JP2009001873A - Method for manufacturing heat transfer member, power module, inverter for vehicle, and vehicle - Google Patents

Method for manufacturing heat transfer member, power module, inverter for vehicle, and vehicle Download PDF

Info

Publication number
JP2009001873A
JP2009001873A JP2007164713A JP2007164713A JP2009001873A JP 2009001873 A JP2009001873 A JP 2009001873A JP 2007164713 A JP2007164713 A JP 2007164713A JP 2007164713 A JP2007164713 A JP 2007164713A JP 2009001873 A JP2009001873 A JP 2009001873A
Authority
JP
Japan
Prior art keywords
nozzle
base material
transfer member
heat transfer
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007164713A
Other languages
Japanese (ja)
Other versions
JP4910903B2 (en
Inventor
Yoshihiko Tsuzuki
佳彦 都築
Noritaka Miyamoto
典孝 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007164713A priority Critical patent/JP4910903B2/en
Publication of JP2009001873A publication Critical patent/JP2009001873A/en
Application granted granted Critical
Publication of JP4910903B2 publication Critical patent/JP4910903B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a heat transfer member, which can inhibit the exfoliation and cracking of a coating film from occurring due to thermal expansion. <P>SOLUTION: The method for manufacturing the heat transfer member includes forming the coating film from a metal powder on a rectangular region formed of a long side L and a short side S on a substrate 11, by repeating a series of steps which comprise: a first step P1 of spraying a heated metal powder in a solid-phase state onto the surface of the substrate 11 so that the powder is sprayed from a nozzle onto an area having a predetermined spray diameter, and also linearly moving the nozzle 23 and the substrate 11 relatively in a first axial direction, while spraying the powder; and a second step P2 of lineally moving the nozzle 23 and the substrate 11 which have finished the first step, relatively in a second axial direction that is different from the first axial direction, so that a moving distance is the distance equal to the spray diameter or shorter, while spraying the powder. The relative moving distance of the nozzle 23 with respect to the substrate in the first step P1 is controlled to be shorter than the length of the long side L on the substrate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

固相状態の金属粉末をガス圧縮と共に基材表面に吹き付けて、前記金属粉末の組成を含む被膜を形成する伝熱部材の製造方法、該伝熱部材を備えたパワーモジュール、該パワーモジュールを備えた車両用インバータ、及び該車両用インバータを備えた車両に関する。   A method of manufacturing a heat transfer member that forms a coating film containing the composition of the metal powder by spraying a solid-state metal powder together with gas compression to the base material surface, a power module including the heat transfer member, and the power module The present invention relates to a vehicle inverter and a vehicle including the vehicle inverter.

従来から、車両のインバータなどに使用されるパワーモジュール70は、図8に示す電子部品から構成されている。具体的には、パワーモジュール70は、シリコン素子からなるパワー素子71と、はんだ層72を介してパワー素子71を固定した窒化アルミニウムからなる絶縁部材73と、アルミニウムからなるヒートシンク部材74とを少なくとも含んでいる。さらに、絶縁部材73とヒートシンク部材74との間には、パワー素子71から発熱した熱をヒートシンク部材74に伝達し放熱する目的と、絶縁部材73とヒートシンク部材74との熱膨張差を緩和する目的とを兼ね備えた、銅−モリブデン(Cu−Mo)またはアルミニウム−炭化珪素(Al−SiC)からなる緩衝部材75が配設されている。緩衝部材75は、絶縁部材73に対してはんだ層76により固定されており、ヒートシンク部材74に対してシリコングリース77により固定されている。このように、緩衝部材75とヒートシンク部材74とを合わせて、パワー素子71からの熱を放熱するための伝熱部材を構成している。   Conventionally, a power module 70 used for a vehicle inverter or the like is composed of electronic components shown in FIG. Specifically, the power module 70 includes at least a power element 71 made of a silicon element, an insulating member 73 made of aluminum nitride to which the power element 71 is fixed via a solder layer 72, and a heat sink member 74 made of aluminum. It is out. Further, between the insulating member 73 and the heat sink member 74, the heat generated from the power element 71 is transmitted to the heat sink member 74 to dissipate the heat, and the thermal expansion difference between the insulating member 73 and the heat sink member 74 is alleviated. And a buffer member 75 made of copper-molybdenum (Cu-Mo) or aluminum-silicon carbide (Al-SiC). The buffer member 75 is fixed to the insulating member 73 by a solder layer 76, and is fixed to the heat sink member 74 by silicon grease 77. Thus, the buffer member 75 and the heat sink member 74 are combined to constitute a heat transfer member for radiating heat from the power element 71.

このように構成されたパワーモジュール70は、緩衝部材75を固定するシリコングリース77の熱伝導性が他の部材に比べて低いため、シリコングリース77が、パワー素子71の熱をヒートシンク部材74に伝える障害となっている。このことを回避するには、例えば、シリコングリース77を用いずに、ヒートシンク部材74の表面に、直接的に銅−モリブデン(Cu−Mo)を溶射することにより、緩衝部材75を被膜として成膜する方法が考えられる。しかし、この方法は、金属粉末を溶融させ、さらには、溶融した金属を基材に吹き付けるため、被膜の酸化が激しく、基材が受ける熱影響も大きいため、好ましい方法であるとはいえない。   In the power module 70 configured as described above, since the thermal conductivity of the silicon grease 77 for fixing the buffer member 75 is lower than that of other members, the silicon grease 77 transfers the heat of the power element 71 to the heat sink member 74. It is an obstacle. In order to avoid this, for example, the buffer member 75 is formed as a film by spraying copper-molybdenum (Cu-Mo) directly on the surface of the heat sink member 74 without using the silicon grease 77. A way to do this is conceivable. However, this method is not a preferable method because the metal powder is melted and further, the molten metal is sprayed onto the base material, so that the oxidation of the coating is intense and the heat effect on the base material is large.

そこで、近年コールドスプレー法と呼ばれる被膜形成法が提案されている。このコールドスプレー法は、被膜の材料の融点又は軟化温度よりも低い温度に加熱したガスを、先細末広がり(ラバル)ノズルにより流速を高め、このガス流れの中に被膜の材料となる粉末を投入して加速させ、該粉末を固相状態のまま基材に高速で衝突させて被膜を形成する方法である(例えば、特許文献1参照)。   In recent years, therefore, a film forming method called a cold spray method has been proposed. In this cold spray method, a gas heated to a temperature lower than the melting point or softening temperature of the coating material is increased by a tapered nozzle (Laval) nozzle, and the powder serving as the coating material is injected into the gas flow. The coating is formed by causing the powder to collide with the substrate at a high speed in the solid state (see, for example, Patent Document 1).

このようなコールドスプレー法により、図9に示すように、基材81に被膜82が形成された伝熱部材80は製造される。具体的には、基材81(パワーモジュールの場合にはヒートシンク部材74)の表面に長辺Lと短辺Sからなる矩形状の被膜82を形成する場合、基材81の成膜すべき表面をX−Y平面とし、長辺Lに沿った方向をX軸方向、短辺Sに沿った方向をY軸方向としたときに、まず、金属粉末を基材吹き付けながらノズル93を長辺に沿った方向であるX軸方向(いわゆる送り方向)に略長辺長さに相当する距離まで移動させる。次に、ノズル93を短辺に沿った方向であるY軸方向(いわゆるピッチ方向)に吹付け径以下の移動距離で移動させる。そして、このようなノズル93の移動を一連の動作として繰返すことにより被膜の成膜を行っている。   By such a cold spray method, as shown in FIG. 9, the heat transfer member 80 in which the film 82 is formed on the base material 81 is manufactured. Specifically, in the case of forming a rectangular film 82 having a long side L and a short side S on the surface of the base material 81 (heat sink member 74 in the case of a power module), the surface of the base material 81 to be formed Is the X-Y plane, the direction along the long side L is the X-axis direction, and the direction along the short side S is the Y-axis direction. It is moved to a distance corresponding to a substantially long side length in the X-axis direction (so-called feed direction) that is the along direction. Next, the nozzle 93 is moved in the Y-axis direction (so-called pitch direction) that is a direction along the short side by a movement distance equal to or less than the spray diameter. A film is formed by repeating such movement of the nozzle 93 as a series of operations.

特開2004−76157号公報JP 2004-76157 A

上述した方法で成膜した場合には、ノズルの送り方向を長辺に沿った方向(X軸方向)にすることにより、ノズルの移動方向の転換を最小限にすることが可能となり、成膜の作業効率の向上を図ることができる。しかし、長辺と短辺からなる矩形状の範囲に、図9に示すような方法で被膜82を形成した場合には、被膜82のY軸方向の熱膨張率(線膨張率)は、X軸方向に比べて高くなる。このようにして製造された伝熱部材80は、その表面に熱が伝達された場合、短辺に沿った方向に対して長辺に沿った方向の基材と被膜と膨張差はより大きくなり、被膜の剥離、ひび割れ等が発生するおそれがあった。   When the film is formed by the above-described method, it is possible to minimize the change in the moving direction of the nozzle by changing the nozzle feeding direction along the long side (X-axis direction). The work efficiency can be improved. However, when the coating 82 is formed in a rectangular range consisting of the long side and the short side by the method shown in FIG. 9, the thermal expansion coefficient (linear expansion coefficient) in the Y-axis direction of the coating 82 is X It becomes higher compared to the axial direction. When heat is transferred to the surface of the heat transfer member 80 manufactured in this manner, the difference in expansion between the base material and the coating in the direction along the long side becomes larger than the direction along the short side. There was a risk of peeling of the coating, cracking and the like.

特に、図8に示すようなパワーモジュール70に、コールドスプレー法により製造された伝熱部材を適用した場合には、長辺に沿った方向における被膜の銅は、熱膨張率が17×10−6/Kに近い値となり、絶縁部材73の窒化アルミニウムの熱膨張率(5×10−6/K)と、ヒートシンク部材74のアルミニウム(23×10−6/K)と、略中間的な値にはならず、アルミニウムに近い熱膨張率となる。この結果、パワー素子71からヒートシンク部材74まで繰返し熱負荷が作用した場合には、長辺に沿った方向における熱膨張差が起因して、伝熱部材(具体的には被膜)の剥離、ひび割れが発生するおそれがあり、パワーモジュール、及び該パワーモジュールを備えたインバータの信頼性を高めることが難しい場合があった。 In particular, when a heat transfer member manufactured by a cold spray method is applied to the power module 70 as shown in FIG. 8, the coating copper in the direction along the long side has a thermal expansion coefficient of 17 × 10 −. The value is close to 6 / K, and is approximately intermediate between the thermal expansion coefficient (5 × 10 −6 / K) of aluminum nitride of the insulating member 73 and the aluminum (23 × 10 −6 / K) of the heat sink member 74. The thermal expansion coefficient is close to that of aluminum. As a result, when a thermal load is repeatedly applied from the power element 71 to the heat sink member 74, due to a difference in thermal expansion in the direction along the long side, the heat transfer member (specifically, the coating film) is peeled or cracked. In some cases, it is difficult to improve the reliability of the power module and the inverter including the power module.

本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、熱膨張差による剥離、及び、ひび割れを抑制することができる伝熱部材の製造方法を提供すると共に、信頼性の高いパワーモジュール、該モジュールを備えた車両用インバータ、及び該車両用インバータを備えた車両を提供することにある。   This invention is made | formed in view of such a problem, While the objective is providing the manufacturing method of the heat-transfer member which can suppress the peeling by a thermal expansion difference and a crack. Another object of the present invention is to provide a highly reliable power module, a vehicle inverter including the module, and a vehicle including the vehicle inverter.

本発明者らは、鋭意検討を重ねた結果、図9に示す方法で成膜した被膜のX方向(ノズルの送り方向)における熱膨張率が高いのは、ノズルの送り方向は、連続して金属粉末が堆積するので金属粉末そのものの線膨張係数を得ることができるが、ノズルの送り方向に対して直角方向(ピッチ方向)には、酸化皮膜が形成され易いからであると考えた。   As a result of extensive studies, the present inventors have a high coefficient of thermal expansion in the X direction (nozzle feed direction) of the coating film formed by the method shown in FIG. Since the metal powder is deposited, the linear expansion coefficient of the metal powder itself can be obtained, but it is considered that an oxide film is easily formed in the direction perpendicular to the nozzle feed direction (pitch direction).

そして、基材表面に矩形状の被膜を形成する場合に、基材の最も熱膨張差が大きくなる方向に対して、ノズルの送り方向の最大長さを一致させないこと、より具体的には、長辺と短辺からなる被膜を形成する場合には、ノズルの送り方向の最大長さを長辺の長さに一致させないことが重要であるとの新たな知見を得た。   And, when forming a rectangular coating on the substrate surface, the maximum length of the nozzle feed direction is not matched with the direction in which the difference in thermal expansion of the substrate is the largest, more specifically, When forming a film consisting of a long side and a short side, new knowledge was obtained that it is important not to make the maximum length in the feed direction of the nozzle coincide with the length of the long side.

本発明は、前記新たな知見に基づくものであり、本発明に係る伝熱部材の製造方法は、加熱された固相状態の金属粉末をノズルから所定の吹付け径となるように、基材表面に吹き付けると共に、該吹付け時に、前記ノズルと基材とを、相対的に第一の軸方向に直線移動させる第一工程と、該第一工程後の前記ノズルと前記基材とを、相対的に前記第一の軸方向とは異なる第二の軸方向に前記吹付け径以下の移動距離となるように直線移動させる第二工程と、を一連の工程として該一連の工程を繰返すことにより、前記基材上の長辺と短辺とからなる矩形状の範囲に、前記金属粉末から被膜を形成する伝熱部材の製造方法であって、前記第一工程における前記ノズルと基材との相対的な移動距離を、前記基材上の前記長辺の長さよりも短い距離にすることを特徴としている。   The present invention is based on the above-mentioned new knowledge, and the method for producing a heat transfer member according to the present invention is such that the heated solid-state metal powder has a predetermined spray diameter from a nozzle. A first step of spraying the surface and linearly moving the nozzle and the base material relatively in the first axial direction during the spraying, and the nozzle and the base material after the first step, Repeating the series of steps as a series of steps of linearly moving in a second axial direction that is relatively different from the first axial direction so as to have a moving distance equal to or less than the spray diameter. By the manufacturing method of the heat transfer member which forms a coat from the metal powder in a rectangular range consisting of the long side and the short side on the base material, the nozzle and the base material in the first step The relative movement distance is shorter than the length of the long side on the substrate. It is characterized in that.

本発明によれば、前記第一工程における前記ノズルと基材との相対的な移動距離を、前記基材上の前記長辺の長さよりも短い距離にすることにより、長辺に沿った方向の熱膨張率を低減することができる。この結果、長辺に沿った方向の熱膨張差を起因とした被膜の界面における剥離、被膜のひび割れを低減することができる。なお、本発明でいう第一の軸方向とは、ノズルと基材を送るいわゆる「送り方向(トラバース方向)」をいい、第二の軸方向とは、ノズルを基板に対して移動させるいわゆる「ピッチ方向」をいう。また、矩形状の範囲に被膜を形成する場合には、前記第二の軸方向は、第一の軸方向に対して直角方向であることがより好ましい。   According to the present invention, the relative movement distance between the nozzle and the base material in the first step is a distance along the long side by making the distance shorter than the length of the long side on the base material. It is possible to reduce the coefficient of thermal expansion. As a result, it is possible to reduce peeling at the interface of the coating and cracking of the coating due to the difference in thermal expansion in the direction along the long side. In the present invention, the first axial direction refers to a so-called “feeding direction (traverse direction)” for feeding the nozzle and the base material, and the second axial direction refers to a so-called “moving the nozzle relative to the substrate”. "Pitch direction". Moreover, when forming a film in the rectangular range, it is more preferable that the second axial direction is a direction perpendicular to the first axial direction.

さらに、本発明によれば、圧縮ガスと共に金属粉末を溶融させることなく固相状態の金属粉末を基材表面まで搬送し、該固相状態の金属粉末を基材に吹き付ける。該吹き付けにより金属粉末は、基材表面に堆積し被膜を形成する。該被膜は、固相状態を維持して成膜されるので、溶融して成膜したものに比べて酸化し難い。この結果、基材の表面に、より純度の高い金属被膜を得ることができ、熱伝導性を確保することができる。   Furthermore, according to the present invention, the solid-state metal powder is transported to the substrate surface without melting the metal powder together with the compressed gas, and the solid-state metal powder is sprayed onto the substrate. By this spraying, the metal powder is deposited on the surface of the substrate to form a film. Since the coating film is formed while maintaining the solid phase, it is difficult to oxidize compared to a film formed by melting. As a result, a metal film with higher purity can be obtained on the surface of the base material, and thermal conductivity can be ensured.

本発明に係る熱伝導部材の製造方法において、前記第一の軸方向を前記短辺に沿った方向とし、前記第二の軸方向を前記長辺に沿った方向とすることがより好ましい。本発明によれば、第一の工程において、前記ノズルと基材とを、相対的に短辺に沿った方向に直線移動させ、第二の工程において、第一工程後の前記ノズルと前記基材とを、相対的に長辺に沿った方向に前記吹付け径以下の移動距離となるように移動させる。この結果、長辺に沿った方向の熱膨張率は、短辺に沿った方向の熱膨張率よりも相対的に小さい値となり、長辺に沿った方向の熱膨張差を起因とした被膜の界面における剥離、被膜のひび割れを低減することができる。   In the manufacturing method of the heat conductive member according to the present invention, it is more preferable that the first axial direction is a direction along the short side and the second axial direction is a direction along the long side. According to the present invention, in the first step, the nozzle and the base material are linearly moved in a direction along a relatively short side, and in the second step, the nozzle and the base after the first step are moved. The material is moved in a direction relatively along the long side so as to have a moving distance equal to or less than the spray diameter. As a result, the coefficient of thermal expansion in the direction along the long side is a relatively smaller value than the coefficient of thermal expansion in the direction along the short side, and the film has a thermal expansion difference in the direction along the long side. Separation at the interface and cracking of the coating can be reduced.

また別の態様としては、本発明に係る伝熱部材の製造方法において、前記第一の軸方向を前記長辺に沿った方向とし、前記第二の軸方向を前記短辺に沿った方向とし、前記第一工程における前記ノズルと前記基材との相対的な移動距離が、前記吹付け径以下の距離にすることがより好ましい。   As another aspect, in the method for manufacturing a heat transfer member according to the present invention, the first axial direction is a direction along the long side, and the second axial direction is a direction along the short side. More preferably, the relative movement distance between the nozzle and the base material in the first step is a distance equal to or less than the spray diameter.

本発明によれば、前記第一及び第二工程において、前記ノズルと前記基材とを、いずれの工程においても、吹き付け径以下の移動距離となるように移動させることにより、長辺に沿った方向の熱膨張率を下げることができる。この結果、長辺に沿った方向の熱膨張率は、短辺に沿った方向の熱膨張率よりも相対的に小さい値となり、長辺に沿った方向の熱膨張差を起因とした被膜の界面における剥離、被膜のひび割れを低減することができる。   According to the present invention, in the first and second steps, the nozzle and the substrate are moved along the long side by moving the nozzle and the base material so as to have a moving distance equal to or less than the spray diameter in any step. The coefficient of thermal expansion in the direction can be lowered. As a result, the coefficient of thermal expansion in the direction along the long side is a relatively smaller value than the coefficient of thermal expansion in the direction along the short side, and the film has a thermal expansion difference in the direction along the long side. Separation at the interface and cracking of the coating can be reduced.

さらに、前記金属粉末として、例えばアルミニウム、クロム、ニッケル、銅、鉄及びこれらの合金のうち選択される少なくとも1つの材料を含む粉末を挙げることができるが、より好ましい金属粉末としては、銅または銅合金からなる粉末である。本発明によれば、金属粉末に、前記金属粉末を用いることにより、熱伝導性ばかりでなく、被膜の電気伝導性も向上させることができる。さらに、前記金属粉末は、熱伝導性が他の材料に比べて優れているため、後述するパワーモジュールの絶縁部材とヒートシンク部材との間に、前記被膜を配置する場合には特に好適である。   Furthermore, examples of the metal powder include powder containing at least one material selected from aluminum, chromium, nickel, copper, iron, and alloys thereof. More preferable metal powder includes copper or copper. It is a powder made of an alloy. According to the present invention, by using the metal powder as the metal powder, not only the thermal conductivity but also the electrical conductivity of the coating can be improved. Furthermore, since the metal powder is superior in thermal conductivity to other materials, it is particularly suitable when the coating is disposed between an insulating member and a heat sink member of a power module described later.

さらに、本発明に係る伝熱部材の製造方法において、前記金属粉末として銅粉末を用い、前記基材としてアルミニウム又はアルミニウム合金を用い、前記第一の軸方向を前記長辺に沿った方向とし、前記第二の軸方向を前記短辺に沿った方向とし、前記第一工程における前記ノズルと前記基材との相対的な移動距離が、10mm以下の距離にすることがより好ましい。   Furthermore, in the method for manufacturing a heat transfer member according to the present invention, copper powder is used as the metal powder, aluminum or an aluminum alloy is used as the base material, and the first axial direction is a direction along the long side, More preferably, the second axial direction is a direction along the short side, and the relative movement distance between the nozzle and the substrate in the first step is a distance of 10 mm or less.

本発明によれば、第一工程における前記ノズルの移動距離を10mm以下にすることにより、アルミニウムまたはアルミニウム合金製の基材と、銅被膜との長辺に沿った方向の熱膨張差を緩和することができる。   According to the present invention, the difference in thermal expansion in the direction along the long side between the aluminum or aluminum alloy base material and the copper coating is reduced by setting the moving distance of the nozzle in the first step to 10 mm or less. be able to.

また、前記金属粉末として、ガスアトマイズ粉末または水アトマイズ粉末などのアトマイズ粉末、電気分解を利用して電極に前記金属を析出させることにより製造された電解粉末などを挙げることができるが、より好ましい金属粉末は、電解粉末である。本発明によれば、電解粉末は、他の粉末に比べて凹凸を多く含む表面形状となっているため、多孔質組織を有した被膜をより容易に形成し易い。   Examples of the metal powder include atomized powder such as gas atomized powder or water atomized powder, and electrolytic powder produced by depositing the metal on an electrode using electrolysis, and more preferable metal powder. Is an electrolytic powder. According to the present invention, since the electrolytic powder has a surface shape that includes more irregularities than other powders, it is easier to form a film having a porous structure.

また、圧縮ガスとして、窒素ガスまたはヘリウムガスなどの不活性ガス、若しくは、エア(大気)などを挙げることができ、固相状態で金属粉末を堆積させて被膜を形成すること、及び、形成された被膜に多孔質組織を得ることができるのであれば、圧縮ガスの種類は特に限定されるものではない。   In addition, examples of the compressed gas include an inert gas such as nitrogen gas or helium gas, or air (atmosphere), and a coating is formed by depositing metal powder in a solid state. The type of compressed gas is not particularly limited as long as a porous structure can be obtained in the coated film.

さらに、本発明の別の態様として、加熱された固相状態の金属粉末をノズルから所定の吹付け径となるように、基材表面に吹き付けると共に、該吹付け時に、前記ノズルと基材とを、相対的に第一の軸方向に直線移動させる第一工程と、該第一工程後の前記ノズルと前記基材とを、相対的に前記第一の軸方向とは異なる第二の軸方向に直線移動させる第二工程と、を一連の工程として該一連の工程を繰返すことにより、前記基材上の矩形状の範囲に、前記金属粉末から被膜を形成する伝熱部材の製造方法であって、前記第一及び第二工程における前記ノズルと前記基材との相対的な移動距離が、前記吹付け径以下であることを特徴とする。   Furthermore, as another aspect of the present invention, the heated solid-state metal powder is sprayed from the nozzle to the surface of the base material so as to have a predetermined spray diameter, and at the time of spraying, the nozzle and the base material And a second axis that is relatively different from the first axial direction, and a first process that relatively linearly moves in the first axial direction, and the nozzle and the base material after the first process. A method of manufacturing a heat transfer member that forms a film from the metal powder in a rectangular range on the base material by repeating the series of steps as a series of steps that are linearly moved in the direction. And the relative moving distance of the said nozzle and the said base material in said 1st and 2nd process is below the said spray diameter, It is characterized by the above-mentioned.

本発明によれば、前記第一及び第二工程における前記ノズルと前記基材との相対的な移動距離を、前記吹付け径以下にすることにより、第一の軸方向及び第二の軸方向における被膜の熱膨張率を略同等にし、少なくとも被膜が形成された平面方向に対して等方性を有した伝熱部材を得ることができる。   According to the present invention, by setting the relative movement distance between the nozzle and the base material in the first and second steps to be equal to or less than the spray diameter, the first axial direction and the second axial direction. It is possible to obtain a heat transfer member having an isotropic property at least in the plane direction on which the coating film is formed.

本発明に係る伝熱部材の製造方法において、前記金属粉末を、50℃以上の粉末が前記基材の表面に吹き付けられるように加熱することがより好ましい。   In the method for manufacturing a heat transfer member according to the present invention, it is more preferable to heat the metal powder so that a powder of 50 ° C. or higher is sprayed on the surface of the base material.

本発明によれば、基材に吹き付けられる粉末の温度すなわち基材に衝突する直前の粉末の温度を50℃以上となるように、金属粉末を加熱し、固相状態のまま(融点未満の温度条件で)粉末を被膜として形成することにより、被膜の熱伝導性及び電気伝導性をさらに向上させることができる。さらに、この金属粉末の温度は200℃以下であることが好ましい。金属粉末の温度が200℃よりも高い場合、吹き付け前の金属粉末が凝着し易く、さらには、被膜の酸化物の割合が増加してしまい、コールドスプレー法の利点を損なうおそれがある。また、吹き付け直前の前記金属粉末を50℃〜200℃にするには、圧縮ガスの温度を250℃〜550℃に加熱して、加熱した圧縮ガスと共に金属粉末を基材に吹き付けることがより効率的である。   According to the present invention, the metal powder is heated so that the temperature of the powder sprayed on the base material, that is, the temperature of the powder immediately before colliding with the base material is 50 ° C. or more, and remains in a solid state (temperature below the melting point). By forming the powder as a coating (under conditions), the thermal conductivity and electrical conductivity of the coating can be further improved. Furthermore, it is preferable that the temperature of this metal powder is 200 degrees C or less. When the temperature of the metal powder is higher than 200 ° C., the metal powder before spraying tends to adhere, and further, the ratio of the oxide of the coating increases, which may impair the advantages of the cold spray method. Moreover, in order to make the said metal powder immediately before spraying into 50 to 200 degreeC, it is more efficient to heat the temperature of compressed gas to 250 to 550 degreeC, and to spray metal powder on a base material with the heated compressed gas. Is.

さらに前記製造方法により製造された伝熱部材はパワーモジュールに用いられることが好ましく、前記伝熱部材の基材が、前記パワーモジュールを構成するヒートシンク部材であり、前記伝熱部材の被膜が、前記パワーモジュールを構成するパワー素子を載置した絶縁部材と、前記ヒートシンク部材との間に、配置されていることが好ましい。   Furthermore, the heat transfer member manufactured by the manufacturing method is preferably used for a power module, the base material of the heat transfer member is a heat sink member constituting the power module, and the coating of the heat transfer member is It is preferable to arrange between the insulating member on which the power element constituting the power module is placed and the heat sink member.

本発明によれば、前記伝熱部材の被膜が、パワーモジュールを構成する絶縁部材とヒートシンク部材との間に配置されるので、ヒートシンク部材の表面に、熱伝導を阻害するシリコングリースを用いる必要がなく、発熱したパワー素子からの熱をヒートシンク部材により好適に伝達することができる。さらに、前記被膜は、多孔質組織であるため、前記絶縁部材とヒートシンク部材との間の熱膨張差を緩和させることができる。この結果、熱サイクルによる疲労強度を向上させ、信頼性の高いパワーモジュールを得ることができる。   According to the present invention, since the coating film of the heat transfer member is disposed between the insulating member and the heat sink member constituting the power module, it is necessary to use silicon grease that inhibits heat conduction on the surface of the heat sink member. In addition, the heat from the generated power element can be suitably transmitted by the heat sink member. Furthermore, since the coating film has a porous structure, the difference in thermal expansion between the insulating member and the heat sink member can be reduced. As a result, the fatigue strength due to thermal cycling can be improved and a highly reliable power module can be obtained.

さらに、このようなパワーモジュールは、機器に高い信頼性が要求される車両用インバータに用いられることが好ましい。また、この製造方法により製造された伝熱部材は熱伝導性が良いため、前記伝熱部材を、例えば、車両のエンジン部品、電子機器のCPUなどの放熱構造を有する機器に用いることが有効である。   Furthermore, such a power module is preferably used in a vehicle inverter that requires high reliability in equipment. In addition, since the heat transfer member manufactured by this manufacturing method has good heat conductivity, it is effective to use the heat transfer member for a device having a heat dissipation structure such as a vehicle engine component or a CPU of an electronic device. is there.

本発明によれば、熱膨張による剥がれ、ひび割れを抑制することが可能な伝熱部材を得ることができる。   According to the present invention, it is possible to obtain a heat transfer member capable of suppressing peeling and cracking due to thermal expansion.

以下に、本発明に係る伝熱部材の製造方法の実施形態を図面に基づき詳細に説明する。図1,2は、第一実施形態に係る伝熱部材の製造方法を説明するための図であり、図1は、本実施形態の伝熱部材の製造するための模式的な装置構成図であり、図2は、被膜形成時のノズルの移動パターンを示す基材の上面図である。   Hereinafter, an embodiment of a method for producing a heat transfer member according to the present invention will be described in detail with reference to the drawings. 1 and 2 are views for explaining a method of manufacturing a heat transfer member according to the first embodiment, and FIG. 1 is a schematic device configuration diagram for manufacturing the heat transfer member of the present embodiment. FIG. 2 is a top view of the substrate showing the movement pattern of the nozzles during film formation.

本実施形態に係る伝熱部材10は、アルミニウム製の基材11に、固相状態の銅粉末を堆積させて被膜12を成膜した部材であって、図1に示すような成膜装置20を用いて製造することができる。成膜装置20は、圧縮ガス供給手段21と、銅粉末供給手段22と、ノズル23と、ノズル移動手段24と、を少なくとも備えている。   A heat transfer member 10 according to the present embodiment is a member in which a coating 12 is formed by depositing solid-phase copper powder on an aluminum base material 11, and a film forming apparatus 20 as shown in FIG. Can be used. The film forming apparatus 20 includes at least a compressed gas supply unit 21, a copper powder supply unit 22, a nozzle 23, and a nozzle moving unit 24.

圧縮ガス供給手段21は、圧縮ガスを後述するノズル23に供給するため手段であって、圧縮ガスの圧力を調整する圧力調整弁21aを介してノズル23に接続されている。また、圧縮ガス供給手段21は、エア、不活性ガス等が充填されたボンベ、大気を圧縮するコンプレッサなどを挙げることができ、0.1〜0.7MPaの圧力条件のガスをノズル23に供給できるものが好ましい。これは、0.1MPa未満であれば、被膜が形成され難く、0.7MPaよりも大きい場合には、耐圧性を有した成膜設備を要するからである。   The compressed gas supply means 21 is a means for supplying compressed gas to a nozzle 23 described later, and is connected to the nozzle 23 via a pressure adjusting valve 21a for adjusting the pressure of the compressed gas. The compressed gas supply means 21 can include a cylinder filled with air, an inert gas, etc., a compressor that compresses the atmosphere, and the like, and supplies a gas having a pressure condition of 0.1 to 0.7 MPa to the nozzle 23. What can be done is preferred. This is because if it is less than 0.1 MPa, it is difficult to form a film, and if it is greater than 0.7 MPa, a film-forming facility having pressure resistance is required.

また、圧縮ガス供給手段21の下流には、圧縮ガスを加熱するための加熱手段21bがさらに配設されている。加熱手段21bにより圧縮ガスを加熱し、所望の温度条件で後述する銅粉末を基材11に吹き付けることができる。なお、加熱手段21bは、銅粉末を圧縮ガスにより間接的に加熱するためものであり、圧縮ガス供給手段21の内部に配置されていてもよく、後述するヒータ23aにより銅粉末を所望の温度に加熱することができるのであれば、特に必要なものではない。   Further, a heating means 21 b for heating the compressed gas is further arranged downstream of the compressed gas supply means 21. The compressed gas can be heated by the heating means 21b, and copper powder, which will be described later, can be sprayed onto the substrate 11 under a desired temperature condition. The heating means 21b is for indirectly heating the copper powder with the compressed gas, and may be arranged inside the compressed gas supply means 21, and the copper powder is brought to a desired temperature by the heater 23a described later. If it can be heated, it is not particularly necessary.

銅粉末供給手段22は、基材11に吹き付ける銅粉末が収容されており、該銅粉末を所定の供給量でノズル23に供給可能なように、ノズル23に接続されている。ノズル23は、ノズル移動手段24に接続されおり、ノズル移動手段24を駆動させることにより、ノズル23を、後述する図2に示すようなルートに移動させることができる。さらに、ノズル23の内部には、供給された銅粉末を加熱するためのヒータ23aが設けられている。   The copper powder supply means 22 contains copper powder to be sprayed on the base material 11 and is connected to the nozzle 23 so that the copper powder can be supplied to the nozzle 23 with a predetermined supply amount. The nozzle 23 is connected to the nozzle moving means 24. By driving the nozzle moving means 24, the nozzle 23 can be moved to a route as shown in FIG. Furthermore, a heater 23 a for heating the supplied copper powder is provided inside the nozzle 23.

該装置20を用いて、以下の方法により伝熱部材10を製造する。本実施形態では、長辺Lと短辺Sとからなる矩形状の範囲に、銅粉末を堆積させて被膜を形成する。具体的には、まず、矩形の開口部26aを有したマスキング板26の下方に基材11を配置する。なお、開口部26aは、基材11の表面の矩形状の成膜予定領域11aに相当する面積となるように形成されている。そして、吹き付け方向dにおいて、開口部26aと基材11の成膜予定領域11aが一致するように、基材11を配置する。   Using the apparatus 20, the heat transfer member 10 is manufactured by the following method. In the present embodiment, a coating is formed by depositing copper powder in a rectangular range composed of the long side L and the short side S. Specifically, first, the base material 11 is disposed below the masking plate 26 having the rectangular opening 26a. The opening 26a is formed to have an area corresponding to the rectangular film formation scheduled region 11a on the surface of the substrate 11. And in the spraying direction d, the base material 11 is arrange | positioned so that the opening part 26a and the film-forming scheduled area | region 11a of the base material 11 may correspond.

次に、圧力調整弁21aにより圧縮ガスを0.7MPa以下に圧力調整すると共に、加熱手段21bにより所定の温度に加熱し、ノズル23に供給する。一方、銅粉末を銅粉末供給手段22のポッパー22aに収容し、該銅粉末供給手段22からノズル23に、銅粉末を供給する。このような状態で、ノズル23を介して、圧縮ガスと共に固相状態の銅粉末を基材11の表面に吹き付けて、被膜12を基材11の表面に成膜する。なお、吹き付けの際に、予め銅粉末が、基材の表面において50℃〜200℃の温度条件で吹き付けられるように、圧縮ガスを加熱手段21bで加熱するとともに、ノズル23内のヒータ23aにより、銅粉末の加熱し、銅粉末の温度調整を行う。   Next, the pressure of the compressed gas is adjusted to 0.7 MPa or less by the pressure adjusting valve 21 a, and the heating means 21 b heats the compressed gas to a predetermined temperature and supplies it to the nozzle 23. On the other hand, the copper powder is accommodated in the popper 22 a of the copper powder supply means 22, and the copper powder is supplied from the copper powder supply means 22 to the nozzle 23. In such a state, solid-state copper powder is sprayed onto the surface of the base material 11 together with the compressed gas through the nozzle 23 to form the coating 12 on the surface of the base material 11. During the spraying, the compressed gas is heated by the heating means 21b so that the copper powder is sprayed in advance on the surface of the base material at a temperature condition of 50 ° C. to 200 ° C., and by the heater 23a in the nozzle 23, The copper powder is heated and the temperature of the copper powder is adjusted.

そして、本実施形態では、被膜の形成時に、少なくとも、基材11の表面(X−Y平面)に対して、第一工程P1におけるノズル23と基材11との相対的な移動距離を、基材11上の長辺Lの長さよりも短い距離に移動させる。より具体的には、第一工程P1において、ノズル23を基材11に対して、送り方向として短辺Sに沿った方向(第一の軸方向:図中のY軸方向)に直線移動させる。次に、第二の工程P2において、第一工程P1後のノズル23と基材11とを、ピッチ方向として長辺Lに沿った方向(第二の軸方向:図中X方向)に前記吹付け径以下の移動距離となるように移動させる。そして、第一工程P1及び第二工程P2を一連の工程として繰り返すことにより、基材11の表面に被膜12を形成する。   In this embodiment, at the time of forming the coating film, the relative movement distance between the nozzle 23 and the substrate 11 in the first step P1 is determined based on at least the surface of the substrate 11 (XY plane). It is moved to a distance shorter than the length of the long side L on the material 11. More specifically, in the first step P1, the nozzle 23 is linearly moved with respect to the base material 11 in the direction along the short side S (first axial direction: Y-axis direction in the drawing) as the feed direction. . Next, in the second step P2, the nozzle 23 and the base material 11 after the first step P1 are blown in the direction along the long side L as the pitch direction (second axial direction: X direction in the figure). Move so that the moving distance is less than the attachment diameter. And the film 12 is formed in the surface of the base material 11 by repeating the 1st process P1 and the 2nd process P2 as a series of processes.

このようにして基材11の表面に被膜12が形成された伝熱部材10は、長辺に沿った方向の熱膨張率が、短辺に沿った方向の熱膨張率よりも相対的に小さい値となり、長辺に沿った方向の熱膨張差を起因とした被膜の界面における剥離、被膜のひび割れを低減することができる。   Thus, the heat transfer member 10 in which the film 12 is formed on the surface of the base material 11 has a coefficient of thermal expansion in the direction along the long side relatively smaller than the coefficient of thermal expansion in the direction along the short side. It is possible to reduce peeling at the interface of the coating and cracking of the coating due to the difference in thermal expansion in the direction along the long side.

次に、本発明に係る第二実施形態について以下に詳細に説明する。第二実施形態は、第一実施形態に比べて、被膜形成時のノズルの移動パターンが相違する。   Next, a second embodiment according to the present invention will be described in detail below. The second embodiment differs from the first embodiment in the nozzle movement pattern during film formation.

図3に示すように、少なくとも、基材11の表面(X−Y平面)に対して、第一工程P1におけるノズル23と基材11との相対的な移動距離を、基材11上の長辺Lの長さよりも短い距離した点は第一実施形態と共通する。そして、第一実施形態と相違する点は、具体的に、第一工程P1において、ノズル23を基材11に対して、送り方向として長辺Lに沿った方向(第一の軸方向:図中のX軸方向)に吹き付け径以下の移動距離となるように直線移動させる。次に、第二の工程P2において、第一工程P1後のノズル23と基材11とを、ピッチ方向として短辺Sに沿った方向(第二の軸方向:図中Y方向)に吹付け径以下の移動距離となるように直線移動させる。そして、第一工程P1及び第二工程P2を一連の工程として繰り返すことにより、基材11の表面に被膜12を形成する。但し、図3に示すように、矩形状の範囲の長辺の縁部12aを、第一工程P1により被膜を形成した後は、第二工程P2に進まず、第一工程P1、第二工程P2の工程を繰り返す。   As shown in FIG. 3, the relative movement distance between the nozzle 23 and the base material 11 in the first step P <b> 1 at least with respect to the surface (XY plane) of the base material 11 is the length on the base material 11. The point that is shorter than the length of the side L is common to the first embodiment. The difference from the first embodiment is that in the first step P1, specifically, the direction along the long side L as the feed direction of the nozzle 23 with respect to the base material 11 (first axial direction: FIG. It is linearly moved so that the moving distance is less than the spray diameter in the X axis direction). Next, in the second step P2, the nozzle 23 and the base material 11 after the first step P1 are sprayed in the direction along the short side S (second axial direction: Y direction in the figure) as the pitch direction. It is moved linearly so that the moving distance is less than the diameter. And the film 12 is formed in the surface of the base material 11 by repeating the 1st process P1 and the 2nd process P2 as a series of processes. However, as shown in FIG. 3, after forming the coating on the long edge 12a of the rectangular range in the first step P1, the first step P1, the second step do not proceed to the second step P2. Repeat step P2.

このように、第一及び第二工程において、ノズル23と基材11とを、いずれの工程においても、吹き付け径以下の移動距離となるように移動させることにより、長辺に沿った方向の熱膨張率を下げることができる。この結果、長辺に沿った方向の熱膨張率は、短辺に沿った方向の熱膨張率よりも相対的に小さい値となり、長辺に沿った方向の熱膨張差を起因とした被膜の界面における剥離、被膜のひび割れを低減することができる。   As described above, in the first and second steps, the nozzle 23 and the base material 11 are moved so as to have a moving distance equal to or less than the spray diameter in any step, whereby heat in the direction along the long side is obtained. The expansion rate can be lowered. As a result, the coefficient of thermal expansion in the direction along the long side is a relatively smaller value than the coefficient of thermal expansion in the direction along the short side, and the film has a thermal expansion difference in the direction along the long side. Separation at the interface and cracking of the coating can be reduced.

なお、第二実施形態では、長辺と短辺とからなる矩形状の範囲に被膜を形成したが、本実施形態の変形例として、正方形の範囲に、第一及び第二工程のいずれの工程においても、ノズル23と基材11とを、吹き付け径以下の移動距離となるように移動させることも可能である。この場合には、第一の軸方向(X軸方向)及び第二の軸方向(Y軸方向)における被膜の熱膨張率を略同等になり、少なくとも被膜が形成された平面方向に対して等方性を有した被膜を有する伝熱部材を得ることができる。   In the second embodiment, the film is formed in a rectangular range composed of the long side and the short side. However, as a modification of the present embodiment, any step of the first and second steps is included in the square range. In this case, the nozzle 23 and the base material 11 can be moved so as to have a moving distance equal to or less than the spray diameter. In this case, the thermal expansion coefficients of the coating in the first axial direction (X-axis direction) and the second axial direction (Y-axis direction) are substantially equal, and at least in the plane direction in which the coating is formed. A heat transfer member having a film with directionality can be obtained.

図4は、第一実施形態又は第二実施形態により製造された伝熱部材を適用したパワーモジュールを説明するための図である。なお、既に図8において示したパワーモジュールを構成する部材と同じ部材は、同じ符号を付して、詳細な説明は省略する。   FIG. 4 is a view for explaining a power module to which the heat transfer member manufactured according to the first embodiment or the second embodiment is applied. The same members as those constituting the power module already shown in FIG. 8 are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に示すように、パワーモジュール30は、前記方法により製造された伝熱部材10を備えており、伝熱部材を構成するアルミニウム製の基材が、パワーモジュール30を構成するヒートシンク部材31に含まれる。さらに、伝熱部材を構成する多孔質組織を有した銅製の被膜が、パワー素子71を載置した窒化アルミニウム製の絶縁部材73とヒートシンク部材31との間に緩衝部材32として配置されている。   As shown in FIG. 4, the power module 30 includes the heat transfer member 10 manufactured by the above-described method, and an aluminum base material constituting the heat transfer member serves as a heat sink member 31 constituting the power module 30. included. Further, a copper film having a porous structure constituting the heat transfer member is arranged as a buffer member 32 between the insulating member 73 made of aluminum nitride on which the power element 71 is placed and the heat sink member 31.

このように、前記伝熱部材の被膜が、パワーモジュール30を構成する絶縁部材73とヒートシンク部材31との間に配置されるので、パワーモジュール30は、ヒートシンク部材31の表面に、熱伝導を阻害するシリコングリースを用いる必要がなく、発熱したパワー素子71からの熱をヒートシンク部材31により好適に伝達し、パワー素子71の熱を放熱することができる。また、被膜は、多孔質組織であるのでクッション性を有する(すなわち空孔が無い被膜に比べてヤング率が低い)ため、絶縁部材73とヒートシンク部材31との間の熱膨張差を緩和させることができる。この結果、被膜の剥がれ、ひび割れを防止し、熱サイクルによる熱疲労強度を向上させ、信頼性の高いパワーモジュール30を得ることができる。   Thus, since the coating film of the heat transfer member is disposed between the insulating member 73 constituting the power module 30 and the heat sink member 31, the power module 30 inhibits heat conduction on the surface of the heat sink member 31. It is not necessary to use silicon grease, and heat generated from the power element 71 can be suitably transmitted to the heat sink member 31 so that the heat of the power element 71 can be dissipated. In addition, since the coating has a porous structure and has cushioning properties (that is, Young's modulus is lower than that of the coating without voids), the thermal expansion difference between the insulating member 73 and the heat sink member 31 is reduced. Can do. As a result, peeling of the film and cracking can be prevented, the thermal fatigue strength by thermal cycling can be improved, and a highly reliable power module 30 can be obtained.

図5は、本実施形態のパワーモジュールを備えた車両用インバータ40と、該車両用インバータを備えた車両100の模式図である。図5において、この実施形態の車両用インバータ40は、エンジンとモータとを使用するハイブリッド車や、電気自動車等で使用され、直流を交流に変換し、例えば誘導電動機等の交流負荷に電力を供給する電力変換装置である。車両用インバータ40は、最小限の構成として前記の実施形態のパワーモジュール30、及び大容量コンデンサ41等を備えて構成される。そして、車両用インバータ40にバッテリ等の直流電源52が接続され、車両用インバータ40からのUVWの三相交流出力は例えば誘導電動機53に供給され、この誘導電動機53を駆動させる。さらに誘導電動機の駆動により車両100の車輪は回転し、車両100を走行させることができる。なお、車両用インバータ40は図示した例に限られるものでなく、インバータとしての機能を有するものであれば、どのような形態でもよい。   FIG. 5 is a schematic diagram of a vehicle inverter 40 including the power module of the present embodiment and a vehicle 100 including the vehicle inverter. In FIG. 5, the vehicle inverter 40 of this embodiment is used in a hybrid vehicle using an engine and a motor, an electric vehicle or the like, converts direct current into alternating current, and supplies power to an alternating current load such as an induction motor. It is a power conversion device. The vehicle inverter 40 includes the power module 30 of the above-described embodiment, a large-capacitance capacitor 41, and the like as a minimum configuration. A DC power source 52 such as a battery is connected to the vehicle inverter 40, and the UVW three-phase AC output from the vehicle inverter 40 is supplied to, for example, an induction motor 53 to drive the induction motor 53. Furthermore, the wheels of the vehicle 100 are rotated by driving the induction motor, and the vehicle 100 can be driven. The vehicle inverter 40 is not limited to the illustrated example, and any form may be used as long as it has a function as an inverter.

このように構成された車両用インバータ40は、例えば図4のパワーモジュール30のパワー素子71が作動中に高温状態になった場合、パワー素子71から発生した熱は、はんだ層72を通してパワー素子71を設置している絶縁部材73に伝導され、さらに、はんだ層76を通して緩衝部材32である被膜に伝導され、放熱材であるヒートシンク部材31から放熱される。このとき、緩衝部材32として多孔質組織を有した被膜を用いているので、絶縁部材73とヒートシンク部材31との熱膨張差を緩衝するクッション材として作用する。このようにして、これら部材の剥離及びひび割れの発生を抑制し、信頼性の高い車両用インバータ40を得ることが可能となり、車両の安全性も高めることができる。   In the vehicular inverter 40 configured as described above, for example, when the power element 71 of the power module 30 in FIG. 4 is in a high temperature state during operation, the heat generated from the power element 71 passes through the solder layer 72 to the power element 71. Is further conducted to the coating film serving as the buffer member 32 through the solder layer 76 and is radiated from the heat sink member 31 serving as a heat radiating material. At this time, since the coating film having a porous structure is used as the buffer member 32, it acts as a cushioning material that buffers the thermal expansion difference between the insulating member 73 and the heat sink member 31. Thus, peeling of these members and occurrence of cracks can be suppressed, and a highly reliable vehicle inverter 40 can be obtained, and the safety of the vehicle can be improved.

本発明を以下の実施例により説明する。   The invention is illustrated by the following examples.

(実施例1)
コールドスプレー法により基材に銅被膜が形成された伝熱部材を製作した。具体的には、エア(大気)を圧縮し、銅からなる固相状態の金属粉末を、圧縮したエア(圧縮ガス)と共に、大きさ50mm×30mm×厚さ5mmのアルミニウム合金(JIS規格:A6063S−T1)からなるヒートシンク部材(基材)の表面に吹き付けて、銅粉末からなる被膜を形成した。
(Example 1)
A heat transfer member having a copper film formed on the base material was manufactured by a cold spray method. Specifically, air (atmosphere) is compressed, and a solid-state metal powder made of copper, together with the compressed air (compressed gas), an aluminum alloy having a size of 50 mm × 30 mm × thickness 5 mm (JIS standard: A6063S A film made of copper powder was formed by spraying on the surface of the heat sink member (base material) made of -T1).

より詳細に説明すると、ヒートシンク部材の上方に30mmの位置に吹き付け用のノズルを配置し、ホッパーに平均粒径20μmの銅粉末を投入するとともに、この銅粉末を0.2g/sでノズルに供給した。一方、0.6MPaに圧縮したエア(圧縮ガス)をノズルに導入すると共に、この圧縮ガスをノズル内のヒータによって加熱し、加熱したガスにこの銅粉末を供給し、アルミニウムからなるヒートシンク部の表面において、エア温度450℃、ガス流速650m/sec、銅粉末の速度300m/secの条件で、ヒートシンク部材に、固相状態の銅粉末を圧縮ガスと共に、吹き付け径が3mmとなるように吹付けた。   More specifically, a nozzle for spraying is disposed at a position of 30 mm above the heat sink member, and copper powder having an average particle diameter of 20 μm is introduced into the hopper, and this copper powder is supplied to the nozzle at 0.2 g / s. did. On the other hand, air (compressed gas) compressed to 0.6 MPa is introduced into the nozzle, the compressed gas is heated by a heater in the nozzle, the copper powder is supplied to the heated gas, and the surface of the heat sink portion made of aluminum , The solid state copper powder was sprayed onto the heat sink member together with the compressed gas so as to have a spray diameter of 3 mm under the conditions of an air temperature of 450 ° C., a gas flow rate of 650 m / sec, and a copper powder speed of 300 m / sec. .

そして、図2に示す前述した第一実施形態に係る方法により被膜を成膜した。第一工程において、ノズルを基材に対して、送り方向として短辺に沿った方向に移動距離20mm、速度20mm/sで直線移動させた。次に、第二の工程において、第一工程後のノズルと基材とを、ピッチ方向として長辺に沿った方向に移動距離2mm、移動速度20mm/s移動させた。そして、第一工程及び第二工程を一連の工程として繰り返すことにより、基材の表面に被膜を成膜した。そして、100℃における長辺に沿った方向の被膜の線膨張係数を測定した。この結果を、表1に示す。   Then, a film was formed by the method according to the first embodiment shown in FIG. In the first step, the nozzle was linearly moved with respect to the substrate in the direction along the short side as the feed direction at a moving distance of 20 mm and a speed of 20 mm / s. Next, in the second step, the nozzle and the substrate after the first step were moved in the direction along the long side as the pitch direction by a moving distance of 2 mm and a moving speed of 20 mm / s. And the film was formed into the film of the surface of a base material by repeating a 1st process and a 2nd process as a series of processes. And the linear expansion coefficient of the film of the direction along the long side in 100 degreeC was measured. The results are shown in Table 1.

<熱サイクル試験>
熱処理後の伝熱部材の被膜表面に、窒化アルミニウム製の絶縁部材をはんだにより接合して熱サイクル試験用の試験片を製作し、該試験片に対して試験片が損傷するまで0℃以下の所定の温度を下限温度、100℃以上の所定の温度を上限温度とした温度範囲内で、繰返し熱負荷を加えることにより、熱サイクル試験を行った。この結果を図6に示す。
<Thermal cycle test>
An insulating member made of aluminum nitride is joined to the coating surface of the heat transfer member after heat treatment by soldering to produce a test piece for a heat cycle test. The test piece is kept at 0 ° C. or lower until the test piece is damaged. A thermal cycle test was performed by repeatedly applying a thermal load within a temperature range in which a predetermined temperature was a lower limit temperature and a predetermined temperature of 100 ° C. or higher was an upper limit temperature. The result is shown in FIG.

Figure 2009001873
Figure 2009001873

(実施例2)
実施例1と同じように、伝熱部材を製作した。実施例1とは、成膜を行う表面の寸法が50mm×50mmの正方形の試験片を用いた点が相違し、図2に示す前述した第二実施形態に係る方法により被膜を成膜した点が相違する。具体的には、第一工程を短辺に沿った方向(送り方向)のノズルの移動距離を2mmとして、第二工程を長辺に沿った方向(ピッチ方向)のノズルの移動距離を2mmとして、ノズルの移動速度を20mm/sとした。そして、第一工程及び第二工程を一連の工程として繰り返すことにより、基材の表面に被膜を成膜した。そして、実施例1と同様の方法で、100℃における長辺に沿った方向と短辺に沿った方向の被膜の線膨張係数を測定した。この結果を、表1に示す。さらに、実施例1と同様の方法で、熱サイクル試験を行った。この結果を図6に示す。
(Example 2)
A heat transfer member was manufactured in the same manner as in Example 1. Example 1 is different from Example 1 in that a square test piece having a surface dimension of 50 mm × 50 mm for film formation was used, and a film was formed by the method according to the second embodiment shown in FIG. Is different. Specifically, the movement distance of the nozzle in the direction along the short side (feed direction) is 2 mm in the first step, and the movement distance of the nozzle in the direction along the long side (pitch direction) is 2 mm. The nozzle moving speed was 20 mm / s. Then, the first step and the second step were repeated as a series of steps to form a film on the surface of the substrate. And the linear expansion coefficient of the film in the direction along the long side and the direction along the short side at 100 ° C. was measured in the same manner as in Example 1. The results are shown in Table 1. Furthermore, a thermal cycle test was performed in the same manner as in Example 1. The result is shown in FIG.

(比較例1)
実施例1と同じように、伝熱部材を製作した。実施例1と相違する点は、図9に示すように、具体的には、第一工程を長辺に沿った方向(送り方向)のノズルの移動距離を50mmとして、第二工程を長辺に沿った方向(ピッチ方向)のノズルの移動距離を2mmとして、ノズルの移動速度を20mm/sとした。そして、第一工程及び第二工程を一連の工程として繰り返すことにより、基材の表面に被膜を成膜した。そして、実施例1と同様の方法で、100℃における長辺に沿った方向の被膜の線膨張係数を測定した。この結果を、表1に示す。さらに、実施例1と同様の方法で、熱サイクル試験を行った。この結果を図6に示す。
(Comparative Example 1)
A heat transfer member was manufactured in the same manner as in Example 1. The difference from Example 1 is that, as shown in FIG. 9, specifically, the first step is set to a nozzle moving distance of 50 mm in the direction along the long side (feed direction), and the second step is set to the long side. The moving distance of the nozzle in the direction along the direction (pitch direction) was 2 mm, and the moving speed of the nozzle was 20 mm / s. Then, the first step and the second step were repeated as a series of steps to form a film on the surface of the substrate. And the linear expansion coefficient of the film of the direction along the long side in 100 degreeC was measured by the method similar to Example 1. FIG. The results are shown in Table 1. Furthermore, a thermal cycle test was performed in the same manner as in Example 1. The result is shown in FIG.

(結果1)
実施例1,2は、比較例1に比べて、長辺に沿った方向の線膨張係数が14×10−6/K未満であり、小さかった。また、実施例2は、いずれの方向(長辺に沿った方向及び短辺に沿った方向)の線膨張係数も、14×10−6/K未満、となった。図6に示すように、実施例1、2のほうが、比較例1に比べて、伝熱部材が損傷するまでの熱サイクル回数が多く、熱疲労強度が高かった。
(Result 1)
In Examples 1 and 2, the linear expansion coefficient in the direction along the long side was less than 14 × 10 −6 / K compared to Comparative Example 1, and was small. In Example 2, the linear expansion coefficient in any direction (the direction along the long side and the direction along the short side) was less than 14 × 10 −6 / K. As shown in FIG. 6, Examples 1 and 2 had more thermal cycles until the heat transfer member was damaged and higher thermal fatigue strength than Comparative Example 1.

(考察1)
実施例1,2の方が、長辺に沿った方向の線膨張係数が高かったのは、ノズルの送り方向に対して直角方向(ピッチ方向)には、短周期で酸化皮膜(銅層の界面)が形成され、この界面が長辺に沿った方向に、短周期で存在するからであると考えられる。この結果、アルミニウム製のヒートシンク材と窒化アルミニウム製の絶縁部材との間において、長辺に沿った方向の被膜の熱膨張率を15×10−6/K以下に抑えることができたと考えられる。これにより、図6に示すように、実施例1の場合には、被膜の界面の剥がれ、被膜のひび割れに対して特に厳しい長辺に沿った方向については、ヒートシンク部材と絶縁部材との熱膨張差を緩和し、熱疲労による剥がれ、ひび割れを抑制できると考えられる。さらに、実施例2の場合には、長辺に沿った方向、短辺に沿った方向いずれの方向に対しても、ヒートシンク部材と絶縁部材との熱膨張差を緩和し、熱疲労による剥がれ、ひび割れを抑制できると考えられる。
(Discussion 1)
In Examples 1 and 2, the linear expansion coefficient in the direction along the long side was higher because the oxide film (copper layer of the copper layer) had a short period in the direction perpendicular to the nozzle feed direction (pitch direction). This is probably because the interface is formed in a short period in the direction along the long side. As a result, it is considered that the thermal expansion coefficient of the coating in the direction along the long side can be suppressed to 15 × 10 −6 / K or less between the heat sink material made of aluminum and the insulating member made of aluminum nitride. Thus, as shown in FIG. 6, in the case of Example 1, the thermal expansion of the heat sink member and the insulating member in the direction along the long side particularly severe with respect to the peeling of the coating film and cracking of the coating film. It is considered that the difference can be eased and peeling and cracking due to thermal fatigue can be suppressed. Furthermore, in the case of Example 2, the thermal expansion difference between the heat sink member and the insulating member is alleviated for both the direction along the long side and the direction along the short side, and peeling due to thermal fatigue, It is thought that cracks can be suppressed.

(実施例3)
実施例1と同じようにして、伝熱部材を製作した。実施例1と異なる点は、基材衝突直前の銅粉末の温度を図7に示す50℃以上の温度条件で成膜した点である。そして、実施例1と同じ方法により被膜の熱伝導率を測定した。この結果を図7に示す。
(Example 3)
A heat transfer member was produced in the same manner as in Example 1. The difference from Example 1 is that the temperature of the copper powder immediately before the base material collision was formed under the temperature condition of 50 ° C. or higher shown in FIG. And the thermal conductivity of the film was measured by the same method as in Example 1. The result is shown in FIG.

(比較例2)
実施例1と同じようにして、伝熱部材を製作した。実施例1と異なる点は、基材衝突直前の銅粉末の温度を図7に示す50℃以上の温度条件で成膜した点である。そして、実施例1と同じ方法により被膜の熱伝導率を測定した。この結果を図7に示す。
(Comparative Example 2)
A heat transfer member was produced in the same manner as in Example 1. The difference from Example 1 is that the temperature of the copper powder immediately before the base material collision was formed under the temperature condition of 50 ° C. or higher shown in FIG. And the thermal conductivity of the film was measured by the same method as in Example 1. The result is shown in FIG.

(結果3)
図7に示すように、実施例3の方が比較例2に比べて、熱伝導率は高く、50℃以上のいずれの温度で成膜した被膜も熱伝導率は安定していた。
(Result 3)
As shown in FIG. 7, the thermal conductivity of Example 3 was higher than that of Comparative Example 2, and the coating film formed at any temperature of 50 ° C. or higher was more stable in thermal conductivity.

(考察2)
このように、安定した熱伝導率を得るためには、基材に衝突する直前の銅粉末の温度を50℃以上にすることが好ましいと考えられる。被膜の伝導率が向上したのは、被膜中の金属結合の割合が増加したからであり、金属結合の増加は銅粉末の加熱により、成膜時におけるエネルギが増加したことによるものであると考えられる。
(Discussion 2)
Thus, in order to obtain a stable thermal conductivity, it is considered preferable that the temperature of the copper powder immediately before colliding with the base material is 50 ° C. or higher. The conductivity of the coating was improved because the ratio of metal bonds in the coating increased, and the increase in metal bonds was thought to be due to the increased energy during film formation by heating the copper powder. It is done.

以上、本発明の一実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。   Although one embodiment of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention described in the claims. Design changes can be made.

例えば、本実施形態では銅粉末を用いたが、銅合金の粉末や、アルミニウム、クロム、ニッケル、銅、鉄又はこれらの合金からなる粉末などを挙げることができ、多孔質組織の被膜を形成することができるのであれば、特に限定されるものではない。また、基材もアルミニウムを用いたが、前記金属粉末の密着性を確保することができるのであれば、特に限定されるものではない。   For example, although copper powder is used in the present embodiment, copper alloy powder, powder made of aluminum, chromium, nickel, copper, iron, or an alloy thereof can be used to form a porous structure film. There is no particular limitation as long as it is possible. Moreover, although aluminum was also used as the base material, it is not particularly limited as long as the adhesion of the metal powder can be ensured.

本発明に係る製造方法により製造された伝熱部材は熱伝導性が良いため、該伝熱部材を、例えば、エンジン部品、コンピュータのCPU、車両用のオーディオ機器、家電製品、など、厳しい熱環境化で放熱性を要求される箇所に適用することができる。   Since the heat transfer member manufactured by the manufacturing method according to the present invention has good thermal conductivity, the heat transfer member is used in, for example, an engine part, a CPU of a computer, an audio device for a vehicle, a home appliance, and the like in a severe thermal environment. It can be applied to places where heat dissipation is required.

本実施形態に係る伝熱部材の製造方法を説明するための図。The figure for demonstrating the manufacturing method of the heat-transfer member which concerns on this embodiment. 第一実施形態に係る被膜形成時のノズルの移動パターンを示す基材上面図。The base material top view which shows the movement pattern of the nozzle at the time of the film formation which concerns on 1st embodiment. 第二実施形態に係る被膜形成時のノズルの移動パターンを示す基材上面図。The base material top view which shows the movement pattern of the nozzle at the time of the film formation which concerns on 2nd embodiment. 図1に示す方法により製造された伝熱部材を適用したパワーモジュールを説明するための図。The figure for demonstrating the power module to which the heat-transfer member manufactured by the method shown in FIG. 1 is applied. パワーモジュールを備えた車両用インバータ及び車両を説明するための図。The figure for demonstrating the inverter for vehicles provided with the power module, and a vehicle. 実施例1、2、及び比較例1の熱サイクル試験の結果を示した図。The figure which showed the result of the thermal cycle test of Examples 1, 2 and Comparative Example 1. 実施例3、比較例2に係る基材衝突直前の粉末の温度と被膜の熱伝導率との関係を示した図。The figure which showed the relationship between the temperature of the powder just before the base material collision which concerns on Example 3, and the comparative example 2, and the thermal conductivity of a film. 従来のパワーモジュールを説明するための図。The figure for demonstrating the conventional power module. 従来の被膜形成時のノズルの移動パターンを示す基材上面図。The base material top view which shows the movement pattern of the nozzle at the time of the conventional film formation.

符号の説明Explanation of symbols

10:伝熱部材、11:基材、12:被膜、30:パワーモジュール、32:緩衝部材、40:インバータ、71:パワー素子、73:絶縁部材 10: heat transfer member, 11: base material, 12: coating, 30: power module, 32: buffer member, 40: inverter, 71: power element, 73: insulating member

Claims (9)

加熱された固相状態の金属粉末をノズルから所定の吹付け径となるように、基材表面に吹き付けると共に、該吹付け時に、
前記ノズルと前記基材とを、相対的に第一の軸方向に直線移動させる第一工程と、
該第一工程後の前記ノズルと前記基材とを、相対的に前記第一の軸方向とは異なる第二の軸方向に前記吹付け径以下の移動距離となるように直線移動させる第二工程と、
を一連の工程として該一連の工程を繰返すことにより、前記基材上の長辺と短辺とからなる矩形状の範囲に、前記金属粉末から被膜を形成する伝熱部材の製造方法であって、
前記第一工程における前記ノズルと前記基材との相対的な移動距離を、前記基材上の前記長辺の長さよりも短い距離にすることを特徴とする伝熱部材の製造方法。
The heated solid-state metal powder is sprayed from the nozzle to the surface of the substrate so as to have a predetermined spray diameter, and at the time of the spray,
A first step of linearly moving the nozzle and the base material relatively in a first axial direction;
A second linearly moving the nozzle and the base material after the first step in a second axial direction relatively different from the first axial direction so as to have a moving distance equal to or less than the spray diameter. Process,
By repeating the series of steps as a series of steps, a method for producing a heat transfer member that forms a film from the metal powder in a rectangular range consisting of long sides and short sides on the base material, ,
A method for manufacturing a heat transfer member, wherein a relative movement distance between the nozzle and the base material in the first step is shorter than a length of the long side on the base material.
前記第一の軸方向を前記短辺に沿った方向とし、前記第二の軸方向を前記長辺に沿った方向とすることを特徴とする請求項1に記載の伝熱部材の製造方法。   The method of manufacturing a heat transfer member according to claim 1, wherein the first axial direction is a direction along the short side, and the second axial direction is a direction along the long side. 前記第一の軸方向を前記長辺に沿った方向とし、前記第二の軸方向を前記短辺に沿った方向とし、
前記第一工程における前記ノズルと前記基材との相対的な移動距離を、前記吹付け径以下の距離にすることを特徴とする請求項1に記載の伝熱部材の製造方法。
The first axial direction is a direction along the long side, the second axial direction is a direction along the short side,
The method for manufacturing a heat transfer member according to claim 1, wherein a relative movement distance between the nozzle and the base material in the first step is set to a distance equal to or less than the spray diameter.
前記金属粉末として銅粉末を用い、前記基材としてアルミニウム又はアルミニウム合金を用い、前記第一の軸方向を前記長辺に沿った方向とし、前記第二の軸方向を前記短辺に沿った方向とし、前記第一工程における前記ノズルと前記基材との相対的な移動距離を、10mm以下の距離にすることを特徴とする請求項1に記載の伝熱部材の製造方法。   Copper powder is used as the metal powder, aluminum or an aluminum alloy is used as the base material, the first axial direction is a direction along the long side, and the second axial direction is a direction along the short side. The manufacturing method of the heat transfer member according to claim 1, wherein a relative moving distance between the nozzle and the base material in the first step is set to a distance of 10 mm or less. 加熱された固相状態の金属粉末をノズルから所定の吹付け径となるように、基材表面に吹き付けると共に、該吹付け時に、
前記ノズルと基材とを、相対的に第一の軸方向に直線移動させる第一工程と、
該第一工程後の前記ノズルと前記基材とを、相対的に前記第一の軸方向とは異なる第二の軸方向に直線移動させる第二工程と、
を一連の工程として該一連の工程を繰返すことにより、前記基材上の矩形状の範囲に、前記金属粉末から被膜を形成する伝熱部材の製造方法であって、
前記第一及び第二工程における前記ノズルと前記基材との相対的な移動距離を、前記吹付け径以下の距離にすることを特徴とする伝熱部材の製造方法。
The heated solid-state metal powder is sprayed from the nozzle to the surface of the substrate so as to have a predetermined spray diameter, and at the time of the spray,
A first step of linearly moving the nozzle and the base material relatively in a first axial direction;
A second step of linearly moving the nozzle and the base material after the first step in a second axial direction relatively different from the first axial direction;
By repeating the series of steps as a series of steps, a method for producing a heat transfer member that forms a film from the metal powder in a rectangular range on the substrate,
The manufacturing method of the heat-transfer member characterized by making the relative moving distance of the said nozzle and the said base material in said 1st and 2nd process into the distance below the said spray diameter.
前記金属粉末を、50℃以上の温度条件で金属粉末が前記基材の表面に吹き付けられるように加熱することを特徴とする請求項1〜5のいずれかに記載の伝熱部材の製造方法。   The method for manufacturing a heat transfer member according to any one of claims 1 to 5, wherein the metal powder is heated so that the metal powder is sprayed onto a surface of the base material under a temperature condition of 50 ° C or higher. 前記請求項1〜6のいずれかに記載の製造方法により製造された伝熱部材を備えたパワーモジュールであって、
前記伝熱部材の基材が、前記パワーモジュールを構成するヒートシンク部材であり、
前記伝熱部材の被膜が、前記パワーモジュールを構成するパワー素子を載置した絶縁部材と、前記ヒートシンク部材との間に配置されていることを特徴とするパワーモジュール。
A power module comprising a heat transfer member manufactured by the manufacturing method according to any one of claims 1 to 6,
The base material of the heat transfer member is a heat sink member constituting the power module,
The power module, wherein the heat transfer member coating is disposed between the heat sink member and an insulating member on which a power element constituting the power module is placed.
前記請求項7に記載のパワーモジュールを備えた車両用インバータ。   A vehicle inverter comprising the power module according to claim 7. 前記請求項8に記載の車両用インバータを備えた車両。   A vehicle comprising the vehicle inverter according to claim 8.
JP2007164713A 2007-06-22 2007-06-22 Heat transfer member manufacturing method, power module, vehicle inverter, and vehicle Expired - Fee Related JP4910903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007164713A JP4910903B2 (en) 2007-06-22 2007-06-22 Heat transfer member manufacturing method, power module, vehicle inverter, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007164713A JP4910903B2 (en) 2007-06-22 2007-06-22 Heat transfer member manufacturing method, power module, vehicle inverter, and vehicle

Publications (2)

Publication Number Publication Date
JP2009001873A true JP2009001873A (en) 2009-01-08
JP4910903B2 JP4910903B2 (en) 2012-04-04

Family

ID=40318575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007164713A Expired - Fee Related JP4910903B2 (en) 2007-06-22 2007-06-22 Heat transfer member manufacturing method, power module, vehicle inverter, and vehicle

Country Status (1)

Country Link
JP (1) JP4910903B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270349A (en) * 2009-05-19 2010-12-02 Toyota Motor Corp Method for depositing coating film containing carbon particle, heat transfer member, power module, and inverter for vehicle
US8294914B2 (en) 2006-07-24 2012-10-23 Konica Minolta Business Technologies, Inc. Image forming apparatus and method for changing number of lines in band buffer based on memory size to be required
US10236188B2 (en) 2015-03-25 2019-03-19 Toyota Jidosha Kabushiki Kaisha Electrostatic nozzle, discharge apparatus, and method for manufacturing semiconductor module
WO2022202932A1 (en) * 2021-03-24 2022-09-29 タツタ電線株式会社 Masking jig, film formation method, and film formation device
WO2022254945A1 (en) * 2021-05-31 2022-12-08 タツタ電線株式会社 Masking jig, film formation method, and film formation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049425A (en) * 1998-07-27 2000-02-18 Denki Kagaku Kogyo Kk Ceramics circuit board, its manufacture and power module using the same
JP2005029858A (en) * 2003-07-09 2005-02-03 Riken Corp Piston ring, and its production method
JP2006179856A (en) * 2004-11-25 2006-07-06 Fuji Electric Holdings Co Ltd Insulating substrate and semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049425A (en) * 1998-07-27 2000-02-18 Denki Kagaku Kogyo Kk Ceramics circuit board, its manufacture and power module using the same
JP2005029858A (en) * 2003-07-09 2005-02-03 Riken Corp Piston ring, and its production method
JP2006179856A (en) * 2004-11-25 2006-07-06 Fuji Electric Holdings Co Ltd Insulating substrate and semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8294914B2 (en) 2006-07-24 2012-10-23 Konica Minolta Business Technologies, Inc. Image forming apparatus and method for changing number of lines in band buffer based on memory size to be required
JP2010270349A (en) * 2009-05-19 2010-12-02 Toyota Motor Corp Method for depositing coating film containing carbon particle, heat transfer member, power module, and inverter for vehicle
US8642132B2 (en) 2009-05-19 2014-02-04 Toyota Jidosha Kabushiki Kaisha Method of forming carbon particle-containing film, heat transfer member, power module, and vehicle inverter
US10236188B2 (en) 2015-03-25 2019-03-19 Toyota Jidosha Kabushiki Kaisha Electrostatic nozzle, discharge apparatus, and method for manufacturing semiconductor module
WO2022202932A1 (en) * 2021-03-24 2022-09-29 タツタ電線株式会社 Masking jig, film formation method, and film formation device
WO2022254945A1 (en) * 2021-05-31 2022-12-08 タツタ電線株式会社 Masking jig, film formation method, and film formation device

Also Published As

Publication number Publication date
JP4910903B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4241859B2 (en) Power module manufacturing method, power module, vehicle inverter, and vehicle
JP4586823B2 (en) Film forming method, heat transfer member, power module, vehicle inverter, and vehicle
KR101572586B1 (en) Layered body and manufacturing method for layered body
TW569412B (en) Composite material member for semiconductor device and insulated and non-insulated semiconductor devices using composite material member
JP6696214B2 (en) Bonded body, power module substrate with heat sink, heat sink, and method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink
JP5146402B2 (en) Method for forming carbon particle-containing coating, heat transfer member, power module, and vehicle inverter
EP3048640B1 (en) Method for producing an electronic part mounting substrate
JP6811719B2 (en) Method of manufacturing a laminate
JP4910903B2 (en) Heat transfer member manufacturing method, power module, vehicle inverter, and vehicle
WO2014034332A1 (en) Power semiconductor module and power semiconductor module producing method
JP2009127086A (en) Heat-transfer member, and method for producing the same
JP4645464B2 (en) Manufacturing method of electronic member
CN106158764A (en) Power model base plate and power model
JPWO2018135490A1 (en) Manufacturing method of ceramic circuit board
JP5691901B2 (en) Power module manufacturing method
WO2013047330A1 (en) Joint
JP2010189754A (en) Method of depositing metallic film, heat transfer member, power module, and inverter for vehicle
JP2009038162A (en) Heat radiation component and manufacturing method thereof, and power module
JP2010010563A (en) Method for manufacturing power module substrate and power module substrate
JP5316397B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND SEMICONDUCTOR MODULE
WO2016056567A1 (en) Layered body for radiator member, substrate with heat sink, and method for manufacturing layered body for radiator member
JP7039933B2 (en) Bond, Insulated Circuit Board, Insulated Circuit Board with Heat Sink, Heat Sink, and Joined Body Manufacturing Method, Insulated Circuit Board Manufacturing Method, Heat Sinked Insulated Circuit Board Manufacturing Method, Heat Sink Manufacturing Method
JP2010258458A (en) Metal-ceramic composite heat-dissipating plate integrated with ceramic insulating substrate and method of manufacturing the same
JP3890540B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JP2015002306A (en) Insulating substrate and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees