JP2008308387A - Method for producing titanosilicate - Google Patents

Method for producing titanosilicate Download PDF

Info

Publication number
JP2008308387A
JP2008308387A JP2007160640A JP2007160640A JP2008308387A JP 2008308387 A JP2008308387 A JP 2008308387A JP 2007160640 A JP2007160640 A JP 2007160640A JP 2007160640 A JP2007160640 A JP 2007160640A JP 2008308387 A JP2008308387 A JP 2008308387A
Authority
JP
Japan
Prior art keywords
titanium
titanosilicate
mww
compound
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007160640A
Other languages
Japanese (ja)
Other versions
JP5075498B2 (en
Inventor
Miyuki Oikawa
幸 老川
Masami Fukao
正美 深尾
Takashi Tatsumi
敬 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Sumitomo Chemical Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Tokyo Institute of Technology NUC filed Critical Sumitomo Chemical Co Ltd
Priority to JP2007160640A priority Critical patent/JP5075498B2/en
Publication of JP2008308387A publication Critical patent/JP2008308387A/en
Application granted granted Critical
Publication of JP5075498B2 publication Critical patent/JP5075498B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a titanosilicate having MWW structure and a higher content ratio of 4-coordinated titanium to total titanium in the titanosilicate. <P>SOLUTION: The method for producing the titanosilicate having MWW structure includes: bringing a mixture of a silicon compound, a titanium compound, a boron compound, water and a structure directing agent into a hydrothermal synthesis reaction, subjecting obtained crystals to an acid treatment; and firing these, wherein the acid treatment is carried out at 0-75°C for 1-48 h. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エポキシ化やオキシム化等の酸化反応用の触媒等として有用なMWW構造を有するチタノシリケートの製造方法に関する。   The present invention relates to a method for producing a titanosilicate having an MWW structure that is useful as a catalyst for oxidation reactions such as epoxidation and oximation.

エポキシ化やオキシム化等の酸化反応用の触媒の一つとして、MWW構造を有するチタノシリケートが知られている。そして、一般に、前記チタノシリケートにおいて、触媒活性点として作用するのは、主に4配位チタンであり、チタノシリケート中の全チタンに対する4配位チタンの含有比率が高いほど、エポキシ化やオキシム化等の酸化反応に対する触媒性能が高くなることが知られている(非特許文献1参照)。   As one of catalysts for oxidation reactions such as epoxidation and oximation, titanosilicate having an MWW structure is known. In general, it is mainly tetracoordinate titanium that acts as a catalytic active site in the titanosilicate. The higher the content ratio of tetracoordinate titanium to the total titanium in the titanosilicate, the more epoxidation and It is known that the catalytic performance for an oxidation reaction such as oximation is improved (see Non-Patent Document 1).

かかるチタノシリケートの製造方法としては、ケイ素化合物、チタン化合物、ホウ素化合物、水及び構造規定剤の混合物を水熱合成反応に付し、得られた結晶を100℃で20時間酸処理した後、焼成する方法が提案されている(非特許文献1参照)。   As a method for producing such titanosilicate, a mixture of a silicon compound, a titanium compound, a boron compound, water and a structure directing agent is subjected to a hydrothermal synthesis reaction, and the obtained crystal is acid-treated at 100 ° C. for 20 hours, A method of firing has been proposed (see Non-Patent Document 1).

ケミストリー・レターズ(Chemistry Letters)、(日本)、2000年、p.774−775Chemistry Letters, (Japan), 2000, p. 774-775

しかしながら、上記方法により製造されたチタノシリケートにおいては、4配位チタンの含有比率は未だ満足しうるレベルではなかった。   However, in the titanosilicate produced by the above method, the content ratio of tetracoordinate titanium is not yet satisfactory.

そこで、本発明の目的は、チタノシリケート中の全チタンに対する4配位チタンの含有比率がより高いMWW構造を有するチタノシリケートの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a titanosilicate having an MWW structure in which the content ratio of tetracoordinate titanium to the total titanium in the titanosilicate is higher.

本発明者等は、前記課題を解決するべく鋭意検討を行った。その結果、ケイ素化合物、チタン化合物、ホウ素化合物、水及び構造規定剤の混合物を水熱合成反応に付して得られた結晶を酸処理する際、かかる酸処理を従来よりも低い特定温度(具体的には、0〜75℃)で特定時間(具体的には、1〜48時間)行うことにより、上記目的を達成できることを見出し、本発明を完成するに至った。   The present inventors have intensively studied to solve the above-mentioned problems. As a result, when a crystal obtained by subjecting a mixture of a silicon compound, a titanium compound, a boron compound, water, and a structure-directing agent to a hydrothermal synthesis reaction is acid-treated, the acid treatment is performed at a specific temperature (specifically lower) Specifically, the inventors have found that the above-mentioned object can be achieved by performing the reaction at 0 to 75 ° C. for a specific time (specifically, 1 to 48 hours), and have completed the present invention.

すなわち、本発明は、ケイ素化合物、チタン化合物、ホウ素化合物、水及び構造規定剤の混合物を水熱合成反応に付し、得られた結晶を酸処理した後、焼成することによりMWW構造を有するチタノシリケートを製造する方法であって、前記酸処理を0〜75℃で1〜48時間行うことを特徴とするチタノシリケートの製造方法を提供するものである。   That is, the present invention relates to a tita having an MWW structure by subjecting a mixture of a silicon compound, a titanium compound, a boron compound, water and a structure-directing agent to a hydrothermal synthesis reaction, subjecting the obtained crystals to acid treatment, and firing. A method for producing a titanosilicate, wherein the acid treatment is performed at 0 to 75 ° C. for 1 to 48 hours.

本発明によれば、チタノシリケート中の全チタンに対する4配位チタンの含有比率がより高いMWW構造を有するチタノシリケートを製造することができる、という効果が得られる。   According to the present invention, it is possible to produce a titanosilicate having an MWW structure in which the content ratio of tetracoordinate titanium to the total titanium in the titanosilicate is higher.

本発明のチタノシリケートの製造方法は、ケイ素化合物、チタン化合物、ホウ素化合物、水及び構造規定剤の混合物を水熱合成反応に付し、得られた結晶を酸処理した後、焼成するものである。   The method for producing a titanosilicate of the present invention is a method in which a mixture of a silicon compound, a titanium compound, a boron compound, water and a structure directing agent is subjected to a hydrothermal synthesis reaction, and the resulting crystal is subjected to an acid treatment and then baked. is there.

前記ケイ素化合物としては、例えば、テトラエチルオルソシリケートのようなテトラアルキルオルソシリケート、シリカ(ヒュームドシリカ)等が挙げられる。   Examples of the silicon compound include tetraalkyl orthosilicate such as tetraethyl orthosilicate, silica (fumed silica), and the like.

前記チタン化合物としては、例えば、テトラ−n−ブチルオルソチタネートのようなテトラアルキルオルソチタネート、ペルオキシチタン酸テトラ−n−ブチルアンモニウムのようなペルオキシチタン酸塩、ハロゲン化チタン等が挙げられる。
前記ホウ素化合物としては、例えば、ホウ酸、無水ホウ酸等が挙げられる。
Examples of the titanium compound include tetraalkyl orthotitanates such as tetra-n-butyl orthotitanate, peroxy titanates such as tetra-n-butyl ammonium peroxytitanate, and titanium halides.
Examples of the boron compound include boric acid and anhydrous boric acid.

前記構造規定剤は、層状構造を形成するためのテンプレートとして用いられるものであり、例えば、ピペリジン、ヘキサメチレンイミン等の従来公知の構造規定剤が使用できる。   The structure directing agent is used as a template for forming a layered structure. For example, conventionally known structure directing agents such as piperidine and hexamethyleneimine can be used.

前記各原材料の使用割合は、ケイ素化合物中のケイ素を基準にして、チタン化合物はチタンとして0.01〜0.1モル倍であり、ホウ素化合物はホウ素として0.1〜2モル倍であり、水は3〜50モル倍であり、構造規定剤は0.3〜3モル倍であることが好ましい。特に、チタン化合物の使用量が、該チタン化合物中のチタン基準で、前記ケイ素化合物中のケイ素1モルに対して0.05〜0.10モルであることが、触媒活性の点で好ましい。   The use ratio of each raw material is based on silicon in the silicon compound, the titanium compound is 0.01 to 0.1 mol times as titanium, the boron compound is 0.1 to 2 mol times as boron, Water is preferably 3 to 50 mole times, and the structure directing agent is preferably 0.3 to 3 mole times. In particular, the amount of the titanium compound used is preferably 0.05 to 0.10 mol in terms of catalyst activity with respect to 1 mol of silicon in the silicon compound, based on the titanium in the titanium compound.

水熱合成とは、高温の水とくに高温高圧の水の存在の下に行われる物質の合成および結晶成長法をいい(「岩波 理化学辞典」、第4版、株式会社岩波書店、1987年、p.647参照)をいい、具体的には、前記各原材料を混合し、オートクレーブ中、自圧下に100〜200℃程度の温度で加熱して、数時間〜数日間、攪拌することにより行われる。   Hydrothermal synthesis refers to the synthesis and crystal growth method of substances carried out in the presence of high-temperature water, especially high-temperature and high-pressure water ("Iwanami Physical and Chemical Dictionary", 4th edition, Iwanami Shoten, 1987, p. Specifically, the raw materials are mixed, heated in an autoclave at a temperature of about 100 to 200 ° C. under a self-pressure, and stirred for several hours to several days.

水熱合成反応を行うに際し、前記各原材料の混合方法は、特に制限されず、例えば、全ての原材料を一括して混合し均一に攪拌してから水熱合成反応に供してもよいし(一括添加法)、一部の原材料を混合し均一に攪拌して予め水熱合成反応を行ったのちに、得られた反応液に残部の原材料を添加して均一に攪拌して水熱合成反応に供するようにしてもよい(2段添加法)。好ましくは、後者の2段添加法がよく、特に、少なくともチタン化合物を除く原材料を混合し均一に攪拌して予め水熱合成反応を行ったのちに、チタン化合物を含む残部の原材料を添加して均一に攪拌して水熱合成反応に供するようにすることが好ましい。このように、チタン化合物を除く原材料で先に結晶化させることにより、チタン化合物が結晶化を阻害して反応混合物が粘調になるのを回避することができる。また、一括添加法、2段添加法いずれの場合も、液体である原材料を先に混合した後に固体である原材料を混合することが、均一に攪拌でき、得られたチタノシリケートにおいてチタンの偏りが生じるのを防ぐことができる点で好ましい。   When performing the hydrothermal synthesis reaction, the mixing method of the raw materials is not particularly limited. For example, all the raw materials may be mixed together and stirred uniformly before being used for the hydrothermal synthesis reaction ( Addition method), after mixing some raw materials and stirring uniformly to carry out hydrothermal synthesis reaction in advance, add the remaining raw materials to the resulting reaction solution and stirring uniformly for hydrothermal synthesis reaction It may be provided (two-stage addition method). Preferably, the latter two-stage addition method is preferable. In particular, after the raw materials excluding at least the titanium compound are mixed and stirred uniformly to perform the hydrothermal synthesis in advance, the remaining raw material containing the titanium compound is added. It is preferable to uniformly stir the mixture for the hydrothermal synthesis reaction. Thus, by crystallizing first with the raw material excluding the titanium compound, it can be avoided that the titanium compound inhibits crystallization and the reaction mixture becomes viscous. Moreover, in both the batch addition method and the two-stage addition method, mixing the raw material that is liquid first and then mixing the raw material that is solid can uniformly stir, and in the obtained titanosilicate, the bias of titanium Is preferable in that it can be prevented from occurring.

前記水熱合成反応により得られる結晶は、層状チタノシリケートである。この層状チタノシリケートの層構造は、具体的には、X線回折パターンにおける001面ないし002面のピークの存在により、確認することができる(例えば、前記非特許文献1のほか、第33回石油・石油化学討論会講演要旨;触媒、2001年、第43巻、p158−160;ケミカル・コミュニケーションズ(Chemical Communications)(英国)、2002年、p1026−1027;触媒、2002年、第44巻、p468−470;等参照)。そして、この層状チタノシリケートの層構造は、焼成により、結晶シートの層間脱水縮合が生じて三次元結晶構造が形成されることで、MWW構造に変換される。この構造変換は、具体的には、X線回折パターンにおいて、前記001面ないし002面のピークが消失することにより確認することができる(前記各文献参照)。   The crystal obtained by the hydrothermal synthesis reaction is a layered titanosilicate. Specifically, the layer structure of the layered titanosilicate can be confirmed by the presence of a peak on the 001 plane to the 002 plane in the X-ray diffraction pattern (for example, the 33rd in addition to Non-Patent Document 1). Summary of Petroleum and Petrochemical Discussion Meeting; Catalyst, 2001, 43, p158-160; Chemical Communications (UK), 2002, p1026-1027; Catalyst, 2002, 44, p468 -470; etc.). Then, the layer structure of the layered titanosilicate is converted into an MWW structure by firing the interlayer dehydration condensation of the crystal sheet to form a three-dimensional crystal structure. Specifically, this structural conversion can be confirmed by the disappearance of the 001 to 002 plane peaks in the X-ray diffraction pattern (see the above-mentioned documents).

前記水熱合成反応により得られた結晶には、特定条件で酸処理が施される。かかる酸処理を行うことにより、チタノシリケート骨格に導入されたホウ素および骨格外のチタンを除去することができる。   The crystals obtained by the hydrothermal synthesis reaction are subjected to acid treatment under specific conditions. By performing such acid treatment, boron introduced into the titanosilicate skeleton and titanium outside the skeleton can be removed.

前記酸処理は、0〜75℃で1〜48時間行うことが重要である。これにより、4配位チタンの含有比率が高いチタノシリケートを得ることができる。酸処理温度は、好ましくは50〜70℃とするのがよい。なお、ここで言う酸処理温度は、反応液の温度(内温)を意味するのであるが、測定された反応液の温度が前記範囲内であっても、反応液が接する反応器表面の温度が高温であると、局所的に反応液の温度が上がり、得られたチタノシリケートの触媒活性が低下するおそれがあるので、加熱媒体の温度(例えば、オイルバス等の設定温度)は100℃以下に制御することが望ましい。他方、酸処理時間は、好ましくは1〜24時間、より好ましくは1〜8時間とするのがよい。   It is important that the acid treatment is performed at 0 to 75 ° C. for 1 to 48 hours. Thereby, titanosilicate having a high content ratio of tetracoordinated titanium can be obtained. The acid treatment temperature is preferably 50 to 70 ° C. The acid treatment temperature mentioned here means the temperature (inner temperature) of the reaction solution, but even if the measured reaction solution temperature is within the above range, the temperature of the reactor surface in contact with the reaction solution. If the temperature is high, the temperature of the reaction solution locally increases and the catalytic activity of the resulting titanosilicate may be reduced, so the temperature of the heating medium (for example, the set temperature of the oil bath, etc.) is 100 ° C. It is desirable to control the following. On the other hand, the acid treatment time is preferably 1 to 24 hours, more preferably 1 to 8 hours.

前記酸処理に用いることができる酸としては、例えば、硝酸、硫酸、炭酸、リン酸のような無機酸、ギ酸、酢酸のような有機酸が挙げられる。これらの中でも特に、硝酸、硫酸が好ましい。酸の使用量は、特に制限されるものではなく、チタノシリケート骨格に導入されたホウ素および骨格外のチタンを充分に除去できる範囲で適宜設定すればよい。   Examples of the acid that can be used for the acid treatment include inorganic acids such as nitric acid, sulfuric acid, carbonic acid, and phosphoric acid, and organic acids such as formic acid and acetic acid. Of these, nitric acid and sulfuric acid are particularly preferable. The amount of acid used is not particularly limited, and may be set as appropriate as long as boron introduced into the titanosilicate skeleton and titanium outside the skeleton can be sufficiently removed.

前記酸処理後の結晶(層状チタノシリケート)には、焼成が施される。焼成条件は、特に制限されるものではなく、例えば、200〜700℃程度の温度で1〜24時間程度加熱すればよい。   The acid-treated crystal (layered titanosilicate) is baked. The firing conditions are not particularly limited, and may be heated at a temperature of about 200 to 700 ° C. for about 1 to 24 hours.

前記焼成は、通常、結晶(層状チタノシリケート)を含む酸処理後の反応液から結晶を分離し、必要に応じて、洗浄、乾燥を施した後に行われる。このとき、分離、洗浄および乾燥の条件や方法は、特に制限されるものではなく、通常の条件や方法に従い行うことができる。例えば、濾過により分離し、濾残を水により洗液のpHが4以上になる程度まで洗浄し、50〜150℃で1〜24時間程度乾燥すればよい。また、乾燥をスプレードライヤーを用いて行うと、乾燥と同時に、粒径1〜1000μm程度の粒子に成形することができる点で有利である。なお、このような分離、洗浄および乾燥は、必要に応じて、前記酸処理の前に、水熱合成反応により得られた結晶に対して行うこともできる。   The calcination is usually carried out after separating the crystals from the acid-treated reaction solution containing the crystals (layered titanosilicate) and, if necessary, washing and drying. At this time, the conditions and methods of separation, washing and drying are not particularly limited, and can be performed according to ordinary conditions and methods. For example, it may be separated by filtration, the filter residue may be washed with water until the pH of the washing solution becomes 4 or more, and dried at 50 to 150 ° C. for about 1 to 24 hours. Further, when drying is performed using a spray dryer, it is advantageous in that it can be formed into particles having a particle diameter of about 1 to 1000 μm simultaneously with drying. Such separation, washing and drying can be performed on the crystals obtained by the hydrothermal synthesis reaction before the acid treatment, if necessary.

本発明の製造方法で得られるチタノシリケートは、MWW構造を有する結晶性チタノシリケートであり(以下、MWW構造を有する結晶性チタノシリケートを「Ti−MWW」と称することがある)、ここで、MWWとは、国際ゼオライト学会〔International Zeolite Association(IZA)〕が定めるゼオライトの構造コードの1つである。なお、MWW構造を有する化合物の具体例としては、MCM−22、SSZ−25、ITQ−1、ERB−1、PSH−3等が挙げられる。   The titanosilicate obtained by the production method of the present invention is a crystalline titanosilicate having an MWW structure (hereinafter, the crystalline titanosilicate having an MWW structure may be referred to as “Ti-MWW”). MWW is one of the structure codes of zeolite defined by the International Zeolite Association (IZA). Specific examples of the compound having an MWW structure include MCM-22, SSZ-25, ITQ-1, ERB-1, and PSH-3.

ここで言うチタノシリケートとは、骨格を構成する元素として、チタン、ケイ素及び酸素を含むものであり、実質的にチタン、ケイ素及び酸素のみから骨格が構成されるものであってもよいし、骨格を構成する元素としてさらにホウ素、アルミニウム、ガリウム、鉄、クロム等、チタン、ケイ素及び酸素以外の元素を含むものであってもよい。   The titanosilicate referred to here includes titanium, silicon and oxygen as elements constituting the skeleton, and the skeleton may be substantially composed of only titanium, silicon and oxygen, An element other than titanium, silicon, and oxygen, such as boron, aluminum, gallium, iron, and chromium, may be further included as an element constituting the skeleton.

本発明の製造方法で得られるTi−MWWにおける、ケイ素に対するチタンの原子比(Ti/Si)は、通常0.005〜0.1、好ましくは0.01以上である。なお、このチタノシリケートがチタン、ケイ素及び酸素以外の元素を含む場合、ケイ素に対する含有元素の原子比は、通常0.05以下、好ましくは0.02以下である。また、酸素は、酸素以外の各元素の原子比及び酸化数に対応して存在しうる。かかるチタノシリケートの典型的な組成は、ケイ素を基準(=1)として、次式で示すことができる。
SiO2・xTiO2・yMOn/2
(式中、Mはケイ素、チタン及び酸素以外の少なくとも1種の元素を表し、nは該元素の酸化数であり、xは0.005〜0.1であり、yは0〜0.05である。)
In the Ti-MWW obtained by the production method of the present invention, the atomic ratio of titanium to silicon (Ti / Si) is usually 0.005 to 0.1, preferably 0.01 or more. In addition, when this titanosilicate contains elements other than titanium, silicon, and oxygen, the atomic ratio of the contained element with respect to silicon is 0.05 or less normally, Preferably it is 0.02 or less. Moreover, oxygen can exist corresponding to the atomic ratio and oxidation number of each element other than oxygen. A typical composition of such titanosilicate can be represented by the following formula with silicon as the reference (= 1).
SiO 2 xTiO 2 yMO n / 2
(In the formula, M represents at least one element other than silicon, titanium, and oxygen, n is the oxidation number of the element, x is 0.005 to 0.1, and y is 0 to 0.05. .)

本発明の製造方法で得られるTi−MWWに含まれるチタンには、4配位チタンとして存在するものと、6配位チタンとして存在するものがあり、これら全てのチタン総量がチタノシリケートに占める含有比率(全Ti含有率)は、通常0.4%以上、好ましくは1%以上である。また、このうち、チタノシリケート中の全チタンに対する4配位チタンの含有比率(4配位Tiの含有比率)は、通常50%以上、好ましくは80%以上、より好ましくは95%以上である。上述したように、酸化反応における触媒活性点として有効に作用するのは主に4配位チタンであり、本発明の製造方法で得られるTi−MWWは4配位チタンの含有比率が前記範囲に示すように極めて高いものであるので、例えばエポキシ化やオキシム化等の酸化反応に用いる触媒として優れた性能を発揮することが期待される。   Titanium contained in Ti-MWW obtained by the production method of the present invention includes those that exist as tetracoordinate titanium and those that exist as hexacoordinate titanium, and the total amount of all these titanium accounts for titanosilicate. The content ratio (total Ti content) is usually 0.4% or more, preferably 1% or more. Of these, the content ratio of tetracoordinate titanium to the total titanium in titanosilicate (content ratio of tetracoordinate Ti) is usually 50% or more, preferably 80% or more, more preferably 95% or more. . As described above, it is mainly tetracoordinate titanium that effectively acts as a catalyst active site in the oxidation reaction, and Ti-MWW obtained by the production method of the present invention has a content ratio of tetracoordinate titanium within the above range. Since it is extremely high as shown, for example, it is expected to exhibit excellent performance as a catalyst used in oxidation reactions such as epoxidation and oximation.

本発明の製造方法により得られたTi−MWWは、エポキシ化やオキシム化等の酸化反応における触媒として優れた触媒活性を発揮することが期待されるものである。例えば、このTi−MWWの存在下に、ケトンを過酸化物及びアンモニアによりアンモキシム化反応を行うことで、オキシムを収率良く製造することが期待できる。   Ti-MWW obtained by the production method of the present invention is expected to exhibit excellent catalytic activity as a catalyst in oxidation reactions such as epoxidation and oximation. For example, it can be expected that an oxime can be produced with high yield by performing an ammoximation reaction of a ketone with a peroxide and ammonia in the presence of Ti-MWW.

本発明の製造方法により得られたTi−MWWを触媒として用いる際には、バインダーを用いて又は用いずに、粒状やペレット状等に成形して使用してもよいし、担体に担持して使用してもよい。
本発明の製造方法により得られたTi−MWWを用いて、例えば、ケトンを過酸化物及びアンモニアによりアンモキシム化反応させてオキシムを製造する場合、触媒として用いるTi−MWWは、反応混合物の液相に懸濁させて固相として存在させるのがよく、その割合は、液相に対して通常0.1〜10重量%程度とするのがよい。また、Ti−MWWの触媒活性の低下を抑制すること等を目的として、シリカゲル、ケイ酸、結晶性シリカ等のチタノシリケート以外のケイ素化合物を共存させてもよい。
When Ti-MWW obtained by the production method of the present invention is used as a catalyst, it may be used in the form of particles or pellets, with or without a binder, or supported on a carrier. May be used.
When Ti-MWW obtained by the production method of the present invention is used to produce an oxime by, for example, a ketone being ammoximation-reacted with peroxide and ammonia, Ti-MWW used as a catalyst is a liquid phase of the reaction mixture. The solid phase is preferably present as a solid phase, and the ratio is usually about 0.1 to 10% by weight based on the liquid phase. In addition, for the purpose of suppressing a decrease in the catalytic activity of Ti-MWW, silicon compounds other than titanosilicates such as silica gel, silicic acid, and crystalline silica may coexist.

以下、実施例により本発明をより詳細に説明するが、本発明は、かかる実施例により限定されるものではない。
なお、各実施例および比較例で得られたチタノシリケート(Ti−MWW)の全Ti含有率(Ti−MWW中に占める全チタン総量の含有比率)および4配位Tiの含有比率(Ti−MWW中の全チタンに対する4配位チタンの含有比率)は、以下の方法で測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.
In addition, the total Ti content (content ratio of the total amount of all titanium in Ti-MWW) of the titanosilicate (Ti-MWW) obtained in each example and comparative example and the content ratio of tetracoordinated Ti (Ti- The content ratio of tetracoordinate titanium to the total titanium in MWW) was measured by the following method.

<全Ti含有率>
試料を白金皿に秤り取り、フッ化水素酸および硝酸を加え、加温して蒸発乾固させた後、炭酸ナトリウムおよびホウ酸を加えてバーナーで融解させ、得られた融解物に希塩酸を加えて加温し、定容として供試液を得た。この供試液中のTiをICP発光分析装置(セイコー電子工業製「SPS4000」)にてICP分析し、試料中のTi含有率を求めた。
<Total Ti content>
Weigh the sample in a platinum dish, add hydrofluoric acid and nitric acid, heat and evaporate to dryness, add sodium carbonate and boric acid, melt with a burner, and add diluted hydrochloric acid to the resulting melt. In addition, the mixture was heated to obtain a test solution as a constant volume. The Ti in this test solution was subjected to ICP analysis with an ICP emission analyzer (“SPS4000” manufactured by Seiko Denshi Kogyo Co., Ltd.) to determine the Ti content in the sample.

<4配位Tiの含有比率>
EXAFS測定により4配位Ti量と6配位Ti量との比率を求めた。
すなわち、まず、前処理として、試料をメノウ乳鉢で軽く粉砕後、約30mgを秤量し、12mmφのペレットに成型した。このペレット状の試料を、真空中350℃で約2時間、加熱脱気処理した後、これを吸水させない条件下でEXAFS測定を行った。なお、1つの試料につき2枚のペレットを用意し、各試料について2回ずつ測定を行った。EXAFS測定条件を以下に示す。
<Content ratio of tetracoordinate Ti>
The ratio between the tetracoordinate Ti amount and the hexacoordinate Ti amount was determined by EXAFS measurement.
That is, first, as a pretreatment, the sample was lightly pulverized in an agate mortar, and about 30 mg was weighed and molded into a 12 mmφ pellet. This pellet-like sample was subjected to heat deaeration treatment at 350 ° C. for about 2 hours in a vacuum, and then EXAFS measurement was performed under conditions where water was not absorbed. Two pellets were prepared for each sample, and each sample was measured twice. The EXAFS measurement conditions are shown below.

〔EXAFS測定条件〕
測定場所:大学共同利用機関法人 高エネルギー加速器研究機構 放射光科学研究施設(Photon Factory)BL9A
測定方法:透過法
分光結晶:Si(111)
解析ソフト:REX−2000(リガク電機工業製)
[EXAFS measurement conditions]
Measurement place: High Energy Accelerator Research Organization, Synchrotron Radiation Research Institute (Photon Factory) BL9A
Measuring method: Transmission method Spectral crystal: Si (111)
Analysis software: REX-2000 (Rigaku Denki Kogyo)

測定に際しては、TiのXAFSスペクトルは、エネルギーステップを表1に示すようにいくつかの段階に分けて、XANES領域を丁寧に取るように、そして吸収端より低エネルギー側や吸収端から遠いところは大まかに取るようにして測定した。また、Ti−k3x(k)スペクトルのフーリエ変換は、3〜11Åの範囲(ノイズと区別でき、EXAFS振動が確認できる最大範囲)で行った。 In the measurement, the XAFS spectrum of Ti is divided into several steps as shown in Table 1, so that the XANES region is carefully taken, and the lower energy side than the absorption edge and the place far from the absorption edge. The measurement was taken roughly. In addition, the Fourier transform of the Ti-k 3 x (k) spectrum was performed in the range of 3 to 11 mm (the maximum range that can be distinguished from noise and that can confirm the EXAFS vibration).

各試料のXANESスペクトルのフィッティングには、4配位Tiと6配位Tiの標準試料としてそれぞれ、TS−1触媒(これを100%の4配位Tiとして)とアナターゼ型TiO2のデータを用いた。 For fitting the XANES spectrum of each sample, the data of TS-1 catalyst (this is 100% tetracoordinate Ti) and anatase TiO 2 are used as standard samples of tetracoordinated Ti and hexacoordinated Ti, respectively. It was.

Figure 2008308387
Figure 2008308387

(参考例−種晶の調製)
ビーカーに、純水445.87g、ピペリジン77.53g、テトラ−n−ブチルオルソチタネート11.07gを入れ、空気雰囲気下、室温で均一になるまで攪拌した後、ホウ酸53.93gを加えて均一になるまで攪拌した。得られた水溶液にヒュームドシリカ(CABOT社製「CAB−O−SIL M−7D」)39.20gを加えて室温で1時間攪拌した後、混合液をオートクレーブに移してオートクレーブを密閉した。この混合液を、攪拌しながら、オートクレーブをヒータで加熱することにより、5時間かけて室温から170℃まで昇温した。混合液の温度(内温度)が170℃に到達した後、同温度で7.5日間加熱して水熱合成を行った。得られた懸濁液をろ過し、濾残を洗液のpHが10以下になるまで洗浄した後、110℃で16時間乾燥し、白色粉末44.40gを得た。この白色粉末30gを2M硝酸900g中で16時間加熱還流した後、濾過し、濾残を洗液のpHが4以上になるまで洗浄した。得られた白色粉末を乾燥後、530℃で10時間焼成して、全Ti含有率が2.1%のTi−MWWを得た。
(Reference Example-Preparation of seed crystal)
In a beaker, 445.87 g of pure water, 77.53 g of piperidine, and 11.07 g of tetra-n-butyl orthotitanate were added and stirred in an air atmosphere until it was uniform at room temperature, and then 53.93 g of boric acid was added to be uniform. Stir until. After adding 39.20 g of fumed silica (“CAB-O-SIL M-7D” manufactured by CABOT) to the obtained aqueous solution and stirring at room temperature for 1 hour, the mixture was transferred to an autoclave and the autoclave was sealed. The mixture was heated from room temperature to 170 ° C. over 5 hours by heating the autoclave with a heater while stirring the mixture. After the temperature (inner temperature) of the mixed solution reached 170 ° C., hydrothermal synthesis was performed by heating at the same temperature for 7.5 days. The obtained suspension was filtered, and the residue was washed until the pH of the washing solution became 10 or less, and then dried at 110 ° C. for 16 hours to obtain 44.40 g of a white powder. 30 g of this white powder was heated to reflux in 900 g of 2M nitric acid for 16 hours and then filtered, and the residue was washed until the pH of the washing solution was 4 or higher. The obtained white powder was dried and then calcined at 530 ° C. for 10 hours to obtain Ti-MWW having a total Ti content of 2.1%.

(実施例1)
ビーカーに、純水445.06g、ピペリジン95.02gを入れ、空気雰囲気下、室温で均一になるまで攪拌した後、ホウ酸53.63gを加えて均一になるまで攪拌した。得られた水溶液にヒュームドシリカ(CABOT社製「CAB−O−SIL M−7D」)40.36gを加えて1時間攪拌した後、種晶として参考例で得たTi−MWWを0.47g加えた。得られた混合液をオートクレーブに移してオートクレーブを密閉した後、攪拌しながらこの混合液を8時間かけて160℃まで昇温した後に同温度で10時間加熱して水熱合成を行い、その後、さらに3時間かけて170℃まで再度昇温した後に同温度で4日間加熱して水熱合成を行った。次に、一旦加熱を中断してオートクレーブを室温まで冷却した後、オートクレーブ内の反応液に、あらかじめ純水102.29g、ピペリジン19.76g、及びテトラ−n−ブチルオルソチタネート13.34gを均一に混合した溶液を加えた。次いで、再度オートクレーブを密閉した後、最初の水熱合成の場合と同様に、8時間かけて160℃まで昇温した後に同温度で10時間加熱して、その後、さらに3時間かけて170℃まで再度昇温し、170℃で2日間加熱して水熱合成を行った。得られた懸濁液をろ過し、濾残を洗液のpHが10以下になるまで洗浄した後、110℃で16時間乾燥し、白色粉末(A)47.83gを得た。
Example 1
In a beaker, 445.06 g of pure water and 95.02 g of piperidine were added and stirred in an air atmosphere until uniform at room temperature, and then 53.63 g of boric acid was added and stirred until uniform. After adding 40.36 g of fumed silica ("CAB-O-SIL M-7D" manufactured by CABOT) to the obtained aqueous solution and stirring for 1 hour, 0.47 g of Ti-MWW obtained in the reference example as a seed crystal was obtained. added. After the obtained mixed liquid was transferred to an autoclave and the autoclave was sealed, this mixed liquid was heated to 160 ° C. over 8 hours while stirring and then heated at the same temperature for 10 hours to perform hydrothermal synthesis. Furthermore, after heating up to 170 degreeC again over 3 hours, it heated at the same temperature for 4 days and hydrothermal synthesis was performed. Next, after heating is temporarily interrupted and the autoclave is cooled to room temperature, 102.29 g of pure water, 19.76 g of piperidine, and 13.34 g of tetra-n-butyl orthotitanate are uniformly added in advance to the reaction solution in the autoclave. The mixed solution was added. Next, after sealing the autoclave again, as in the case of the first hydrothermal synthesis, the temperature was raised to 160 ° C. over 8 hours, then heated at the same temperature for 10 hours, and then further up to 170 ° C. over 3 hours. The temperature was raised again, and hydrothermal synthesis was performed by heating at 170 ° C. for 2 days. The obtained suspension was filtered, and the filter residue was washed until the pH of the washing solution became 10 or less, and then dried at 110 ° C. for 16 hours to obtain 47.83 g of a white powder (A).

得られた白色粉末(A)5gを、冷却管、温度計、攪拌装置を取り付けたセパラブルフラスコに仕込み、2M硝酸150gを加えた。次いで、攪拌しながら70℃に設定したオイルバスで加熱し、内温が67℃で安定した後、同温度で8時間攪拌することにより酸処理を行った。次に、酸処理後の反応液を室温まで冷却した後、濾過し、濾残を洗液のpHが4以上になるまで洗浄した。得られた白色粉末を乾燥後、530℃で10時間焼成して、Ti−MWWを得た。このTi−MWWの全Ti含有率は1.4%であり、4配位Tiの含有比率は97%であった。   5 g of the obtained white powder (A) was charged into a separable flask equipped with a condenser, a thermometer, and a stirrer, and 150 g of 2M nitric acid was added. Next, the mixture was heated in an oil bath set at 70 ° C. while stirring, and after the internal temperature was stabilized at 67 ° C., acid treatment was performed by stirring at the same temperature for 8 hours. Next, the reaction solution after the acid treatment was cooled to room temperature and filtered, and the residue was washed until the pH of the washing solution became 4 or more. The obtained white powder was dried and then calcined at 530 ° C. for 10 hours to obtain Ti-MWW. The total Ti content of this Ti-MWW was 1.4%, and the content ratio of tetracoordinated Ti was 97%.

(実施例2)
実施例1で得られた白色粉末(A)5gを、温度計、攪拌装置を取り付けたセパラブルフラスコに仕込み、2M硝酸150gを加えた。次いで、室温(24℃)で24時間攪拌することにより酸処理を行った。次に、酸処理後の反応液を濾過し、濾残を洗液のpHが4以上になるまで洗浄した。得られた白色粉末を乾燥後、530℃で10時間焼成して、Ti−MWWを得た。このTi−MWWの全Ti含有率は0.9%であり、4配位Tiの含有比率は91%であった。
(Example 2)
5 g of the white powder (A) obtained in Example 1 was charged into a separable flask equipped with a thermometer and a stirrer, and 150 g of 2M nitric acid was added. Subsequently, the acid treatment was performed by stirring at room temperature (24 ° C.) for 24 hours. Next, the reaction solution after the acid treatment was filtered, and the residue was washed until the pH of the washing solution became 4 or more. The obtained white powder was dried and then calcined at 530 ° C. for 10 hours to obtain Ti-MWW. The total Ti content of this Ti-MWW was 0.9%, and the content ratio of tetracoordinated Ti was 91%.

(比較例1)
実施例1で得られた白色粉末(A)30gを、冷却管、温度計、攪拌装置を取り付けたセパラブルフラスコに仕込み、2M硝酸900gを加えた。次いで、攪拌しながら153℃に設定したオイルバスで加熱し、内温が104℃で安定した後、同温度で8時間攪拌することにより酸処理を行った。次に、酸処理後の反応液を室温まで冷却した後、濾過し、濾残を洗液のpHが4以上になるまで洗浄した。得られた白色粉末を乾燥後、530℃で10時間焼成して、Ti−MWWを得た。このTi−MWWの全Ti含有率は2.6%であり、4配位Tiの含有比率は40%であった。
(Comparative Example 1)
30 g of the white powder (A) obtained in Example 1 was charged into a separable flask equipped with a condenser, a thermometer, and a stirrer, and 900 g of 2M nitric acid was added. Next, the mixture was heated in an oil bath set at 153 ° C. while stirring, and after the internal temperature was stabilized at 104 ° C., the mixture was stirred at the same temperature for 8 hours for acid treatment. Next, the reaction solution after the acid treatment was cooled to room temperature and filtered, and the residue was washed until the pH of the washing solution became 4 or more. The obtained white powder was dried and then calcined at 530 ° C. for 10 hours to obtain Ti-MWW. The total Ti content of this Ti-MWW was 2.6%, and the content ratio of tetracoordinated Ti was 40%.

実施例1、2および比較例1の結果を纏めて表2に示す。

Figure 2008308387
The results of Examples 1 and 2 and Comparative Example 1 are summarized in Table 2.
Figure 2008308387

表2から、実施例1、2で得られたTi−MWWは、比較例1で得られたTi−MWWに比べ、チタノシリケート中の全チタンに対する4配位チタンの含有比率が格段に高いことが明らかである。   From Table 2, the Ti-MWW obtained in Examples 1 and 2 has a significantly higher content ratio of tetracoordinated titanium to the total titanium in the titanosilicate than Ti-MWW obtained in Comparative Example 1. It is clear.

他方、実施例1、2および比較例1で得られたTi−MWWのUV吸収スペクトルを測定した。チタノシリケートのUV吸収スペクトルにおいては、4配位チタン量に対応して220nm付近に吸収スペクトルが観測され、6配位のアナターゼチタン量に対応して320〜330nmに吸収スペクトルが観測されるので、UV吸収スペクトルを測定することによって、4配位Tiと6配位Tiの比率を判定することができる。   On the other hand, the UV absorption spectra of Ti-MWW obtained in Examples 1 and 2 and Comparative Example 1 were measured. In the UV absorption spectrum of titanosilicate, an absorption spectrum is observed near 220 nm corresponding to the amount of tetracoordinated titanium, and an absorption spectrum is observed between 320 and 330 nm corresponding to the amount of hexacoordinated anatase titanium. By measuring the UV absorption spectrum, the ratio of tetracoordinated Ti to hexacoordinated Ti can be determined.

UV吸収スペクトルの測定に際しては、試料をメノウ乳鉢でよく粉砕し、測定用のセラミックスセル(直径5mm、高さ3mm)に表面が平坦になるように詰めて、下記条件で測定した。反射率をK−M変換して吸光度(abs.)とし、200nmにおける吸光度(abs.)が0.6となるよう補正をした結果を図1に示す。   When measuring the UV absorption spectrum, the sample was pulverized well in an agate mortar, packed in a ceramic cell for measurement (diameter 5 mm, height 3 mm) so that the surface was flat, and measured under the following conditions. The reflectance is converted to K-M to obtain the absorbance (abs.), And the result of correction so that the absorbance (abs.) At 200 nm is 0.6 is shown in FIG.

〔UV吸収スペクトル測定条件〕
測定装置(本体):紫外可視分光光度計(島津製作所製「UV−2450PC」)
(セル):真空加熱拡散反射セル(HARRICK製「DPR−XXX+HVC−VUV型」)
圧力:大気圧
測定値(M):反射率
スキャン速度(P):低速
スリット幅(W):5nm
測定波長:200〜400nm
分解能:0.1nm
ベースライン補正(リファレンス):BaSO4
[UV absorption spectrum measurement conditions]
Measuring device (main unit): UV-visible spectrophotometer ("UV-2450PC" manufactured by Shimadzu Corporation)
(Cell): Vacuum heating diffuse reflection cell (“DPR-XXX + HVC-VUV type” manufactured by HARRICK)
Pressure: Atmospheric pressure Measurement (M): Reflectance Scanning speed (P): Low speed Slit width (W): 5 nm
Measurement wavelength: 200 to 400 nm
Resolution: 0.1nm
Baseline correction (reference): BaSO 4

図1から、実施例1、2で得られたTi−MWWは、比較例1で得られたTi−MWWに比べ、220nm付近における吸収は多く、320〜330nmにおける吸収が少ないことが明らかである。   From FIG. 1, it is clear that Ti-MWW obtained in Examples 1 and 2 has much absorption near 220 nm and less absorption at 320 to 330 nm than Ti-MWW obtained in Comparative Example 1. .

実施例1、2および比較例1で得られたTi−MWWのUV吸収スペクトルの測定結果を示すグラフである。It is a graph which shows the measurement result of UV absorption spectrum of Ti-MWW obtained in Examples 1, 2 and Comparative Example 1.

Claims (2)

ケイ素化合物、チタン化合物、ホウ素化合物、水及び構造規定剤の混合物を水熱合成反応に付し、得られた結晶を酸処理した後、焼成することによりMWW構造を有するチタノシリケートを製造する方法であって、前記酸処理を0〜75℃で1〜48時間行うことを特徴とするチタノシリケートの製造方法。   A method for producing a titanosilicate having an MWW structure by subjecting a mixture of a silicon compound, a titanium compound, a boron compound, water and a structure-directing agent to a hydrothermal synthesis reaction, subjecting the obtained crystals to acid treatment, and firing. The method for producing titanosilicate is characterized in that the acid treatment is performed at 0 to 75 ° C. for 1 to 48 hours. 前記チタン化合物の使用量が、該チタン化合物中のチタン基準で、前記ケイ素化合物中のケイ素1モルに対して0.05〜0.10モルである、請求項1記載のチタノシリケートの製造方法。   The manufacturing method of the titanosilicate of Claim 1 whose usage-amount of the said titanium compound is 0.05-0.10 mol with respect to 1 mol of silicon in the said silicon compound on the basis of titanium in this titanium compound. .
JP2007160640A 2007-06-18 2007-06-18 Method for producing titanosilicate Expired - Fee Related JP5075498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007160640A JP5075498B2 (en) 2007-06-18 2007-06-18 Method for producing titanosilicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007160640A JP5075498B2 (en) 2007-06-18 2007-06-18 Method for producing titanosilicate

Publications (2)

Publication Number Publication Date
JP2008308387A true JP2008308387A (en) 2008-12-25
JP5075498B2 JP5075498B2 (en) 2012-11-21

Family

ID=40236321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007160640A Expired - Fee Related JP5075498B2 (en) 2007-06-18 2007-06-18 Method for producing titanosilicate

Country Status (1)

Country Link
JP (1) JP5075498B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308389A (en) * 2007-06-18 2008-12-25 Sumitomo Chemical Co Ltd Method for producing titanosilicate and method for producing oxime
CN101935064A (en) * 2010-09-07 2011-01-05 上海师范大学 Method for synthesizing easily-formed ordered mesoporous titanium-silicon oxide material
JP2015535742A (en) * 2012-10-01 2015-12-17 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Production of catalysts based on boron zeolite
CN105693551A (en) * 2016-03-23 2016-06-22 华东师范大学 Method for synthesizing cyclohexanone oxime under catalytic action of molecular sieve
WO2019107448A1 (en) * 2017-11-28 2019-06-06 三井金属鉱業株式会社 Mww type zeolite, method for producing same, and cracking catalyst
CN113385189A (en) * 2020-03-11 2021-09-14 吴中区木渎拓科环保技术服务部 Preparation method of trace precious metal modified titanium-silicon nano porous material
CN113385224A (en) * 2020-03-11 2021-09-14 吴中区木渎拓科环保技术服务部 Trace precious metal modified titanium-silicon nano porous material and application thereof
CN115477310A (en) * 2021-06-16 2022-12-16 中国石油化工股份有限公司 P-Ti-MWW molecular sieve and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102709A (en) * 2000-09-29 2002-04-09 Showa Denko Kk Crystalline mww type titanosilicate catalyst for production of oxidized compound, method for producing the same and method for producing oxidized compound using the same
JP2004292171A (en) * 2002-03-07 2004-10-21 Showa Denko Kk Titanosilicate, its production method, and production method of oxidation compound using titanosilicate
JP2008308388A (en) * 2007-06-18 2008-12-25 Sumitomo Chemical Co Ltd Method for producing titanosilicate and method for producing oxime

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102709A (en) * 2000-09-29 2002-04-09 Showa Denko Kk Crystalline mww type titanosilicate catalyst for production of oxidized compound, method for producing the same and method for producing oxidized compound using the same
JP2004292171A (en) * 2002-03-07 2004-10-21 Showa Denko Kk Titanosilicate, its production method, and production method of oxidation compound using titanosilicate
JP2008308388A (en) * 2007-06-18 2008-12-25 Sumitomo Chemical Co Ltd Method for producing titanosilicate and method for producing oxime

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308389A (en) * 2007-06-18 2008-12-25 Sumitomo Chemical Co Ltd Method for producing titanosilicate and method for producing oxime
CN101935064A (en) * 2010-09-07 2011-01-05 上海师范大学 Method for synthesizing easily-formed ordered mesoporous titanium-silicon oxide material
CN101935064B (en) * 2010-09-07 2012-07-04 上海师范大学 Method for synthesizing easily-formed ordered mesoporous titanium-silicon oxide material
JP2015535742A (en) * 2012-10-01 2015-12-17 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Production of catalysts based on boron zeolite
CN105693551A (en) * 2016-03-23 2016-06-22 华东师范大学 Method for synthesizing cyclohexanone oxime under catalytic action of molecular sieve
US11485644B2 (en) 2017-11-28 2022-11-01 Mitsui Mining & Smelting Co., Ltd. MWW type zeolite, method for producing same, and cracking catalyst
WO2019107448A1 (en) * 2017-11-28 2019-06-06 三井金属鉱業株式会社 Mww type zeolite, method for producing same, and cracking catalyst
CN113385189A (en) * 2020-03-11 2021-09-14 吴中区木渎拓科环保技术服务部 Preparation method of trace precious metal modified titanium-silicon nano porous material
CN113385224A (en) * 2020-03-11 2021-09-14 吴中区木渎拓科环保技术服务部 Trace precious metal modified titanium-silicon nano porous material and application thereof
CN113385189B (en) * 2020-03-11 2023-12-22 吴中区木渎拓科环保技术服务部 Preparation method of trace noble metal modified titanium-silicon nano porous material
CN113385224B (en) * 2020-03-11 2023-12-22 吴中区木渎拓科环保技术服务部 Micro noble metal modified titanium silicon nano porous material and application thereof
CN115477310A (en) * 2021-06-16 2022-12-16 中国石油化工股份有限公司 P-Ti-MWW molecular sieve and preparation method and application thereof
CN115477310B (en) * 2021-06-16 2023-11-28 中国石油化工股份有限公司 P-Ti-MWW molecular sieve and preparation method and application thereof

Also Published As

Publication number Publication date
JP5075498B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5075498B2 (en) Method for producing titanosilicate
CN101229510B (en) Synthesis and applications of silicate containing Bi
JP4270901B2 (en) Titanosilicate, method for producing the same, and method for producing an oxidized compound using titanosilicate
EP1731515B1 (en) Method for producing propylene oxide
US6759540B2 (en) Crystalline MWW-type titanosilicate catalyst for producing oxidized compound, production process for the catalyst, and process for producing oxidized compound by using the catalyst
On et al. Titanium boralites with MFI structure characterized using XRD, XANES, IR, and UV-visible techniques: Effect of hydrogen peroxide on the preparation
CA2514586C (en) Modified layered metallosilicate material and production process thereof
EP2812115B1 (en) Micropowder and molding containing a zeolitic material containing ti and zn
JP2013040092A (en) Titanium-silicalite molecular sieve, method for preparing the same and method for preparing cyclohexanone oxime using the molecular sieve
JPH0321533B2 (en)
RU2575936C2 (en) Catalyst and method for obtaining thereof and method for olefin epoxidation
Gallo et al. Silylation of [Nb]-MCM-41 as an efficient tool to improve epoxidation activity and selectivity
JP2012232891A (en) Titanium-silicalite molecular sieve, method for preparing the same and method for preparing cyclohexanone oxime using the molecular sieve
CN106745025A (en) A kind of synthetic method of the HTSs of TS 1
CN102274749A (en) Method for preparing difunctional titanium silicon molecular sieve
CN105728034B (en) A kind of Ti-ECNU-5 titanium-silicon molecular sieve catalysts and its preparation method and application
US6387349B1 (en) Process for the microwave induced preparation of crystalline microporous titanium silicalite
PL203222B1 (en) Epoxidation method for olephine compounds and the use of titanium comprising zeolite
CN1226875A (en) Preparation of Y-type faujasite using organic template
US9296715B2 (en) Micropowder and molding containing a zeolitic material containing Ti and Zn
CN1982291A (en) Process for producing oxime
US7323154B2 (en) Titanosilicate, process for its production, and its use in producing oxidized compound
GENG et al. Effect of hydrolysis of tetraethyl orthosilicate (TEOS) on titanium distribution of TS-1 zeolite
Ko et al. Characterization and catalytic properties of titanium silicalite-1 catalyst
US20040034258A1 (en) Crystalline MWW-type titanosilicate catalyst for producing oxidized compound, production process for the catalyst, and process for producing oxidized compound by using the catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees