12、12の両端部両側縁のうちの円周方向に関して互いに整合する位置に係止突部15、15を、これら各側面から円周方向に突出する状態で設けている。これら各係止突部15、15は、上記各ポケット13、13内に転動自在に保持する上記各ニードル6、6が、当該ポケット13、13から径方向外方に抜け出る事を防止する為のものである。即ち、上記各ニードル6、6を上記保持器7と共に、前記内輪軌道8及び外輪軌道9(図6参照)の間に組み付ける際に、これら各ニードル6、6を上記各ポケット13、13内に、径方向に抜け出るのを阻止した状態で保持する必要がある。   Further, the cage 7 protrudes the locking projections 15 and 15 in the circumferential direction from the respective side surfaces at positions aligned with each other in the circumferential direction of both side edges of the pillars 12 and 12. It is provided in the state to do. These locking projections 15 and 15 prevent the needles 6 and 6 held in the pockets 13 and 13 from rolling out from the pockets 13 and 13 from coming out radially outward. belongs to. That is, when assembling the needles 6 and 6 together with the cage 7 between the inner ring raceway 8 and the outer ring raceway 9 (see FIG. 6), the needles 6 and 6 are placed in the pockets 13 and 13, respectively. It is necessary to hold in a state in which it is prevented from coming out in the radial direction.

この為に、上記各ポケット13、13の開口部で上記各ニードル6、6のピッチ円よりも外径側部分に上記各係止突部15、15を、互いに対向する状態で設けると共に、これら各係止突部15、15の先端縁同士の間隔D15(図7参照)を、上記各ニードル6、6の外径D6 (図6参照)よりも小さくしている(D6 >D15)。又、これと共に、上記各柱部12、12の中間部で上記各ニードル6、6のピッチ円よりも内径側に位置する内径側係止部16、16の互いに対向する側縁同士の間隔D16(図7参照)も、上記各ニードル6、6の外径D6 よりも小さくしている(D6 >D16)。 For this purpose, the locking projections 15 and 15 are provided on the outer diameter side of the pitch circle of the needles 6 and 6 at the openings of the pockets 13 and 13 so as to face each other. The distance D 15 (see FIG. 7) between the leading edges of the locking projections 15 and 15 is made smaller than the outer diameter D 6 (see FIG. 6) of the needles 6 and 6 (D 6 > D). 15 ). At the same time, the distance D between the side edges facing each other of the inner diameter side locking portions 16, 16 located on the inner diameter side of the pitch circle of the needles 6, 6 at the intermediate portion of the column parts 12, 12. 16 (see FIG. 7) also outside is smaller than the diameter D 6 (D 6> D 16 ) of the needles 6.

上記各ニードル6、6を上記各ポケット13、13に保持するには、これら各ニードル6、6をこれら各ポケット13、13に、上記保持器7の内径側から押し込む。この際、上記各ニードル6、6により上記内径側係止部16、16の側縁同士の間隔D16を弾性的に広げて、これら各ニードル6、6をこれら側縁同士の間を通過させる。この様にしてこれら各ニードル6、6を上記各ポケット13、13に保持した状態で、これら各ニードル6、6は、上記各係止突部15、15により前記保持器7の径方向外方に、上記各柱部12、12の内径側係止部16、16の側縁により同じく径方向内方に、それぞれ抜け出る事を防止される。尚、図示は省略するが、各ニードルを各ポケットに、保持器の外径側から組み込む場合もある。又、上記各係止突部15、15や上記各内径側係止部16、16を持たない保持器もある。 In order to hold the needles 6 and 6 in the pockets 13 and 13, the needles 6 and 6 are pushed into the pockets 13 and 13 from the inner diameter side of the cage 7. At this time, the interval D 16 between the side edges of the inner diameter side locking portions 16, 16 is elastically expanded by the needles 6, 6, and the needles 6, 6 are passed between the side edges. . In the state where the needles 6 and 6 are held in the pockets 13 and 13 in this way, the needles 6 and 6 are respectively connected to the outer sides of the cage 7 by the locking protrusions 15 and 15. In addition, the side edges of the inner diameter side locking portions 16 and 16 of the column portions 12 and 12 are prevented from coming out in the same radial inward direction. Although not shown, each needle may be incorporated into each pocket from the outer diameter side of the cage. There are also cages that do not have the locking projections 15 and 15 and the inner diameter side locking portions 16 and 16.

上述の様に構成し造られる保持器7に所期の性能を発揮させる為には、各部の寸法及び形状を設計値通り正確に仕上げる事が必要である。又、保持器7の各部の寸法及び形状を正確に仕上げる為には、前記図9に記載した中間素材14等、この保持器7の製造過程で造られる中間素材の寸法及び形状が正確である事が必要である。更に、この中間素材の寸法及び形状を正確にする為には、この中間素材をプレス加工する為の金型、或いはロール成形する為のロールの形状が良好である事が必要である。但し、金型を利用したプレス加工により、或いはロール成形により、素材となる金属板から上記中間素材を造る場合、金属板のスプリングバック等の影響で、金型の形状がそのまま中間素材の形状になるとは限らない。この為、上記保持器7の量産化に先立って、金型を使用して上記中間素材をプレス加工してから、或いはロール成形してから、得られた中間素材の寸法及び形状を測定し、この金型或いはロールの形状に手直しを加える作業が必要になる。   In order for the cage 7 constructed and constructed as described above to exhibit the desired performance, it is necessary to finish the dimensions and shapes of each part accurately as designed. In addition, in order to accurately finish the size and shape of each part of the cage 7, the size and shape of the intermediate material 14 produced in the manufacturing process of the cage 7 such as the intermediate material 14 described in FIG. 9 are accurate. Things are necessary. Further, in order to make the size and shape of the intermediate material accurate, it is necessary that the mold for pressing the intermediate material or the shape of the roll for roll forming be good. However, when the intermediate material is made from a metal plate as a raw material by press working using a die or roll forming, the shape of the die is directly changed to the shape of the intermediate material due to the influence of the spring back of the metal plate. Not necessarily. For this reason, prior to mass production of the cage 7, after measuring the intermediate material using a mold or roll forming, measure the size and shape of the obtained intermediate material, It is necessary to rework the shape of the mold or roll.

この為従来から、触針式等の接触式の、或いはレーザ光等を使用した非接触式の測定器を使用して、上記中間素材14等の形状を測定しつつ、この中間素材14等を加工する為の金型の形状を仕上げる事が行なわれている。例えばこの中間素材14の形状を測定する場合には、被測定物である、この中間素材14の長さ方向(図9の上下方向)複数部分で、図8に表れた断面形状を、これら各部分毎に、それぞれ全周に亙り測定する。但し、接触式にしても、非接触式にしても、一般的な測定装置の場合には、測定子の形状やレーザ光の反射角限界等による制約から、一度に測定できる範囲が限られる。即ち、一度の測定作業により、断面形状を全周に亙り測定する事はできない。全周に亙る断面形状を得る為には、上記中間素材14等の被測定物の角度を変えつつ、この被測定物の外形を部分的に測定して、それぞれがこの外形の一部を表した複数のデータを得た後、これら各データ同士を繋ぎ合わせる必要がある。この場合に、上記被測定物の折れ曲がり部等、特定し易い個所で、これら各データ同士を繋ぎ合わせる。   For this reason, conventionally, the intermediate material 14 or the like is measured while measuring the shape of the intermediate material 14 or the like using a contact-type measuring device such as a stylus type or a non-contact type measuring device using a laser beam or the like. Finishing the shape of the mold for processing. For example, when the shape of the intermediate material 14 is measured, the cross-sectional shape shown in FIG. Each part is measured over the entire circumference. However, in the case of a general measurement apparatus, whether it is a contact type or a non-contact type, the range that can be measured at a time is limited due to restrictions due to the shape of the probe or the reflection angle limit of the laser beam. In other words, the cross-sectional shape cannot be measured over the entire circumference by a single measurement operation. In order to obtain a cross-sectional shape over the entire circumference, the outer shape of the object to be measured such as the intermediate material 14 is changed while partially measuring the outer shape of the object to be measured, and each represents a part of the outer shape. After obtaining a plurality of data, it is necessary to connect the data. In this case, these pieces of data are connected to each other at an easily specified portion such as a bent portion of the object to be measured.

但し、上記折れ曲がり部等の形状精度が十分でない場合には、上記それぞれが被測定物の外形の一部を表した複数のデータを繋ぎ合わせても、全体としての測定精度を十分に確保できない。即ち、別々に測定したデータ同士を繋ぎ合わせる場合に、繋ぎ合わせ部の形状が不安定であると、繋ぎ合わせるべきデータ同士の方向性の特定が難しくなる等、繋ぎ合わされたデータが、被測定物の形状を正確に表さなくなり易い。特に、被測定物の外形を全周に亙って測定する場合、測定作業を3回以上に分けて行ない、3個以上のデータを繋ぎ合わせる必要が生じる為、繋ぎ合わせに伴う誤差が積算される等により、被測定物の外形に関する測定精度を確保する事が難しくなる。又、上記中間素材14の断面形状を求める為に、この中間素材14を断面形状を求めるべき部分で切断してからこの切断部分の形状を撮影し、画像処理によりこの断面形状を求める事も考えられる。但し、この様な方法では、切断時に発生するバリやダレにより、切断面の形状が実際の断面形状からずれ易く、この断面形状を精度良く求める事は難しい。   However, when the shape accuracy of the bent portion or the like is not sufficient, the overall measurement accuracy cannot be ensured even if a plurality of pieces of data each representing a part of the outer shape of the device under test are connected. That is, when connecting data measured separately, if the shape of the connecting part is unstable, it is difficult to specify the direction of the data to be connected, and the connected data is not measured. It is easy to accurately represent the shape. In particular, when measuring the outer shape of the object to be measured over the entire circumference, it is necessary to divide the measurement work into three or more times, and it is necessary to connect three or more pieces of data. As a result, it becomes difficult to ensure measurement accuracy regarding the outer shape of the object to be measured. Further, in order to obtain the cross-sectional shape of the intermediate material 14, it is considered that the intermediate material 14 is cut at a portion where the cross-sectional shape is to be obtained, and then the shape of the cut portion is photographed to obtain the cross-sectional shape by image processing. It is done. However, with such a method, the shape of the cut surface tends to deviate from the actual cross-sectional shape due to burrs or sagging that occur during cutting, and it is difficult to accurately obtain the cross-sectional shape.

特開2002−235841号公報JP 2002-235841 A 特開平8−270658号公報JP-A-8-270658

本発明は、上述の様な事情に鑑みて、それぞれが被測定物の外形の一部を表した複数のデータを繋ぎ合わせた場合にも、全体としての測定精度を十分に確保できる、物品の形状測定方法及び測定装置を実現すべく発明したものである。   In view of the circumstances as described above, the present invention can ensure sufficient measurement accuracy as a whole even when a plurality of pieces of data each representing a part of the outer shape of the object to be measured are connected. The present invention was invented to realize a shape measuring method and a measuring apparatus.

本発明の物品の形状測定方法及び測定装置のうち、請求項1に記載した物品の形状測定方法は、先ず、測定器により測定可能な部分に測定基準部を設けた試料支持板に被測定物品を、この試料支持板に対し動かない様に支持する。そして、この様に支持した状態で、上記測定器により、上記被測定物品の表面形状の一部及び上記測定基準部の表面形状を、被測定物品の姿勢を変えず、一挙に測定する。その後、上記試料支持板と上記測定器との相対角度を変更してから、上記測定器により、この測定基準部の表面形状及び上記被測定物品の表面形状の他部を測定する。そして、この被測定物品の表面形状の一部の測定データと他部の測定データとを、上記測定基準部の表面形状の測定データを介して繋ぎ合わせる。   Of the article shape measuring method and measuring apparatus according to the present invention, the article shape measuring method according to claim 1 is such that first, an article to be measured is provided on a sample support plate provided with a measurement reference portion in a portion measurable by a measuring instrument. Is supported so as not to move with respect to the sample support plate. And in the state supported in this way, the measuring instrument measures a part of the surface shape of the article to be measured and the surface shape of the measurement reference part at once without changing the posture of the article to be measured. Thereafter, the relative angle between the sample support plate and the measuring instrument is changed, and the surface shape of the measurement reference part and the other part of the surface shape of the article to be measured are measured by the measuring instrument. Then, a part of the measurement data of the surface shape of the article to be measured and the measurement data of the other part are connected via the measurement data of the surface shape of the measurement reference part.

又、請求項2に記載した物品の形状測定装置は、基台と、この基台の一部上面に支持された測定器と、この基台の他部上面に支持された、被測定物を支持する試料支持板とを備える。そして、この試料支持板のうちで上記被測定物を支持した面に、測定基準部を設けると共に、上記測定器と上記試料支持板との相対角度の調節を可能としている。この様な測定基準部の外形は、精度良く造れる形状であれば特に問わない(角柱等でも良い)が、それぞれがピン(円柱)、球等の、断面形状が円形の部分を有する1対の測定基準部の組み合わせが、この測定基準部自体を精度良く造り易く、又、各方向から(異なる角度から)この測定基準部を測定する事ができ、しかも複数の測定データ同士の繋ぎ合わせ部分の方向性を明確に表せる事から好ましい。   According to a second aspect of the present invention, there is provided an apparatus for measuring a shape of an article, comprising: a base; a measuring instrument supported on a part of the upper surface of the base; and an object to be measured supported on the upper surface of the other part of the base. A sample support plate to be supported. A measurement reference portion is provided on the surface of the sample support plate that supports the object to be measured, and the relative angle between the measuring instrument and the sample support plate can be adjusted. The outer shape of such a measurement reference portion is not particularly limited as long as it is a shape that can be made with high precision (or a prism or the like), but each of the pair has a circular section such as a pin (cylinder) or a sphere. The combination of measurement reference parts makes it easy to build the measurement reference part itself with high accuracy, and can measure this measurement reference part from each direction (from different angles). This is preferable because the directionality can be clearly expressed.

上述の様な、請求項2に記載した物品の形状測定装置の発明を実施する場合に好ましくは、請求項3に記載した様に、上記試料支持板のうちで上記被測定物を支持する部分に、上記測定器によりこの被測定物を測定する方向の寸法以上の長さ寸法を有する透孔を設ける。そして、この透孔を通じて、上記被測定物のうちで上記試料支持板に対向する面側の外形を測定自在とする。
或いは、請求項4に記載した様に、上記試料支持板に被測定物の一部を、この試料支持板の端縁よりも突出した状態で支持可能とする。そして、この試料支持板の端縁よりも突出した部分で、この被測定物のうちでこの試料支持板に対向する面側の外形を測定自在とする。
又、何れの場合でも、本発明の物品の形状測定装置の発明を実施する場合に好ましくは、請求項5に記載した様に、それぞれの断面形状が円形である、複数の測定基準部を備える。
When carrying out the invention of the article shape measuring apparatus according to claim 2 as described above, preferably the part of the sample support plate that supports the object to be measured as described in claim 3 In addition, a through hole having a length dimension that is equal to or larger than the dimension in the direction in which the object to be measured is measured by the measuring instrument is provided. And, through this through hole, the outer shape of the surface of the object to be measured facing the sample support plate can be measured.
Alternatively, as described in claim 4, a part of the object to be measured can be supported on the sample support plate in a state protruding from the edge of the sample support plate. Then, at the portion protruding from the edge of the sample support plate, the outer shape of the surface of the object to be measured facing the sample support plate can be measured.
In any case, when the invention of the shape measuring apparatus for an article of the present invention is implemented, preferably, as described in claim 5, a plurality of measurement reference portions each having a circular cross section are provided. .

上述の様に構成する本発明の物品の形状測定方法及び測定装置によれば、被測定物の外形の一部を表した複数のデータを繋ぎ合わせた場合にも、全体としての測定精度を十分に確保できる。
即ち、被測定物品を動かない様に支持する試料支持板に設けた測定基準部をこの被測定物品と共に測定する事で、複数回に分けて測定した測定データ同士を正確に繋ぎ合わせられる。この結果、上述の様に、全体としての測定精度を十分に確保できる。
According to the shape measuring method and measuring apparatus of the article of the present invention configured as described above, even when a plurality of data representing a part of the outer shape of the object to be measured are connected, the overall measurement accuracy is sufficient. Can be secured.
That is, by measuring the measurement reference portion provided on the sample support plate that supports the measured article so as not to move together with the measured article, the measurement data measured in a plurality of times can be accurately connected. As a result, the measurement accuracy as a whole can be sufficiently ensured as described above.

[実施の形態の第1例]
図1〜4は、請求項1〜3、5に対応する、本発明の実施の形態の第1例を示している。先ず、形状測定装置の構造に就いて、図1〜3により説明する。この形状測定装置は、基台17と、測定器18と、試料支持板19とを備える。このうちの基台17は、作業台の上面等に安定した状態で載置できる様に、上下両面が平坦で、且つ、安定性を保つ為に十分な重量を有する。又、上記測定器18は、上記基台17の一部(図1の右上部)上面に設置されている。
[First example of embodiment]
1-4 show a first example of an embodiment of the present invention corresponding to claims 1 to 5. First, the structure of the shape measuring apparatus will be described with reference to FIGS. This shape measuring apparatus includes a base 17, a measuring instrument 18, and a sample support plate 19. Of these, the base 17 is flat on both the upper and lower surfaces and has a weight sufficient to maintain stability so that the base 17 can be stably placed on the upper surface of the work table. The measuring device 18 is installed on the upper surface of a part of the base 17 (upper right portion in FIG. 1).

本例の場合、上記測定器18は接触式のもので、支柱20と、昇降ブロック21と、水平移動ブロック22と、旋回腕23と、測定子24とを備える。このうちの支柱20は、上記基台17の上面片隅部(図1の右上隅部)に、鉛直方向に固定されている。又、上記昇降ブロック21は、上記支柱20のうちで上記基台17の中央側の側面に、精密直動軸受等により、図1に矢印Zで示す上下方向の移動(昇降)可能に組み付けられている。又、上記水平移動ブロック22は、上記昇降ブロック21の下面に、図1の矢印Xで示す様に、上記試料支持板19に対し遠近動する方向に、水平移動自在に設けられている。   In the case of this example, the measuring device 18 is a contact type, and includes a support column 20, a lifting block 21, a horizontal movement block 22, a swivel arm 23, and a measuring element 24. Of these, the support column 20 is fixed in the vertical direction to one corner of the upper surface of the base 17 (upper right corner in FIG. 1). Further, the elevating block 21 is assembled to the side surface on the center side of the base 17 in the support column 20 by a precision linear motion bearing or the like so that it can move (elevate) in the vertical direction indicated by an arrow Z in FIG. ing. Further, the horizontal movement block 22 is provided on the lower surface of the elevating block 21 so as to be horizontally movable in a direction in which the horizontal movement block 22 moves far and away relative to the sample support plate 19 as indicated by an arrow X in FIG.

又、上記旋回腕23はその中間部を上記水平移動ブロック22に対し、水平方向に配置された枢軸29を中心とする揺動変位を自在に支持されている。更に、上記測定子24は、上記旋回腕23の先端部に、下方に向け鉛直方向に突出する状態で固定されている。従って上記測定子24は、上記枢軸29を中心とする上記旋回腕23の揺動変位に伴って、図1の矢印Hに示す様に、上下方向に移動(昇降)する。外力が作用しない状態で上記測定子24は、上記旋回腕23が旋回できる範囲で下方に変位し、上記試料支持板19の上面に設置した、中間素材14等の試料の上面に当接する。この様にして当接する、上記測定子24の先端と試料の上面との当接圧を適正にする為に、上記旋回腕23の基端部に重錘30を設置し、この旋回腕23に対し、上記測定子24を下降させる方向に加わるモーメントを調節している。又、上記各ブロック21、22の上記各矢印X、Z方向の移動は、図示しない送りねじ機構、或いはリニアモータ等により可能としており、その移動量は、この送りねじ機構やリニアモータ等に、内蔵若しくは付属させた、光学式スケール若しくはコンパレータ等により、精密に(例えばμm単位で)測定可能としている。又、上記旋回腕23の揺動角度に就いても、光学式スケール、又は、高精度エンコーダ等により測定して、この揺動に基づく、上記測定子24の昇降量を精度良く求められる様にしている。   Further, the revolving arm 23 is supported at its intermediate portion with respect to the horizontal moving block 22 so as to be able to swing and displace around a pivot 29 arranged in the horizontal direction. Further, the measuring element 24 is fixed to the tip of the swivel arm 23 so as to protrude downward in the vertical direction. Accordingly, the measuring element 24 moves (up and down) in the vertical direction as shown by the arrow H in FIG. 1 in accordance with the swinging displacement of the swivel arm 23 around the pivot 29. In a state where no external force is applied, the measuring element 24 is displaced downward within a range in which the swivel arm 23 can be swung, and comes into contact with the upper surface of a sample such as the intermediate material 14 installed on the upper surface of the sample support plate 19. In order to make the contact pressure between the distal end of the probe 24 and the upper surface of the sample in contact with each other in this way, a weight 30 is installed at the base end portion of the swivel arm 23, and In contrast, the moment applied in the direction in which the probe 24 is lowered is adjusted. The blocks 21 and 22 can be moved in the directions indicated by the arrows X and Z by a feed screw mechanism or a linear motor (not shown). A built-in or attached optical scale, comparator, or the like enables precise measurement (for example, in units of μm). Further, the swing angle of the swivel arm 23 is also measured by an optical scale or a high-precision encoder, so that the amount of elevation of the probe 24 based on this swing can be obtained with high accuracy. ing.

一方、前記試料支持板19は上記基台17の上面他隅部(図1の左上隅部)に、精密ロータリアクチュエータ25により、角度の調節を可能に支持している。又、この精密ロータリアクチュエータ25はブレーキ機構を備え、上記試料支持板19を所定方向に向けた状態のまま、保持可能としている。この試料支持板19の幅方向(図2の上下方向)中央部には、スリット状の透孔26を、長さ方向に亙り形成している。この透孔26の方向は、上記水平移動ブロック22の移動方向である、矢印X方向としている。又、この透孔26は、前記枢軸29を中心として上記旋回腕23が揺動変位する仮想鉛直面上に位置する。又、上記透孔26の長さ寸法L26は、上記試料支持板19の長さ寸法L19よりも少しだけ短い(L26<L19)。更に、この試料支持板19の表面の長さ方向両端寄り部分に、それぞれが円柱状である1対の測定基準部27a、27bを、上記透孔26を直角に横切る様に、上記枢軸29と平行に固定している。本例の場合、円柱状のピンゲージを上記測定基準部として利用(ピンゲージを上記試料支持板19の上面に接着固定)している。この為に、この試料支持板19の上面長さ方向両端寄り部分に、V溝状の凹部28、28を形成し、これら両凹部28、28にそれぞれ上記ピンゲージを嵌合し更に接着して、上記両測定基準部27a、27bとしている。 On the other hand, the sample support plate 19 is supported at the other corner (upper left corner in FIG. 1) of the upper surface of the base 17 by a precision rotary actuator 25 so that the angle can be adjusted. The precision rotary actuator 25 includes a brake mechanism that can hold the sample support plate 19 with the sample support plate 19 facing in a predetermined direction. A slit-shaped through-hole 26 is formed in the lengthwise direction at the center of the sample support plate 19 in the width direction (vertical direction in FIG. 2). The direction of the through hole 26 is the arrow X direction, which is the moving direction of the horizontal moving block 22. The through hole 26 is located on a virtual vertical plane on which the revolving arm 23 swings and displaces around the pivot 29. The length L 26 of the through hole 26 is slightly shorter than the length L 19 of the sample support plate 19 (L 26 <L 19 ). Further, a pair of measurement reference portions 27a and 27b each having a cylindrical shape are provided on both ends of the surface of the sample support plate 19 in the longitudinal direction so as to cross the through hole 26 at right angles with the pivot 29 and They are fixed in parallel. In the case of this example, a cylindrical pin gauge is used as the measurement reference portion (the pin gauge is bonded and fixed to the upper surface of the sample support plate 19). For this purpose, V-groove-shaped recesses 28, 28 are formed on both ends of the sample support plate 19 in the longitudinal direction of the upper surface, and the pin gauges are fitted and bonded to the recesses 28, 28, respectively. Both the measurement reference parts 27a and 27b are used.

次に、上述の様な形状測定装置を使用して、前述の図9に示した様な、ラジアルニードル軸受上に組み込む保持器を構成する為の中間素材14の断面形状を測定する手順に就いて、図4を参照しつつ説明する。尚、以下の説明は図4の(A)→(B)→(C)→(D)の順番で測定作業を進める場合に就いて行なうが、この測定の順序は特に問わない。
測定作業に先立って、上記試料支持板19の表面の長さ方向中央部に、被測定物である上記中間素材14を、磁気吸着力により、或いは両面テープ等の測定後に剥せる接着手段により、上記試料支持板19に対し動かない様に支持する。
Next, the procedure for measuring the cross-sectional shape of the intermediate material 14 for constituting the cage incorporated on the radial needle bearing as shown in FIG. The description will be made with reference to FIG. The following description will be made in the case where the measurement operation is performed in the order of (A) → (B) → (C) → (D) in FIG. 4, but this measurement order is not particularly limited.
Prior to the measurement work, the intermediate material 14 as the object to be measured is attached to the center portion in the longitudinal direction of the surface of the sample support plate 19 by a magnetic adsorption force or by an adhesive means that can be peeled after the measurement such as a double-sided tape The sample support plate 19 is supported so as not to move.

この様に、上記試料支持板19の表面に上記中間素材14を支持した後、先ず、図4の(A)に示す様に、この試料支持板19の表面を上に向け、且つ、この表面を水平方向に対し所定方向に傾斜させた状態で、この試料支持板19を停止保持する。そして、前記測定器18の昇降ブロック21を、上記中間素材14の高さ位置が前記旋回腕23の先端部に設けた測定子24による測定可能範囲に入る様に、図1の矢印Z方向に移動させつつ、前記水平移動ブロック22を同矢印X方向に移動させて、上記旋回腕23の先端部に設けた測定子24の先端(下端)により、上記中間素材14及び上記両測定基準部27a、27bのうちで上方に向いた部分である、図1の(A)の太線部分をなぞる。そして、この太線部分の形状を、上記測定器18のメモリに記憶させる。   In this way, after the intermediate material 14 is supported on the surface of the sample support plate 19, first, as shown in FIG. 4A, the surface of the sample support plate 19 faces upward and the surface The sample support plate 19 is stopped and held in a state where is tilted in a predetermined direction with respect to the horizontal direction. Then, the elevating block 21 of the measuring instrument 18 is moved in the direction of the arrow Z in FIG. 1 so that the height position of the intermediate material 14 falls within the measurable range by the measuring element 24 provided at the tip of the swivel arm 23. The horizontal moving block 22 is moved in the direction of the arrow X while being moved, and the intermediate material 14 and the two measurement reference portions 27a are moved by the distal end (lower end) of the measuring element 24 provided at the distal end portion of the swivel arm 23. , 27b, which is a portion facing upward, traces the thick line portion in FIG. Then, the shape of the thick line portion is stored in the memory of the measuring device 18.

上記図4の(A)の太線部分の形状を上記メモリ中に取り込んだ後、図4の(B)に示す様に、上記試料支持板19を、上記所定方向と逆方向に傾斜させる。そして、上記測定子24を上記矢印X、H方向に変位させる事で、上記図4の(B)の太線部分の形状を上記メモリ中に取り込む。
次いで、図4の(C)に示す様に、上記試料支持板19の裏面を上に向けた状態で、この試料支持板19を所定方向に傾斜させる。そして、上記測定子24の先端部を前記透孔26内に進入させた状態で、この測定子24を上記矢印X、H方向に変位させる事により、上記図4の(C)の太線部分の形状を上記メモリ中に取り込む。尚、上記透孔26は、前述した様に、上記測定子24が揺動変位する仮想鉛直面上に位置している。
その後、図4の(D)に示す様に、上記試料支持板19を、裏面を上方に向けた状態のまま、上記所定方向と逆方向に傾斜させる。そして、上記測定子24の先端部を上記透孔26内に進入させた状態で、この測定子24を上記矢印X、H方向に変位させる事で、上記図4の(D)の太線部分の形状を上記メモリ中に取り込む。
After taking the shape of the thick line portion in FIG. 4A into the memory, as shown in FIG. 4B, the sample support plate 19 is inclined in the direction opposite to the predetermined direction. Then, by displacing the measuring element 24 in the directions of the arrows X and H, the shape of the thick line portion in FIG. 4B is taken into the memory.
Next, as shown in FIG. 4C, the sample support plate 19 is inclined in a predetermined direction with the back surface of the sample support plate 19 facing up. Then, with the leading end of the measuring element 24 inserted into the through-hole 26, the measuring element 24 is displaced in the directions of the arrows X and H, so that the thick line portion in FIG. Capture the shape into the memory. Note that, as described above, the through hole 26 is located on a virtual vertical plane on which the probe 24 swings and displaces.
Thereafter, as shown in FIG. 4D, the sample support plate 19 is tilted in the direction opposite to the predetermined direction with the back surface facing upward. Then, in a state where the tip of the measuring element 24 is inserted into the through hole 26, the measuring element 24 is displaced in the directions of the arrows X and H, so that the thick line portion in FIG. Capture the shape into the memory.

この様に、上記試料支持板19の傾斜方向を4通りに変化させつつ、上記測定子24の先端部で前記中間素材14の外面をなぞる事により、この中間素材14の外面形状(断面形状)を、全周に亙って捉える事ができる。そこで、図4の(A)→(B)→(C)→(D)の各行程で別々に取り入れられた、上記中間素材14の外面形状に関するデータを繋ぎ合わせて、図4の(E)に示す様な、この中間素材14の外面形状を表すデータを得る。   In this way, by tracing the outer surface of the intermediate material 14 at the tip of the measuring element 24 while changing the inclination direction of the sample support plate 19 in four ways, the outer surface shape (cross-sectional shape) of the intermediate material 14 is measured. Can be caught all around. Therefore, the data on the outer surface shape of the intermediate material 14 taken separately in the steps (A) → (B) → (C) → (D) in FIG. Data representing the outer surface shape of the intermediate material 14 as shown in FIG.

この繋ぎ合わせ作業は、別々に取り入れられた4種類の測定データのうち、前記両測定基準部27a、27bに関するデータを重ね合わせる事により行なう。具体的には、前記両測定基準部27a、27bの中心を演算により求めてから、これら両中心を結ぶ直線(線分)を求め、この直線を基準として、上記4種類の測定データを重ね合わせる。この場合に、上記両測定基準部27a、27bの断面形状は高精度の円形であるので、これら両測定基準部27a、27bの中心は精度良く求める事ができ、上記4種類の測定データを精度良く重ね合わせる事ができる。従って、上記4種類の測定データを互いに同心に重ね合わせれば、上記中間素材14の外面形状を表す、図4の(E)に示す様な、この中間素材14の外面形状を正確に表すデータを得られる。この結果、各種物品の製造誤差を少なくする為のデータ等を効率良く得られる。   This joining operation is performed by superimposing data on the two measurement reference portions 27a and 27b among four types of measurement data taken separately. Specifically, after calculating the centers of the two measurement reference parts 27a and 27b, a straight line (line segment) connecting the two centers is obtained, and the four types of measurement data are overlaid on the basis of the straight lines. . In this case, since the cross-sectional shapes of both the measurement reference parts 27a and 27b are high-precision circles, the centers of both measurement reference parts 27a and 27b can be obtained with high accuracy, and the above four types of measurement data are obtained with high accuracy. You can superimpose well. Therefore, when the four types of measurement data are concentrically overlapped with each other, data representing the outer surface shape of the intermediate material 14 as shown in FIG. can get. As a result, data for reducing manufacturing errors of various articles can be obtained efficiently.

[実施の形態の第2例]
図5は、請求項1、2、4〜5に対応する、本発明の実施の形態の第2例を示している。本例の場合、試料支持板19に被測定物である中間素材14の一部を、この試料支持板19の端縁よりも(図5の下方に)突出する状態で支持している。又、両測定基準部27a、27bの一部も、上記試料支持板19の端縁よりも突出する状態で示している。そして、この試料支持板19の端縁よりも突出した部分で、上記実施の形態の第1例と同様の手順により、上記中間素材14の外面形状の測定を行なう。この場合、上記図4の(C)〜(D)で示した手順に就いても、上記突出した部分で行なうことができる。この為、試料支持板19に透孔26(図2参照)を形成する必要がない。その他の部分の構成及び作用に就いては、上述した実施の形態の第1例と同様であるから、重複する説明は省略する。
[Second Example of Embodiment]
FIG. 5 shows a second example of an embodiment of the present invention corresponding to claims 1, 2, 4-5. In the case of this example, a part of the intermediate material 14 that is the object to be measured is supported on the sample support plate 19 so as to protrude from the edge of the sample support plate 19 (downward in FIG. 5). In addition, a part of both measurement reference portions 27a and 27b is also shown in a state protruding from the edge of the sample support plate 19. Then, the outer surface shape of the intermediate material 14 is measured at the portion protruding from the edge of the sample support plate 19 by the same procedure as in the first example of the above embodiment. In this case, the procedure shown in FIGS. 4C to 4D can be carried out at the protruding portion. For this reason, it is not necessary to form the through holes 26 (see FIG. 2) in the sample support plate 19. Since the configuration and operation of the other parts are the same as those in the first example of the above-described embodiment, redundant description is omitted.

図示の例の場合には、被測定物の外面形状を全周に亙って測定する必要上、試料支持板19に、測定子24を進入させる為の透孔26を設けている。これに対して、被測定物の外面形状を全周に亙り測定する必要がなければ、試料支持板に透孔を設けなくても良い。この場合も、測定基準部の測定データにより、上記被測定物の外面形状のそれぞれ一部ずつを表す、複数のデータの重ね合わせを行なう。
又、上述した実施の形態の第1〜2例に於ける、測定基準部27a、27bは、試料支持板19と別体で設けたピンゲージを利用しているが、この試料支持板19と一体に設けた部分を測定基準部とする事もできる。
In the case of the illustrated example, since it is necessary to measure the outer surface shape of the object to be measured over the entire circumference, a through hole 26 for allowing the probe 24 to enter is provided in the sample support plate 19. On the other hand, if it is not necessary to measure the outer surface shape of the object to be measured over the entire circumference, it is not necessary to provide a through hole in the sample support plate. Also in this case, a plurality of pieces of data representing a part of the outer surface shape of the object to be measured are overlapped by the measurement data of the measurement reference portion.
In the first and second examples of the above-described embodiment, the measurement reference portions 27a and 27b use a pin gauge provided separately from the sample support plate 19, but are integrated with the sample support plate 19. The part provided in can be used as a measurement reference part.

本発明の実施の形態の第1例を示す、物品の形状測定装置の斜視図。The perspective view of the shape measuring apparatus of articles | goods which shows the 1st example of embodiment of this invention. 図1のa矢視図。FIG. 図2のb−b断面図。Bb sectional drawing of FIG. 被測定物であるラジアルニードル軸受用保持器の中間素材の外形を測定する手順を順番に示す、図3と同方向から見た図。The figure seen from the same direction as FIG. 3 which shows the procedure which measures the external shape of the intermediate material of the radial needle bearing retainer which is a to-be-measured object in order. 本発明の実施の形態の第2例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 2nd example of embodiment of this invention. 従来から知られている遊星歯車の回転支持装置の1例を示す部分断面図。The fragmentary sectional view which shows one example of the rotation support apparatus of the planetary gear conventionally known. 同じくラジアルニードル軸受用保持器の1例を示す斜視図。The perspective view which similarly shows one example of the retainer for radial needle bearings. 図7のC−C断面図。CC sectional drawing of FIG. 円筒状に形成する前の中間素材を、円筒状とした場合に外周面となる側から見た図。The figure seen from the side used as an outer peripheral surface, when the intermediate material before forming in a cylindrical shape is made into a cylindrical shape.

符号の説明Explanation of symbols

1 キャリア
2a、2b 支持板
3 支持軸
4 遊星歯車
5 ラジアルニードル軸受
6 ニードル
7 保持器
8 内輪軌道
9 外輪軌道
10a、10b フローティングワッシャ
11 リム部
12 柱部
13 ポケット
14 中間素材
15 係止突部
16 内径側係止部
17 基台
18 測定器
19 試料支持板
20 支柱
21 昇降ブロック
22 水平移動ブロック
23 旋回腕
24 測定子
25 精密ロータリアクチュエータ
26 透孔
27a、27b 測定基準部
28 凹部
29 枢軸
30 重錘
DESCRIPTION OF SYMBOLS 1 Carrier 2a, 2b Support plate 3 Support shaft 4 Planetary gear 5 Radial needle bearing 6 Needle 7 Cage 8 Inner ring track 9 Outer ring track 10a, 10b Floating washer 11 Rim part 12 Column part 13 Pocket 14 Intermediate material 15 Locking protrusion 16 Inner diameter side locking part 17 Base 18 Measuring instrument 19 Sample support plate 20 Column 21 Elevating block 22 Horizontal movement block 23 Turning arm 24 Measuring element 25 Precision rotary actuator 26 Through hole 27a, 27b Measurement reference part 28 Recess 29 Pivot 30 Weight

Claims (5)

測定器により測定可能な部分に測定基準部を設けた試料支持板に被測定物品を、この試料支持板に対し動かない様に支持した状態で、上記測定器により、この被測定物品の表面形状の一部及び上記測定基準部の表面形状を測定した後、上記試料支持板と上記測定器との相対角度を変更してから、上記測定器により、この測定基準部の表面形状及び上記被測定物品の表面形状の他部を測定し、この被測定物品の表面形状の一部の測定データと他部の測定データとを、上記測定基準部の表面形状の測定データを介して繋ぎ合わせる、物品の形状測定方法。   The surface shape of the article to be measured is measured by the measuring instrument in a state where the article to be measured is supported on the sample supporting plate provided with a measurement reference portion in a portion measurable by the measuring instrument so as not to move with respect to the sample supporting plate. After measuring the surface shape of a part of the measurement reference portion and the measurement reference portion, the relative angle between the sample support plate and the measurement device is changed, and then the surface shape of the measurement reference portion and the measurement target are measured by the measurement device. An article in which the other part of the surface shape of the article is measured, and the measurement data of a part of the surface shape of the article to be measured and the measurement data of the other part are connected via the measurement data of the surface shape of the measurement reference part. Shape measurement method. 基台と、この基台の一部上面に支持された測定器と、この基台の他部上面に支持された、被測定物を支持する試料支持板とを備え、この試料支持板のうちで上記被測定物を支持した面に測定基準部を設けると共に、上記測定器と上記試料支持板との相対角度の調節を可能とした、物品の形状測定装置。   A base, a measuring instrument supported on the upper surface of a part of the base, and a sample support plate for supporting an object to be measured supported on the upper surface of the other part of the base. A shape measuring device for an article, in which a measurement reference portion is provided on a surface supporting the object to be measured and the relative angle between the measuring device and the sample support plate can be adjusted. 試料支持板のうちで被測定物を支持する部分に、測定器によりこの被測定物を測定する方向の寸法以上の長さ寸法を有する透孔を設け、この透孔を通じて、この被測定物のうちで上記試料支持板に対向する面側の外形を測定自在とした、請求項2に記載した物品の形状測定装置。   A portion of the sample support plate that supports the object to be measured is provided with a through hole having a length that is equal to or larger than the dimension in the direction in which the object to be measured is measured by a measuring instrument. The shape measuring apparatus for an article according to claim 2, wherein the outer shape of the surface facing the sample support plate can be measured. 試料支持板に被測定物の一部を、この試料支持板の端縁よりも突出した状態で支持可能とし、この試料支持板の端縁よりも突出した部分で、この被測定物のうちでこの試料支持板に対向する面側の外形を測定自在とした、請求項2に記載した物品の形状測定装置。   A part of the object to be measured can be supported on the sample support plate in a state of protruding from the edge of the sample support plate, and the portion of the object to be measured is protruded from the edge of the sample support plate. The shape measuring apparatus for an article according to claim 2, wherein the outer shape of the surface facing the sample support plate can be measured. それぞれの断面形状が円形である複数の測定基準部を備える、請求項2〜4のうちの何れか1項に記載した物品の形状測定装置。   The shape measuring apparatus for an article according to any one of claims 2 to 4, comprising a plurality of measurement reference parts each having a circular cross-sectional shape.
JP2007163467A 2007-06-21 2007-06-21 Article shape measuring method and measuring apparatus Active JP5286699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007163467A JP5286699B2 (en) 2007-06-21 2007-06-21 Article shape measuring method and measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007163467A JP5286699B2 (en) 2007-06-21 2007-06-21 Article shape measuring method and measuring apparatus

Publications (2)

Publication Number Publication Date
JP2009002771A true JP2009002771A (en) 2009-01-08
JP5286699B2 JP5286699B2 (en) 2013-09-11

Family

ID=40319320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007163467A Active JP5286699B2 (en) 2007-06-21 2007-06-21 Article shape measuring method and measuring apparatus

Country Status (1)

Country Link
JP (1) JP5286699B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185675A (en) * 2010-03-05 2011-09-22 Mitsutoyo Corp Tolerance detection method and tolerance detection device for shape measuring apparatus
CN102486365A (en) * 2010-12-03 2012-06-06 南车成都机车车辆有限公司 Air gauge and working method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344329A (en) * 1998-05-29 1999-12-14 Canon Inc Three dimensional shape measuring device
JP2000046543A (en) * 1998-07-29 2000-02-18 Canon Inc Three-dimensional profile measuring equipment
JP2002071344A (en) * 2000-08-28 2002-03-08 Matsushita Electric Ind Co Ltd Method and instrument for measuring shape
JP2004093661A (en) * 2002-08-29 2004-03-25 Canon Inc Optical element, mold for forming the same, three-dimensional shape measuring device, and three-dimensional shape measuring method
JP2006119121A (en) * 2004-09-21 2006-05-11 Fuji Photo Film Co Ltd Shape measurement method and device for optical member
JP2006125893A (en) * 2004-10-26 2006-05-18 Olympus Corp Measuring jig
JP2006329842A (en) * 2005-05-27 2006-12-07 Konica Minolta Sensing Inc Method and device for aligning three-dimensional shape data
JP2007003285A (en) * 2005-06-22 2007-01-11 Konica Minolta Sensing Inc Three-dimensional measuring system
JP2007121260A (en) * 2005-09-28 2007-05-17 Institute Of Physical & Chemical Research Probe type shape measuring device and method, and rotation-restricted air cylinder suitable therefor
JP2007155628A (en) * 2005-12-08 2007-06-21 Canon Inc Measurement apparatus and evaluation method of optical element

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344329A (en) * 1998-05-29 1999-12-14 Canon Inc Three dimensional shape measuring device
JP2000046543A (en) * 1998-07-29 2000-02-18 Canon Inc Three-dimensional profile measuring equipment
JP2002071344A (en) * 2000-08-28 2002-03-08 Matsushita Electric Ind Co Ltd Method and instrument for measuring shape
JP2004093661A (en) * 2002-08-29 2004-03-25 Canon Inc Optical element, mold for forming the same, three-dimensional shape measuring device, and three-dimensional shape measuring method
JP2006119121A (en) * 2004-09-21 2006-05-11 Fuji Photo Film Co Ltd Shape measurement method and device for optical member
JP2006125893A (en) * 2004-10-26 2006-05-18 Olympus Corp Measuring jig
JP2006329842A (en) * 2005-05-27 2006-12-07 Konica Minolta Sensing Inc Method and device for aligning three-dimensional shape data
JP2007003285A (en) * 2005-06-22 2007-01-11 Konica Minolta Sensing Inc Three-dimensional measuring system
JP2007121260A (en) * 2005-09-28 2007-05-17 Institute Of Physical & Chemical Research Probe type shape measuring device and method, and rotation-restricted air cylinder suitable therefor
JP2007155628A (en) * 2005-12-08 2007-06-21 Canon Inc Measurement apparatus and evaluation method of optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185675A (en) * 2010-03-05 2011-09-22 Mitsutoyo Corp Tolerance detection method and tolerance detection device for shape measuring apparatus
CN102486365A (en) * 2010-12-03 2012-06-06 南车成都机车车辆有限公司 Air gauge and working method thereof

Also Published As

Publication number Publication date
JP5286699B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5179852B2 (en) Measuring device for bearing rotation accuracy
KR101732749B1 (en) Cumulative-lead errors measurement device and measurement method for ball screw shaft
JPH0224441B2 (en)
US10578414B2 (en) Inner-wall measuring instrument and offset-amount calculation method
WO2020004222A1 (en) Inspection master
JP4049272B2 (en) Reference member for inspection master of optical 3D measuring machine
JP6469927B1 (en) Inspection master
JP2021001865A (en) Contact type probe and coordinate measurement device
JP5286699B2 (en) Article shape measuring method and measuring apparatus
JP2014077640A (en) Method for inspecting pocket gap of holder for roller bearing
JP6419380B1 (en) Inspection master
JP2009098092A (en) Relative height detector
JP2008089541A (en) Reference for measuring motion error and motion error measuring device
JP6795911B2 (en) Measuring method and measuring device
JP2005338001A (en) Hole-pitch measuring method and hole-pitch measuring instrument
JP5294016B2 (en) Rotary table runout control apparatus, machine tool equipped with the same, and rotary table runout control method
JP2007121260A (en) Probe type shape measuring device and method, and rotation-restricted air cylinder suitable therefor
JP2008139078A (en) Method and apparatus for measuring parallel holes
JP2009145152A (en) Measuring device
JP6361729B2 (en) Aspherical eccentricity measurement method and shape analysis method
JP5151545B2 (en) Simultaneous multi-axis control evaluation method
CN207688844U (en) A kind of measuring device
CN114111688A (en) Device and method for measuring orthogonality of orthogonal axis system
JP2019152506A (en) Spherical inner diameter measuring device and measuring method
JP6061126B2 (en) Measuring element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5286699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150