JP2008542597A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2008542597A
JP2008542597A JP2007554369A JP2007554369A JP2008542597A JP 2008542597 A JP2008542597 A JP 2008542597A JP 2007554369 A JP2007554369 A JP 2007554369A JP 2007554369 A JP2007554369 A JP 2007554369A JP 2008542597 A JP2008542597 A JP 2008542597A
Authority
JP
Japan
Prior art keywords
opening
suction port
suction
hermetic compressor
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007554369A
Other languages
Japanese (ja)
Inventor
和宏 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JP2008542597A publication Critical patent/JP2008542597A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0055Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0055Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes
    • F04B39/0072Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes characterised by assembly or mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/123Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

吸入口(114)が吸入管(101)の開口部(102)に対し、吸入口(114)前方の冷媒の流れに対し吸入口(114)の上流から回転子(105)の回転方向側にオフセット配置することで、低温の冷媒を吸入口(114)前方の冷媒の流れに対し吸入口(114)の上流から供給され、低温の冷媒を効率よく吸入口(114)から吸入し、シリンダ(111)に低温の冷媒を供給することができる密閉型圧縮機を提供する。  The suction port (114) with respect to the opening (102) of the suction pipe (101) from the upstream of the suction port (114) to the rotation direction side of the rotor (105) with respect to the refrigerant flow in front of the suction port (114). With the offset arrangement, the low-temperature refrigerant is supplied from the upstream of the suction port (114) with respect to the refrigerant flow in front of the suction port (114), and the low-temperature refrigerant is efficiently sucked from the suction port (114). 111) is provided with a hermetic compressor capable of supplying a low-temperature refrigerant.

Description

本発明は、冷蔵庫に用いられる密閉型圧縮機に関する。   The present invention relates to a hermetic compressor used in a refrigerator.

従来、高効率を目的とした密閉型圧縮機には、吸入マフラーの吸入口を吸入管と近接対向したものがある(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, there is a hermetic compressor aiming at high efficiency in which a suction port of a suction muffler is closely opposed to a suction pipe (see, for example, Patent Document 1).

以下、図面を参照しながら上記従来の密閉型圧縮機を説明する。   Hereinafter, the conventional hermetic compressor will be described with reference to the drawings.

図4は、特許文献1に記載された従来の密閉型圧縮機の断面図である。図5は、特許文献1に記載された従来の密閉型圧縮機の開口部の軸心方向から見た要部概略図である。   FIG. 4 is a cross-sectional view of a conventional hermetic compressor described in Patent Document 1. FIG. 5 is a schematic view of a main part of the conventional hermetic compressor described in Patent Document 1 as viewed from the axial direction of the opening.

図4、図5において、密閉容器1内に収容されて固定子2と回転子3とから構成される電動要素4と、電動要素4によって駆動される圧縮要素5と、密閉容器1内外を連通し密閉容器1内に開口する開口部6を有する吸入管7を有し、圧縮要素5は回転子3とともに回転するシャフト8と、圧縮室9を形成するシリンダ10と、シリンダ10に連通する消音空間11を形成する吸入マフラー12を備え、吸入マフラー12に消音空間11と密閉容器1内空間とを連通する吸入口13を形成するとともに吸入口13の軸心と開口部6の軸心とが一致するように配置されている。   4 and 5, the electric element 4 housed in the hermetic container 1 and composed of the stator 2 and the rotor 3, the compression element 5 driven by the electric element 4, and the inside and outside of the hermetic container 1 communicate with each other. And a suction pipe 7 having an opening 6 that opens into the sealed container 1. The compression element 5 includes a shaft 8 that rotates together with the rotor 3, a cylinder 10 that forms a compression chamber 9, and a muffler that communicates with the cylinder 10. A suction muffler 12 that forms a space 11 is provided. The suction muffler 12 is formed with a suction port 13 that communicates the sound deadening space 11 and the space inside the sealed container 1, and an axial center of the suction port 13 and an axial center of the opening 6 are formed. They are arranged to match.

以上のように構成された密閉型圧縮機について、以下その動作を説明する。   The operation of the hermetic compressor configured as described above will be described below.

固定子2が通電され、回転子3とともにシャフト8が回転することで、外部冷凍システム(図示せず)から流れてきた冷媒は、吸入管7を介して開口部6から一旦密閉容器1内に開放されてから吸入口13を通って吸入マフラー12内に吸入され、消音空間11を通ってシリンダ10内に吸入される。   When the stator 2 is energized and the shaft 8 rotates together with the rotor 3, the refrigerant flowing from the external refrigeration system (not shown) temporarily enters the sealed container 1 from the opening 6 through the suction pipe 7. After being opened, the air is sucked into the suction muffler 12 through the suction port 13, and is sucked into the cylinder 10 through the sound deadening space 11.

しかしながら、上記従来の構成では、密閉容器1内の冷媒は回転子3の回転と同方向に回転しており、開口部6から密閉容器1内に開放された低温の冷媒は回転子3の回転方向に流されてしまう。そのため、吸入口13を通って吸入マフラー12内に吸入される冷媒は密閉容器1内の高温の冷媒を高い割合で吸入してしまうので、冷媒の単位時間当たりの吸入質量(冷媒循環量)が少なくなり、十分な効率向上効果が得られなかった。
米国特許第5496156号明細書
However, in the above conventional configuration, the refrigerant in the hermetic container 1 rotates in the same direction as the rotation of the rotor 3, and the low-temperature refrigerant released into the hermetic container 1 from the opening 6 rotates in the rotor 3. It will be washed away in the direction. Therefore, the refrigerant sucked into the suction muffler 12 through the suction port 13 sucks the high-temperature refrigerant in the hermetic container 1 at a high rate. As a result, the efficiency was not improved sufficiently.
US Pat. No. 5,496,156

本発明は、冷媒循環量が多く、高い効率を備えた密閉型圧縮機を提供する。   The present invention provides a hermetic compressor having a large amount of refrigerant circulation and high efficiency.

本発明の密閉型圧縮機は、吸入マフラーの吸入口を吸入管の開口部に対し、回転子の回転方向にオフセット配置したもので、吸入口前方の冷媒の流れに対し、上流側から低温の冷媒を流入させることで、低温の冷媒の混合比率を高くすることにより冷媒循環量を多くするという作用を有する。   In the hermetic compressor of the present invention, the suction port of the suction muffler is offset in the rotation direction of the rotor with respect to the opening of the suction pipe. By flowing the refrigerant, the refrigerant circulation rate is increased by increasing the mixing ratio of the low-temperature refrigerant.

本発明の密閉型圧縮機は、冷媒循環量を多くできるので、体積効率が上がり、高い効率を備えた密閉型圧縮機を提供することができる。   Since the hermetic compressor of the present invention can increase the amount of refrigerant circulation, the volumetric efficiency is increased, and a hermetic compressor having high efficiency can be provided.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における密閉型圧縮機の平面断面図である。図2は、本発明の実施の形態1における密閉型圧縮機の開口部軸心方向からの投影図である。
(Embodiment 1)
FIG. 1 is a plan cross-sectional view of a hermetic compressor according to Embodiment 1 of the present invention. FIG. 2 is a projection view from the axial direction of the opening of the hermetic compressor according to the first embodiment of the present invention.

図1および図2において、吸入管101は開口部102で密閉容器103に固定されるとともに密閉容器103内に開口しており、他端は外部冷凍システム(図示せず)の低圧側に接続されている。   1 and 2, the suction pipe 101 is fixed to the sealed container 103 at the opening 102 and is opened in the sealed container 103, and the other end is connected to the low pressure side of an external refrigeration system (not shown). ing.

密閉容器103内にはインバータ制御装置(図示せず)と繋がっている固定子104と回転子105からなる電動要素106と電動要素106によって駆動される圧縮要素107が収容されている。電動要素106は複数の回転数で運転される。また密閉容器103内には冷媒が充填されている。   The hermetic container 103 accommodates an electric element 106 including a stator 104 and a rotor 105 connected to an inverter control device (not shown) and a compression element 107 driven by the electric element 106. The electric element 106 is operated at a plurality of rotation speeds. The sealed container 103 is filled with a refrigerant.

圧縮要素107は複数のコイルばね108に弾性支持されており、回転子105に固定されたシャフト109と、圧縮室110を形成するシリンダ111と、消音空間112を形成する吸入マフラー113とを備えている。   The compression element 107 is elastically supported by a plurality of coil springs 108, and includes a shaft 109 fixed to the rotor 105, a cylinder 111 that forms a compression chamber 110, and a suction muffler 113 that forms a silencing space 112. Yes.

密閉容器103には、一端が冷凍システム(図示せず)に連通し他端が密閉容器103内に開口する開口部102を有した吸入管101が固定されている。   A suction pipe 101 having an opening 102 having one end communicating with a refrigeration system (not shown) and the other end opening into the sealed container 103 is fixed to the sealed container 103.

吸入マフラー113の消音空間112はシリンダ111に連通している。吸入マフラー113の密閉容器側外壁面115の面上には、消音空間112と密閉容器103内空間とを連通する吸入口114が、密閉容器103内側に向かって開口するように形成されている。   The silencing space 112 of the suction muffler 113 communicates with the cylinder 111. On the surface of the sealed container side outer wall surface 115 of the suction muffler 113, a suction port 114 that connects the sound deadening space 112 and the space in the sealed container 103 is formed so as to open toward the inside of the sealed container 103.

吸入口114は吸入管101の開口部102に近接している。吸入管101の開口部102の軸心方向から見ると、吸入口114の中心は開口部102の中心に対して回転子105の回転方向側にずらした位置に配置されている(以降、この配置を「オフセット配置」という)。   The suction port 114 is close to the opening 102 of the suction pipe 101. When viewed from the axial direction of the opening 102 of the suction pipe 101, the center of the suction port 114 is disposed at a position shifted to the rotation direction side of the rotor 105 with respect to the center of the opening 102 (hereinafter referred to as this arrangement). Is called "offset placement").

ここで、回転子105は図1において(右回りor時計の回転方向)に回転する。   Here, the rotor 105 rotates in FIG. 1 (clockwise or clockwise).

また、図2に示すように、開口部102の開口面積は吸入口114の開口面積より大きい。開口部102の軸心方向から見ると、開口部102と吸入口114は少なくとも一部が重なるように配置されている。また、吸入マフラー113の回転子105の回転方向側側面には、密閉容器103内側面方向に突出した壁部116が設けられている。   As shown in FIG. 2, the opening area of the opening 102 is larger than the opening area of the suction port 114. When viewed from the axial direction of the opening 102, the opening 102 and the suction port 114 are arranged so that at least a part thereof overlaps. Further, a wall 116 protruding in the inner side surface direction of the sealed container 103 is provided on the side surface in the rotation direction side of the rotor 105 of the suction muffler 113.

以上のように構成された圧縮機について、以下その動作、作用を説明する。   About the compressor comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

電動要素106の固定子104にインバータ制御基盤(図示せず)より通電がされ、回転子105とシャフト109が回転する。この回転により、吸入行程時にシリンダ111内の圧力が低下することで密閉容器103内の圧力が低下する。その結果、冷凍システム(図示せず)から吸入管101の開口部102を通って冷媒が密閉容器103内に流入する。この冷媒は吸入口114から吸入マフラー113内に吸入され、消音空間112を通ってシリンダ111内で圧縮され、再び冷凍システム(図示せず)へと吐出される。   The stator 104 of the electric element 106 is energized from an inverter control board (not shown), and the rotor 105 and the shaft 109 rotate. Due to this rotation, the pressure in the cylinder 111 is lowered during the suction stroke, so that the pressure in the sealed container 103 is lowered. As a result, the refrigerant flows into the sealed container 103 from the refrigeration system (not shown) through the opening 102 of the suction pipe 101. The refrigerant is sucked into the suction muffler 113 from the suction port 114, is compressed in the cylinder 111 through the silencing space 112, and is discharged again to the refrigeration system (not shown).

この際、密閉容器103内の冷媒は回転子105の回転と同方向に回転している。また、開口部102から密閉容器103内に開放された冷媒は、密閉容器103内の冷媒に流されながら密閉容器103内の冷媒と混合していく。   At this time, the refrigerant in the sealed container 103 rotates in the same direction as the rotation of the rotor 105. In addition, the refrigerant released from the opening 102 into the sealed container 103 is mixed with the refrigerant in the sealed container 103 while flowing through the refrigerant in the sealed container 103.

通常、冷凍サイクル(図示せず)から戻ってきた冷媒は外気温度に近い温度であり、吸入管101の開口部102に到達した冷媒は、ほぼこの低温度を保っている。一方、密閉容器103内の冷媒は、高温となる圧縮要素107や電動要素106にさらされて外気温度よりはるかに高温になっている。そのため、開口部102から密閉容器103内に開放された冷媒は、密閉容器103内の冷媒に流されながら温度が上昇していく。   Usually, the refrigerant returned from the refrigeration cycle (not shown) has a temperature close to the outside air temperature, and the refrigerant that has reached the opening 102 of the suction pipe 101 is maintained at this low temperature. On the other hand, the refrigerant in the sealed container 103 is exposed to the high-temperature compression element 107 and the electric element 106 and is much higher than the outside air temperature. Therefore, the temperature of the refrigerant released from the opening 102 into the sealed container 103 rises while flowing through the refrigerant in the sealed container 103.

本実施の形態1では、吸入口114が吸入管101の開口部102に近接しており、回転子105の回転方向側にオフセット配置されているため、開口部102の低温の冷媒は、吸入口114前方の冷媒の流れに対し吸入口114の上流から密閉容器103内に開放される。従って、流されてきた低温の冷媒は効率よく吸入口114から吸入され、密閉容器103内の高温の冷媒が吸入される割合を低減させることができる。その結果、シリンダ111へ低温の冷媒が効率よく供給され、密閉型圧縮機の冷凍性能が向上する。このように、密閉型圧縮機の体積効率を高めることで、高い効率を備えた密閉型圧縮機が実現される。   In the first embodiment, since the suction port 114 is close to the opening 102 of the suction pipe 101 and is offset from the rotation direction side of the rotor 105, the low-temperature refrigerant in the opening 102 flows into the suction port. 114 is opened into the sealed container 103 from the upstream side of the suction port 114 with respect to the refrigerant flow ahead. Accordingly, the low-temperature refrigerant that has been flowed can be efficiently sucked from the suction port 114, and the rate at which the high-temperature refrigerant in the sealed container 103 is sucked can be reduced. As a result, a low-temperature refrigerant is efficiently supplied to the cylinder 111, and the refrigeration performance of the hermetic compressor is improved. Thus, by increasing the volumetric efficiency of the hermetic compressor, a hermetic compressor with high efficiency is realized.

図3は、本発明の実施の形態1における密閉型圧縮機の吸入口のオフセット位置と冷凍性能の関係図である。図3に示すように、吸入口114の位置を吸入管101の開口部102に対し回転子105の回転方向側から反回転方向側に順次離していくと(この離された位置を「オフセット位置」という)、冷凍性能のピークが存在する。そして、このピークが回転子105の反回転方向側に離れた位置にあることが分かる。   FIG. 3 is a relationship diagram between the offset position of the suction port of the hermetic compressor and the refrigeration performance in the first embodiment of the present invention. As shown in FIG. 3, when the position of the suction port 114 is sequentially separated from the rotation direction side of the rotor 105 to the counter rotation direction side with respect to the opening 102 of the suction pipe 101 (this separated position is referred to as “offset position”). ”), And there is a peak in refrigeration performance. And it turns out that this peak exists in the position away on the anti-rotation direction side of the rotor 105.

吸入口114の位置を吸入管101の開口部102に対し回転子105の回転方向側に大きくオフセット配置すると急激に冷凍性能が落ちる。その理由は、吸入口114前方の冷媒の流れに対し開口部102を下流側に配置すると、ほとんどの低温の冷媒が吸入口114から吸入されずに流されてしまうためである。   If the position of the suction port 114 is greatly offset from the opening 102 of the suction pipe 101 on the rotational direction side of the rotor 105, the refrigerating performance is suddenly lowered. The reason is that if the opening 102 is arranged on the downstream side with respect to the flow of the refrigerant in front of the suction port 114, most of the low-temperature refrigerant flows without being sucked from the suction port 114.

一方、回転子105の反回転方向側に大きくオフセット配置すると冷凍性能が落ちていく。その理由は、吸入口114前方の冷媒の流れに対し上流側に大きく離れてしまうので、低温の冷媒が吸入口114前方に到達するまでに高温の冷媒と混合し温度が上昇してしまうからである。   On the other hand, if the rotor 105 is largely offset on the counter-rotation direction side, the refrigeration performance will decrease. The reason is that the refrigerant flows far upstream in the flow of the refrigerant in front of the suction port 114, so that the low temperature refrigerant mixes with the high temperature refrigerant and reaches a temperature before reaching the front of the suction port 114. is there.

また、図3おいて、インバータ制御によるシャフト109の回転数が変化しても、最も冷凍性能が向上する開口部102のオフセット位置はあまり大きく変化していない。   Further, in FIG. 3, even if the rotation speed of the shaft 109 by the inverter control is changed, the offset position of the opening portion 102 where the refrigeration performance is most improved does not change so much.

開口部102より密閉容器103内に開放された冷媒の流れは、密閉容器103内の冷媒の流れに依存する。よって、インバータ制御により複数の回転数で運転すると、吸入口114前方の冷媒の流れ方は、回転子105の最高回転数運転時と最低回転数運転時で大きく異なる。しかしながら、高回転数運転時では吸入口114前方の冷媒の流れは速いが、冷媒の循環量が多いため冷凍サイクル(図示せず)から戻ってくる冷媒の速度も速くなっている。一方、低回転数運転時では吸入口114前方の冷媒の流れは遅いが、冷媒の循環量が少ないため冷凍サイクル(図示せず)から戻ってくる冷媒の速度も遅くなる。従って、最も冷凍性能が向上する開口部102のオフセット位置は、ほぼ一定になるものと推定される。   The flow of the refrigerant released into the sealed container 103 from the opening 102 depends on the refrigerant flow in the sealed container 103. Accordingly, when the inverter 105 is operated at a plurality of rotation speeds, the refrigerant flowing in front of the suction port 114 differs greatly between the maximum rotation speed operation and the minimum rotation speed operation of the rotor 105. However, at the time of high speed operation, the flow of the refrigerant in front of the suction port 114 is fast, but the refrigerant returning from the refrigeration cycle (not shown) is also fast because of the large amount of refrigerant circulation. On the other hand, the refrigerant flow in front of the suction port 114 is slow during low-speed operation, but the refrigerant returning from the refrigeration cycle (not shown) is slow because the refrigerant circulation amount is small. Therefore, it is estimated that the offset position of the opening 102 where the refrigeration performance is most improved is substantially constant.

圧縮要素107はコイルばね108に弾性支持されているため、圧縮機の設置状態などの影響で圧縮機が傾いてしまうと密閉容器103内で傾く。よって、吸入口114と開口部102の相対位置が変化してしまう。コイルばね108は圧縮機の振動を低減するために剛性を低くしてあり、吸入口114と開口部102の相対位置の変化を防ぐことは難しい。   Since the compression element 107 is elastically supported by the coil spring 108, the compression element 107 is inclined in the sealed container 103 when the compressor is inclined due to the influence of the installation state of the compressor. Therefore, the relative position between the suction port 114 and the opening 102 changes. The coil spring 108 has low rigidity in order to reduce the vibration of the compressor, and it is difficult to prevent a change in the relative position between the suction port 114 and the opening 102.

図3に示すように、吸入口114が吸入管101の開口部102に対し回転子105の回転方向側にオフセット配置すると、反回転方向側と比べ急激に冷凍性能が低下してしまう。   As shown in FIG. 3, if the suction port 114 is offset from the opening 102 of the suction pipe 101 on the rotational direction side of the rotor 105, the refrigeration performance is drastically reduced as compared with the counter-rotation direction side.

そこで、本実施の形態1では、吸入マフラー113の密閉容器側外壁面115に吸入口114を配置する。開口部102の軸心方向から見た投影図において、開口部102と吸入口114が一部重なるように配置し、開口部102の開口面積を吸入口114の開口面積より大きくしている。このような構成により、圧縮機が多少傾いて設置されても、吸入口114が吸入管101の開口部102に対し回転子105の回転方向側に大きくオフセット配置されることを防ぐことができる。また、吸入口114より流入しなかった低温の冷媒が吸入マフラー113の密閉容器側外壁面115を冷却し、消音空間112部内の冷媒を冷却することができる。従って、シリンダ111へ低温の冷媒が供給される。その結果、設置条件に拘らず、密閉型圧縮機の冷凍性能を安定して向上させることができる。   Therefore, in the first embodiment, the suction port 114 is disposed on the outer wall surface 115 of the suction muffler 113 on the closed container side. In the projection viewed from the axial direction of the opening 102, the opening 102 and the suction port 114 are arranged so as to partially overlap each other, and the opening area of the opening 102 is larger than the opening area of the suction port 114. With such a configuration, it is possible to prevent the suction port 114 from being largely offset from the opening 102 of the suction pipe 101 on the rotational direction side of the rotor 105 even if the compressor is installed with a slight inclination. Further, the low-temperature refrigerant that has not flowed from the suction port 114 can cool the outer wall surface 115 of the closed container side of the suction muffler 113, and the refrigerant in the silencing space 112 can be cooled. Accordingly, the low temperature refrigerant is supplied to the cylinder 111. As a result, the refrigeration performance of the hermetic compressor can be stably improved regardless of installation conditions.

また、本実施の形態1では、吸入口114の回転子105の回転方向側に密閉容器103内側面方向に吸入マフラー113から突出した壁部116が設けられている。壁部116は、吸入口114前方の冷媒の流れを阻害し、その流れを遅くする。よって、吸入口114前方に比較的低温の冷媒が留まり、開口部102から密閉容器103内に開放された冷媒の温度上昇が小さくなる。その結果、シリンダ111へ低温の冷媒が供給され、密閉型圧縮機の冷凍性能が向上する。   Further, in the first embodiment, a wall 116 protruding from the suction muffler 113 in the inner surface direction of the sealed container 103 is provided on the rotation direction side of the rotor 105 of the suction port 114. The wall 116 obstructs the flow of the refrigerant in front of the suction port 114 and slows the flow. Therefore, a relatively low-temperature refrigerant stays in front of the suction port 114, and the temperature rise of the refrigerant released from the opening 102 into the sealed container 103 is reduced. As a result, a low-temperature refrigerant is supplied to the cylinder 111, and the refrigeration performance of the hermetic compressor is improved.

なお、本実施の形態1では電動要素をインバータとしたが、回転子105の回転数が一定速のインダクションであってもよい。インダクションであっても、吸入口114前方の冷媒の流れに合わせ、吸入口114を開口部102に対しオフセット配置することにより同様の効果が得られる。   In the first embodiment, the electric element is an inverter. However, the rotation of the rotor 105 may be a constant speed induction. Even in the case of induction, the same effect can be obtained by offsetting the suction port 114 with respect to the opening 102 in accordance with the refrigerant flow in front of the suction port 114.

以上のように、本発明にかかる密閉型圧縮機は、高い効率および信頼性を備えることが可能となるので、エアーコンディショナー、冷凍冷蔵装置等に用いられる密閉型圧縮機にも適用できる。   As described above, since the hermetic compressor according to the present invention can be provided with high efficiency and reliability, it can be applied to a hermetic compressor used in an air conditioner, a refrigerator-freezer, and the like.

本発明の実施の形態1における密閉型圧縮機の平面断面図Plan sectional drawing of the closed type compressor in Embodiment 1 of this invention 本発明の実施の形態1における密閉型圧縮機の開口部軸心方向からの投影図Projection view from the axial direction of the opening of the hermetic compressor according to Embodiment 1 of the present invention 本発明の実施の形態1における密閉型圧縮機の吸入口のオフセット位置と冷凍性能の関係図FIG. 3 is a relationship diagram between the offset position of the suction port and the refrigeration performance of the hermetic compressor according to Embodiment 1 of the present invention 従来の密閉型圧縮機の断面図Cross section of a conventional hermetic compressor 従来の密閉型圧縮機の開口部の軸心方向から見た要部概略図Schematic view of the main part of the conventional hermetic compressor as seen from the axial direction

符号の説明Explanation of symbols

101 吸入管
102 開口部
103 密閉容器
104 固定子
105 回転子
106 電動要素
107 圧縮要素
108 コイルばね
109 シャフト
110 圧縮室
111 シリンダ
112 消音空間
113 吸入マフラー
114 吸入口
115 密閉容器側外壁面
116 壁部
DESCRIPTION OF SYMBOLS 101 Suction pipe 102 Opening part 103 Sealed container 104 Stator 105 Rotor 106 Electric element 107 Compression element 108 Coil spring 109 Shaft 110 Compression chamber 111 Cylinder 112 Silent space 113 Suction muffler 114 Suction port 115 Sealed container side outer wall surface 116 Wall part

Claims (5)

密閉容器内に収容されて固定子と回転子とからなる電動要素と、
前記電動要素によって駆動される圧縮要素と、
前記密閉容器内外を連通し前記密閉容器内に開口する開口部を有する吸入管と、を備え、
前記圧縮要素は、
コイルばねによって弾性的に支持され、前記回転子とともに回転するシャフトと、圧縮室を形成するシリンダと、前記シリンダに連通する消音空間を形成する吸入マフラーと、を有し、
前記吸入マフラーに前記消音空間と前記密閉容器内空間とを連通する吸入口を形成するとともに、前記吸入口を前記開口部に対し前記回転子の回転方向にオフセット配置した
密閉型圧縮機。
An electric element housed in an airtight container and consisting of a stator and a rotor;
A compression element driven by the electric element;
A suction pipe having an opening communicating with the inside and outside of the sealed container and opening into the sealed container;
The compression element is
A shaft that is elastically supported by a coil spring and rotates together with the rotor, a cylinder that forms a compression chamber, and a suction muffler that forms a silencing space that communicates with the cylinder;
A hermetic compressor in which the suction muffler is formed with a suction port that communicates the sound deadening space and the space in the sealed container, and the suction port is offset with respect to the opening in the rotation direction of the rotor.
前記開口部の軸心方向から見た投影図において、
前記開口部と前記吸入口が少なくとも一部で重なるように配置された
請求項1に記載の密閉型圧縮機。
In the projection view seen from the axial direction of the opening,
The hermetic compressor according to claim 1, wherein the opening and the suction port are arranged so as to overlap at least partially.
前記吸入口の前記回転子の回転方向側に、前記密閉容器内側面方向に突出した壁部を設けた
請求項1に記載の密閉型圧縮機。
2. The hermetic compressor according to claim 1, wherein a wall portion projecting toward the inner side surface of the hermetic container is provided on a rotation direction side of the rotor of the suction port.
前記吸入マフラーに前記密閉容器内側面に対向する外壁面を形成し、
前記吸入口を前記吸入マフラーの前記外壁面に配置した
請求項1に記載の密閉型圧縮機。
Forming an outer wall surface facing the inner side surface of the sealed container in the suction muffler;
The hermetic compressor according to claim 1, wherein the suction port is disposed on the outer wall surface of the suction muffler.
前記開口部の開口面積を前記吸入口の開口面積より大きくした
請求項1に記載の密閉型圧縮機。
The hermetic compressor according to claim 1, wherein an opening area of the opening is larger than an opening area of the suction port.
JP2007554369A 2006-06-23 2007-06-05 Hermetic compressor Withdrawn JP2008542597A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006173351 2006-06-23
PCT/JP2007/061682 WO2007148549A1 (en) 2006-06-23 2007-06-05 Hermetic type compressor

Publications (1)

Publication Number Publication Date
JP2008542597A true JP2008542597A (en) 2008-11-27

Family

ID=38441460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007554369A Withdrawn JP2008542597A (en) 2006-06-23 2007-06-05 Hermetic compressor

Country Status (6)

Country Link
US (1) US20090285701A1 (en)
EP (1) EP2032853A1 (en)
JP (1) JP2008542597A (en)
KR (1) KR20080011231A (en)
CN (1) CN101326367A (en)
WO (1) WO2007148549A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6028211B2 (en) * 2011-10-12 2016-11-16 パナソニックIpマネジメント株式会社 Hermetic compressor and refrigeration apparatus provided with the same
WO2022203598A1 (en) * 2021-03-22 2022-09-29 Panasonic Appliances Refrigeration Devices Singapore Hermetic compressor
CN114198281B (en) * 2021-12-14 2023-09-29 珠海凌达压缩机有限公司 Amortization structure, compressor and air conditioner

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817661A (en) * 1970-02-10 1974-06-18 Carrier Corp Cylinder head for a motor compressor unit
US4313715A (en) * 1979-12-21 1982-02-02 Tecumseh Products Company Anti-slug suction muffler for hermetic refrigeration compressor
US4370104A (en) * 1980-07-22 1983-01-25 White Consolidated Industries, Inc. Suction muffler for refrigeration compressor
US4401418B1 (en) * 1981-04-29 1998-01-06 White Consolidated Ind Inc Muffler system for refrigeration compressor
JPS6251778A (en) * 1985-08-30 1987-03-06 Toshiba Corp Enclosed type compressor
US5224840A (en) * 1991-03-28 1993-07-06 Tecumseh Products Company Integral suction system
BR9102288A (en) * 1991-05-28 1993-01-05 Brasileira S A Embraco Empresa SUCTION DIFFERENT SET FOR HERMETIC COMPRESSOR
IT1260703B (en) * 1992-07-03 1996-04-22 Necchi Compressori SILENCER FOR MOTOR-COMPRESSORS FOR REFRIGERATING SYSTEMS
US5496156A (en) * 1994-09-22 1996-03-05 Tecumseh Products Company Suction muffler
NZ500681A (en) * 1999-10-21 2002-06-28 Fisher & Paykel Appliances Ltd A linear compressor with gas bearing passages between cylinder and cylinder lining
US6558137B2 (en) * 2000-12-01 2003-05-06 Tecumseh Products Company Reciprocating piston compressor having improved noise attenuation
KR100448548B1 (en) * 2002-04-22 2004-09-13 삼성광주전자 주식회사 Cylinder assembly and hermetic compressor having the same
JP4492032B2 (en) * 2003-03-27 2010-06-30 パナソニック株式会社 Hermetic compressor
KR20050059494A (en) * 2003-12-15 2005-06-21 삼성광주전자 주식회사 Hermetic compressor

Also Published As

Publication number Publication date
EP2032853A1 (en) 2009-03-11
US20090285701A1 (en) 2009-11-19
KR20080011231A (en) 2008-01-31
CN101326367A (en) 2008-12-17
WO2007148549A1 (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP2006274964A (en) Hermetic compressor
JP4752255B2 (en) Hermetic compressor
JP3840578B2 (en) Compressor
KR100624818B1 (en) Linear compressor
KR100461231B1 (en) Suction muffler for compressor
JP2008542597A (en) Hermetic compressor
JP2007024037A (en) Hermetic compressor
JP4682745B2 (en) Hermetic compressor
JP5228719B2 (en) Two-stage compressor
JP2005344658A (en) Electric gas compressor
JP2012149615A (en) Displacement compressor
JP2000045949A (en) Refrigerant compressor
JP2006214376A (en) Muffler structure for compressor
JP2007255245A (en) Compressor
JP2009079516A (en) Hermetically-sealed compressor
JP6091575B2 (en) Hermetic compressor and refrigeration cycle apparatus provided with the hermetic compressor
JP2006029218A (en) Compressor
JP2006105040A (en) Compressor
JP2005069122A (en) Reciprocating refrigerant compressor
JP2014114720A (en) Sealed compressor
JP2006300049A (en) Suction pulsation reducing structure for compressor
JP2006118421A (en) Hermetic rotary compressor
JP2006046350A (en) Hermetic compressor
JP2009041577A (en) Compressor and its muffler structure of compressor
JP2004293450A (en) Refrigerant cycle apparatus

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206