JP2008309474A - Pipe cleaning device - Google Patents

Pipe cleaning device Download PDF

Info

Publication number
JP2008309474A
JP2008309474A JP2008250051A JP2008250051A JP2008309474A JP 2008309474 A JP2008309474 A JP 2008309474A JP 2008250051 A JP2008250051 A JP 2008250051A JP 2008250051 A JP2008250051 A JP 2008250051A JP 2008309474 A JP2008309474 A JP 2008309474A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
cleaning
pipe cleaning
side unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008250051A
Other languages
Japanese (ja)
Other versions
JP4803234B2 (en
Inventor
Yusuke Otsubo
祐介 大坪
Masao Kawasaki
雅夫 川崎
Hiroshi Nakada
浩 中田
Hiroyuki Morimoto
裕之 森本
Makoto Saito
信 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008250051A priority Critical patent/JP4803234B2/en
Publication of JP2008309474A publication Critical patent/JP2008309474A/en
Application granted granted Critical
Publication of JP4803234B2 publication Critical patent/JP4803234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a pipe cleaning device capable of securely cleaning a pipe by simple work in a short period of time, and improving a refrigerating capacity and the performance of a refrigerator after exchanging. <P>SOLUTION: At changing an operation refrigerant of a refrigerating cycle system forming a refrigerant circuit by a heat source side unit comprising a compressor and a heat exchanger, one or a plurality of using side units comprising open/close valves, temperature-type expansion valves, and heat exchangers, and piping connecting these, a refrigerant such as HFC or HC is used as a cleaning medium, and a heat source side unit corresponding to a new refrigerant is used as a cleaning medium conveying means to carry out cleaning in the piping by the refrigerant in a gas-liquid two-phase state by the piping cleaning device equipped with the refrigerant-refrigerant heat exchanger, a pressure reducing means, a foreign matter recovery container, and the like. The device is equipped with a bypass pipe for making ends of the piping diverged to one or a plurality of the respective using side units communicate with each other, and the open/close valves for opening and closing the bypass pipe. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、配管の洗浄装置に関するものであり、さらに詳しくは、冷凍サイクル装置において熱源側ユニットと利用側ユニットを新たな冷媒および冷凍機油を用いるものに交換する際、接続配管を交換することなく使用するために、配管内に残留する異物を洗浄除去する配管洗浄装置に関するものである。   The present invention relates to a pipe cleaning device, and more specifically, in a refrigeration cycle apparatus, when replacing a heat source side unit and a use side unit with one using new refrigerant and refrigeration oil, the connection pipe is not replaced. The present invention relates to a pipe cleaning apparatus for cleaning and removing foreign matters remaining in a pipe for use.

従来のCFCおよびHCFC冷媒を用いた冷凍機で使用されてきた既設配管を洗浄する方法としては、HFC等の新冷媒を洗浄媒体とし、新冷媒対応の熱源側ユニットを洗浄媒体搬送手段として、高低圧熱交換器、減圧装置、分離装置などから成る洗浄装置により、冷媒を気液二相状態とした後に配管内を循環させ、洗浄する方法がある(例えば、特許文献1参照)。   As a method of cleaning existing piping that has been used in refrigerators using conventional CFC and HCFC refrigerants, a new refrigerant such as HFC is used as a cleaning medium, and a heat source side unit compatible with the new refrigerant is used as a cleaning medium conveying means. There is a method in which a cleaning device including a low-pressure heat exchanger, a decompression device, a separation device, and the like is used to circulate the inside of a pipe after cleaning the refrigerant into a gas-liquid two-phase state (see Patent Document 1, for example).

また、新冷媒対応の熱源側ユニットに置換後、利用側ユニット内の電動膨張弁の開度調整により吸入過熱度を大きくする油回収運転でアキュムレータに溜まる油を回収する方法がある(例えば、特許文献2参照)。   In addition, there is a method of recovering oil accumulated in the accumulator in an oil recovery operation in which the suction superheat degree is increased by adjusting the opening degree of the electric expansion valve in the use side unit after replacement with the heat source side unit corresponding to the new refrigerant (for example, patent Reference 2).

特開2001−141340号公報(第4―8頁、第1図〜第6図)Japanese Patent Laid-Open No. 2001-141340 (pages 4-8, FIGS. 1 to 6) 特開2003−302127号公報(第4―9頁、第1図〜第3図)JP 2003-302127 A (page 4-9, FIGS. 1 to 3)

従来の方法では、新冷媒対応の熱源側ユニットおよび洗浄装置により配管内の洗浄を行い、洗浄終了後に洗浄装置の取外し、再度真空引きなどを行う必要があり、手間がかかる。   In the conventional method, it is necessary to clean the inside of the pipe with the heat source side unit and the cleaning device corresponding to the new refrigerant, and to remove the cleaning device after the cleaning is completed and to perform evacuation again.

また、熱源側ユニットから利用側ユニットまでの既設配管の取りまわしが、現地の建築物状況に依存するため複雑で、熱源側ユニット内の圧縮機の回転数を制御できない冷凍サイクルにおいては、配管洗浄中の圧力損失などの影響により、十分な洗浄を行えない可能性がある。   In addition, it is complicated to arrange the existing piping from the heat source side unit to the user side unit because it depends on the local building conditions, and in the refrigeration cycle where the rotation speed of the compressor in the heat source side unit cannot be controlled, the piping is being cleaned. There is a possibility that sufficient cleaning cannot be performed due to the effect of pressure loss.

さらに、従来の利用側ユニットの減圧装置調整により吸入過熱度を大きくする制御は電動膨張弁を有するようなシステム、例えば空気調和機では可能であるが、利用側ユニットが例えばショーケースのように温度膨張弁を備えた、冷凍機のような冷凍サイクル装置には適用できない。また、従来のように、利用側ユニットに気液二相状態で冷媒を流通させると温度膨張弁が絞り込み、低圧が下がり込むため、安定した洗浄運転を行えない可能性がある。
また、多数のショーケースが1台の冷凍機に接続されたスーパーマーケットの食品売場の冷凍サイクル装置の配管洗浄の場合は、長期間店舗を閉鎖することは不利益となるため、冷凍サイクル装置の交換作業を極めて短時間で行う必要があり、また、配管が天井内や床下などを複雑に配設されており、配管まで交換することが困難であった。
Furthermore, the control to increase the suction superheat degree by adjusting the pressure reducing device of the conventional use side unit is possible in a system having an electric expansion valve, for example, an air conditioner, but the use side unit has a temperature as in a showcase, for example. It is not applicable to a refrigeration cycle apparatus such as a refrigerator equipped with an expansion valve. In addition, when the refrigerant is circulated in the gas-liquid two-phase state to the use side unit as in the past, the temperature expansion valve is narrowed and the low pressure is lowered, so there is a possibility that stable cleaning operation cannot be performed.
Also, in the case of washing pipes of refrigeration cycle equipment in a supermarket food department where many showcases are connected to one freezer, it will be disadvantageous to close the store for a long time, so replace the refrigeration cycle equipment. It is necessary to perform the work in an extremely short time, and the piping is complicatedly arranged in the ceiling or under the floor, so that it is difficult to replace the piping.

この発明は、上記のような課題を解決するためになされたもので、第1の目的は簡易な作業で、短時間に、確実に配管を洗浄することができる配管洗浄装置を得るものである。第2の目的は、交換後の冷凍装置において、冷凍能力の向上および性能向上を可能とする配管洗浄装置を得るものである。   The present invention has been made to solve the above-described problems. The first object of the present invention is to obtain a pipe cleaning apparatus that can clean pipes in a short time with a simple operation. . The second object is to obtain a pipe cleaning apparatus that can improve the refrigeration capacity and improve the performance of the refrigeration apparatus after replacement.

この発明に係る配管洗浄装置は、圧縮機、熱交換器を備える熱源側ユニットと、開閉弁、温度式膨張弁、熱交換器を備える1台もしくは複数台の利用側ユニットと、それらを接続する配管により冷媒回路を形成する冷凍サイクル装置の作動冷媒を変更する際に、HFC、HCなどの冷媒を洗浄媒体とし、新冷媒対応の熱源側ユニットを洗浄媒体搬送手段として用いるとともに、冷媒−冷媒熱交換器、減圧手段および異物回収容器などを備える配管洗浄装置により気液二相状態の冷媒で配管内の洗浄を行う洗浄方法に用いられるものであって、1台もしくは複数台の利用側ユニットのそれぞれに分岐された配管の末端を連通するバイパス管およびこのバイパス管を開閉する開閉弁を備えたものである。   A pipe cleaning apparatus according to the present invention connects a heat source side unit including a compressor and a heat exchanger, and one or a plurality of usage side units including an on-off valve, a temperature expansion valve, and a heat exchanger. When changing the working refrigerant of the refrigeration cycle apparatus that forms the refrigerant circuit by the piping, refrigerants such as HFC and HC are used as the cleaning medium, the heat source side unit corresponding to the new refrigerant is used as the cleaning medium conveying means, and refrigerant-refrigerant heat Used in a cleaning method for cleaning a pipe with a refrigerant in a gas-liquid two-phase state by a pipe cleaning device including an exchanger, a decompression unit, a foreign matter recovery container, and the like. A bypass pipe that communicates the ends of the pipes that are branched to each other and an on-off valve that opens and closes the bypass pipe are provided.

この発明の配管洗浄装置は、配管洗浄装置を配管洗浄後も再利用できるので、冷凍サイクル装置の性能を向上させることができるとともに、配管の洗浄後に上記配管洗浄装置を取外して再度真空引きおよび冷媒充填を行う手間が省けるため、短時間に簡単に配管を洗浄できるという効果がある。   Since the pipe cleaning apparatus of the present invention can be reused even after the pipe cleaning, the performance of the refrigeration cycle apparatus can be improved, and after the pipe cleaning, the pipe cleaning apparatus is removed and vacuuming and refrigerant are performed again. Since there is no need for filling, piping can be easily cleaned in a short time.

また、配管洗浄装置を熱源側ユニットと配管との間に接続し、利用側ユニットの末端を連通させて運転させるとともに、洗浄装置内に高圧側と低圧側を連通させる回路を備えることにより、安定的に冷媒を流通させることができ、確実に配管を洗浄できるという効果がある。   In addition, the piping cleaning device is connected between the heat source side unit and the piping, and the end of the usage side unit is connected to operate, and the cleaning device is provided with a circuit for connecting the high pressure side and the low pressure side, thereby stabilizing Therefore, there is an effect that the refrigerant can be circulated and the piping can be reliably washed.

実施の形態1.
図1はこの発明の実施の形態における作動冷媒交換前の冷凍サイクル装置を示す冷媒回路図である。図において、1は熱源側ユニットであり、2は複数台設置された利用側ユニットである。3、4は熱源側ユニット1と利用側ユニット群2を接続する配管で、3は液管、4はガス管である。熱源側ユニット1は圧縮機5、凝縮器6、レシーバ7、そしてアキュムレータ8で構成され、液操作弁12を介して液管3に、ガス操作弁13を介してガス管4に接続される。また、利用側ユニット2はこの実施の形態では2a、2b、…など複数のショーケースのグループとして設置され、ショーケースは液電磁弁9、温度膨張弁10、蒸発器11で構成されている。この冷凍サイクル装置の作動冷媒はR12、R22などのCFC、HCFC冷媒であり、冷凍機油には鉱油が用いられている。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram showing a refrigeration cycle apparatus before exchanging working refrigerant in an embodiment of the present invention. In the figure, 1 is a heat source side unit, and 2 is a use side unit in which a plurality of units are installed. 3 and 4 are pipes connecting the heat source side unit 1 and the use side unit group 2, 3 is a liquid pipe, and 4 is a gas pipe. The heat source side unit 1 includes a compressor 5, a condenser 6, a receiver 7, and an accumulator 8, and is connected to the liquid pipe 3 through the liquid operation valve 12 and to the gas pipe 4 through the gas operation valve 13. In this embodiment, the use side unit 2 is installed as a group of a plurality of showcases such as 2a, 2b,..., And the showcase is composed of a liquid electromagnetic valve 9, a temperature expansion valve 10, and an evaporator 11. The working refrigerant of this refrigeration cycle apparatus is a CFC or HCFC refrigerant such as R12 and R22, and mineral oil is used as the refrigerating machine oil.

この冷凍サイクル装置は、通常冷却運転時、次のような動作を行う。圧縮機5で圧縮された高温高圧のガス冷媒は、凝縮器6で外気に放熱して凝縮する。凝縮した高圧液冷媒は、レシーバ7に貯留されるとともに、液管3を通って利用側ユニット2へと流れる。さらに利用側ユニット2においては、開放された液電磁弁9を通過し、温度膨張弁10により減圧され、低圧二相冷媒となる。この低圧二相冷媒は蒸発器11により利用側の冷却負荷から吸熱し、低圧ガス冷媒となってガス管4、アキュムレータ8を通って再び圧縮機5に吸入される。この動作により、利用側負荷から吸熱し、外気に放熱する冷凍サイクルを形成する。   This refrigeration cycle apparatus performs the following operation during normal cooling operation. The high-temperature and high-pressure gas refrigerant compressed by the compressor 5 dissipates heat to the outside air and is condensed by the condenser 6. The condensed high-pressure liquid refrigerant is stored in the receiver 7 and flows to the use side unit 2 through the liquid pipe 3. Furthermore, in the use side unit 2, it passes through the opened liquid electromagnetic valve 9, is decompressed by the temperature expansion valve 10, and becomes a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant absorbs heat from the cooling load on the use side by the evaporator 11, becomes low-pressure gas refrigerant, and is sucked again into the compressor 5 through the gas pipe 4 and the accumulator 8. This operation forms a refrigeration cycle that absorbs heat from the use-side load and radiates heat to the outside air.

ここで、作動冷媒R12またはR22と潤滑油である鉱油は相溶であるため、液管3においては互いに溶解した状態で、すなわち冷媒と油は同じ速度で流動する。一方、蒸発器11およびガス管4においては、冷媒はガス状態であるため、鉱油は分離し、配管壁に付着して冷媒よりゆっくりと流動する。よって、蒸発器11およびガス管4には相当量の鉱油が滞留している。この鉱油を洗浄除去することがこの発明の目的である。   Here, since the working refrigerant R12 or R22 and the mineral oil that is the lubricating oil are compatible with each other, in the liquid pipe 3, the refrigerant and the oil flow at the same speed in a dissolved state. On the other hand, in the evaporator 11 and the gas pipe 4, since the refrigerant is in a gas state, the mineral oil is separated and adheres to the pipe wall and flows more slowly than the refrigerant. Therefore, a considerable amount of mineral oil stays in the evaporator 11 and the gas pipe 4. It is an object of this invention to wash away this mineral oil.

次に、図2を参照して配管洗浄装置の構成を説明する。図2は配管洗浄装置が取り付けられたときの冷媒回路図である。また図2において、百番台の番号は新冷媒対応であることを示すものであり、下二桁は旧冷媒対応のものと等しい。すなわち、101は新冷媒対応の熱源側ユニットであり、102は新冷媒対応の利用側ユニットである。
配管洗浄装置14は、冷媒−冷媒熱交換器15および第1の減圧手段16、第2の減圧手段17、圧力調整弁18、鉱油回収容器19、異物吸着手段20とその前後に電磁弁21a、21b、開閉弁22a、22b、22c、22d、制御装置35よりなる。接続口は液入口ポート23、液出口ポート24、ガス入口ポート25、ガス出口ポート26の4箇所であり、熱源側ユニット101には液入口ポート23とガス出口ポート26が繋がれ、液出口ポート24には液管3、ガス入口ポート25にはガス管4が接続される。そして、利用側ユニット102の配管洗浄手段としての構成としては、それぞれ分岐された配管の末端を連通するバイパス管27a、27bおよびこのバイパス管にそれぞれ設けられた開閉弁28a、28bとが接続されている。
Next, the configuration of the pipe cleaning apparatus will be described with reference to FIG. FIG. 2 is a refrigerant circuit diagram when the pipe cleaning device is attached. In FIG. 2, the numbers in the hundreds indicate that the new refrigerant is supported, and the last two digits are the same as those for the old refrigerant. That is, 101 is a heat source side unit corresponding to a new refrigerant, and 102 is a use side unit corresponding to a new refrigerant.
The pipe cleaning device 14 includes a refrigerant-refrigerant heat exchanger 15, a first decompression unit 16, a second decompression unit 17, a pressure adjustment valve 18, a mineral oil recovery container 19, a foreign matter adsorption unit 20, and an electromagnetic valve 21 a before and after that. 21b, on-off valves 22a, 22b, 22c, 22d and a control device 35. There are four connection ports: a liquid inlet port 23, a liquid outlet port 24, a gas inlet port 25, and a gas outlet port 26. The liquid inlet port 23 and the gas outlet port 26 are connected to the heat source side unit 101, and the liquid outlet port. The liquid pipe 3 is connected to 24, and the gas pipe 4 is connected to the gas inlet port 25. And as a structure as a piping washing | cleaning means of the use side unit 102, bypass pipe 27a, 27b which connects the terminal of each branched pipe, and the on-off valve 28a, 28b each provided in this bypass pipe are connected. Yes.

続いて、図2および図3を参照して洗浄運転時の動作を説明する。図3は洗浄運転時の冷凍サイクル状態を示すPh線図である。制御装置35の運転モードを洗浄運転モードへ切り替えることにより、電磁弁21a、21bおよび第2の減圧手段17は閉止され、また、開閉弁22a、22dも全閉とし、この部位には冷媒を流通させない。また、利用側ユニット群102においては、液電磁弁109はすべて閉止され、開閉弁28a、28bは開放されるため、冷媒はバイパス配管27a、27bを通過し、利用側ユニット内に流れることはない。   Subsequently, the operation during the cleaning operation will be described with reference to FIGS. 2 and 3. FIG. 3 is a Ph diagram showing a refrigeration cycle state during a cleaning operation. By switching the operation mode of the control device 35 to the washing operation mode, the electromagnetic valves 21a and 21b and the second pressure reducing means 17 are closed, and the on-off valves 22a and 22d are also fully closed, and the refrigerant flows through these parts. I won't let you. In the usage-side unit group 102, all the liquid electromagnetic valves 109 are closed and the on-off valves 28a and 28b are opened, so that the refrigerant does not flow into the usage-side units through the bypass pipes 27a and 27b. .

圧縮機105から吐出されるガス冷媒(図3の状態A)は凝縮器106に流入するが、ここでの冷媒圧力は外気温度相当の飽和圧力に近く、ほとんど凝縮せずに流出する(図3の状態B)。レシーバ107にも液冷媒が貯留されることなく通過し、冷媒−冷媒熱交換器15の高圧側へ流入する。ここで、状態Bのガス冷媒は低圧の冷媒と熱交換を行い、気液二相流(図3の状態C)へと状態変化して液管3へと流れる。   The gas refrigerant discharged from the compressor 105 (state A in FIG. 3) flows into the condenser 106, but the refrigerant pressure here is close to the saturation pressure corresponding to the outside air temperature, and flows out with little condensation (FIG. 3). State B). The liquid refrigerant also passes through the receiver 107 without being stored, and flows into the high pressure side of the refrigerant-refrigerant heat exchanger 15. Here, the gas refrigerant in the state B exchanges heat with the low-pressure refrigerant, changes state to a gas-liquid two-phase flow (state C in FIG. 3), and flows to the liquid pipe 3.

この状態Cの気液二相冷媒は、液管3の管壁に付着する鉱油を引き剥がしながら進行し、バイパス管27a、27bを通過後、さらにガス管4を通って管壁に残留する鉱油を引き剥がしながら再び配管洗浄装置14へと戻る。   The gas-liquid two-phase refrigerant in this state C advances while peeling off the mineral oil adhering to the pipe wall of the liquid pipe 3, passes through the bypass pipes 27a and 27b, and further passes through the gas pipe 4 to remain on the pipe wall. The pipe is returned to the pipe cleaning device 14 again.

配管洗浄装置14へ戻った状態Dの気液二相冷媒は、第1の減圧手段16により減圧され、低圧二相冷媒(図3の状態E)となって冷媒−冷媒熱交換器15の低圧側に流入する。前述のように、低圧二相冷媒はここで高圧ガス冷媒と熱交換して蒸発後、過熱ガス(図3の状態F)となって回収した鉱油とともに鉱油回収器19に流入する。この鉱油回収器19に鉱油が回収され、冷媒ガスは再び圧縮機105に吸入される。   The gas-liquid two-phase refrigerant in the state D returned to the pipe cleaning device 14 is depressurized by the first decompression means 16 to become a low-pressure two-phase refrigerant (state E in FIG. 3), and the low pressure of the refrigerant-refrigerant heat exchanger 15. Flows into the side. As described above, the low-pressure two-phase refrigerant exchanges heat with the high-pressure gas refrigerant and evaporates, and then flows into the mineral oil collector 19 together with the recovered mineral oil as superheated gas (state F in FIG. 3). Mineral oil is recovered in the mineral oil recovery unit 19, and the refrigerant gas is again sucked into the compressor 105.

前述の動作により、HFC冷媒と鉱油は非相溶であるが、液管3、ガス管4には高圧の気液二相冷媒が循環するため、管壁に付着する鉱油を引き剥がしながら冷媒中を移動させ、短時間で配管を清浄することが可能である。   By the above-described operation, the HFC refrigerant and mineral oil are incompatible with each other, but since the high-pressure gas-liquid two-phase refrigerant circulates in the liquid pipe 3 and the gas pipe 4, the mineral oil adhering to the pipe wall is peeled off while the refrigerant is in the refrigerant. It is possible to clean the pipe in a short time.

また、液管3を通過した気液二相冷媒は利用側ユニットには流通せず、利用側ユニット102の端末部のバイパス管27a、27bを通過し、ガス管4に流入するので、利用側ユニットの102の温度式膨張弁110で絞られること無く、安定した状態で洗浄運転を行うことができる。   In addition, the gas-liquid two-phase refrigerant that has passed through the liquid pipe 3 does not flow to the use side unit, passes through the bypass pipes 27a and 27b of the terminal portion of the use side unit 102, and flows into the gas pipe 4. The washing operation can be performed in a stable state without being throttled by the temperature type expansion valve 110 of the unit 102.

ここで、冷凍装置の配管系統によっては、バイパス管27が1箇所しかない場合や、末端の利用側ユニットが小容量であるがゆえに末端の液管径が熱源側ユニット容量に対して非常に細い場合などが考えられる。このような場合には配管側の圧力損失が大きくなり、第1の減圧手段16を全開にしても圧縮機105の吸入過熱度が大きくなり過ぎる危険性がある。   Here, depending on the piping system of the refrigeration apparatus, when there is only one bypass pipe 27, or because the terminal use side unit has a small capacity, the terminal liquid pipe diameter is very narrow with respect to the heat source side unit capacity. Cases can be considered. In such a case, the pressure loss on the piping side becomes large, and there is a risk that the suction superheat degree of the compressor 105 becomes too large even if the first pressure reducing means 16 is fully opened.

そのために、圧力差保持手段としての圧力調整弁18が設置されている。この圧力調整弁18はその前後の圧力差が所定値、例えば1MPa以上となるとその圧力を保持すべく開放されるという機能を有する。この動作により、圧縮機105により循環する冷媒の一部が圧力調整弁18を介して第1の減圧手段16手前へと流れ、配管3、4へ流れる冷媒が減少し、配管側の圧力損失が過大となることを防止する。よって、第1の膨張弁16は配管側が如何なる形態であっても吸入過熱度を所定範囲内に制御することが可能となる。   For this purpose, a pressure regulating valve 18 is installed as pressure difference holding means. The pressure regulating valve 18 has a function of being released to maintain the pressure difference when the pressure difference between the pressure regulating valve 18 reaches a predetermined value, for example, 1 MPa or more. By this operation, a part of the refrigerant circulated by the compressor 105 flows to the front side of the first pressure reducing means 16 via the pressure regulating valve 18, the refrigerant flowing to the pipes 3 and 4 is reduced, and the pressure loss on the pipe side is reduced. Preventing it from becoming excessive. Therefore, the first expansion valve 16 can control the suction superheat degree within a predetermined range regardless of the configuration of the piping side.

なお、圧力調整弁18の代わりに電子式膨張弁(以下LEVと記述)等の弁を圧力差保持手段として用いて、制御装置35により圧力差が所定値以下となるべく制御を行っても良い。この場合の制御方法を、図4に示す制御フローに基づき説明する。まず、制御装置35において、運転モードの確認を行う(ステップS1)。洗浄運転以外のモードではLEV等の弁は閉止し、この部分に冷媒を流通させない(ステップS5)。洗浄運転モードにおいては、洗浄装置14内の液出口ポート24の直前およびガス入口ポート25の直後の圧力を取り込み、圧力差を計算する(ステップS2)。この圧力差が設定値、例えば1MPaより大きい場合は、前記LEV等の弁を開き、圧縮機105により循環する冷媒の一部を第1の減圧手段16手前へと流入させる(ステップS3)。この制御を前記圧力差が、設定値、例えば1MPa以下になるまで繰り返し、設定値以下となった場合は弁の開度を維持する(ステップS4)。これにより、配管3、4へ流れる冷媒量が減少し、配管側の圧力損失が過大となることを防止する。   Instead of the pressure regulating valve 18, an electronic expansion valve (hereinafter referred to as LEV) or the like may be used as a pressure difference holding unit, and the control device 35 may perform control so that the pressure difference becomes a predetermined value or less. The control method in this case is demonstrated based on the control flow shown in FIG. First, the operation mode is confirmed in the control device 35 (step S1). In a mode other than the cleaning operation, a valve such as LEV is closed, and the refrigerant is not circulated in this portion (step S5). In the cleaning operation mode, the pressure immediately before the liquid outlet port 24 and immediately after the gas inlet port 25 in the cleaning device 14 is taken in, and the pressure difference is calculated (step S2). When this pressure difference is larger than a set value, for example, 1 MPa, the valve such as the LEV is opened, and a part of the refrigerant circulated by the compressor 105 is caused to flow into the front of the first pressure reducing means 16 (step S3). This control is repeated until the pressure difference becomes a set value, for example, 1 MPa or less. When the pressure difference becomes less than the set value, the valve opening is maintained (step S4). As a result, the amount of refrigerant flowing to the pipes 3 and 4 is reduced, and the pressure loss on the pipe side is prevented from becoming excessive.

また、配管側の差圧が過大となる場合は、洗浄冷媒を追加充填してもよい。冷媒を追加充填することで、配管内を流通する冷媒の乾き度が小さくなり、体積流量が減少することで圧力損失を小さくすることができる。さらに、配管を流通する液冷媒が増加することで洗浄性能が向上し、より短時間に洗浄することが可能となる。   Further, when the differential pressure on the piping side becomes excessive, a cleaning refrigerant may be additionally charged. By additionally filling the refrigerant, the dryness of the refrigerant flowing in the pipe is reduced, and the pressure loss can be reduced by reducing the volume flow rate. Furthermore, the cleaning performance is improved by increasing the liquid refrigerant flowing through the pipe, and the cleaning can be performed in a shorter time.

さらに、既設配管内の洗浄後の通常冷却運転時は、制御装置35の運転モードを通常冷却運転モードに切り替え、上記配管洗浄装置14を過冷却熱交換器として再利用する。   Furthermore, at the time of normal cooling operation after cleaning the existing pipe, the operation mode of the control device 35 is switched to the normal cooling operation mode, and the pipe cleaning device 14 is reused as a supercooling heat exchanger.

図2を参照して通常冷却運転時に上記配管洗浄装置14を過冷却熱交換器として再利用した場合の動作を説明する。
配管洗浄装置14内の制御装置35の運転モードを通常冷却運転モードへ切り替えることにより、電磁弁21a、21b、第1の減圧手段16は閉止され、また、圧力調整弁18、開閉弁22b、22cは閉止され、この部分、すなわち、鉱油回収容器19、異物吸着手段20に冷媒を流通させない。利用側ユニット群102においても開閉弁28a、28bは閉止され、この部分、すなわち、バイパス管27a、27bに冷媒を流通させない。また、開閉弁22a、22dは開放され、第2の減圧手段17が制御装置35により動作するように操作される。
圧縮機105から吐出された高温高圧のガス冷媒は凝縮器106で外気に放熱して凝縮液化し、レシーバ107に貯留されるとともに液冷媒は冷媒−冷媒熱交換器15の高圧側へ流入する。冷媒−冷媒熱交換器15の高圧側を流出した液冷媒の一部は第2の減圧手段17により減圧され、低圧の気液二相状態と変化して再び冷媒−冷媒熱交換器15の低圧側へ流入し、高圧側液冷媒との熱交換により、高圧側液冷媒は過冷却度を増し、一方低圧側冷媒は蒸発してガス冷媒となり、利用側ユニット102で蒸発した低圧ガス冷媒と合流して再び圧縮機105に吸入されるという動作を繰り返す。これにより、利用側ユニット102で利用できる蒸発エンタルピ差が拡大するとともに、低圧側の圧力損失低減により冷媒流量が増加し冷凍能力の向上が可能となる。また、圧縮機吸入側の冷媒ガス温度が低下し、圧縮機の吐出温度昇温を防止できる。
With reference to FIG. 2, the operation when the pipe cleaning device 14 is reused as a supercooling heat exchanger during normal cooling operation will be described.
By switching the operation mode of the control device 35 in the pipe cleaning device 14 to the normal cooling operation mode, the electromagnetic valves 21a and 21b and the first pressure reducing means 16 are closed, and the pressure adjusting valve 18 and the on-off valves 22b and 22c. Is closed, and the refrigerant does not flow through this portion, that is, the mineral oil recovery container 19 and the foreign matter adsorption means 20. Also in the use side unit group 102, the on-off valves 28a and 28b are closed, and the refrigerant is not circulated through these portions, that is, the bypass pipes 27a and 27b. Further, the on-off valves 22a and 22d are opened, and the second decompression means 17 is operated by the control device 35.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 105 dissipates heat to the outside air in the condenser 106 to be condensed and liquefied, and is stored in the receiver 107 and the liquid refrigerant flows into the high-pressure side of the refrigerant-refrigerant heat exchanger 15. Part of the liquid refrigerant that has flowed out of the high-pressure side of the refrigerant-refrigerant heat exchanger 15 is decompressed by the second decompression means 17, changes to a low-pressure gas-liquid two-phase state, and again the low-pressure of the refrigerant-refrigerant heat exchanger 15. The high-pressure side liquid refrigerant increases the degree of supercooling due to heat exchange with the high-pressure side liquid refrigerant, while the low-pressure side refrigerant evaporates to become a gas refrigerant and joins with the low-pressure gas refrigerant evaporated in the use-side unit 102. Then, the operation of sucking again into the compressor 105 is repeated. As a result, the difference in evaporation enthalpy that can be used in the use-side unit 102 is increased, and the refrigerant flow rate is increased by reducing the pressure loss on the low-pressure side, thereby improving the refrigeration capacity. Further, the refrigerant gas temperature on the compressor suction side decreases, and the discharge temperature rise of the compressor can be prevented.

このような動作を行うことにより、配管洗浄運転後に上記配管洗浄装置を取外しすることなく再利用できるため、取外しの作業工程を省くことができる。   By performing such an operation, the pipe cleaning apparatus can be reused without being removed after the pipe cleaning operation, so that the removal work process can be omitted.

続いて、図5を参照しながら洗浄作業時の工程を説明する。図5はこの発明の実施の形態1における作業フローである。
ステップS11においては、図1に示す冷媒回路において、液操作弁12を閉止し、圧縮機5を運転する。この運転により液管3、利用側ユニット2、ガス管4内にある冷媒はすべて熱源側ユニット1内の凝縮器6およびレシーバ7に回収される。
Next, the steps during the cleaning operation will be described with reference to FIG. FIG. 5 is a work flow according to the first embodiment of the present invention.
In step S11, the liquid operation valve 12 is closed and the compressor 5 is operated in the refrigerant circuit shown in FIG. By this operation, all the refrigerant in the liquid pipe 3, the use side unit 2, and the gas pipe 4 is recovered by the condenser 6 and the receiver 7 in the heat source side unit 1.

ステップS12では、熱源側ユニット1を新冷媒対応の熱源側ユニット101に交換するとともに、熱源側ユニット101と液管3およびガス管4の間に配管洗浄装置14を取り付ける。その状態での冷媒回路が図2である。一方、利用側ユニット2においては、新冷媒対応の利用側ユニット102に交換するとともに、末端の利用側ユニットに液配管とガス配管をバイパスする配管を取付け、複数の端末部にバイパス管27a、27bおよび開閉弁28a、28bが接続される。このバイパス管27a、27bを備えることにより、利用側ユニット102には洗浄冷媒を流通させずに洗浄運転可能となる。この作業後、ステップS13で冷凍装置内を真空引きする。さらにその後、ステップS14で新冷媒(例えばR404A)が充填される。   In step S <b> 12, the heat source side unit 1 is replaced with a new refrigerant compatible heat source side unit 101, and the pipe cleaning device 14 is attached between the heat source side unit 101, the liquid pipe 3, and the gas pipe 4. FIG. 2 shows the refrigerant circuit in this state. On the other hand, in the usage side unit 2, the usage side unit 102 corresponding to the new refrigerant is replaced, and a pipe that bypasses the liquid pipe and the gas pipe is attached to the terminal side usage side unit, and the bypass pipes 27 a and 27 b are connected to a plurality of terminal portions. And on-off valves 28a and 28b are connected. By providing the bypass pipes 27a and 27b, a cleaning operation can be performed without circulating the cleaning refrigerant in the use side unit 102. After this operation, the inside of the refrigeration apparatus is evacuated in step S13. Thereafter, in step S14, a new refrigerant (for example, R404A) is charged.

ステップS15では、前述の洗浄運転を行う。運転時間は数時間程度である。この洗浄運転により、液管3、ガス管4に滞留していた鉱油は洗浄装置14内の鉱油回収容器19に回収される。   In step S15, the above-described cleaning operation is performed. The operation time is about several hours. By this washing operation, the mineral oil staying in the liquid pipe 3 and the gas pipe 4 is recovered in the mineral oil recovery container 19 in the cleaning device 14.

ここで、図6に、ある冷凍サイクルにおける、洗浄運転時間と冷凍サイクル内の残鉱油量の関係を示す。図6より、この冷凍サイクルシステムでは洗浄運転を1時間以上行えば、サイクル内の残鉱油量がほぼ一定となることが判る。ただし、このデータはある1つの冷凍サイクルにおける結果であり、実際の市場では配管の取りまわし方法などにより大きく変化する可能性がある。そのため、洗浄運転は配管の取りまわしなどにあわせ、数時間程度運転を行う。   FIG. 6 shows the relationship between the washing operation time and the amount of residual mineral oil in the refrigeration cycle in a certain refrigeration cycle. From FIG. 6, it can be seen that in this refrigeration cycle system, if the washing operation is performed for 1 hour or more, the amount of residual mineral oil in the cycle becomes substantially constant. However, this data is a result of a certain refrigeration cycle, and in the actual market, there is a possibility that it will change greatly depending on the piping arrangement method and the like. For this reason, the cleaning operation is performed for several hours according to the piping arrangement.

ステップS16では、塩素化合物回収運転が行われる。これは、配管内にわずかに残留した異物、特に、圧縮機の潤滑に悪影響を及ぼす塩素化合物を、例えば活性炭を含む、異物吸着手段20により取り去る目的で行われる。このときの動作を図2を参照して説明する。   In step S16, a chlorine compound recovery operation is performed. This is performed for the purpose of removing foreign matters slightly remaining in the piping, particularly chlorine compounds that adversely affect the lubrication of the compressor, by the foreign matter adsorbing means 20 including, for example, activated carbon. The operation at this time will be described with reference to FIG.

この塩素化合物回収運転では、利用側ユニット102の開閉弁28a、28bを閉止し、通常の冷却運転を行う。そのときの動作は前述の通りである。一方、配管洗浄装置14では、この塩素化合物回収運転時に制御装置35の運転モードを塩化物回収運転モードへ切り替えることにより、電磁弁21a、21bを開放し、液冷媒の一部が異物吸着手段20へ流通するようにする。また、開閉弁22a、22dは開放され、開閉弁22b、22c、第1の膨張手段16および圧力調整弁18は閉止される。第2の膨張手段17は熱源側ユニット101より流入する高圧液冷媒の一部を減圧し、冷媒−冷媒熱交換器15によって、大部分の高圧液冷媒を冷却するように機能する。
なお、異物吸着手段20は、活性炭に限らず、例えばゼオライトや活性アルミナなど塩素化合物を吸着するものであればよい。
In this chlorine compound recovery operation, the on-off valves 28a and 28b of the use side unit 102 are closed, and a normal cooling operation is performed. The operation at that time is as described above. On the other hand, in the pipe cleaning device 14, the electromagnetic valve 21 a, 21 b is opened by switching the operation mode of the control device 35 to the chloride recovery operation mode during the chlorine compound recovery operation, and a part of the liquid refrigerant is the foreign matter adsorption means 20. To circulate. The on-off valves 22a and 22d are opened, and the on-off valves 22b and 22c, the first expansion means 16 and the pressure regulating valve 18 are closed. The second expansion means 17 functions to depressurize part of the high-pressure liquid refrigerant flowing from the heat source side unit 101 and cool most of the high-pressure liquid refrigerant by the refrigerant-refrigerant heat exchanger 15.
The foreign matter adsorbing means 20 is not limited to activated carbon, and may be anything that adsorbs a chlorine compound such as zeolite or activated alumina.

この塩素化合物回収運転は数時間から数十時間行われた後、電磁弁21a、21bが閉止され、異物吸着手段20は冷媒回路から切り離される。   After the chlorine compound recovery operation is performed for several hours to several tens of hours, the electromagnetic valves 21a and 21b are closed, and the foreign matter adsorbing means 20 is disconnected from the refrigerant circuit.

このステップS16で、洗浄工程は終了である。次のステップS17では、配管洗浄装置14内の制御装置35の運転モードを通常冷却運転モードへ切り替え、通常冷却運転を行う。運転時の動作は前述の通りである。なお、塩素化合物回収運転モードから通常冷却運転モードへの切り替えは塩素化合物回収運転モード開始後、数時間で切り替わるなど、タイマーなどにより自動的に切り替わるようにしても良い。   In step S16, the cleaning process is completed. In the next step S17, the operation mode of the control device 35 in the pipe cleaning device 14 is switched to the normal cooling operation mode, and the normal cooling operation is performed. The operation during operation is as described above. Note that switching from the chlorine compound recovery operation mode to the normal cooling operation mode may be performed automatically by a timer or the like, such as switching in several hours after the start of the chlorine compound recovery operation mode.

以上のように、この発明の配管洗浄方法においては、交換前の冷媒を高圧気液二相の状態で安定的に配管内を循環させるようにしているので、短時間で確実に配管を洗浄することができる。   As described above, in the pipe cleaning method of the present invention, since the refrigerant before replacement is stably circulated in the pipe in a high-pressure gas-liquid two-phase state, the pipe is reliably cleaned in a short time. be able to.

また、洗浄運転モードと通常冷却運転モードの2つの運転モードを設け、洗浄運転後に過冷却熱交換器として用いるため、冷凍サイクルの能力を向上させることができるとともに、洗浄運転終了後に配管洗浄装置を取外し、再度真空引きを行う手間が省け、作業工程を簡素化することができる。   In addition, since two operation modes, a cleaning operation mode and a normal cooling operation mode, are provided and used as a supercooling heat exchanger after the cleaning operation, the capacity of the refrigeration cycle can be improved, and the pipe cleaning device can be installed after the cleaning operation is completed. The work of removing and evacuating again can be saved, and the work process can be simplified.

また、利用側ユニットの末端をバイパスするようにしているので、利用側ユニット内を流通させずに安定的に洗浄冷媒を流通させることができる。   Further, since the end of the use side unit is bypassed, the cleaning refrigerant can be circulated stably without being circulated in the use side unit.

また、利用側ユニット間の圧力差を所定範囲内に保つ圧力差保持手段を設けたため、利用側ユニットの配管仕様によらず、洗浄運転時の冷凍サイクル動作を制御することができる。   In addition, since the pressure difference holding means for keeping the pressure difference between the usage-side units within a predetermined range is provided, the refrigeration cycle operation during the cleaning operation can be controlled regardless of the piping specifications of the usage-side unit.

実施の形態2.
以上の実施の形態1では、凝縮器が熱源側ユニット内に一体に収められている一体型冷凍装置における配管洗浄装置および配管洗浄方法について説明したが、実施の形態2においては、凝縮器が圧縮機を内蔵する熱源側ユニットと別置のような場合の配管洗浄装置および配管洗浄方法について説明する。
Embodiment 2. FIG.
In the first embodiment described above, the pipe cleaning device and the pipe cleaning method in the integrated refrigeration apparatus in which the condenser is integrally housed in the heat source side unit have been described. However, in the second embodiment, the condenser is compressed. A pipe cleaning apparatus and a pipe cleaning method in a case where the apparatus is installed separately from the heat source side unit incorporating the machine will be described.

図7は、上記のような場合の、冷凍サイクル装置を示す冷媒回路図である。図1と同一符号は説明を省略する。29は室外に設置されるリモート凝縮器であり、高圧ガス管30および戻り液管31で室内に設置される熱源側ユニット1に接続されている。6は凝縮器、32は送風機である。熱源側ユニット1にはリモート凝縮器29との接続ポート33、34が備えられている。   FIG. 7 is a refrigerant circuit diagram showing the refrigeration cycle apparatus in the above case. The description of the same reference numerals as those in FIG. 1 is omitted. Reference numeral 29 denotes a remote condenser installed outside the room, which is connected to the heat source side unit 1 installed indoors by a high-pressure gas pipe 30 and a return liquid pipe 31. 6 is a condenser and 32 is a blower. The heat source side unit 1 is provided with connection ports 33 and 34 to the remote condenser 29.

この実施の形態2の動作は前述の図1で説明したものと全く同一であるため説明を省略する。このような実施の形態2においては、高圧ガス管30、戻り液管31も洗浄対象となる。   Since the operation of the second embodiment is exactly the same as that described with reference to FIG. 1, description thereof will be omitted. In such a second embodiment, the high-pressure gas pipe 30 and the return liquid pipe 31 are also to be cleaned.

この実施の形態2における配管洗浄装置14と接続された状態の冷媒回路図を図8に示す。この実施の形態2においても、まず熱源側ユニット1を新冷媒対応の熱源側ユニット101に、利用側ユニット2を新冷媒対応の利用側ユニット102へ交換するとともに、圧縮機105の吐出側接続ポート133は配管洗浄装置14の接続ポート23に繋がれ、また、配管洗浄装置14の液出口ポート24が高圧ガス管30に接続され、戻り液管31は液管3に接続される。また、リモート凝縮器29も新冷媒対応リモート凝縮器129に交換する。   FIG. 8 shows a refrigerant circuit diagram in a state connected to the pipe cleaning device 14 in the second embodiment. Also in the second embodiment, first, the heat source side unit 1 is replaced with a heat source side unit 101 corresponding to a new refrigerant, the usage side unit 2 is replaced with a usage side unit 102 corresponding to a new refrigerant, and the discharge side connection port of the compressor 105 is also replaced. 133 is connected to the connection port 23 of the pipe cleaning device 14, the liquid outlet port 24 of the pipe cleaning device 14 is connected to the high-pressure gas pipe 30, and the return liquid pipe 31 is connected to the liquid pipe 3. The remote condenser 29 is also replaced with a new refrigerant-compatible remote condenser 129.

この冷媒回路において以下のような洗浄運転を行う。圧縮機105から出た吐出ガスは冷媒−冷媒熱交換器15によって凝縮液化し、高圧ガス管30、戻り液管31、液管3、バイパス管27a、27b、ガス管4、というように流通する。すなわち、洗浄対象である高圧ガス管30、戻り液管31、液管3、ガス管4には凝縮液化した冷媒が流通することとなり、それら配管内に残留する鉱油を引き剥がしながら洗浄する。   In this refrigerant circuit, the following cleaning operation is performed. The discharge gas discharged from the compressor 105 is condensed and liquefied by the refrigerant-refrigerant heat exchanger 15 and circulates as a high-pressure gas pipe 30, a return liquid pipe 31, a liquid pipe 3, bypass pipes 27a and 27b, and a gas pipe 4. . That is, the condensed and liquefied refrigerant flows through the high-pressure gas pipe 30, the return liquid pipe 31, the liquid pipe 3, and the gas pipe 4 to be cleaned, and cleaning is performed while stripping the mineral oil remaining in the pipes.

この実施の形態2であるリモート凝縮器を備えた場合の配管洗浄方法においては、この洗浄運転終了後、配管洗浄装置14を図9に示すような位置に繋ぎ替える工程を有する。この工程では、液操作弁112と液管3の間に配管洗浄装置14の高圧側を接続する。また、高圧ガス管30は圧縮機105の吐出側へ、戻り配管31はレシーバ107入口に接続される。   In the pipe cleaning method when the remote condenser according to the second embodiment is provided, the pipe cleaning apparatus 14 is connected to a position as shown in FIG. 9 after the end of the cleaning operation. In this step, the high pressure side of the pipe cleaning device 14 is connected between the liquid operation valve 112 and the liquid pipe 3. The high-pressure gas pipe 30 is connected to the discharge side of the compressor 105, and the return pipe 31 is connected to the receiver 107 inlet.

この後の異物吸着手段20に冷媒を流通させる塩素化合物回収運転、冷媒―冷媒熱交換器15を過冷却熱交換器として用いる通常冷却運転については実施の形態1と同様であるため、説明を省略する。   The subsequent chlorine compound recovery operation for circulating the refrigerant through the foreign matter adsorbing means 20 and the normal cooling operation using the refrigerant-refrigerant heat exchanger 15 as a supercooling heat exchanger are the same as those in the first embodiment, and thus description thereof is omitted. To do.

以上説明したように、この実施の形態2によれば、リモート凝縮器を有する冷凍サイクル装置においても、リモート凝縮器側接続配管、利用側接続配管の両者に凝縮液化した冷媒を流通させることができるので、短時間で確実に配管を洗浄することができる。   As described above, according to the second embodiment, in the refrigeration cycle apparatus having a remote condenser, the condensed and liquefied refrigerant can be circulated through both the remote condenser side connection pipe and the use side connection pipe. Therefore, it is possible to clean the pipe reliably in a short time.

また、利用側ユニットの末端をバイパスするようにしているので、利用側ユニットが温度式膨張弁を備えたものであっても、確実に洗浄冷媒を流通させることが可能である。   In addition, since the end of the use side unit is bypassed, the cleaning refrigerant can be reliably circulated even if the use side unit includes a temperature type expansion valve.

また、利用側ユニット間の圧力差を所定範囲内に保つ圧力差保持手段を設けたので、配管仕様によらず洗浄運転時の冷凍サイクル動作を制御することができる。   In addition, since the pressure difference holding means for keeping the pressure difference between the utilization side units within a predetermined range is provided, the refrigeration cycle operation during the cleaning operation can be controlled regardless of the piping specifications.

また、洗浄運転モードと通常冷却運転モードの2つの運転モードを設け、洗浄運転後に過冷却熱交換器として用いるため、冷凍サイクルの能力を向上させることができるとともに、洗浄運転終了後に配管洗浄装置を取外し、再度真空引きを行う手間が省け、作業工程を簡素化することができる。   In addition, since two operation modes, a cleaning operation mode and a normal cooling operation mode, are provided and used as a supercooling heat exchanger after the cleaning operation, the capacity of the refrigeration cycle can be improved, and the pipe cleaning device can be installed after the cleaning operation is completed. The work of removing and evacuating again can be saved, and the work process can be simplified.

この発明の活用例として、多数のショーケースが1台の冷凍機に接続されたスーパーマーケットの食品売場の冷凍サイクル装置の配管洗浄がある。長期間店舗を閉鎖することは不利益となるため、冷凍サイクル装置の交換作業を極めて短時間で行う必要があり、また、配管が天井内や床下などを複雑に配設されており、配管まで交換することが困難な場合に適している。   As an application example of the present invention, there is pipe cleaning of a refrigeration cycle apparatus of a food department in a supermarket in which a large number of showcases are connected to one refrigerator. It is disadvantageous to close the store for a long time, so it is necessary to replace the refrigeration cycle equipment in a very short time, and the piping is complicatedly arranged in the ceiling and under the floor. Suitable when it is difficult to replace.

この発明の実施の形態1を示す作動冷媒変更前の冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device before change of a working refrigerant which shows Embodiment 1 of this invention. この発明の実施の形態1を示す作動冷媒変更後の冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device after change of the operation refrigerant which shows Embodiment 1 of this invention. この発明の実施の形態1を示す洗浄運転時の冷媒状態を示すPh線図である。It is a Ph diagram which shows the refrigerant | coolant state at the time of the washing | cleaning driving | operation which shows Embodiment 1 of this invention. この発明の実施の形態1に示す圧力差保持手順の制御フローである。It is a control flow of the pressure difference holding | maintenance procedure shown in Embodiment 1 of this invention. この発明の実施の形態1を示す配管洗浄手順を示すフローチャートである。It is a flowchart which shows the piping washing | cleaning procedure which shows Embodiment 1 of this invention. この発明の実施の形態1を示す配管洗浄時間と冷凍サイクル内の残鉱油量との関係である。It is the relationship between the pipe washing time and the amount of residual mineral oil in the refrigeration cycle showing Embodiment 1 of the present invention. この発明の実施の形態2を示す作動冷媒変更前の冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating-cycle apparatus before the working refrigerant change which shows Embodiment 2 of this invention. この発明の実施の形態2を示す配管洗浄運転時の冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device at the time of piping washing operation which shows Embodiment 2 of this invention. この発明の実施の形態2を示す作動冷媒変更後の冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigeration cycle apparatus after the working refrigerant change which shows Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 熱源側ユニット、 2 利用側ユニット、
3 液管、 4 ガス管、
5 圧縮機、 6 凝縮器、
7 レシーバ、 8 アキュムレータ、
9 液電磁弁、 10 温度式膨張弁、
11 蒸発器、 12 液操作弁、
13 ガス操作弁、 14 配管洗浄装置、
15 冷媒−冷媒熱交換器、 16 第1の膨張手段、
17 第2の膨張手段、 18 圧力調整弁、
19 鉱油回収容器、 20 異物吸着手段
21a、21b 電磁弁、 22a、22b、22c、22d 開閉弁、
23 液入口ポート、 24 液出口ポート、
25 ガス入口ポート、 26 ガス出口ポート、
27a、27b バイパス管、 28a、28b 開閉弁
29 リモート凝縮器、 30 高圧ガス管、
31 戻り液管、 32 送風機、
33、34 接続ポート、 35 制御装置、
101 新冷媒対応熱源側ユニット、 102 新冷媒対応利用側ユニット、
105 新冷媒対応圧縮機、 106 新冷媒対応凝縮器、
107 新冷媒対応レシーバ、 108 新冷媒対応アキュムレータ、
109 新冷媒対応液電磁弁、 110 新冷媒対応温度式膨張弁、
111 新冷媒対応蒸発器、 112 新冷媒対応液操作弁、
113 新冷媒対応ガス操作弁、 129 新冷媒対応リモート凝縮器
133、134 新冷媒対応接続ポート
1 heat source side unit, 2 use side unit,
3 liquid pipes, 4 gas pipes,
5 Compressor, 6 Condenser,
7 receivers, 8 accumulators,
9 liquid solenoid valve, 10 temperature expansion valve,
11 Evaporator, 12 Liquid operation valve,
13 Gas operation valve, 14 Pipe cleaning device,
15 refrigerant-refrigerant heat exchanger, 16 first expansion means,
17 second expansion means, 18 pressure regulating valve,
19 Mineral oil recovery container, 20 Foreign matter adsorption means 21a, 21b Solenoid valve, 22a, 22b, 22c, 22d On-off valve,
23 liquid inlet port, 24 liquid outlet port,
25 gas inlet port, 26 gas outlet port,
27a, 27b Bypass pipe, 28a, 28b On-off valve 29 Remote condenser, 30 High pressure gas pipe,
31 return liquid pipe, 32 blower,
33, 34 connection port, 35 control device,
101 New refrigerant compatible heat source side unit, 102 New refrigerant compatible use side unit,
105 Compressor for new refrigerant, 106 Condenser for new refrigerant,
107 New refrigerant compatible receiver, 108 New refrigerant compatible accumulator,
109 New refrigerant compatible liquid solenoid valve, 110 New refrigerant compatible temperature expansion valve,
111 New refrigerant compatible evaporator, 112 New refrigerant compatible liquid operation valve,
113 New refrigerant compatible gas operation valve, 129 New refrigerant compatible remote condenser 133, 134 New refrigerant compatible connection port

Claims (6)

圧縮機、熱交換器を備える熱源側ユニットと、開閉弁、温度式膨張弁、熱交換器を備える1台もしくは複数台の利用側ユニットと、それらを接続する配管により冷媒回路を形成する冷凍サイクル装置の作動冷媒を変更する際に、HFC、HCなどの冷媒を洗浄媒体とし、新冷媒対応の熱源側ユニットを洗浄媒体搬送手段として用いるとともに、冷媒−冷媒熱交換器、減圧手段および異物回収容器などを備える配管洗浄装置により気液二相状態の冷媒で配管内の洗浄を行う洗浄方法に用いられるものであって、前記1台もしくは複数台の利用側ユニットのそれぞれに分岐された配管の末端を連通するバイパス管およびこのバイパス管を開閉する開閉弁を備えたことを特徴とする配管洗浄装置。   A refrigeration cycle that forms a refrigerant circuit by a heat source side unit including a compressor and a heat exchanger, one or more use side units including an on-off valve, a temperature expansion valve, and a heat exchanger, and a pipe connecting them. When changing the working refrigerant of the apparatus, a refrigerant such as HFC or HC is used as a cleaning medium, a heat source side unit corresponding to the new refrigerant is used as a cleaning medium transport unit, and a refrigerant-refrigerant heat exchanger, a decompression unit, and a foreign matter collection container End of the pipe branched into each of the one or a plurality of usage-side units is used in a cleaning method for cleaning the inside of the pipe with a gas-liquid two-phase refrigerant by a pipe cleaning apparatus comprising A pipe cleaning apparatus comprising a bypass pipe communicating with the pipe and an on-off valve for opening and closing the bypass pipe. 配管洗浄運転モードと、配管洗浄後の通常冷却運転モードとに切り替える制御装置を備えたことを特徴とする請求項1記載の配管洗浄装置。   The pipe cleaning apparatus according to claim 1, further comprising a control device that switches between a pipe cleaning operation mode and a normal cooling operation mode after pipe cleaning. 配管洗浄装置は、配管洗浄運転モード後の通常冷却運転モードでは過冷却熱交換器として冷凍サイクル内で利用可能であることを特徴とする請求項2記載の配管洗浄装置。   The pipe cleaning apparatus according to claim 2, wherein the pipe cleaning apparatus can be used in a refrigeration cycle as a supercooling heat exchanger in a normal cooling operation mode after the pipe cleaning operation mode. 配管洗浄装置は、冷媒−冷媒熱交換器の高圧側の一端から分岐され、減圧手段を介して低圧側入口に合流する経路を備えたことを特徴とする請求項3記載の配管洗浄装置。   4. The pipe cleaning apparatus according to claim 3, wherein the pipe cleaning apparatus includes a path branched from one end on the high pressure side of the refrigerant-refrigerant heat exchanger and joined to the low pressure side inlet via the pressure reducing means. 配管洗浄装置内の高圧側と低圧側の圧力差を所定の圧力差以下に保持する圧力差保持手段を備えたことを特徴とする請求項1記載の配管洗浄装置。   2. The pipe cleaning apparatus according to claim 1, further comprising pressure difference holding means for holding the pressure difference between the high pressure side and the low pressure side within the pipe cleaning apparatus at a predetermined pressure difference or less. 圧力差保持手段は、高圧側と低圧側を圧力調整弁等により連通させ、高圧圧力側と低圧圧力側を検知して、その圧力差が所定の圧力差を保持するように制御することを特徴とする請求項5記載の配管洗浄装置。   The pressure difference holding means communicates the high pressure side and the low pressure side with a pressure regulating valve or the like, detects the high pressure side and the low pressure side, and controls the pressure difference to maintain a predetermined pressure difference. The pipe cleaning apparatus according to claim 5.
JP2008250051A 2008-09-29 2008-09-29 Pipe cleaning device Expired - Lifetime JP4803234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008250051A JP4803234B2 (en) 2008-09-29 2008-09-29 Pipe cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008250051A JP4803234B2 (en) 2008-09-29 2008-09-29 Pipe cleaning device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004052894A Division JP4295136B2 (en) 2004-02-27 2004-02-27 Piping cleaning device and piping cleaning method

Publications (2)

Publication Number Publication Date
JP2008309474A true JP2008309474A (en) 2008-12-25
JP4803234B2 JP4803234B2 (en) 2011-10-26

Family

ID=40237227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008250051A Expired - Lifetime JP4803234B2 (en) 2008-09-29 2008-09-29 Pipe cleaning device

Country Status (1)

Country Link
JP (1) JP4803234B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105386960A (en) * 2015-12-14 2016-03-09 大连圣鼎工业装备有限公司 Intelligent air compressor waste heat recovery unit with scale removal device
WO2017195248A1 (en) * 2016-05-09 2017-11-16 三菱電機株式会社 Refrigeration device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534025A (en) * 1991-07-24 1993-02-09 Hitachi Ltd Gas compression device
JP2001280763A (en) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp Refrigerating and air conditioning system
JP2002228306A (en) * 2001-01-30 2002-08-14 Mitsubishi Electric Corp Refrigeration cycle device and method of operating the same
JP2002357377A (en) * 2001-03-28 2002-12-13 Mitsubishi Electric Corp Device and method for cleaning piping
JP2003042603A (en) * 2001-08-02 2003-02-13 Mitsubishi Electric Corp Refrigerating cycle apparatus, method for manufacturing the same and method for operating the same
JP2004003696A (en) * 2002-05-30 2004-01-08 Yanmar Co Ltd Engine driven heat pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534025A (en) * 1991-07-24 1993-02-09 Hitachi Ltd Gas compression device
JP2001280763A (en) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp Refrigerating and air conditioning system
JP2002228306A (en) * 2001-01-30 2002-08-14 Mitsubishi Electric Corp Refrigeration cycle device and method of operating the same
JP2002357377A (en) * 2001-03-28 2002-12-13 Mitsubishi Electric Corp Device and method for cleaning piping
JP2003042603A (en) * 2001-08-02 2003-02-13 Mitsubishi Electric Corp Refrigerating cycle apparatus, method for manufacturing the same and method for operating the same
JP2004003696A (en) * 2002-05-30 2004-01-08 Yanmar Co Ltd Engine driven heat pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105386960A (en) * 2015-12-14 2016-03-09 大连圣鼎工业装备有限公司 Intelligent air compressor waste heat recovery unit with scale removal device
WO2017195248A1 (en) * 2016-05-09 2017-11-16 三菱電機株式会社 Refrigeration device
JPWO2017195248A1 (en) * 2016-05-09 2018-11-08 三菱電機株式会社 Refrigeration equipment
US11131490B2 (en) 2016-05-09 2021-09-28 Mitsubishi Electric Corporation Refrigeration device having condenser unit connected to compressor unit with on-site pipe interposed therebetween and remote from the compressor unit

Also Published As

Publication number Publication date
JP4803234B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
EP1645818B1 (en) Air-conditioner with a dual-refrigerant circuit
US9080778B2 (en) Air-conditioning hot-water supply combined system
JP2007285699A (en) Liquid refrigerant accumulation preventive device and method for air conditioner
EP3093586B1 (en) Air conditioning device
JP5762441B2 (en) Refrigeration cycle equipment
JP2008249219A (en) Refrigerating air conditioner
JP5049889B2 (en) Refrigeration equipment
JP4211847B2 (en) Refrigeration equipment
JP4803234B2 (en) Pipe cleaning device
JP4289901B2 (en) Oil recovery method for air conditioner and air conditioner
JPWO2015125252A1 (en) Refrigeration cycle equipment
JP2009228972A (en) Refrigerating device
JP4063229B2 (en) Piping cleaning method and piping cleaning device
JP4295136B2 (en) Piping cleaning device and piping cleaning method
JP2010139098A (en) Refrigerating cycle device and water heater having the same
JP2008190790A (en) Refrigerating device
AU2007225990B2 (en) Method for the recovery of refrigeration oil
JP2005049057A (en) Refrigerating cycle device
KR101999391B1 (en) refrigerant pipe cleaning equipment and cleaning method using the same
JP4295135B2 (en) Piping cleaning device and piping cleaning method
WO2016203507A1 (en) Refrigeration cycle device
JP2003021436A (en) Pipeline cleaning method, air conditioner and renewal method thereof
GB2541607A (en) Refrigeration cycle device
JP4760119B2 (en) Pipe cleaning method and refrigeration cycle apparatus
JP2007232244A (en) Replacement kit for cleaning piping, its use method, and refrigerating cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

R150 Certificate of patent or registration of utility model

Ref document number: 4803234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term