JP2008524480A - Position detection system - Google Patents

Position detection system Download PDF

Info

Publication number
JP2008524480A
JP2008524480A JP2007547311A JP2007547311A JP2008524480A JP 2008524480 A JP2008524480 A JP 2008524480A JP 2007547311 A JP2007547311 A JP 2007547311A JP 2007547311 A JP2007547311 A JP 2007547311A JP 2008524480 A JP2008524480 A JP 2008524480A
Authority
JP
Japan
Prior art keywords
sensor
transceiver
actuating
signal
amplifying device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007547311A
Other languages
Japanese (ja)
Inventor
マルクス・クリフケン
ソルン・シュトル
Original Assignee
ボッシュ レックスロス アクチエンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ レックスロス アクチエンゲゼルシャフト filed Critical ボッシュ レックスロス アクチエンゲゼルシャフト
Publication of JP2008524480A publication Critical patent/JP2008524480A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Manipulator (AREA)

Abstract

【要約書】
【課題】本発明は、可動装置・ツール(1)の作動アーム(2)上に配置された作動機構(3)システムの位置決定及び位置調節に関する。
【解決手段】本システムは、少なくとも1つのセンサ(4)と送受信機(5)を有する。少なくとも1つのセンサ(4)と送受信機(5)間の作動機構の座標(x,y)の位置、及び/又は(3)の勾配(φ)の決定及び送信を非接触で行う。
【選択図】図1
[Summary]
The present invention relates to position determination and position adjustment of an actuating mechanism (3) system arranged on an actuating arm (2) of a movable device / tool (1).
The system includes at least one sensor (4) and a transceiver (5). The position of the coordinate (x, y) of the operating mechanism between the at least one sensor (4) and the transceiver (5) and / or the gradient (φ) of (3) is determined and transmitted in a contactless manner.
[Selection] Figure 1

Description

本発明は、請求項1の前提部に記載の可動装置の作動アームの位置検出・制御システムに関する。   The present invention relates to a position detection / control system for an operating arm of a movable device according to the premise of claim 1.

可動装置における位置制御された作動アームの場合、前記作動機構の位置は、通常、油圧システムのシリンダ内の長さセンサ又は角度センサにより間接的に検出される。角度センサによる位置検出の一例は、特許文献1に公知である。特許文献1には、作動機構の位置により決まる面と重力方向との間の角度を計測する計測器と、作動機構の位置により決まる面と重力方向との間の角度を規定する角度トランスミッタと、作動機構の面と重力方向との間の角度を制御して、計測角度を規定角度に対応させる制御装置とを具備する、可動装置の作動機構に対する位置制御装置が記載されている。   In the case of a position-controlled actuating arm in a mobile device, the position of the actuating mechanism is usually detected indirectly by a length sensor or an angle sensor in a cylinder of the hydraulic system. An example of position detection by an angle sensor is known in Patent Document 1. In Patent Document 1, a measuring instrument that measures an angle between a surface determined by the position of the operating mechanism and the direction of gravity, an angle transmitter that defines an angle between the surface determined by the position of the operating mechanism and the direction of gravity, A position control device is described for a movable device actuating mechanism, comprising a control device that controls the angle between the surface of the actuating mechanism and the gravitational direction so that the measured angle corresponds to a specified angle.

特に、この種のシステムは、障害及び誤差を検出する能力が非常に限られ不利であるため、最大出力に調節する能力も同様に制限されている。   In particular, this type of system has a very limited and disadvantageous ability to detect faults and errors, so the ability to adjust to maximum power is similarly limited.

測位システム(例えば、GPS、全地球測位システム)により、地上の可動装置の位置を検出できることが更に知られている。この種の検出システムを備えた作動装置は、例えば、特許文献2に記載されている。   It is further known that the position of a movable device on the ground can be detected by a positioning system (for example, GPS, global positioning system). An actuation device provided with this type of detection system is described in Patent Document 2, for example.

この種の位置検出システムは、特に、価格面及び精度において不利である。本目的への適用に好適な送受信機はコストが高く、しかも手間がかかる。   This type of position detection system is particularly disadvantageous in terms of price and accuracy. A transceiver suitable for application to this purpose is expensive and laborious.

独国特許第10000771A1号明細書German Patent No. 10000771A1 国際公開第95/30799号パンフレットInternational Publication No. 95/30799 Pamphlet

したがって、本発明は、作動アーム上に設けられた作動機構の簡易、経済的、且つ正確な位置測定及び再配置を可能にする、可動装置の作動アームの位置検出・制御システムを提供することを目的とする。   Accordingly, the present invention provides a position detection and control system for an actuating arm of a movable device that enables simple, economical and accurate position measurement and relocation of the actuating mechanism provided on the actuating arm. Objective.

前記目的は、請求項1の特徴により達成される。   The object is achieved by the features of claim 1.

少なくとも1つのセンサと1つの送受信機の間の作動機構の座標及び/又は勾配の送信又は位置決定は、電磁波で信号を送信することで、非接触で有利に達成される。   The transmission or position determination of the coordinate and / or gradient of the actuation mechanism between at least one sensor and one transceiver is advantageously achieved in a non-contact manner by transmitting a signal with electromagnetic waves.

下位概念クレームは、本発明の有利な発展を含む。   The subordinate concept claims contain advantageous developments of the invention.

本発明の形態の利点を、図を参照して概略的に示す。図1及び図2は以下に示す。   The advantages of the embodiments of the invention are schematically illustrated with reference to the figures. 1 and 2 are shown below.

図1に、可動装置1の作動アーム2の位置検出及び位置制御を行うために本発明に基づいて構成されたシステムの一実施形態を概略的に示す。該実施形態に記載される装置1は、作動アーム2に配置された作動機構3を有する掘削機、該形態の掘削バケット等の土木装置である。しかし、本発明は、前記装置に限定されることなく、クレーン、コンクリートポンプ、テレハンドラー等、他の用途にも応用できる。   FIG. 1 schematically shows an embodiment of a system constructed according to the present invention for detecting the position and controlling the position of the operating arm 2 of the movable device 1. The apparatus 1 described in the embodiment is a civil engineering apparatus such as an excavator having an operation mechanism 3 disposed on an operation arm 2 and an excavation bucket of the form. However, the present invention is not limited to the above apparatus, and can be applied to other uses such as a crane, a concrete pump, and a telehandler.

作動機構3の位置検出は、好ましくは、マイクロ波、又は高周波電磁波による無線信号に基づいて、非接触センサ4により本発明に従って行われる。センサ4は、どの位置の検出を行う場合でも、作動アーム2又は作動機構3上に配置される。図1に示す第1の形態において、一つのセンサ4を、作動アーム2上に配置された作動機構3に配置し、更に一つのセンサ4を作動アーム2の油圧装置6に配置している。   The position detection of the actuation mechanism 3 is preferably performed according to the present invention by the non-contact sensor 4 based on a radio signal by microwaves or high frequency electromagnetic waves. The sensor 4 is disposed on the operating arm 2 or the operating mechanism 3 when detecting any position. In the first embodiment shown in FIG. 1, one sensor 4 is arranged in the actuation mechanism 3 arranged on the actuation arm 2, and one more sensor 4 is arranged in the hydraulic device 6 of the actuation arm 2.

能動センサ、特に有利には受動センサ4が、センサ4として好適である。能動センサ4は、例えば、バッテリーにより電源供給され、結果的に数年間のメンテナンスフリーが達成できる。必要に応じて、環境エネルギーを充電に使用することができる。受動センサ4を使用する場合、送受信機5を可動装置1に設置する。送受信機5により送信される信号は、受動センサ4に変換されて入力され、コード化されて戻される。この種のシステムの計測精度は、現在のマイクロ波技術の場合、数センチであり、応用範囲は無限である。他の種類のセンサ4、例えば、圧力センサからの信号送信は、同様の技術により実施できる。   An active sensor, particularly preferably a passive sensor 4, is suitable as the sensor 4. The active sensor 4 is powered by, for example, a battery, and as a result, maintenance-free for several years can be achieved. If necessary, environmental energy can be used for charging. When using the passive sensor 4, the transceiver 5 is installed in the movable device 1. The signal transmitted by the transceiver 5 is converted into the passive sensor 4 and input, and is encoded and returned. The measurement accuracy of this type of system is several centimeters in the case of current microwave technology, and the application range is infinite. Signal transmission from other types of sensors 4, such as pressure sensors, can be implemented by similar techniques.

作動機構3の位置及び方位は、センサ4と送受信機5が協同して測定される。作動機構3に配置された第1センサ4は、例えば、作動機構3の位置決定に対しては変数x、y、作動機構3の勾配決定に対しては変数φという形で、作動機構3の位置と方位を感知し、送受信機5に非接触で信号を送信する。基準システム、即ち、装置1の絶対位置及び絶対方位は、GPS(全地球測位システム)センサ、勾配センサ、又は加速度センサにより決定できる。同様に、例えば、油圧装置6の圧力信号、或いは作動機構3の速度若しくは加速度、流体の温度、及びシステム内の流量等の他の物理的変数も更に、非接触で送信可能である。図1では、例として油圧装置6内の圧力センサ4を示す。   The position and orientation of the operating mechanism 3 are measured in cooperation with the sensor 4 and the transceiver 5. The first sensor 4 arranged in the operating mechanism 3 is, for example, in the form of variables x and y for determining the position of the operating mechanism 3 and variable φ for determining the gradient of the operating mechanism 3. The position and orientation are sensed and a signal is transmitted to the transceiver 5 in a non-contact manner. The absolute position and orientation of the reference system, ie the device 1, can be determined by a GPS (Global Positioning System) sensor, a gradient sensor or an acceleration sensor. Similarly, other physical variables such as, for example, the pressure signal of the hydraulic device 6, or the speed or acceleration of the actuation mechanism 3, the temperature of the fluid, and the flow rate in the system can also be transmitted in a non-contact manner. In FIG. 1, the pressure sensor 4 in the hydraulic device 6 is shown as an example.

送受信機5は、操縦者が装置1を操作するための、例えば、制御装置9及び制御レバー10等の更なる装置1の構成部品と通信する。制御レバー10を介して操縦者により行われる動作は、制御装置9により、対応する信号及び作動機構3の動作へと変換される。   The transceiver 5 communicates with further components of the device 1 such as the control device 9 and the control lever 10 for the operator to operate the device 1. Operations performed by the pilot via the control lever 10 are converted by the control device 9 into corresponding signals and operations of the actuation mechanism 3.

したがって、作動機構3の位置及び方位決定に対する信号は、装置の個々の部品間の動作時間の測定値に基づいて、作動機構3内の少なくとも1つのセンサ4により決定される。圧力、速度、加速度、温度、及び流量等の他の物理変数の信号は、送受信機5に直接送信可能である。   Thus, the signal for determining the position and orientation of the actuation mechanism 3 is determined by at least one sensor 4 in the actuation mechanism 3 based on measurements of operating time between individual parts of the device. Signals of other physical variables such as pressure, speed, acceleration, temperature, and flow rate can be transmitted directly to the transceiver 5.

しかしながら、センサ4と送受信機5の通信は、図2に示した、例えば、障壁7のような障害物によって、困難または不可能となる可能性がある。   However, communication between the sensor 4 and the transmitter / receiver 5 may be difficult or impossible due to an obstacle such as the barrier 7 shown in FIG.

これを防ぐため、図2の第2の実施形態で示したように、センサ4と装置1の実際の送受信機5との間の通信を支援する増幅装置8により、図1のシステムを有利に提供することができる。作動機構3の位置及び方位を決定するためには、増幅装置8から両方の装置が直接見えるように増幅装置8を配置する。図2の実施形態に示すように、増幅装置8は、装置1の作動アーム上2に、又は装置1の外部の適切な位置に配置される。したがって、増幅装置8は、メインシステムと同一の技術によって、例えば位置情報等の別のデータを更に感知し、送受信機5に送信するように設計できる。該データは、制御、又は操縦者支援の目的に使用できる。   To prevent this, as shown in the second embodiment of FIG. 2, the system of FIG. 1 is advantageously provided by an amplifying device 8 that supports communication between the sensor 4 and the actual transceiver 5 of the device 1. Can be provided. In order to determine the position and orientation of the actuating mechanism 3, the amplifying device 8 is arranged so that both devices can be seen directly from the amplifying device 8. As shown in the embodiment of FIG. 2, the amplifying device 8 is arranged on the working arm 2 of the device 1 or at a suitable position outside the device 1. Therefore, the amplifying apparatus 8 can be designed to further sense other data such as position information and transmit it to the transceiver 5 by the same technique as the main system. The data can be used for control or pilot assistance purposes.

本発明は、上記実施形態に限定されることなく、様々な作動機構3に対して様々なセンサ4を用いた任意の装置1に適用可能である。本発明の特徴は、任意の方法で組合せることができる。   The present invention is not limited to the above-described embodiment, and can be applied to any device 1 that uses various sensors 4 for various actuation mechanisms 3. The features of the present invention can be combined in any manner.

図1は、可動装置の可動式作動アームの位置検出及び位置制御を行うための本発明の第1の実施形態のシステムの概略図である。FIG. 1 is a schematic diagram of a system according to a first embodiment of the present invention for performing position detection and position control of a movable operating arm of a movable device. 図2は、本発明の第2の実施形態のシステムの概略図である。FIG. 2 is a schematic diagram of a system according to the second embodiment of the present invention.

符号の説明Explanation of symbols

1 可動装置
2 作動アーム
3 作動機構
4 センサ
5 送受信機
6 油圧装置
7 障壁
8 増幅装置
9 制御装置
10 制御レバー
DESCRIPTION OF SYMBOLS 1 Movable device 2 Actuating arm 3 Actuating mechanism 4 Sensor 5 Transmitter / receiver 6 Hydraulic device 7 Barrier 8 Amplifying device 9 Control device 10 Control lever

Claims (14)

少なくとも1つのセンサ(4)及び送受信機(5)を有する、可動装置(1)の作動アーム(2)上に配置された作動機構(3)の検出・制御システムであって、
前記少なくとも1つのセンサ(4)と前記送受信機(5)と間の前記作動機構(3)の座標軸(x,y)及び/又は勾配(φ)の検出及び送信が、非接触で行われることを特徴とする作動機構(3)の検出・制御システム。
A detection and control system for an actuating mechanism (3) arranged on an actuating arm (2) of a mobile device (1) having at least one sensor (4) and a transceiver (5),
Detection and transmission of the coordinate axes (x, y) and / or gradients (φ) of the operating mechanism (3) between the at least one sensor (4) and the transceiver (5) are performed in a non-contact manner. A detection / control system for an operation mechanism (3) characterized by the above.
前記少なくとも1つのセンサ(4)が、能動センサ(4)として構成される請求項1に記載のシステム。   The system according to claim 1, wherein the at least one sensor (4) is configured as an active sensor (4). 前記少なくとも1つのセンサ(4)が、受動センサ(4)として構成される請求項1に記載のシステム。   The system according to claim 1, wherein the at least one sensor (4) is configured as a passive sensor (4). 前記少なくとも1つのセンサ(4)が、前記作動機構(3)内に配置される請求項1〜3のいずれかに記載のシステム。   The system according to any of the preceding claims, wherein the at least one sensor (4) is arranged in the actuation mechanism (3). 前記装置(1)の制御レバー(10)を介して発信された信号が、前記送受信機(5)及び前記少なくとも1つのセンサ(4)によって前記作動機構(3)に送信可能である請求項4に記載のシステム。   The signal transmitted via the control lever (10) of the device (1) can be transmitted to the actuating mechanism (3) by the transceiver (5) and the at least one sensor (4). The system described in. 少なくとも1つの更なるセンサ(4)が、前記作動アーム2の油圧装置(6)内に配置される請求項1〜5のいずれかに記載のシステム。   System according to any of the preceding claims, wherein at least one further sensor (4) is arranged in the hydraulic device (6) of the actuating arm 2. 前記油圧装置(6)内に配置された前記センサ(4)が、圧力信号(p)を発信する請求項6に記載のシステム。   System according to claim 6, wherein the sensor (4) arranged in the hydraulic device (6) emits a pressure signal (p). 増幅装置(8)を有する請求項1〜7のいずれかに記載のシステム。   System according to any of the preceding claims, comprising an amplifying device (8). 前記増幅装置(8)が、少なくとも1つの送受信機(5)の形態で構成される請求項8に記載のシステム。   System according to claim 8, wherein the amplifying device (8) is configured in the form of at least one transceiver (5). 前記増幅装置(8)が、前記装置(1)の前記作動アーム(2)上に配置される請求項8または9に記載のシステム。   System according to claim 8 or 9, wherein the amplifying device (8) is arranged on the actuating arm (2) of the device (1). 前記増幅装置(8)が、前記装置(1)から離間して配置される請求項8または9に記載のシステム。   System according to claim 8 or 9, wherein the amplifying device (8) is spaced apart from the device (1). 前記増幅装置(8)が、前記少なくとも1つのセンサ(4)及び前記送受信機(5)と視覚的に直接接触する請求項8〜11のいずれかに記載のシステム。   The system according to any of claims 8 to 11, wherein the amplifying device (8) is in direct visual contact with the at least one sensor (4) and the transceiver (5). 前記信号の送信が、無線信号、特にはマイクロ波によって行われる請求項1〜12のいずれかに記載のシステム。   The system according to claim 1, wherein the transmission of the signal is performed by a radio signal, in particular by a microwave. 更なる物理変数(p)が、前記システムを介して前記送受信機(5)に送信可能である請求項1〜13のいずれかに記載のシステム。   14. System according to any of the preceding claims, wherein further physical variables (p) can be transmitted to the transceiver (5) via the system.
JP2007547311A 2004-12-21 2005-12-19 Position detection system Pending JP2008524480A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004061560 2004-12-21
DE102005024676A DE102005024676A1 (en) 2004-12-21 2005-05-30 System for position detection and control for working arms of mobile working machines
PCT/EP2005/013676 WO2006066853A1 (en) 2004-12-21 2005-12-19 Position determination system

Publications (1)

Publication Number Publication Date
JP2008524480A true JP2008524480A (en) 2008-07-10

Family

ID=36019811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007547311A Pending JP2008524480A (en) 2004-12-21 2005-12-19 Position detection system

Country Status (5)

Country Link
US (1) US20080134547A1 (en)
EP (1) EP1828491A1 (en)
JP (1) JP2008524480A (en)
DE (1) DE102005024676A1 (en)
WO (1) WO2006066853A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003520A (en) * 2014-06-18 2016-01-12 住友建機株式会社 Construction machinery

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007045846A1 (en) * 2007-09-26 2009-04-02 Deere & Company, Moline Agricultural machine and method for determining position
DE202010016283U1 (en) * 2010-12-07 2012-03-15 Liebherr-Werk Ehingen Gmbh Construction machine with mobile operating unit and mobile operating unit
US20120315120A1 (en) * 2011-06-08 2012-12-13 Hyder Jarrod Work machine
US8620533B2 (en) * 2011-08-30 2013-12-31 Harnischfeger Technologies, Inc. Systems, methods, and devices for controlling a movement of a dipper
US9041595B2 (en) * 2011-12-19 2015-05-26 Trimble Navigation Limited Determining the location of a load for a tower crane
US9206587B2 (en) 2012-03-16 2015-12-08 Harnischfeger Technologies, Inc. Automated control of dipper swing for a shovel
US9415976B2 (en) * 2012-05-10 2016-08-16 Trimble Navigation Limited Crane collision avoidance
DE102012208635A1 (en) * 2012-05-23 2013-11-28 Hirschmann Automation And Control Gmbh Measuring the boom length of a crane by measuring transit time
DE102013014626B4 (en) * 2013-09-04 2022-09-08 Schwing Gmbh Determination of the position of a movable measuring point on a machine
US20150098786A1 (en) * 2013-10-03 2015-04-09 Caterpillar Inc. Work tool position sensing assembly
US10962360B2 (en) * 2018-06-11 2021-03-30 Deere & Company Smartphone calibration of a grade control system for a work machine
FR3132091B3 (en) * 2022-01-27 2024-03-01 Manitou Bf HANDLING MACHINE COMPRISING A HANDLING DEVICE

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5065326A (en) * 1989-08-17 1991-11-12 Caterpillar, Inc. Automatic excavation control system and method
JP2700710B2 (en) * 1990-06-21 1998-01-21 新キャタピラー三菱株式会社 Warning device for construction machinery
US5446980A (en) * 1994-03-23 1995-09-05 Caterpillar Inc. Automatic excavation control system and method
US5438771A (en) * 1994-05-10 1995-08-08 Caterpillar Inc. Method and apparatus for determining the location and orientation of a work machine
US5957213A (en) * 1996-05-30 1999-09-28 Clark Equipment Company Intelligent attachment to a power tool
JP3207771B2 (en) * 1996-07-26 2001-09-10 株式会社エフエフシー Hydraulic working machine
US6263595B1 (en) * 1999-04-26 2001-07-24 Apache Technologies, Inc. Laser receiver and angle sensor mounted on an excavator
DE19940404C2 (en) * 1999-08-25 2001-07-12 Moba Mobile Automation Gmbh Method and device for three-dimensional control of a construction machine
DE10000771C2 (en) * 2000-01-11 2003-06-12 Brueninghaus Hydromatik Gmbh Device and method for position control for work equipment of mobile work machines
WO2002040783A1 (en) * 2000-11-17 2002-05-23 Hitachi Construction Machinery Co., Ltd. Display device and display controller of construction machinery
WO2003000997A1 (en) * 2001-06-20 2003-01-03 Hitachi Construction Machinery Co., Ltd. Remote control system and remote setting system of construction machinery
US6763619B2 (en) * 2002-10-31 2004-07-20 Deere & Company Automatic loader bucket orientation control
US6865464B2 (en) * 2002-12-17 2005-03-08 Caterpillar Inc. System for determining an implement arm position
US6691437B1 (en) * 2003-03-24 2004-02-17 Trimble Navigation Limited Laser reference system for excavating machine
US6836982B1 (en) * 2003-08-14 2005-01-04 Caterpillar Inc Tactile feedback system for a remotely controlled work machine
US20080047170A1 (en) * 2006-08-24 2008-02-28 Trimble Navigation Ltd. Excavator 3D integrated laser and radio positioning guidance system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003520A (en) * 2014-06-18 2016-01-12 住友建機株式会社 Construction machinery

Also Published As

Publication number Publication date
EP1828491A1 (en) 2007-09-05
WO2006066853A1 (en) 2006-06-29
US20080134547A1 (en) 2008-06-12
DE102005024676A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
JP2008524480A (en) Position detection system
CN101094960A (en) Position determination system
CN102459766B (en) There is the method for the mobile working machinery of the position control of working arm and the position for the working arm that controls mobile working machinery
US20160298316A1 (en) Calibration Device for Work Machine and Calibration Method of Working Equipment Parameter for Work Machine
CN101460869B (en) Positioning device
CN102667006A (en) Implement angle correction system and associated loader
WO2009111285A3 (en) System for controlling a multimachine caravan
SE9904039L (en) Coupling device for a passenger bridge
EP2083245A3 (en) Surveying system
CN202689566U (en) Obstacle avoidance system for cantilever crane and engineering mechanical device comprising the same
RU2723429C2 (en) Ultra-wideband radio-frequency tracking of weapons on working vehicle
WO2009086495A3 (en) Robotic arm for accurate positioning in three-dimensional space, measurement of three-dimensional coordinates, and remote tooling operations in three-dimensional space
CN104254754A (en) Hydraulic excavator and method for measuring stroke of hydraulic cylinder of hydraulic excavator
CN103852059B (en) The scraper bowl locating device of backhoe [shovel and method
CN101737030A (en) Method for controlling well depth positioning in deposit drilling
US20160163088A1 (en) Terrain mapping system using moved material estimation
CN101900563A (en) Use the pedestrian navigation device and the method for the course information of terminal
CN103105158B (en) Marine riprapping, flatness-tamping and positioning system
CN111183260B (en) Work machine with attachment device and system for monitoring attachment state of attachment device
KR101135201B1 (en) A rssi based location measurement method and system using acceleration location information in the wireless network
CN105353348A (en) System and method for positioning moving target under coal mine
AU2013203365C1 (en) Apparatus for aligning drilling machines
CN105008855A (en) Method of determining the orientation of machine
CN102482064B (en) For determining method and the controller of the height of the working equipment being equipped with swing element
KR102209297B1 (en) Swashplate Position Sensor Arrangement

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413