JP2008312281A - Power compensating system - Google Patents

Power compensating system Download PDF

Info

Publication number
JP2008312281A
JP2008312281A JP2007155273A JP2007155273A JP2008312281A JP 2008312281 A JP2008312281 A JP 2008312281A JP 2007155273 A JP2007155273 A JP 2007155273A JP 2007155273 A JP2007155273 A JP 2007155273A JP 2008312281 A JP2008312281 A JP 2008312281A
Authority
JP
Japan
Prior art keywords
charge
phase
command value
current command
discharge control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007155273A
Other languages
Japanese (ja)
Other versions
JP4893486B2 (en
Inventor
Tomoya Imazu
知也 今津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007155273A priority Critical patent/JP4893486B2/en
Publication of JP2008312281A publication Critical patent/JP2008312281A/en
Application granted granted Critical
Publication of JP4893486B2 publication Critical patent/JP4893486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To compensate reactive power, making use of a charge/discharge controller connected between each phase and the next of a three-phase AC power system. <P>SOLUTION: A central controller 10 calculates at least one compensating current command between a compensating current command for compensating the reactive power on a three-phase AC power system and a compensating current command for compensating a harmonic current, and converts it into an interphase current command. A first charge/discharge control means 2 connected between the U phase and the V phase of a three-phase AC power system, a second charge/discharge control means 3 connected between the V phase and the W phase, and a third charge/discharge control means 1 connected between the W phase and the V phase discharge the power accumulated in accumulators connected severally to a three-phase AC power system, based on interphase current commands. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、3相交流電力系統の電力補償を行うシステムに関する。   The present invention relates to a system that performs power compensation of a three-phase AC power system.

従来、無効電力を補償する無効電力補償装置が知られている(特許文献1参照)。   Conventionally, a reactive power compensator for compensating reactive power is known (see Patent Document 1).

特開2006−81285号公報JP 2006-81285 A

しかしながら、従来の無効電力補償装置は、3相交流電力系統に接続された3相電力機器によって、無効電力を補償するものであり、3相交流電力系統の各相間に接続された充放電制御装置を利用して無効電力を補償することはできなかった。   However, the conventional reactive power compensator compensates reactive power by a three-phase power device connected to the three-phase AC power system, and is a charge / discharge control device connected between the phases of the three-phase AC power system. Reactive power could not be compensated using.

本発明による電力補償システムは、3相交流電力系統上の無効電力を補償するための補償電流指令値および高調波電流を補償するための補償電流指令値の少なくとも一方の補償電流指令値を演算して、相間電流指令値に変換し、変換した相間電流指令値に基づいて、3相交流電力系統のU相−V相間に接続される第1の充放電制御手段、V相−W相間に接続される第2の充放電制御手段、および、W相−V相間に接続される第3の充放電制御手段は、それぞれ接続されている蓄電装置に蓄えられている電力を3相交流電力系統へ放電することを特徴とする。   The power compensation system according to the present invention calculates a compensation current command value for at least one of a compensation current command value for compensating reactive power on a three-phase AC power system and a compensation current command value for compensating harmonic current. The first charge / discharge control means connected between the U phase and the V phase of the three-phase AC power system is connected between the V phase and the W phase based on the converted interphase current command value. The second charge / discharge control means and the third charge / discharge control means connected between the W-phase and the V-phase are configured to transfer the electric power stored in the connected power storage devices to the three-phase AC power system. It is characterized by discharging.

本発明による電力補償システムによれば、3相交流電力系統の各相間に接続された充放電制御装置を利用して、無効電力および高調波電流の少なくとも一方を補償することができる。   According to the power compensation system of the present invention, it is possible to compensate at least one of reactive power and harmonic current using a charge / discharge control device connected between the phases of the three-phase AC power system.

3相交流電力系統において、3相電力機器により、無効電力補償および高調波電流補償を行うシステムが知られている。一実施の形態における電力補償システムでは、3相電力機器ではなく、単相電力変換機器を利用して、無効電力補償および高調波電力補償を行う。以下では、単相電力変換機器として、電気自動車を充電するための充電器を例に挙げて説明する。   In a three-phase AC power system, a system that performs reactive power compensation and harmonic current compensation by a three-phase power device is known. In the power compensation system in one embodiment, reactive power compensation and harmonic power compensation are performed using a single-phase power conversion device instead of a three-phase power device. Hereinafter, a charger for charging an electric vehicle will be described as an example of the single-phase power conversion device.

図1は、一実施の形態における電力補償システムの全体構成を示す図である。一般的に、各家庭には、3相送電線のうちの2相の電気が単相交流電流として給電されている。図1では、3.3kVの電圧を柱上変圧器で200Vに変換(Y−Δ変換)して、各家庭に供給する例を示している。図1では、V−W相に充電器1が接続され、U−V相に充電器2が接続され、V−W相に充電器3が接続されている。なお、図1では、3つの充電器1〜3しか示していないが、実際には、多数の充電器が接続されている。電気自動車4〜6はそれぞれ、充電器1〜3と接続されることにより、バッテリの充電を行うことができる。   FIG. 1 is a diagram illustrating an overall configuration of a power compensation system according to an embodiment. Generally, each home is supplied with two-phase electricity of a three-phase transmission line as a single-phase alternating current. FIG. 1 shows an example in which a voltage of 3.3 kV is converted to 200 V by a pole transformer (Y-Δ conversion) and supplied to each home. In FIG. 1, the charger 1 is connected to the V-W phase, the charger 2 is connected to the U-V phase, and the charger 3 is connected to the V-W phase. Although only three chargers 1 to 3 are shown in FIG. 1, a large number of chargers are actually connected. The electric vehicles 4 to 6 can charge the battery by being connected to the chargers 1 to 3, respectively.

中央制御装置10は、各充電器1〜3と通信線11〜13を介して通信を行い、各種情報のやり取りを行う。各種情報には、各充電器1〜3で検出される相電流および相間電圧が少なくとも含まれる。また、中央制御装置10は、既知の方法により、3相交流電力系統上の無効電力を補償するための指令値Iudc*,Ivdc*,Iwdc*とともに、高調波電流を補償するための指令値Iuac*,Ivac*,Iwac*を算出し、算出した指令値を各充電器1〜3に送信する。 The central control device 10 communicates with each of the chargers 1 to 3 via the communication lines 11 to 13 to exchange various information. The various information includes at least the phase current and the interphase voltage detected by each of the chargers 1 to 3. In addition, central controller 10 uses commanded methods Iuac * , Ivdc * , and Iwdc * for compensating reactive power on the three-phase AC power system as well as command values Iuac for compensating harmonic currents by a known method. * , Ivac * , Iwac * are calculated, and the calculated command values are transmitted to the chargers 1 to 3.

中央制御装置10が無効電力を補償するための指令値Iudc*,Ivdc*,Iwdc*、および、高調波電流を補償するための指令値Iuac*,Ivac*,Iwac*を算出する方法を以下で説明する。 Command value for the central control unit 10 compensates the reactive power Iudc *, Ivdc *, Iwdc * , and the command value for compensating the harmonic current Iuac *, Ivac *, the following methods for calculating the Iwac * explain.

3相交流座標系におけるU相,V相,W相の電圧Eu,Ev,Ewをαβ軸上の電圧Eα,Eβに3相/2相変換すると、次式(1)で表される。また、U相,V相,W相に流れる電流Iu,Iv,Iwをαβ軸上の電流ILα,ILβに3相/2相変換すると、次式(2)で表される。3相の相電圧Eu,Ev,Ew、および、相電流Iu,Iv,Iwは、充電器1〜3によって検出されて、中央制御装置10に送信されてくる。

Figure 2008312281
ただし、
Figure 2008312281
When the three-phase / two-phase conversion of the U-phase, V-phase, and W-phase voltages Eu, Ev, and Ew in the three-phase AC coordinate system into the voltages Eα and Eβ on the αβ axis is expressed by the following equation (1). Further, when the currents Iu, Iv, and Iw flowing in the U-phase, V-phase, and W-phase are three-phase / 2-phase converted into currents ILα and ILβ on the αβ axis, the following equation (2) is obtained. The three-phase phase voltages Eu, Ev, Ew and the phase currents Iu, Iv, Iw are detected by the chargers 1 to 3 and transmitted to the central controller 10.
Figure 2008312281
However,
Figure 2008312281

式(1)により求められる電圧Eα,Eβと、式(2)により求められる電流ILα,ILβとに基づいて、3相負荷回路の瞬時実電力PLと、瞬時虚電力QLとを、次式(4)にて定義する。

Figure 2008312281
Based on the voltages Eα and Eβ obtained by the equation (1) and the currents ILα and ILβ obtained by the equation (2), the instantaneous real power PL and the instantaneous imaginary power QL of the three-phase load circuit are expressed by the following equations ( It is defined in 4).
Figure 2008312281

瞬時実電力PLおよび瞬時虚電力QLを、例えば、ハイパスフィルタに通すことにより、次式(5),(6)に示すように、直流分PLd・C,QLd・Cと、交流分PLa・C,QLa・Cとに分解することができる。ただし、Cは、式(3)に示す3相/2相変換行列である。
PL=PLd・C+PLa・C (5)
QL=QLd・C+QLa・C (6)
By passing the instantaneous real power PL and the instantaneous imaginary power QL through, for example, a high-pass filter, as shown in the following expressions (5) and (6), the direct current components PLd · C, QLd · C and the alternating current component PLa · C , QLa · C. However, C is a three-phase / 2-phase conversion matrix shown in Formula (3).
PL = PLd · C + PLa · C (5)
QL = QLd · C + QLa · C (6)

式(5)において、右辺第1項は、瞬時有効電力の基本波成分を表し、右辺第2項は、瞬時有効電力の高調波成分を表している。また、式(6)において、右辺第1項は、瞬時無効電力の基本波成分を表し、右辺第2項は、瞬時無効電力の高調波成分を表している。従って、瞬時有効電力の高調波成分を打ち消すための指令信号P*、および、瞬時無効電力を打ち消すための指令信号Q*は、それぞれ、次式(7),(8)にて表される。
*=−PLaC (7)
*=−QLdC−QLaC (8)
In Expression (5), the first term on the right side represents the fundamental wave component of the instantaneous active power, and the second term on the right side represents the harmonic component of the instantaneous active power. In Expression (6), the first term on the right side represents the fundamental wave component of the instantaneous reactive power, and the second term on the right side represents the harmonic component of the instantaneous reactive power. Therefore, the command signal P * for canceling the harmonic component of the instantaneous active power and the command signal Q * for canceling the instantaneous reactive power are expressed by the following equations (7) and (8), respectively.
P * = − PLaC (7)
Q * = − QLdC−QLaC (8)

さらに、次式(9),(10),(11)に基づいて、電流指令信号Iu*,Iv*,Iw*を求める。なお、式(10),(11)における[C]-1は、[C]の逆変換行列を表す。

Figure 2008312281
ただし、
Figure 2008312281
Further, current command signals Iu * , Iv * , Iw * are obtained based on the following equations (9), (10), (11). Note that [C] −1 in the equations (10) and (11) represents an inverse transformation matrix of [C].
Figure 2008312281
However,
Figure 2008312281

式(9),(10)において、acと添え字のある電流指令値は高調波電流を補償するための成分であり、dcと添え字のある電流指令値は、無効電力を補償するための成分である。従って、式(10)は、次式(12)に書き換えることができる。

Figure 2008312281
式(12)においても、acと添え字のある電流指令値は高調波電流を補償するための成分であり、dcと添え字のある電流指令値は、無効電力を補償するための成分である。 In equations (9) and (10), the current command value with the subscript ac is a component for compensating the harmonic current, and the current command value with the subscript dc is for compensating the reactive power. It is an ingredient. Therefore, the equation (10) can be rewritten as the following equation (12).
Figure 2008312281
Also in Equation (12), the current command value with a subscript ac is a component for compensating harmonic current, and the current command value with a subscript dc is a component for compensating reactive power. .

一実施の形態における電力補償システムでは、電力系統のユーザエンド側に位置している電気自動車の充電器を利用して、無効電力の補償、および、高調波電流の補償を行う。式(12)で表される電流指令値は、3相の電流指令値であるため、Y−Δ変換によって、充電器1〜3に指令を出すための相間電流指令値に変換する。以下では、式(12)で表される高調波電流を補償するための指令値をY−Δ変換した後の指令値をIac*、式(12)で表される無効電力を補償するための指令値をY−Δ変換した後の指令値をIdc*と表す。 In the power compensation system in one embodiment, the reactive power compensation and the harmonic current compensation are performed using the charger of the electric vehicle located on the user end side of the power system. Since the current command value represented by Expression (12) is a three-phase current command value, the current command value is converted into an interphase current command value for issuing commands to the chargers 1 to 3 by Y-Δ conversion. In the following, the command value after Y-Δ conversion of the command value for compensating the harmonic current represented by the equation (12) is Iac * , and the reactive power represented by the equation (12) is compensated. The command value after Y-Δ conversion of the command value is represented as Idc * .

続いて、中央制御装置10で演算された指令値Iac*,Idc*に基づいて、充電器1〜3側で行われる処理について説明する。以下では、充電器1で行われる処理を取り上げて説明するが、充電器2,3で行われる処理についても同様である。 Next, processing performed on the chargers 1 to 3 side based on the command values Iac * and Idc * calculated by the central controller 10 will be described. In the following, the processing performed by the charger 1 will be described and explained, but the same applies to the processing performed by the chargers 2 and 3.

図2は、充電器1の内部で行われる処理機能を説明するためのブロック図である。充電器1は、充放電電力指令演算回路21と、電流指令値演算回路22と、電流制御回路23と、スイッチ制御回路24とを備える。充放電電力指令演算回路21は、既知の方法に基づいて、充放電電力指令値Pdc*を求める。例えば、図示しない電圧センサによって検出される直流側電圧Vdc、および、充放電スケジュールに基づいて、充放電電力指令値Pdc*を求める。なお、充放電電力指令値Pdc*は、充電時にプラスの値、放電時にマイナスの値となる。 FIG. 2 is a block diagram for explaining processing functions performed inside the charger 1. The charger 1 includes a charge / discharge power command calculation circuit 21, a current command value calculation circuit 22, a current control circuit 23, and a switch control circuit 24. The charge / discharge power command calculation circuit 21 calculates a charge / discharge power command value Pdc * based on a known method. For example, the charge / discharge power command value Pdc * is obtained based on the DC voltage Vdc detected by a voltage sensor (not shown) and the charge / discharge schedule. The charge / discharge power command value Pdc * is a positive value during charging and a negative value during discharging.

なお、各充電器1〜3は、単相交流電力を直流電力に変換して、接続されている電気自動車4〜6に電力を供給する。すなわち、直流側電圧Vdcとは、直流電力に変換後の電圧である。また、後述する交流側単相電圧Vacとは、直流電力に変換する前の電圧であり、交流側電流Iacも、直流に変換する前の電流である。   In addition, each charger 1-3 converts single-phase alternating current power into direct-current power, and supplies electric power to the connected electric vehicles 4-6. That is, the DC side voltage Vdc is a voltage after being converted into DC power. Further, an AC side single-phase voltage Vac described later is a voltage before being converted into DC power, and an AC side current Iac is also a current before being converted into DC.

電流指令値演算回路22は、充放電電力指令演算回路21によって演算された充放電電力指令値Pdc*を充放電電流指令値に変換する。図示しない電圧センサによって検出される交流側単相電圧Vacの基本波のRMS(実効値)をVrmsとすると、電流実効値Irmsは、Irms=Pdc/Vrmsと表されるので、充放電電力指令値Pdc*に応じた充放電電流指令値Ipdc*は、次式(13)で表される。
Ipdc*=Irms・Vac/Vrms (13)
The current command value calculation circuit 22 converts the charge / discharge power command value Pdc * calculated by the charge / discharge power command calculation circuit 21 into a charge / discharge current command value. Since the RMS (effective value) of the fundamental wave of the AC side single-phase voltage Vac detected by a voltage sensor (not shown) is Vrms, the current effective value Irms is expressed as Irms = Pdc / Vrms. The charge / discharge current command value Ipdc * corresponding to Pdc * is expressed by the following equation (13).
Ipdc * = Irms · Vac / Vrms (13)

電流指令値演算回路22は、式(13)により求めた充放電電流指令値Ipdc*と、中央制御装置10で演算された高調波電流指令値Iac*および無効電力補償指令値Idc*とを加算することにより、単相電流指令値Iacref*を求める。単相電流指令値Iacref*は、バッテリ充電時にプラスの値、バッテリ放電時にマイナスの値となる。 The current command value calculation circuit 22 adds the charge / discharge current command value Ipdc * obtained by the equation (13), the harmonic current command value Iac * and the reactive power compensation command value Idc * calculated by the central controller 10. By doing so, the single-phase current command value Iacref * is obtained. The single-phase current command value Iacref * is a positive value when the battery is charged, and a negative value when the battery is discharged.

電流制御回路23は、図示しない電流センサによって検出される交流側電流Iac、交流側単相電圧Vac、直流側単相電圧Vdc、および、電流指令値演算回路22で求められた単相電流指令値Iacref*に基づいて、既知の方法により、単相電圧指令値Vref*を求める。既知の方法には、例えば、比例積分制御を利用する方法(次式(14)参照)や、直流側単相電圧Vdcをフィードフォワード補償する方法(次式(15)参照)などがある。
Vref*=K1{Iacref*−Iac} (14)
Vref*=K2{Iacref*−Iac}+Vdc (15)
ただし、式(14)におけるK1、および、式(15)におけるK2は、所定の係数である。
The current control circuit 23 includes an AC side current Iac, an AC side single phase voltage Vac, a DC side single phase voltage Vdc detected by a current sensor (not shown), and a single phase current command value obtained by the current command value calculation circuit 22. Based on Iacref * , single-phase voltage command value Vref * is obtained by a known method. Known methods include, for example, a method using proportional integral control (see the following equation (14)), a method for feedforward compensation of the DC-side single-phase voltage Vdc (see the following equation (15)), and the like.
Vref * = K1 {Iacref * −Iac} (14)
Vref * = K2 {Iacref * −Iac} + Vdc (15)
However, K1 in Expression (14) and K2 in Expression (15) are predetermined coefficients.

図3は、充電器1の詳細な構造を示す図である。図3において、バッテリ50は、充電器1に接続されている電気自動車4に搭載されており、電気自動車4の車両駆動用モータ(不図示)に電力を供給するためのバッテリである。充電器1は、既知のフルブリッジ変換器構成となっており、リアクトル31と、スイッチング素子32〜35と、ダイオード36〜39と、コンデンサ40とを備える。   FIG. 3 is a diagram showing a detailed structure of the charger 1. In FIG. 3, a battery 50 is mounted on the electric vehicle 4 connected to the charger 1, and is a battery for supplying electric power to a vehicle driving motor (not shown) of the electric vehicle 4. The charger 1 has a known full-bridge converter configuration, and includes a reactor 31, switching elements 32 to 35, diodes 36 to 39, and a capacitor 40.

図2のスイッチ制御回路24は、電流制御回路23で演算された単相電圧指令値Vref*と、直流側単相電圧Vdcとに基づいて、各スイッチング素子32〜35のデューティ指令値を求めて、各スイッチング素子32〜35をオン/オフするための指令信号を出力する。各スイッチング素子32〜35は、指令信号に基づいて、オン/オフする。これにより、交流電力を直流電力に変換して、バッテリ50を充電することができ、また、バッテリ50の直流電力を交流電力に変換して、交流送電線に放出することができる。 The switch control circuit 24 in FIG. 2 obtains the duty command values of the switching elements 32 to 35 based on the single-phase voltage command value Vref * calculated by the current control circuit 23 and the DC-side single-phase voltage Vdc. A command signal for turning on / off each of the switching elements 32 to 35 is output. Each of the switching elements 32 to 35 is turned on / off based on the command signal. Thereby, alternating current power can be converted into direct current power, the battery 50 can be charged, and direct current power of the battery 50 can be converted into alternating current power, and it can discharge | release to an alternating current power transmission line.

上述したように、電流指令値演算回路22は、充放電電力指令演算回路21によって演算された充放電電力指令値Pdc*を変換して得られる充放電電流指令値Ipdc*に対して、中央制御装置10で演算された高調波電流指令値Iac*および無効電力補償指令値Idc*を加算することにより、単相電流指令値Iacref*を求めている。すなわち、各充電器1〜3は、指令値に基づいて、接続されている電気自動車4〜6のバッテリの電力を3相交流送電線に放出することによって、3相交流電力系統における無効電力の補償(低減)、および、高調波電流の補償(低減)を行う。 As described above, the current command value calculation circuit 22 performs central control on the charge / discharge current command value Ipdc * obtained by converting the charge / discharge power command value Pdc * calculated by the charge / discharge power command calculation circuit 21. The single-phase current command value Iacref * is obtained by adding the harmonic current command value Iac * and the reactive power compensation command value Idc * calculated by the device 10. That is, each of the chargers 1 to 3 discharges the battery power of the connected electric vehicles 4 to 6 to the three-phase AC power transmission line based on the command value, thereby reducing the reactive power in the three-phase AC power system. Compensation (reduction) and harmonic current compensation (reduction) are performed.

図4は、一実施の形態における電力補償システムによって行われる処理の手順を示すフローチャートである。ステップS10からステップS30の処理は、中央制御装置10で行われ、ステップS40の処理は、充電器1〜3によって行われる。   FIG. 4 is a flowchart illustrating a procedure of processing performed by the power compensation system according to the embodiment. The processing from step S10 to step S30 is performed by the central controller 10, and the processing of step S40 is performed by the chargers 1 to 3.

ステップS10では、3相交流電力系統上の高調波電流指令値Iac*および無効電力補償指令値Idc*を求めて、ステップS20に進む。ステップS20では、3相交流送電線に接続されている。電気自動車のバッテリのうち、指令値に応じた電力の放電を行うことができる充電器を検出する。この判定は、例えば、充電器が3相交流送電線に接続されているか否か、充電器に電気自動車が接続されているか否か、電気自動車のバッテリが所定電圧以上であるか否かに基づいて行う。これらの情報は、通信線を介して、各充電器から取得する。ここでは、説明を容易にするために、充電器1〜3の3つの充電器のみが検出されたものとして説明を続ける。 In step S10, the harmonic current command value Iac * and the reactive power compensation command value Idc * on the three-phase AC power system are obtained, and the process proceeds to step S20. In step S20, it is connected to a three-phase AC power transmission line. Among the batteries of the electric vehicle, a charger capable of discharging electric power according to the command value is detected. This determination is based on, for example, whether the charger is connected to a three-phase AC power transmission line, whether the electric vehicle is connected to the charger, and whether the battery of the electric vehicle is equal to or higher than a predetermined voltage. Do it. Such information is acquired from each charger via a communication line. Here, in order to facilitate the description, the description will be continued assuming that only three chargers 1 to 3 are detected.

ステップS20に続くステップS30では、ステップS20で検出した充電器1〜3に対して、通信線11〜13を介して、ステップS10で算出した高調波電流指令値Iac*および無効電力補償指令値Idc*を送信する。 In step S30 following step S20, the harmonic current command value Iac * and the reactive power compensation command value Idc calculated in step S10 are transmitted to the chargers 1 to 3 detected in step S20 via the communication lines 11 to 13. Send * .

ステップS40において、各充電器1〜3は、中央制御装置10から受信した高調波電流指令値Iac*および無効電力補償指令値Idc*に基づいて、単相電圧指令値Vref*を求め、求めた単相電圧指令値Vref*と、直流側単相電圧Vdcとに基づいて、充電器内部のスイッチング素子のオン/オフを制御することにより、接続されている電気自動車のバッテリから、3相交流送電線への放電を行う。これにより、3相交流電力系統における無効電力の補償(低減)、および、高調波電流の補償(低減)を行うことができる。 In step S40, each of the chargers 1 to 3 obtains the single-phase voltage command value Vref * based on the harmonic current command value Iac * and the reactive power compensation command value Idc * received from the central controller 10. Based on the single-phase voltage command value Vref * and the DC-side single-phase voltage Vdc, the on / off of the switching element inside the charger is controlled, so that the three-phase AC transmission is performed from the battery of the connected electric vehicle. Discharge the wire. As a result, reactive power compensation (reduction) and harmonic current compensation (reduction) in the three-phase AC power system can be performed.

一実施の形態における電力補償システムによれば、3相交流電力系統上の無効電力を補償するための補償電流指令値および高調波電流を補償するための補償電流指令値を演算して、相間電流指令値に変換し、変換した相間電流指令値に基づいて、3相交流電力系統のU相−V相間に接続される第1の充電器2、V相−W相間に接続される第2の充電器3、および、W相−V相間に接続される第3の充電器1は、それぞれ接続されている蓄電装置(バッテリ)に蓄えられている電力を3相交流電力系統へ放電する。これにより、3相交流電力系統の各相間に接続された充電器1〜3を利用して、無効電力および高調波電流を補償することができる。また、無効電力を補償すると、電気料金の返金があるシステムの下では、無効電力を補償することによって、電気料金の返金が期待できる。   According to the power compensation system in one embodiment, the compensation current command value for compensating the reactive power on the three-phase AC power system and the compensation current command value for compensating the harmonic current are calculated, and the interphase current is calculated. The first charger 2 connected between the U phase and the V phase of the three-phase AC power system, and the second connected between the V phase and the W phase, based on the converted interphase current command value. The charger 3 and the third charger 1 connected between the W phase and the V phase discharge the electric power stored in the power storage devices (batteries) connected to the three-phase AC power system. Thereby, the reactive power and the harmonic current can be compensated using the chargers 1 to 3 connected between the phases of the three-phase AC power system. In addition, when the reactive power is compensated, the electricity fee can be expected to be refunded by compensating the reactive power under a system in which the electricity fee is refunded.

本発明は、上述した一実施の形態に限定されることはない。例えば、式(8)では、力率を1とするための指令信号Q*、すなわち、瞬時無効電力を完全に打ち消すための指令信号Q*を示したが、力率は任意の値に設定することができる。図5は、皮相電力P1および有効電力Wと、補償すべき無効電力Q’との関係を示すベクトル図である。電力補償前の力率をcosφ1、電力補償後の力率をcosφ2とすると、補償すべき無効電力Q’は、次式(16)にて表される。なお、電力補償後の力率cosφ2は、例えば、0.95〜1.0の間の数値を設定する。

Figure 2008312281
The present invention is not limited to the embodiment described above. For example, in Formula (8), the command signal for the power factor and 1 Q *, i.e., showed a command signal Q * for canceling the instantaneous reactive power completely power factor is set to an arbitrary value be able to. FIG. 5 is a vector diagram showing the relationship between the apparent power P1 and the active power W and the reactive power Q ′ to be compensated. When the power factor before power compensation is cosφ1 and the power factor after power compensation is cosφ2, reactive power Q ′ to be compensated is expressed by the following equation (16). The power factor cosφ2 after power compensation is set to a value between 0.95 and 1.0, for example.
Figure 2008312281

上式(16)より、補償すべき無効電力Q’を求めると、Q’を補償するための指令信号Q*は、次式(17)にて表される。
*=−QLdC−Q’LaC (17)
When the reactive power Q ′ to be compensated is obtained from the above equation (16), the command signal Q * for compensating Q ′ is expressed by the following equation (17).
Q * = − QLdC−Q′LaC (17)

図4に示すフローチャートでは、ステップS10において、充電器1〜3の3つの充電器のみが検出されたものとして説明したが、実際には、複数の充電器が検出されることが予想される。この場合、中央制御装置10は、U−V相、V−W相、W−U相間にそれぞれ接続されている充電器を1つずつ選択し、選択した充電器に対して、高調波電流指令値Iac*および無効電力補償指令値Idc*を送信することができる。充電器の選択方法としては、様々な方法が考えられるが、例えば、充電器に接続されている電気自動車のバッテリ電圧が最も高いものを選択する。 In the flowchart shown in FIG. 4, it is assumed that only three chargers 1 to 3 are detected in step S <b> 10, but it is expected that a plurality of chargers are actually detected. In this case, the central controller 10 selects one charger connected to each of the U-V phase, the V-W phase, and the W-U phase, and outputs a harmonic current command to the selected charger. The value Iac * and the reactive power compensation command value Idc * can be transmitted. Various methods can be considered as a method of selecting the charger. For example, the one having the highest battery voltage of the electric vehicle connected to the charger is selected.

また、図4に示すフローチャートのステップS10において、複数の充電器が検出された場合に、U−V相、V−W相、W−U相間にそれぞれ接続されている充電器を任意の数だけ選択し、選択した数に応じて、演算した高調波電流指令値Iac*および無効電力補償指令値Idc*を分配して、選択した充電器に送信することもできる。例えば、U−V相、V−W相、W−U相間に接続されている充電器をそれぞれ2つ選択した場合、演算により求めた高調波電流指令値Iac*および無効電力補償指令値Idc*を2で割った電流指令値を、選択した充電器(計6つ)に送信する。この場合、中央制御装置10から電流指令値を受信した6つの充電器は、受信した電流指令値に基づいた電流を、3相交流電力系統へ放電する。なお、選択する充電器の数は、U−V相、V−W相、W−U相によって異なっていてもよい。すなわち、高調波電流指令値Iac*および無効電力補償指令値Idc*に基づいた補償電力を、バッテリから3相交流電力系統に戻すことができればよいので、補償電力を供給するバッテリは1つに限られることはなく、複数であってもよい。 In addition, when a plurality of chargers are detected in step S10 of the flowchart shown in FIG. 4, an arbitrary number of chargers connected between the U-V phase, the V-W phase, and the W-U phase are provided. Depending on the selected number, the calculated harmonic current command value Iac * and reactive power compensation command value Idc * can be distributed and transmitted to the selected charger. For example, when two chargers connected between the U-V phase, the V-W phase, and the W-U phase are selected, the harmonic current command value Iac * and the reactive power compensation command value Idc * obtained by calculation are calculated . The current command value obtained by dividing by 2 is transmitted to the selected chargers (6 in total). In this case, the six chargers that have received the current command value from the central controller 10 discharge the current based on the received current command value to the three-phase AC power system. Note that the number of chargers to be selected may be different depending on the U-V phase, the V-W phase, and the W-U phase. That is, it is only necessary to return the compensation power based on the harmonic current command value Iac * and the reactive power compensation command value Idc * from the battery to the three-phase AC power system, so that only one battery supplies the compensation power. There may be more than one.

上述した一実施の形態における電力補償システムでは、中央制御装置10が高調波電流指令値Iac*および無効電力補償指令値Idc*を求めて、充電器に送信した。しかし、3相交流電力系統のU−V相、V−W相、W−U相間に接続されている各充電器がそれぞれ高調波電流指令値Iac*および無効電力補償指令値Idc*を求めるようにしてもよい。すなわち、各充電器間で通信を行うことにより、相電流および相間電圧を取得して、高調波電流指令値Iac*および無効電力補償指令値Idc*を演算する。演算方法は、中央制御装置10が行う演算方法と同じであるため、詳しい説明は省略する。 In the power compensation system in the above-described embodiment, the central controller 10 obtains the harmonic current command value Iac * and the reactive power compensation command value Idc * and transmits them to the charger. However, each charger connected between the U-V phase, the V-W phase, and the W-U phase of the three-phase AC power system calculates the harmonic current command value Iac * and the reactive power compensation command value Idc *. It may be. That is, by performing communication between the chargers, the phase current and the phase voltage are acquired, and the harmonic current command value Iac * and the reactive power compensation command value Idc * are calculated. Since the calculation method is the same as the calculation method performed by the central controller 10, detailed description thereof is omitted.

上述した一実施の形態における電力補償システムでは、充電器1〜3が3相交流電力系統の相間電圧および相電流を検出して、中央制御装置10に送信したが、中央制御装置10自身が相間電圧および相電流を検出してもよい。   In the power compensation system in the above-described embodiment, the chargers 1 to 3 detect the interphase voltage and phase current of the three-phase AC power system and transmit them to the central control device 10. Voltage and phase current may be detected.

上述した一実施の形態では、中央制御装置10が高調波電流指令値Iac*および無効電力補償指令値Idc*をそれぞれ求めて、充電器1〜3に送信したが、高調波電流指令値Iac*のみを求めて送信してもよいし、無効電力補償指令値Idc*のみを求めて送信してもよい。 In the embodiment described above, the central controller 10 obtains the harmonic current command value Iac * and the reactive power compensation command value Idc * , respectively, and transmits them to the chargers 1 to 3, but the harmonic current command value Iac *. Only the reactive power compensation command value Idc * may be obtained and transmitted.

充放電制御装置である充電器1〜3は、電気自動車のバッテリの充電を行うものとして説明したが、他の蓄電装置の充放電を制御するものであってもよい。   Although the chargers 1 to 3 serving as the charge / discharge control device have been described as charging the battery of the electric vehicle, the chargers 1 to 3 may control the charge / discharge of other power storage devices.

特許請求の範囲の構成要素と一実施の形態の構成要素との対応関係は次の通りである。すなわち、中央制御装置10が補償電流指令値演算手段、電流指令値変換手段、電流指令値送信手段、および、検出手段を、充電器2が第1の充放電制御手段を、充電器3が第2の充放電制御手段を、充電器1が第3の充放電制御手段をそれぞれ構成する。なお、以上の説明はあくまで一例であり、発明を解釈する上で、上記の実施形態の構成要素と本発明の構成要素との対応関係に何ら限定されるものではない。   The correspondence between the constituent elements of the claims and the constituent elements of the embodiment is as follows. That is, the central control device 10 is the compensation current command value calculation means, the current command value conversion means, the current command value transmission means, and the detection means, the charger 2 is the first charge / discharge control means, and the charger 3 is the first. The charger 1 constitutes the third charge / discharge control means. In addition, the above description is an example to the last, and when interpreting invention, it is not limited to the correspondence of the component of said embodiment and the component of this invention at all.

一実施の形態における電力補償システムの全体構成を示す図The figure which shows the whole structure of the electric power compensation system in one embodiment 充電器の内部で行われる処理機能を説明するためのブロック図Block diagram for explaining processing functions performed inside the charger 充電器の詳細な構造を示す図Diagram showing the detailed structure of the charger 一実施の形態における電力補償システムによって行われる処理の手順を示すフローチャートThe flowchart which shows the procedure of the process performed by the electric power compensation system in one embodiment 皮相電力P1および有効電力Wと、補償すべき無効電力Q’との関係を示すベクトル図A vector diagram showing the relationship between apparent power P1 and active power W, and reactive power Q 'to be compensated

符号の説明Explanation of symbols

1〜3…充電器、4〜6…電気自動車、10…中央制御装置、11〜13…通信線、21…充電電力指令演算回路、22…電流指令値演算回路、23…電流制御回路、24…スイッチ制御回路 DESCRIPTION OF SYMBOLS 1-3 ... Charger, 4-6 ... Electric vehicle, 10 ... Central control apparatus, 11-13 ... Communication line, 21 ... Charging electric power command calculating circuit, 22 ... Current command value calculating circuit, 23 ... Current control circuit, 24 ... Switch control circuit

Claims (6)

3相交流電力系統のU相およびV相の間に接続される第1の充放電制御手段と、
前記3相交流電力系統のV相およびW相の間に接続される第2の充放電制御手段と、
前記3相交流電力系統のW相およびV相の間に接続される第3の充放電制御手段と、
前記3相交流電力系統上の無効電力を補償するための補償電流指令値および前記3相交流電力系統上の高調波電流を補償するための補償電流指令値の少なくとも一方の補償電流指令値を演算する補償電流指令値演算手段と、
前記補償電流指令値演算手段によって演算された3相交流電力系統上の補償電流指令値を相間電流指令値に変換する電流指令値変換手段と、
前記電流指令値変換手段によって変換された相間電流指令値を前記第1の充放電制御手段、前記第2の充放電制御手段、および、前記第3の充放電制御手段に送信する電流指令値送信手段とを備え、
前記第1の充放電制御手段、前記第2の充放電制御手段、および、前記第3の充放電制御手段は、前記電流指令値送信手段によって送信された相間電流指令値に基づいて、それぞれ接続されている蓄電装置に蓄えられている電力を前記3相交流電力系統へ放電することを特徴とする電力補償システム。
First charge / discharge control means connected between the U phase and the V phase of the three-phase AC power system;
Second charge / discharge control means connected between the V phase and the W phase of the three-phase AC power system;
A third charge / discharge control means connected between the W phase and the V phase of the three-phase AC power system;
A compensation current command value for compensating for reactive power on the three-phase AC power system and a compensation current command value for compensating harmonic current on the three-phase AC power system are calculated. Compensation current command value calculating means to perform,
Current command value conversion means for converting a compensation current command value on the three-phase AC power system calculated by the compensation current command value calculation means into an interphase current command value;
Current command value transmission for transmitting the interphase current command value converted by the current command value conversion unit to the first charge / discharge control unit, the second charge / discharge control unit, and the third charge / discharge control unit Means and
The first charge / discharge control unit, the second charge / discharge control unit, and the third charge / discharge control unit are connected based on the interphase current command value transmitted by the current command value transmission unit, respectively. An electric power compensation system for discharging electric power stored in a stored power storage device to the three-phase AC power system.
請求項1に記載の電力補償システムにおいて、
電力補償を行うことのできる複数の充放電制御手段を検出する検出手段をさらに備え、
前記電流指令値送信手段は、前記検出手段によって検出された複数の充放電制御手段のうち、前記第1の充放電制御手段、前記第2の充放電制御手段、および、前記第3の充放電制御手段をそれぞれ1つ選択して、前記相間電流指令値を送信することを特徴とする電力補償システム。
The power compensation system of claim 1,
It further comprises detection means for detecting a plurality of charge / discharge control means capable of performing power compensation,
The current command value transmission means includes the first charge / discharge control means, the second charge / discharge control means, and the third charge / discharge among a plurality of charge / discharge control means detected by the detection means. A power compensation system, wherein one control means is selected and the interphase current command value is transmitted.
請求項1に記載の電力補償システムにおいて、
電力補償を行うことのできる複数の充放電制御手段を検出する検出手段をさらに備え、
前記電流指令値送信手段は、前記検出手段によって検出された複数の充放電制御手段のうち、前記第1の充放電制御手段、前記第2の充放電制御手段、および、前記第3の充放電制御手段を任意の数だけ選択し、前記電流指令値変換手段によって変換された相間電流指令値を、選択した充放電制御手段の数に応じて分けて、選択した前記第1の充放電制御手段、前記第2の充放電制御手段、および、前記第3の充放電制御手段にそれぞれ送信することを特徴とする電力補償システム。
The power compensation system of claim 1,
It further comprises detection means for detecting a plurality of charge / discharge control means capable of performing power compensation,
The current command value transmission means includes the first charge / discharge control means, the second charge / discharge control means, and the third charge / discharge among a plurality of charge / discharge control means detected by the detection means. An arbitrary number of control means are selected, and the interphase current command value converted by the current command value conversion means is divided according to the number of selected charge / discharge control means, and the first charge / discharge control means selected. The power compensation system transmits to the second charge / discharge control means and the third charge / discharge control means, respectively.
請求項1から請求項3のいずれか一項に記載の電力補償システムにおいて、
前記補償電流指令値演算手段、前記電流指令値変換手段、および、前記電流指令値送信手段は、前記3相交流電力系統の制御を行う中央制御装置に備えられていることを特徴とする電力補償システム。
In the power compensation system according to any one of claims 1 to 3,
The compensation current command value calculation means, the current command value conversion means, and the current command value transmission means are provided in a central control device that controls the three-phase AC power system. system.
請求項1から請求項3のいずれか一項に記載の電力補償システムにおいて、
前記補償電流指令値演算手段、前記電流指令値変換手段、および、前記電流指令値送信手段は、前記第1の充放電制御手段、前記第2の充放電制御手段、および、前記第3の充放電制御手段にそれぞれ備えられていることを特徴とする電力保障システム。
In the power compensation system according to any one of claims 1 to 3,
The compensation current command value calculating means, the current command value converting means, and the current command value transmitting means are the first charge / discharge control means, the second charge / discharge control means, and the third charge / discharge control means. An electric power guarantee system provided in each discharge control means.
請求項1から請求項5のいずれか一項に記載の電力補償システムにおいて、
前記第1の充放電制御手段、前記第2の充放電制御手段、および、前記第3の充放電制御手段は、電気自動車のバッテリの充放電を制御するものであることを特徴とする電力補償システム。
In the power compensation system according to any one of claims 1 to 5,
The first charge / discharge control means, the second charge / discharge control means, and the third charge / discharge control means control charge / discharge of a battery of an electric vehicle. system.
JP2007155273A 2007-06-12 2007-06-12 Power compensation system Active JP4893486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007155273A JP4893486B2 (en) 2007-06-12 2007-06-12 Power compensation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007155273A JP4893486B2 (en) 2007-06-12 2007-06-12 Power compensation system

Publications (2)

Publication Number Publication Date
JP2008312281A true JP2008312281A (en) 2008-12-25
JP4893486B2 JP4893486B2 (en) 2012-03-07

Family

ID=40239373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007155273A Active JP4893486B2 (en) 2007-06-12 2007-06-12 Power compensation system

Country Status (1)

Country Link
JP (1) JP4893486B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016072A (en) * 2010-06-29 2012-01-19 Hitachi Ltd Reactive power compensation apparatus of power system with charging function for electric vehicle and charging device for electric vehicle with reactive power compensation function of power system
WO2011157488A3 (en) * 2010-06-17 2012-02-16 Siemens Aktiengesellschaft Device for grid voltage symmetrization
JP2014107962A (en) * 2012-11-28 2014-06-09 Tokyo Metropolitan Univ Harmonic wave suppression device
CN104716649A (en) * 2015-04-07 2015-06-17 武汉理工大学 Method for optimizing energy conservation of power distribution network
DE102019135654A1 (en) * 2019-12-23 2021-06-24 Compleo Charging Solutions Ag Charging infrastructure arrangement for charging electric vehicles and operating methods therefor
DE102019135655A1 (en) * 2019-12-23 2021-06-24 Compleo Charging Solutions Ag Charging infrastructure arrangement for charging electric vehicles and operating methods therefor
JP7484842B2 (en) 2021-07-30 2024-05-16 トヨタ自動車株式会社 Power management system, charging equipment, server, and method for adjusting the balance of power supply and demand

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826535A (en) * 1981-08-07 1983-02-17 ダイハツ工業株式会社 Charger for electric vehicle
JPS62268319A (en) * 1986-05-14 1987-11-20 富士電機株式会社 Proportional differential relay system
JPH09163605A (en) * 1995-11-29 1997-06-20 Toyo Electric Mfg Co Ltd Integrated compensation device for electric power system
JP2003189474A (en) * 2001-12-20 2003-07-04 Fuji Electric Co Ltd System linked power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826535A (en) * 1981-08-07 1983-02-17 ダイハツ工業株式会社 Charger for electric vehicle
JPS62268319A (en) * 1986-05-14 1987-11-20 富士電機株式会社 Proportional differential relay system
JPH09163605A (en) * 1995-11-29 1997-06-20 Toyo Electric Mfg Co Ltd Integrated compensation device for electric power system
JP2003189474A (en) * 2001-12-20 2003-07-04 Fuji Electric Co Ltd System linked power converter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157488A3 (en) * 2010-06-17 2012-02-16 Siemens Aktiengesellschaft Device for grid voltage symmetrization
JP2012016072A (en) * 2010-06-29 2012-01-19 Hitachi Ltd Reactive power compensation apparatus of power system with charging function for electric vehicle and charging device for electric vehicle with reactive power compensation function of power system
JP2014107962A (en) * 2012-11-28 2014-06-09 Tokyo Metropolitan Univ Harmonic wave suppression device
CN104716649A (en) * 2015-04-07 2015-06-17 武汉理工大学 Method for optimizing energy conservation of power distribution network
DE102019135654A1 (en) * 2019-12-23 2021-06-24 Compleo Charging Solutions Ag Charging infrastructure arrangement for charging electric vehicles and operating methods therefor
DE102019135655A1 (en) * 2019-12-23 2021-06-24 Compleo Charging Solutions Ag Charging infrastructure arrangement for charging electric vehicles and operating methods therefor
JP7484842B2 (en) 2021-07-30 2024-05-16 トヨタ自動車株式会社 Power management system, charging equipment, server, and method for adjusting the balance of power supply and demand

Also Published As

Publication number Publication date
JP4893486B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
US11299051B2 (en) Electric charging system and method
EP3628109B1 (en) Systems and methods for an on-board fast charger
JP4893486B2 (en) Power compensation system
US7486036B2 (en) Power control apparatus, electrically powered vehicle and power control method of power system
US9493092B2 (en) Electric automobile
EP3531528B1 (en) Power supply system and method for controlling same
EP1732202A2 (en) Electrical power conversion
EP3442089B1 (en) Dual active bridge control circuit for use with unbalanced grid voltages
WO2019071360A1 (en) On-board bidirectional ac fast charger for electric vehicles
CN106549434A (en) Integrated bidirectional battery charger is generated with rechargeable energy
JP5945954B2 (en) Charging apparatus and charging method
JP2005033954A (en) Battery charger
JP2009232672A (en) Motor driving system
JP2012135141A (en) Motor drive system
JP5945936B2 (en) Charger
JP2009284560A (en) Charging method of motor driven system
US20240186914A1 (en) Device for creating a dc voltage bus for a polyphase electrical system, motor vehicle and renewable energy generator comprising such a device
JP7103320B2 (en) Power supply
JPWO2018029902A1 (en) Cradle device, electrical equipment and control method
JP2012090458A (en) Power supply device
Kim et al. Selective control algorithm for N-phase switching power pole of 4-leg interlinking converter in AC/DC hybrid microgrid
JP4797371B2 (en) Power converter control method
CN116476676B (en) Charging control circuit, charging control method and emergency charging vehicle
JP7184708B2 (en) AC power converter
US20230011977A1 (en) Dynamically reconfigurable power converter utilizing windings of electric machine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Ref document number: 4893486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3