JP2008311256A - Photoresist removing device - Google Patents

Photoresist removing device Download PDF

Info

Publication number
JP2008311256A
JP2008311256A JP2007154757A JP2007154757A JP2008311256A JP 2008311256 A JP2008311256 A JP 2008311256A JP 2007154757 A JP2007154757 A JP 2007154757A JP 2007154757 A JP2007154757 A JP 2007154757A JP 2008311256 A JP2008311256 A JP 2008311256A
Authority
JP
Japan
Prior art keywords
photoresist
substrate
ozone water
ultraviolet light
concentration ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007154757A
Other languages
Japanese (ja)
Other versions
JP5006111B2 (en
Inventor
Yutaka Abe
豊 阿部
Ken Fujimori
憲 藤森
Masatoshi Ike
昌俊 池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC filed Critical University of Tsukuba NUC
Priority to JP2007154757A priority Critical patent/JP5006111B2/en
Publication of JP2008311256A publication Critical patent/JP2008311256A/en
Application granted granted Critical
Publication of JP5006111B2 publication Critical patent/JP5006111B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively peel and remove photoresist, remaining on a semiconductor substrate, uniformly from the entire surface of the substrate without damaging by increasing efficiency of reaction of ozone water on the photoresist per unit volume. <P>SOLUTION: A photoresist removing device 1 includes a rotary support table 3, a cleaning nozzle 7, and a high-density ozone waver supply device 4, and the cleaning nozzle 7 has a cylindrical pipe 11 for injecting high-density ozone water and a transparent disk 13 fitted to a lower end of the cylindrical pipe 11. The transparent disk 13 is disposed opposite to the substrate 9 supported on the rotary support table 3 with a fixed gap 14 interposed and while the high-density ozone water injected from the cylindrical pipe 11 is supplied radially in the form of a thin liquid film 15 having a uniform thickness on a top surface of the substrate 9, the top surface of the substrate 9 is irradiated with excimer light from an excimer light irradiation source 8 through the transparent disk 13 to remove the photoresist remaining on the top surface of the substrate 9. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体製造工程で使われるフォトレジストを除去する装置に関し、半導体製造工程において、ドライエッチング処理や高電流イオン注入処理が施された基板表面に残存するフォトレジストを、高効率にかつ均一に除去することができるフォトレジスト除去装置に関する。   The present invention relates to an apparatus for removing a photoresist used in a semiconductor manufacturing process. In the semiconductor manufacturing process, a photoresist remaining on a substrate surface that has been subjected to a dry etching process or a high-current ion implantation process is efficiently and uniformly applied. The present invention relates to a photoresist removing apparatus that can be removed.

より詳しくは、本発明は、特に、半導体製造工程において半導体基板等の基板表面に残存付着するレジストを、基板表面に高濃度オゾン水を注水するとともに、紫外光(例えば、エキシマーレーザー光)を照射して基板から剥離するためのフォトレジスト除去装置に関する。   More specifically, the present invention particularly irradiates the resist remaining on the substrate surface such as a semiconductor substrate in a semiconductor manufacturing process, ultraviolet light (for example, excimer laser light) while injecting high-concentration ozone water onto the substrate surface. And a photoresist removing apparatus for peeling from the substrate.

従来、半導体製造工程において、シリコン基板(仕掛中の半導体基板)表面に残存する不要となったフォトレジストを除去するレジスト除去工程では、酸素を含むプラズマによってフォトレジストをアッシャー(灰化手段)とする手段(特許文献1参照)や、濃硫酸等の溶剤や薬品等を用いてレジストを溶解させる方法等が用いられていた。   Conventionally, in a semiconductor manufacturing process, in a resist removal process for removing unnecessary photoresist remaining on the surface of a silicon substrate (in-process semiconductor substrate), the photoresist is used as an asher (ashing means) by plasma containing oxygen. Means (see Patent Document 1), a method of dissolving a resist using a solvent such as concentrated sulfuric acid, chemicals, and the like have been used.

また、不要なフォトレジストが残存するシリコン基板の表面にオゾン水を供給してフォトレジストを除去する手段も公知である(特許文献2参照)。特にシリコン基板の表面中心に対向して開口を対向して設けた円筒管からオゾン水シリコン基板にオゾン水を注水する手段も知られている。   Further, a means for supplying ozone water to the surface of the silicon substrate where unnecessary photoresist remains is known to remove the photoresist (see Patent Document 2). In particular, means for injecting ozone water into the ozone water silicon substrate from a cylindrical tube provided with an opening facing the center of the surface of the silicon substrate is also known.

特公平8−021562号公報Japanese Patent Publication No.8-021562 特開2006−295091号公報JP 2006-295091 A

しかしながら、レジストの除去にアッシャーを用いると、プラズマによる基板へのダメージを与える恐れがあることに加え、無機系の不純物を除去することはできない。また、溶剤や薬品を用いてレジスト除去を行う場合は、大量の廃液が生じ、廃液処理の際にもコスト面及び環境面の両面で大きな問題となっている。   However, if an asher is used for removing the resist, the substrate may be damaged by plasma, and inorganic impurities cannot be removed. In addition, when resist is removed using a solvent or chemical, a large amount of waste liquid is generated, and this is a major problem both in terms of cost and environment during waste liquid treatment.

そして、シリコン基板の表面にオゾン水を供給してフォトレジストを除去する手段は、オゾン水のみによる除去では除去効果において十分ではなく、またシリコン基板の表面に均一にオゾン水を供給することができない。   Further, the means for removing the photoresist by supplying ozone water to the surface of the silicon substrate is not sufficient in removing effect if only the ozone water is removed, and the ozone water cannot be uniformly supplied to the surface of the silicon substrate. .

特に、シリコン基板の表面中心に対向して開口を対向して設けた円筒管からオゾン水シリコン基板にオゾン水を単に注水する手段によっても、シリコン基盤上を流動するオゾン水は均一な流れることはないので、例えば、シリコン基盤外周部での除去量が中心部に比べ相対的に少ない等、フォトレジストを均一に除去するという点では問題があった。   In particular, even by means of simply injecting ozone water into the ozone water silicon substrate from the cylindrical tube provided with the opening facing the center of the surface of the silicon substrate, the ozone water flowing on the silicon substrate does not flow uniformly. Therefore, there is a problem in removing the photoresist uniformly, for example, the amount of removal at the outer peripheral portion of the silicon substrate is relatively small compared to the central portion.

本発明は、導体基板表面に残存するレジストを除去における上記従来の問題を解決することを目的とし、高濃度オゾン水と紫外光(例えば、エキシマーレーザー光)を使用して、シリコン基板に残存したレジストを、シリコン基板の中心部や周辺等の領域に関係なく均一に、シリコン基板自体に損傷を与えることなく、単位体積当りのオゾン水のフォトレジストへの反応効率を上げて効果的に剥離し、除去するフォトレジスト除去装置を実現することを課題とする。   An object of the present invention is to solve the above-mentioned conventional problems in removing the resist remaining on the surface of the conductive substrate, and the high-concentration ozone water and ultraviolet light (for example, excimer laser light) are used to remain on the silicon substrate. Regardless of the area of the silicon substrate, such as the center or the periphery of the silicon substrate, the resist is effectively removed without increasing the reaction efficiency of ozone water per unit volume to the photoresist without damaging the silicon substrate itself. An object of the present invention is to realize an apparatus for removing a photoresist.

本発明は上記課題を解決するために、洗浄対象の基板を支持して回転する回転支持台と、洗浄ノズルと、該洗浄ノズルに高濃度オゾン水を供給する高濃度オゾン水供給装置と、紫外光照射源とを備えたフォトレジスト除去装置であって、前記洗浄ノズルは、高濃度オゾン水を注水する円筒管と、該円筒管の下端の注水口が開口するように該円筒管の下端に取り付けられた透明円盤とを有し、前記透明円盤は、紫外光照射源からの紫外光を透過可能であるとともに、前記回転支持台に支持された前記基板に対して一定間隔の隙間を介して対向するように配置されていることを特徴とするフォトレジスト除去装置を提供する。   In order to solve the above problems, the present invention provides a rotating support base that rotates while supporting a substrate to be cleaned, a cleaning nozzle, a high concentration ozone water supply device that supplies high concentration ozone water to the cleaning nozzle, and an ultraviolet ray. A photoresist removal apparatus comprising a light irradiation source, wherein the cleaning nozzle is provided at a lower end of the cylindrical tube so that a cylindrical tube for injecting high-concentration ozone water and a water injection port at the lower end of the cylindrical tube are opened. A transparent disk attached thereto, the transparent disk is capable of transmitting ultraviolet light from an ultraviolet light irradiation source, and is spaced from the substrate supported by the rotating support base through a gap at a constant interval. Provided is a photoresist removing apparatus which is arranged so as to face each other.

前記回転支持台を回転させて、前記円筒管から注水される高濃度オゾン水を、前記基板表面において厚さの均一な薄液膜として該基板の中心から放射方向に流しながら、前記紫外光を前記基板表面に照射することにより、該基板表面に残存しているフォトレジストを除去する構成であることが好ましい。   While rotating the rotating support base, the high-concentration ozone water poured from the cylindrical tube flows in the radial direction from the center of the substrate as a thin liquid film having a uniform thickness on the surface of the substrate, and the ultraviolet light is emitted. It is preferable that the photoresist remaining on the substrate surface be removed by irradiating the substrate surface.

前記フォトレジストはフェノール樹脂であり、紫外光が照射された光前記高濃度オゾン水の一部は光分解されOHラジカルが生成され、該OHラジカルがフォトレジストのフェノール部をポリフェノールに変え、該ポリフェノールを前記高濃度オゾン水中の未分解オゾンが反応して断片化して、前記基板から剥離する構成であることが好ましい。   The photoresist is a phenol resin, the light irradiated with ultraviolet light is partially decomposed to generate OH radicals, and the OH radicals convert the phenol part of the photoresist to polyphenol, and the polyphenol It is preferable that undecomposed ozone in the high-concentration ozone water reacts to become fragmented and peeled from the substrate.

前記紫外光照射源は、エキシマーレーザー光照射源であり、前記紫外光としてエキシマーレーザー光を使用する構成であることが好ましい。   The ultraviolet light irradiation source is an excimer laser light irradiation source, and preferably uses an excimer laser light as the ultraviolet light.

前記透明円盤は合成石英ガラスから成ることが好ましい。   The transparent disk is preferably made of synthetic quartz glass.

前記隙間は、1〜3mmであることが好ましい。   The gap is preferably 1 to 3 mm.

紫外光照射源とは、200nmより300nmをピークとする光源である。   The ultraviolet light irradiation source is a light source having a peak from 200 nm to 300 nm.

該円筒管の下端の注水口が開口するように該円筒管の下端に取り付けられた透明円盤により、フォトレジストと高濃度オゾン水との化学的反応効率を改善することを特徴とする。   The chemical reaction efficiency between the photoresist and the high-concentration ozone water is improved by a transparent disk attached to the lower end of the cylindrical tube so that the water injection port at the lower end of the cylindrical tube is opened.

本発明によれば、単位体積当りのオゾン水のフォトレジストへの反応効率を上げることができ、従来行われていた濃硫酸による洗浄効果に匹敵する効率を実現できる。従って、従来の濃硫酸による洗浄の代替技術としての、高濃度オゾン水洗浄の実用化が可能である。   According to the present invention, the reaction efficiency of ozone water per unit volume to a photoresist can be increased, and an efficiency comparable to the cleaning effect of concentrated sulfuric acid that has been conventionally performed can be realized. Accordingly, it is possible to put high-concentration ozone water cleaning into practical use as an alternative technique for cleaning with conventional concentrated sulfuric acid.

本発明に係るフォトレジスト除去装置を実施するための最良の形態を実施例に基づき図面を参照して、以下説明する。   The best mode for carrying out the photoresist removing apparatus according to the present invention will be described below with reference to the drawings based on the embodiments.

本発明者らは、高濃度オゾン水(濃度100ppm程度)を、不要となったフォトレジストの残存付着する基板(洗浄対象である基板。例えば、シリコンウェハ等の半導体基板)、この基板上に供給し、同時に紫外光としてエキシマーレーザー光(本明細書では、「エキシマー光」とも言う。)を照射すると、きわめて効果的にフォトレジストを除去できるという知見を得た。   The present inventors supply high-concentration ozone water (concentration of about 100 ppm) onto a substrate (a substrate to be cleaned. For example, a semiconductor substrate such as a silicon wafer) on which the photoresist that has become unnecessary remains adheres. At the same time, it was found that the photoresist can be removed very effectively by irradiating excimer laser light (also referred to as “excimer light” in this specification) as ultraviolet light.

本発明に係るフォトレジスト除去装置は、このような新規な知見に基づき、効果的にフォトレジストを除去可能とする具体的な構成である。   The photoresist removing apparatus according to the present invention has a specific configuration that enables the photoresist to be effectively removed based on such new knowledge.

この知見について、図1において概略説明する。除去すべき基板上に残存したフェノール樹脂からなるフォトレジスト(例.ノボラック樹脂系フォトレジスト)に、高濃度オゾン水を注水するとともに、エキシマー光を照射することにより、オゾン水のオゾンの一部からOHラジカル(OH)生成し、このOHラジカルでフォトレジストをポリフェノール化し、さらにオゾン水の残存オゾンによりポリフェノール化したフォトレジストを分解し断片化して、基板から剥離して除去することが可能となるということである。 This finding is schematically described in FIG. By pouring high-concentration ozone water into a photoresist (eg, novolac resin-based photoresist) made of phenolic resin remaining on the substrate to be removed, and irradiating it with excimer light, a portion of ozone water from ozone water is used. OH radicals OH) generated by the photoresist in this OH radical and polyphenols of further decomposing fragmented photoresist obtained by polyphenols by residual ozone of the ozone water, it is possible to remove by peeling from the substrate That's what it means.

即ち、エキシマー光によって、高濃度オゾン水からOHラジカルが生成され、このOHラジカルがフォトレジストに作用して、その表層面の分子のポリフェノール化を促進し、ポリフェノール化したレジストが高濃度オゾン水によって、フォトレジストが分解されて、基板から効果的に剥離可能となる。   In other words, excimer light generates OH radicals from high-concentration ozone water, and these OH radicals act on the photoresist to promote polyphenolation of molecules on the surface layer surface. The photoresist is decomposed and can be effectively removed from the substrate.

従来、オゾン水のみによっても、基板に付残存着しているフォトレジスト(ノボラック樹脂系フォトレジスト)の剥離が起こる事が知られていた。しかし、この作用は遅く、生産現場で十分と言える速度で剥離が起こらない難点があった(図1中の上方のステップ参照)。 これに較べると、本発明のように、高濃度オゾン水の注水とエキシマー光の照射をすることにより、剥離速度はきわめて速くなる。   Conventionally, it has been known that even with only ozone water, the photoresist (novolac resin-based photoresist) remaining on the substrate peels off. However, this action was slow, and there was a problem that peeling did not occur at a rate that was sufficient at the production site (see the upper step in FIG. 1). Compared to this, as in the present invention, the peeling rate is extremely increased by water injection with high-concentration ozone water and irradiation with excimer light.

本発明に係るフォトレジスト除去装置の実施例について、その全体構成を示す図2(a)、及びその要部を示す図2(b)を参照して説明する。フォトレジスト除去装置1は、モータ2で駆動され水平面内を300〜1200rpmで回転する回転支持台3と、高濃度オゾン水供給装置4と、支持アーム5にネジ6で取り付けられた洗浄ノズル7、紫外光の照射源であるエキシマー光照射源8とを備えている。   An embodiment of the photoresist removing apparatus according to the present invention will be described with reference to FIG. 2 (a) showing the entire configuration and FIG. 2 (b) showing the main part thereof. The photoresist removal apparatus 1 includes a rotary support base 3 that is driven by a motor 2 and rotates in a horizontal plane at 300 to 1200 rpm, a high-concentration ozone water supply apparatus 4, a cleaning nozzle 7 attached to the support arm 5 with screws 6, And an excimer light irradiation source 8 which is an ultraviolet light irradiation source.

回転支持台3は、除去されるべきフォトレジストが残存付着しているシリコンウェハのような基板9を載置して回転する装置である。高濃度オゾン水供給装置4は、高濃度オゾン水を生成し洗浄ノズル7に供給する装置であり、周知の技術を使用すればよい。   The rotation support 3 is a device that mounts and rotates a substrate 9 such as a silicon wafer on which the photoresist to be removed remains. The high-concentration ozone water supply device 4 is a device that generates high-concentration ozone water and supplies the high-concentration ozone water to the cleaning nozzle 7, and a known technique may be used.

洗浄ノズル7は、円筒管11と、この円筒管11の下端の注水口12が開口するように、円筒管11の下端に取り付けられた透明円盤13とを備えている。透明円盤13は、エキシマー光が透過する際に光強度が減衰しないような透明なガラス材(例.合成石英ガラス)等の素材から形成されている。円筒管11は、その下端の注水口12が透明円盤13の下面中心において開口するように構成されている。   The cleaning nozzle 7 includes a cylindrical tube 11 and a transparent disk 13 attached to the lower end of the cylindrical tube 11 so that a water inlet 12 at the lower end of the cylindrical tube 11 is opened. The transparent disk 13 is made of a material such as a transparent glass material (eg, synthetic quartz glass) that does not attenuate the light intensity when excimer light is transmitted. The cylindrical tube 11 is configured such that the water inlet 12 at the lower end thereof opens at the center of the lower surface of the transparent disk 13.

そして、透明円盤13は、回転支持台3の上面に対して水平に対向するように一定間隔を有する隙間14を介して配置されている。より具体的には、支持アーム5に対して円筒管11をその上下方向のネジ6による取付位置を調整し、洗浄されるべき基板9が回転支持台3に載置された状態で、透明円盤13を、基板9の対向表面に対して、1〜3mm程度の範囲内の一定の間隔を有する隙間14を介して対向配置する。   And the transparent disk 13 is arrange | positioned through the clearance gap 14 which has a fixed space | interval so that it may oppose horizontally with respect to the upper surface of the rotation support stand 3. FIG. More specifically, the position of the cylindrical tube 11 attached to the support arm 5 by the vertical screw 6 is adjusted, and the transparent disk is placed in a state where the substrate 9 to be cleaned is placed on the rotary support 3. 13 is disposed opposite to the opposing surface of the substrate 9 via a gap 14 having a constant interval within a range of about 1 to 3 mm.

洗浄ノズル7を上記構成とすることにより、洗浄ノズル7は、その透明円盤13と基板9との間に狭隘な隙間14(細隙)を形成することができ、その隙間14内にオゾン水を供給し、均一な薄液膜15の流れを形成すると同時にエキシマー光を照射することが可能となる。この結果、残存レジストを均一に剥離し、また洗浄効率を飛躍的に向上させることができる。   By configuring the cleaning nozzle 7 as described above, the cleaning nozzle 7 can form a narrow gap 14 (slit) between the transparent disk 13 and the substrate 9, and ozone water is introduced into the gap 14. It is possible to supply and form a uniform flow of the thin liquid film 15 and simultaneously irradiate the excimer light. As a result, the remaining resist can be stripped uniformly and the cleaning efficiency can be greatly improved.

エキシマー光照射源8は、基板9に、紫外光としてエキシマー光を照射するレーザ光源である。エキシマー光の波長は、150nm〜300nm、好ましくは172nm〜250nmの領域の波長であり、フォトレジスト材料、除去効果等を考慮して、この領域から、適宜、選択した波長を使用する。   The excimer light irradiation source 8 is a laser light source that irradiates the substrate 9 with excimer light as ultraviolet light. The wavelength of the excimer light is in the range of 150 nm to 300 nm, preferably 172 nm to 250 nm. In consideration of the photoresist material, the removal effect, etc., the wavelength selected appropriately from this range is used.

(作用)
以上の構成から成る本発明に係るフォトレジスト除去装置1の作用を以下説明する。ここでは、フェノール樹脂から成るフォトレジスト(例.ノボラック樹脂系フォトレジスト)として使用した場合で説明する。
(Function)
The operation of the photoresist removing apparatus 1 according to the present invention having the above configuration will be described below. Here, a case where the photoresist is used as a phenol resin photoresist (for example, a novolac resin photoresist) will be described.

シリコンウェハのような基板9から残存しているフォトレジストを除去し洗浄する際には、基板9を回転支持台3に載置して回転するとともに、高濃度オゾン水供給装置4から高濃度オゾン水を洗浄ノズル7に供給する。そして、同時並行してエキシマー光照射源8により、基板9を照射する。   When removing the remaining photoresist from the substrate 9 such as a silicon wafer and cleaning, the substrate 9 is placed on the rotation support 3 and rotated, and the high concentration ozone water supply device 4 supplies the high concentration ozone. Water is supplied to the washing nozzle 7. At the same time, the substrate 9 is irradiated by the excimer light irradiation source 8.

洗浄ノズル7に供給された高濃度オゾン水は、円筒管11の下端の注水口12から透明円盤13と基板9の間の隙間14内に流れ込み、回転支持台3の回転による遠心力が作用して1〜3mm程度の均一な薄液膜15の流れとなって基板9上を放射方向に流れる。   The high-concentration ozone water supplied to the cleaning nozzle 7 flows into the gap 14 between the transparent disk 13 and the substrate 9 from the water inlet 12 at the lower end of the cylindrical tube 11, and the centrifugal force due to the rotation of the rotary support 3 acts. The flow of the thin liquid film 15 is about 1 to 3 mm and flows on the substrate 9 in the radial direction.

そして、高濃度オゾン水は透明円盤13と基板9の間の隙間14から放射方向に流れ出てからも、均一な薄液膜15の流れの状態を保って、基板9の表面上を放射方向に流れ、基板9の外周縁から流れ出る。透明円盤13は、基板9の全表面に、高濃度オゾン水の薄液膜15の流れが均一な厚さで接触するとともにオゾンが液膜から飛散するのを押さえる効果がある。この均一液膜が流れる透明円盤上に、エキシマー光照射源8によってエキシマー光が照射される。   Even after the high-concentration ozone water flows out from the gap 14 between the transparent disk 13 and the substrate 9 in the radial direction, the uniform thin liquid film 15 flows in the radial direction on the surface of the substrate 9. Flows out from the outer peripheral edge of the substrate 9. The transparent disk 13 has an effect of suppressing the scattering of ozone from the liquid film while the flow of the thin liquid film 15 of high-concentration ozone water contacts the entire surface of the substrate 9 with a uniform thickness. Excimer light is irradiated by the excimer light irradiation source 8 onto the transparent disk through which the uniform liquid film flows.

そのため、前記に説明したとおり、エキシマー光の照射によって高濃度オゾン水の一部が光分解されてOHラジカルが生成さる。そして、このOHラジカルが、基板9上に残存付着するフォトレジストに作用し、その表層部のフェノールをポリフェノール化する。そして、このポリフェノールに、オゾン水のうち未分解オゾンが作用して、フォトレジストを断片化して基板9の表面から剥離する。   Therefore, as described above, a portion of the high-concentration ozone water is photodegraded by the excimer light irradiation, and OH radicals are generated. The OH radicals act on the photoresist remaining on the substrate 9 to polyphenolize the phenol in the surface layer portion. Then, undecomposed ozone out of ozone water acts on the polyphenol to fragment the photoresist and peel it from the surface of the substrate 9.

本発明に係るフォトレジスト除去装置1によれば、洗浄ノズル7の下端に透明な透明円盤13を設けることで、基板9の全表面に、高濃度オゾン水の薄液膜15流れが均一な厚さで接触するとともに、エキシマー光を透明な透明円盤13を透過させて基板9の全表面に照射するので、フォトレジストの剥離作用が基板9の全面に均等に生じ、洗浄効率を飛躍的に向上させることができる。   According to the photoresist removing apparatus 1 according to the present invention, by providing the transparent transparent disk 13 at the lower end of the cleaning nozzle 7, the thin liquid film 15 flow of the high-concentration ozone water has a uniform thickness on the entire surface of the substrate 9. In addition, the excimer light is transmitted through the transparent transparent disk 13 and irradiated to the entire surface of the substrate 9, so that the photoresist peeling action is uniformly generated on the entire surface of the substrate 9, and the cleaning efficiency is greatly improved. Can be made.

なお、上記のとおりフォトレジストに高濃度オゾン水を注水し、エキシマー光の照射によってフォトレジストを分解し基板9表面から剥離する作用機序を、図3に示す化学反応プロセスを参照して説明する。ここでのフォトレジストは、フェノール樹脂から成るフォトレジスト(ノボラック樹脂系フォトレジスト)とする。オゾン水にエキシマー光を照射すると、次の化学式1に示すように、エキシマー光の紫外光によって、オゾン水の一部を分解してOHラジカル(OH)を生成する。 In addition, as described above, the action mechanism in which high-concentration ozone water is injected into the photoresist, the photoresist is decomposed by irradiation with excimer light, and is peeled from the surface of the substrate 9 will be described with reference to the chemical reaction process shown in FIG. . The photoresist here is a photoresist made of a phenol resin (a novolac resin-based photoresist). It is irradiated with excimer light to the ozone water, as shown in the following Chemical Formula 1, the ultraviolet light of the excimer light to produce OH radicals OH) to decompose a portion of the ozone water.

Figure 2008311256
Figure 2008311256

OHラジカルは、フォトレジストの表面に接すると、寿命が短くフォトレジストの深層部まで達し難いが、表層部のフェノールのポリフェノール化反応(水酸化反応)を効率よく生じさせる。   When contacting the surface of the photoresist, the OH radical has a short lifetime and hardly reaches the deep layer portion of the photoresist, but efficiently causes a polyphenolation reaction (hydroxylation reaction) of phenol on the surface layer portion.

フェノールがポリフェノール化することで、オゾンに対する反応性が飛躍的に増大する。フェノールとオゾンの二次反応速度定数は、1.3×10mol−1−1であるのに対して、フェノールにOH基が1個増したレゾルシノールは、3×105mol−1−1以上の値を持つ。このように、フェノールに1個のOH基が導入される事で300倍以上も反応性が高まるのであるから、さらに多くのOH基が導入されてできるポリフェノールはオゾンと拡散律速で反応する事になる。 By reacting phenol with polyphenol, the reactivity to ozone is dramatically increased. The secondary reaction rate constant of phenol and ozone is 1.3 × 10 3 mol −1 s −1 , whereas resorcinol in which one OH group is added to phenol is 3 × 10 5 mol −1 s −1. It has the above value. In this way, since one OH group is introduced into phenol, the reactivity is increased by more than 300 times. Therefore, the polyphenol formed by introducing more OH groups reacts with ozone at a diffusion-controlled rate. Become.

このようにして、オゾンの光分解で生じたOHラジカルがフェノールをポリフェノールに変えると、ポリフェノールは、急速に未分解で残存するオゾンと反応してポリマー主鎖のC−C結合を切断する。これが、オゾン水とエキシマーレーザー光を併用することにより、フォトレジストの深部まで酸化していないのに、速い速度でフォトレジストを分解して、剥離をおこすメカニズムである。   In this way, when OH radicals generated by photolysis of ozone change phenol to polyphenol, polyphenol rapidly reacts with undecomposed ozone to break the C—C bond of the polymer main chain. This is a mechanism in which ozone water and excimer laser light are used in combination, and the photoresist is decomposed at a high speed and stripped even though the photoresist is not oxidized deep.

(実験例)
本発明者らが、本発明に係るフォトレジスト除去装置1を使用し、フォトレジストの除去の実験を行った。この実験例について以下説明する。この実験例では、回転支持台3上に基板9としてシリコンウェハを載置し、フォトレジストが残存付着したシリコンウェハ上に高濃度オゾン水を注水するとともに、エキシマー光を照射し、シリコンウェハ上のフォトレジストを除去し、残存フォトレジストの厚さ(膜厚)を測定して除去効果を評価した。
(Experimental example)
The present inventors conducted an experiment for removing a photoresist using the photoresist removing apparatus 1 according to the present invention. This experimental example will be described below. In this experimental example, a silicon wafer is placed as a substrate 9 on the rotary support 3, high-concentration ozone water is injected onto the silicon wafer on which the photoresist remains and adhering, and excimer light is applied to the silicon wafer. The removal effect was evaluated by removing the photoresist and measuring the thickness (film thickness) of the remaining photoresist.

エキシマー光照射源8として、波長222nmのエキシマー光を照射する出力は24mWのエキシマランプを用いた。高濃度オゾン水の濃度は、は104mg/lであり、オゾン水の注水時間は40sである。また、オゾン水は、洗浄ノズル7によって、シリコンウェハの中心に供給する。シリコンウェハ上のフォトレジストは、初期膜厚が10000(Å)のIP−3300−HP(東京応化工業製)を用いた。   As the excimer light irradiation source 8, an excimer lamp having an output of irradiating excimer light having a wavelength of 222 nm was used. The concentration of the high-concentration ozone water is 104 mg / l, and the ozone water injection time is 40 s. Ozone water is supplied to the center of the silicon wafer by the cleaning nozzle 7. As the photoresist on the silicon wafer, IP-3300-HP (manufactured by Tokyo Ohka Kogyo Co., Ltd.) having an initial film thickness of 10,000 (Å) was used.

このような実験条件下で、シリコンウェハを回転数300rpmと600rpmで回転した場合のそれぞれについて、
(1)オゾン水の注水とエキシマー光の照射を同時並行的に行う場合(実験結果を示す図4中、◇…300rpm+Parallel、◆…600rpm+Parallel)と、
(2)エキシマー光を照射後、オゾン水を注水する場合(図4中、□…300rpm+Separate、灰色□…600rpm+Separate)について、それぞれ測定及び評価を行った。
さらに、
(3)シリコンウェハの回転数を600rpmとして、エキシマー光を照射しない場合(図4中、*…600rpm)について測定及び評価を行った。
Under such experimental conditions, for each of the cases where the silicon wafer was rotated at 300 rpm and 600 rpm,
(1) When ozone water injection and excimer light irradiation are performed simultaneously (in FIG. 4 showing the experimental results, ◇… 300 rpm + Parallel, ◆… 600 rpm + Parallel),
(2) After irradiating excimer light, measurement and evaluation were performed for the case of pouring ozone water (in FIG. 4, □ ... 300 rpm + Separate, gray □ ... 600 rpm + Separate).
further,
(3) Measurement and evaluation were performed for a case where the rotation number of the silicon wafer was 600 rpm and no excimer light was irradiated (* in FIG. 4, 600 rpm).

これらの実験結果を図4に示す。上記(2)のオゾン水とエキシマー光を別々に施した場合にはその効果をほとんど確認できないが、シリコンウェハの外縁部分でやや除去量が改善されている。このときの除去量の分布はエキシマー光を照射しない場合とほぼ等しい。   The results of these experiments are shown in FIG. When ozone water and excimer light of (2) above are separately applied, the effect can hardly be confirmed, but the removal amount is slightly improved at the outer edge portion of the silicon wafer. The distribution of the removal amount at this time is almost equal to the case where no excimer light is irradiated.

一方で、上記(1)のオゾン水とエキシマー光を同時に照射し、シリコンウェハの回転数が300rpmの場合には、水噴流のよどみ点にあたるシリコンウェハの中心での除去量が急激に増加する。さらに、回転数が増加するにしたがってシリコンウェハの除去速度も改善されることが明瞭に確認できる。   On the other hand, when the ozone water and the excimer light of (1) are simultaneously irradiated and the rotation speed of the silicon wafer is 300 rpm, the removal amount at the center of the silicon wafer corresponding to the stagnation point of the water jet increases rapidly. Furthermore, it can be clearly confirmed that the removal speed of the silicon wafer is improved as the rotational speed is increased.

この実験例から、高濃度オゾン水によるフォトレジストの除去量は注入部近傍のシリコンウェハの中心付近で最も大きくなることが示された。一方、シリコンウェハの外縁部分でのレジスト除去速度はこれに比べ低くなった。またレジストの除去量は、エキシマー光を照射することによって改善されることが示され、さらに、シリコンウェハを回転させることでシリコンウェハ外縁部での除去量が改善されることが示された。   From this experimental example, it was shown that the removal amount of the photoresist by the high-concentration ozone water becomes the largest in the vicinity of the center of the silicon wafer near the implanted portion. On the other hand, the resist removal rate at the outer edge portion of the silicon wafer was lower than this. It was also shown that the resist removal amount was improved by irradiating excimer light, and that the removal amount at the outer edge of the silicon wafer was improved by rotating the silicon wafer.

以上、本発明に係るフォトレジスト除去装置1を実施するための最良の形態を実施例に基づいて説明したが、本発明はこのような実施例に限定されるものではなく、特許請求の範囲に記載された技術的事項の範囲内でいろいろな実施例があることは言うまでもない。   The best mode for carrying out the photoresist removing apparatus 1 according to the present invention has been described above based on the embodiments. However, the present invention is not limited to such embodiments, and the scope of the claims is as follows. It goes without saying that there are various embodiments within the technical scope described.

本発明に係るフォトレジスト除去装置は、上記のような構成であり、半導体製造工程におけるドライエッチング処理及び反応性イオン注入処理が施されたフォトレジストを除去するために用いられる。特に現在用いられている濃硫酸の除去工程の代替となりうることで、環境負荷の低減化が実現する。   The photoresist removing apparatus according to the present invention is configured as described above, and is used to remove a photoresist that has been subjected to dry etching processing and reactive ion implantation processing in a semiconductor manufacturing process. In particular, the environmental load can be reduced by replacing the concentrated sulfuric acid removal process currently used.

従来技術に較べた本発明におけるフォトレジスト除去の概念を説明する図である。It is a figure explaining the concept of the photoresist removal in this invention compared with the prior art. 本発明に係るフォトレジスト除去装置を説明する図である。It is a figure explaining the photoresist removal apparatus which concerns on this invention. 本発明に係るフォトレジスト除去装置により生じるフォトレジスト除去の作用機序を説明するための化学反応プロセスを説明する図である。It is a figure explaining the chemical reaction process for demonstrating the action mechanism of the photoresist removal produced with the photoresist removal apparatus which concerns on this invention. 本発明に係るフォトレジスト除去装置を使用したフォトレジスト除去の実験例の実験結果を示すグラフである。It is a graph which shows the experimental result of the experiment example of the photoresist removal using the photoresist removal apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 フォトレジスト除去装置
2 モータ
3 回転支持台
4 高濃度オゾン水供給装置
5 支持アーム
6 ネジ
7 洗浄ノズル
8 エキシマー光照射源
9 基板
11 円筒管
12 注水口
13 透明円盤
13 透明円盤
14 隙間(細隙)
15 薄液膜
d 隙間の間隔寸法
1 Photoresist removal device
2 Motor
3 rotation support stand
4 High concentration ozone water supply device
5 Support arm
6 Screw
7 Cleaning nozzle
8 Excimer light irradiation source
9 Board
11 Cylindrical tube
12 Water inlet
13 Transparent disk
13 Transparent disk
14 Clearance (slit)
15 Thin liquid film
d Dimension of gap

Claims (8)

洗浄対象の基板を支持して回転する回転支持台と、洗浄ノズルと、該洗浄ノズルに高濃度オゾン水を供給する高濃度オゾン水供給装置と、紫外光照射源とを備えたフォトレジスト除去装置であって、
前記洗浄ノズルは、高濃度オゾン水を注水する円筒管と、該円筒管の下端の注水口が開口するように該円筒管の下端に取り付けられた透明円盤とを有し、
前記透明円盤は、紫外光照射源からの紫外光を透過可能であるとともに、前記回転支持台に支持された前記基板に対して一定間隔の隙間を介して対向するように配置されていることを特徴とするフォトレジスト除去装置。
Photoresist removal apparatus comprising: a rotation support base that rotates while supporting a substrate to be cleaned; a cleaning nozzle; a high-concentration ozone water supply device that supplies high-concentration ozone water to the cleaning nozzle; and an ultraviolet light irradiation source Because
The cleaning nozzle has a cylindrical tube for injecting high-concentration ozone water, and a transparent disk attached to the lower end of the cylindrical tube so that a water injection port at the lower end of the cylindrical tube is opened.
The transparent disk is capable of transmitting ultraviolet light from an ultraviolet light irradiation source, and is disposed so as to face the substrate supported by the rotation support table with a gap of a predetermined interval. A featured photoresist removal apparatus.
前記回転支持台を回転させて、前記円筒管から注水される高濃度オゾン水を、前記基板表面において厚さの均一な薄液膜として該基板の中心から放射方向に流しながら、前記紫外光を前記基板表面に照射することにより、該基板表面に残存しているフォトレジストを除去する構成であることを特徴とする請求項1記載のフォトレジスト除去装置。   While rotating the rotating support base, the high-concentration ozone water poured from the cylindrical tube flows in the radial direction from the center of the substrate as a thin liquid film having a uniform thickness on the surface of the substrate, and the ultraviolet light is emitted. 2. The photoresist removing apparatus according to claim 1, wherein the photoresist remaining on the substrate surface is removed by irradiating the substrate surface. 前記フォトレジストはフェノール樹脂であり、紫外光が照射された高濃度オゾン水の一部は光分解されOHラジカルが生成され、該OHラジカルがフォトレジストのフェノールをポリフェノールに変え、該ポリフェノールを前記高濃度オゾン水中の未分解オゾンが反応して断片化して、前記基板から剥離する構成であることを特徴とする請求項1又は2記載のフォトレジスト除去装置。   The photoresist is a phenol resin, and a part of the high-concentration ozone water irradiated with ultraviolet light is photodegraded to generate OH radicals. The photoresist removing apparatus according to claim 1 or 2, wherein undecomposed ozone in the concentration ozone water reacts to become fragmented and peels off from the substrate. 前記紫外光照射源は、エキシマー光照射源であり、前記紫外光としてエキシマー光であることを特徴とする請求項1〜3のいずれかに記載のフォトレジスト除去装置。   The photoresist removal apparatus according to claim 1, wherein the ultraviolet light irradiation source is an excimer light irradiation source, and the ultraviolet light is excimer light. 前記透明円盤は合成石英ガラスから成ることを特徴とする請求項1〜4のいずれかに記載のフォトレジスト除去装置。   The photoresist removing apparatus according to claim 1, wherein the transparent disk is made of synthetic quartz glass. 前記隙間は、1〜3mmであることを特徴とする請求項1〜5のいずれかに記載のフォトレジスト除去装置。   The photoresist removing apparatus according to claim 1, wherein the gap is 1 to 3 mm. 紫外光照射源とは、200nmより300nmをピークとする光源であることを特徴とする請求項1〜6のいずれかに記載のフォトレジスト除去装置。   The photoresist removal apparatus according to claim 1, wherein the ultraviolet light irradiation source is a light source having a peak from 200 nm to 300 nm. 該円筒管の下端の注水口が開口するように該円筒管の下端に取り付けられた透明円盤により、フォトレジストと高濃度オゾン水との化学的反応効率を改善することを特徴とする請求項1〜7のいずれかに記載のフォトレジスト除去装置。   2. The chemical reaction efficiency between a photoresist and high-concentration ozone water is improved by a transparent disk attached to the lower end of the cylindrical tube so that a water inlet at the lower end of the cylindrical tube is opened. The photoresist removal apparatus in any one of -7.
JP2007154757A 2007-06-12 2007-06-12 Photoresist removal device Expired - Fee Related JP5006111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007154757A JP5006111B2 (en) 2007-06-12 2007-06-12 Photoresist removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007154757A JP5006111B2 (en) 2007-06-12 2007-06-12 Photoresist removal device

Publications (2)

Publication Number Publication Date
JP2008311256A true JP2008311256A (en) 2008-12-25
JP5006111B2 JP5006111B2 (en) 2012-08-22

Family

ID=40238643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007154757A Expired - Fee Related JP5006111B2 (en) 2007-06-12 2007-06-12 Photoresist removal device

Country Status (1)

Country Link
JP (1) JP5006111B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225672A (en) * 2009-03-19 2010-10-07 Nomura Micro Sci Co Ltd Photoresist removing device
WO2015030035A1 (en) * 2013-08-28 2015-03-05 国立大学法人筑波大学 Cleaning device and cleaning method
KR20160040053A (en) * 2014-10-02 2016-04-12 주식회사 케이엠디피 Improved Stripping Apparatus and Method of Photoresist
JP2017175041A (en) * 2016-03-25 2017-09-28 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP2020118698A (en) * 2020-04-23 2020-08-06 倉敷紡績株式会社 Measuring method of liquid component on substrate, and substrate processing apparatus
KR20210088704A (en) 2018-11-14 2021-07-14 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method, and computer-readable recording medium

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479324A (en) * 1990-07-23 1992-03-12 Dainippon Screen Mfg Co Ltd Method and equipment for surface treatment of substrate
JP2588508B2 (en) * 1986-05-23 1997-03-05 日立東京エレクトロニクス株式会社 Processing equipment
JP2000195835A (en) * 1998-12-24 2000-07-14 Toshiba Corp Manufacture of semiconductor device and manufacturing apparatus of the device
JP2002231696A (en) * 2001-01-31 2002-08-16 Mitsubishi Electric Corp Method and apparatus for removing resist
JP2003077885A (en) * 2001-09-06 2003-03-14 Dainippon Screen Mfg Co Ltd Substrate treatment device
JP2003282425A (en) * 2002-03-27 2003-10-03 Mitsui Eng & Shipbuild Co Ltd Resist separation device
JP2003282517A (en) * 2002-03-27 2003-10-03 Mitsui Eng & Shipbuild Co Ltd Resist-exfoliating method
JP2003309098A (en) * 2002-04-16 2003-10-31 Uct Kk Resist removing device and method therefor
JP2003337432A (en) * 2002-05-20 2003-11-28 Tsukuba Semi Technology:Kk Method for removing resist using functional water and apparatus therefor
JP2004071966A (en) * 2002-08-08 2004-03-04 Mitsui Eng & Shipbuild Co Ltd Resist peeling method
JP2004193455A (en) * 2002-12-13 2004-07-08 Sharp Corp Processing apparatus and processing method
WO2004093172A1 (en) * 2003-04-16 2004-10-28 Sekisui Chemical Co. Ltd. Resist stripping method and device
JP2004356487A (en) * 2003-05-30 2004-12-16 Seiko Epson Corp Removal method of organic substance layer
JP2005072308A (en) * 2003-08-26 2005-03-17 Sony Corp Method for removing resist, and method for manufacturing semiconductor device
JP2005340668A (en) * 2004-05-28 2005-12-08 Purex:Kk Method and apparatus for removing organic substance
JP2006093355A (en) * 2004-09-22 2006-04-06 Sekisui Chem Co Ltd Forming method of circuit pattern
JP2006148071A (en) * 2004-10-19 2006-06-08 Purex:Kk Removing method of fouling on substrate surface, removing treatment liquid and removing device
JP2006164996A (en) * 2003-12-08 2006-06-22 Sekisui Chem Co Ltd Resist removing apparatus for mask substrate
JP2006229002A (en) * 2005-02-18 2006-08-31 Renesas Technology Corp Manufacturing method of semiconductor device, and semiconductor manufacturing device
JP2006229198A (en) * 2004-12-16 2006-08-31 Asahi Glass Co Ltd Method and apparatus for cleaning tool with ultraviolet provided internally
JP2007073784A (en) * 2005-09-08 2007-03-22 Seiko Epson Corp Substrate-cleaning apparatus and manufacturing method of semiconductor device

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2588508B2 (en) * 1986-05-23 1997-03-05 日立東京エレクトロニクス株式会社 Processing equipment
JPH0479324A (en) * 1990-07-23 1992-03-12 Dainippon Screen Mfg Co Ltd Method and equipment for surface treatment of substrate
JP2000195835A (en) * 1998-12-24 2000-07-14 Toshiba Corp Manufacture of semiconductor device and manufacturing apparatus of the device
JP2002231696A (en) * 2001-01-31 2002-08-16 Mitsubishi Electric Corp Method and apparatus for removing resist
JP2003077885A (en) * 2001-09-06 2003-03-14 Dainippon Screen Mfg Co Ltd Substrate treatment device
JP2003282425A (en) * 2002-03-27 2003-10-03 Mitsui Eng & Shipbuild Co Ltd Resist separation device
JP2003282517A (en) * 2002-03-27 2003-10-03 Mitsui Eng & Shipbuild Co Ltd Resist-exfoliating method
JP2003309098A (en) * 2002-04-16 2003-10-31 Uct Kk Resist removing device and method therefor
JP2003337432A (en) * 2002-05-20 2003-11-28 Tsukuba Semi Technology:Kk Method for removing resist using functional water and apparatus therefor
JP2004071966A (en) * 2002-08-08 2004-03-04 Mitsui Eng & Shipbuild Co Ltd Resist peeling method
JP2004193455A (en) * 2002-12-13 2004-07-08 Sharp Corp Processing apparatus and processing method
WO2004093172A1 (en) * 2003-04-16 2004-10-28 Sekisui Chemical Co. Ltd. Resist stripping method and device
JP2004356487A (en) * 2003-05-30 2004-12-16 Seiko Epson Corp Removal method of organic substance layer
JP2005072308A (en) * 2003-08-26 2005-03-17 Sony Corp Method for removing resist, and method for manufacturing semiconductor device
JP2006164996A (en) * 2003-12-08 2006-06-22 Sekisui Chem Co Ltd Resist removing apparatus for mask substrate
JP2005340668A (en) * 2004-05-28 2005-12-08 Purex:Kk Method and apparatus for removing organic substance
JP2006093355A (en) * 2004-09-22 2006-04-06 Sekisui Chem Co Ltd Forming method of circuit pattern
JP2006148071A (en) * 2004-10-19 2006-06-08 Purex:Kk Removing method of fouling on substrate surface, removing treatment liquid and removing device
JP2006229198A (en) * 2004-12-16 2006-08-31 Asahi Glass Co Ltd Method and apparatus for cleaning tool with ultraviolet provided internally
JP2006229002A (en) * 2005-02-18 2006-08-31 Renesas Technology Corp Manufacturing method of semiconductor device, and semiconductor manufacturing device
JP2007073784A (en) * 2005-09-08 2007-03-22 Seiko Epson Corp Substrate-cleaning apparatus and manufacturing method of semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225672A (en) * 2009-03-19 2010-10-07 Nomura Micro Sci Co Ltd Photoresist removing device
WO2015030035A1 (en) * 2013-08-28 2015-03-05 国立大学法人筑波大学 Cleaning device and cleaning method
JPWO2015030035A1 (en) * 2013-08-28 2017-03-02 国立大学法人 筑波大学 Cleaning apparatus and cleaning method
KR20160040053A (en) * 2014-10-02 2016-04-12 주식회사 케이엠디피 Improved Stripping Apparatus and Method of Photoresist
KR101648946B1 (en) * 2014-10-02 2016-09-22 주식회사 케이엠디피 Improved Stripping Apparatus and Method of Photoresist
JP2017175041A (en) * 2016-03-25 2017-09-28 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
KR20210088704A (en) 2018-11-14 2021-07-14 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method, and computer-readable recording medium
JP2020118698A (en) * 2020-04-23 2020-08-06 倉敷紡績株式会社 Measuring method of liquid component on substrate, and substrate processing apparatus
JP7082639B2 (en) 2020-04-23 2022-06-08 倉敷紡績株式会社 Measurement method of liquid component on the substrate and substrate processing equipment

Also Published As

Publication number Publication date
JP5006111B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5006111B2 (en) Photoresist removal device
US6817370B2 (en) Method for processing the surface of a workpiece
US7838206B2 (en) Substrate processing method and substrate processing apparatus
KR20150055591A (en) Substrate cleaning method, substrate cleaning system and storage medium
JP4861609B2 (en) Method and apparatus for removing organic substances
JP2007201070A (en) Method and device for removing residual organic substance on substrate
JP2007273598A (en) Substrate processor and substrate processing method
CN1653596A (en) Resist removing apparatus and method of removing resist
JP2007149972A (en) Electronic device cleaning device and electronic device cleaning method
JP2002025971A (en) Substrate processing method and device, and method of manufacturing electronic device
JP4320982B2 (en) Substrate processing equipment
JP5006112B2 (en) Photoresist removal method
JP2008311591A (en) Substrate treatment method and substrate treatment equipment
JP4883975B2 (en) Method for removing deposits on substrate surface, treatment liquid for removal and removal apparatus
JP4519234B2 (en) Article surface cleaning method and cleaning apparatus therefor
JP2009218548A (en) Resist removing method and resist removing device of high dose implantation process
JPH11165136A (en) Method and apparatus for removing resist
JP2005216908A (en) Apparatus and method of treating object
JP2010129837A (en) Method for removing resist
JP2002261068A (en) Device and method for substrate treatment
JPH0547730A (en) Removing method for organic material
JP4351862B2 (en) Resist removing method and resist removing apparatus
JP2006156919A (en) Method of dislodging organic coating and remover
JP2005150165A (en) Ozone-water injection nozzle
JP2009088228A (en) Processing apparatus and processing method for substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5006111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees