JP2008306977A - 細胞培養基材 - Google Patents

細胞培養基材 Download PDF

Info

Publication number
JP2008306977A
JP2008306977A JP2007157492A JP2007157492A JP2008306977A JP 2008306977 A JP2008306977 A JP 2008306977A JP 2007157492 A JP2007157492 A JP 2007157492A JP 2007157492 A JP2007157492 A JP 2007157492A JP 2008306977 A JP2008306977 A JP 2008306977A
Authority
JP
Japan
Prior art keywords
cell culture
culture substrate
fluororesin
cell
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007157492A
Other languages
English (en)
Inventor
Hiroyuki Nishii
弘行 西井
Riyouko Asai
量子 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2007157492A priority Critical patent/JP2008306977A/ja
Publication of JP2008306977A publication Critical patent/JP2008306977A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】耐薬剤品、衛生性に優れ、また生体内安定性に優れている特性を有するフッ素樹脂層を含む細胞培養基材において、細胞培養性に優れた細胞培養基材を提供することを課題とする。
【解決手段】細胞培養基材の細胞培養表面の水静的接触角が95°〜50°のフッ素樹脂層を含む細胞培養基材による。かかる細胞培養基材によると、優れた細胞培養性が認められ、さらには、耐薬剤品、クリーン性に優れ、また生体内安定性に優れているという性質は保持しており、例えば体内で使用される再生医療用基材として優れた補綴材とすることができる。
【選択図】 図2

Description

本発明は、細胞培養基材に関するものであり、特にフッ素樹脂を含む細胞培養基材に関するものである。
細胞培養の技術は、再生医療などに代表される生態病変部の解明や、組織など欠損部への補綴材、薬剤の評価、細胞生産物の回収、細胞の生化学的現象や性質の解明、有用な物質の生産など、様々な分野で利用されている。
培養細胞は、接着非依存性細胞および接着依存性細胞の2種類に大別される。これらのうち、細胞が接着する基材を必要とする接着依存性細胞の培養では、細胞を培養する基材が必要となり、材質は細胞接着性のものが選択される。具体的には、ガラス、あるいはコロナ処理やプラズマ処理などの表面処理を施したポリスチレンなどの合成高分子材料などが細胞培養基材として普及している(特許文献1)。
一方では、細胞低接着性基材の開発も望まれている。これらは、人工血管、癒着防止膜やカテーテルといった様々な用途に利用される。
これまでに検討されている細胞低接着性基材として、以下が挙げられる。例えば、疎水性ポリマー基材(ポリテトラフルオロエチレン(PTFE)やポリスチレン)は材質に特徴を有するといわれており、PTFEは人工血管として利用されている(特許文献2)。
一方、PTFEを代表とするフッ素樹脂は、耐薬剤品、衛生性に優れ、特に人工血管などの補綴材として用いられるなど生体内安定性に優れているという特徴がある。しかし、その高い疎水性のためにフッ素樹脂上では細胞培養性が低く、細胞培養を必要とする用途には使用しにくいものであった。細胞培養が必要な用途としては、例えば体内で使用される再生医療用基材が挙げられ、かかる基材は補綴材表面に細胞組織膜を形成促進し、生体組織との生体親和性を高める必要がある。
細胞培養基板として利用可能なパターン形成体について報告がある(特許文献4)。ここでは、フッ素ガスを導入ガスとしてプラズマ照射するプラズマ照射工程を有することを特徴とするパターン形成体が開示されている。かかるパターン形成体では、シランカップリング剤または上記シランカップリング剤の重合体を含有する中間層と、上記中間層上にパターン状に形成され、表面にフッ素が含有されている撥液性樹脂層とを有することが記載されているが、表面にフッ素が含有される部位は撥液性であり、フッ素面を処理して親水性を高めることは開示されていない。
特開2005−27532号公報 特許第2986728号公報 特許第3441530号公報 特開2007−3755号公報
本発明は、耐薬剤品、衛生性に優れ、また生体内安定性に優れている特性を有するフッ素樹脂層を含む細胞培養基材において、さらに細胞培養性に優れた細胞培養記載を提供することを課題とする。
本発明者らは、上細胞培養基材における水静的接触角と親水性および疎水性性質との関係に着目し、記課題を解決するために鋭意研究を重ねた結果、細胞培養基材の細胞培養表面の水静的接触角が95°〜50°の場合に、フッ素樹脂層を含む細胞培養基材が細胞培養性に優れていることを見出し、本発明を完成した。
すなわち本発明は、以下よりなる。
1.フッ素樹脂を含む細胞培養基材において、前記細胞培養基材の細胞培養表面の水静的接触角が95°〜50°であることを特徴とする細胞培養基材。
2.フッ素樹脂が、ポリテトラフルオロエチレンである前項1の細胞培養基材。
本発明のフッ素樹脂層を含む細胞培養基材によると、優れた細胞培養性が認められた。さらには、該細胞培養基材は、耐薬剤品、クリーン性に優れ、また生体内安定性に優れているという性質は保持しており、例えば体内で使用される再生医療用基材として優れた補綴材とすることができる。
以下、本発明の実施形態について具体的に説明する。
本発明のフッ素樹脂を含む細胞培養基材とは、細胞培養基材においてフッ素樹脂を含むものであればよく、全てがフッ素樹脂であってもよく、一部がフッ素樹脂であってもよい。例えば、通常使用されるポリカプロラクトン、ポリ乳酸(PLA)やポリ乳酸-グリコール酸(PLGA)などに代表される生分解性材料や、ポリスチレンなどの樹脂に、フッ素樹脂がコーティングされているものであってもよい。
フッ素樹脂の種類は、ポリテトラフルオロエチレン樹脂(略称:PTFE)、テトラフルオロエチレン-パーフルオロビニルエーテル共重合体(ネオフロンPFA、略称:PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(共重合体ネオフロンFEP、略称:FEP)、テトラフルオロエチレン-エチレン共重合体(ネオフロンETFE、略称:ETFE)、ポリビニリデンフルオライド(ネオフロンPVDF、略称:PVDF)、トリフルオロ塩化エチレン樹脂(ネオフロンPCTFE、略称:PCTFE)、溶融フッ素樹脂複合材(ネオフロンFMC)、ポリフロンMPA、低分子量テトラフルオロエチレン樹脂(ルブロン)などが例示される。本発明の細胞培養基材に含まれるフッ素樹脂としては、前記例示したいずれの樹脂であっても良いが、特にPTFE、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニールエーテル共重合体など、パーフルオロ樹脂が薬品安定性、生体内安定性、衛生性などの面から好ましい。特にPTFEは、人工血管、人工硬膜、人工心膜など、生体内の補綴材としての実績があり、実際の使用面から好ましい材料である。
フッ素樹脂を含む基材を細胞培養基材として細胞を培養すると、細胞は通常三次元細胞塊(スフェロイド状)になりやすく、細胞の進展が起こりにいので、フッ素樹脂は細胞培養性が低い素材であると判断できる。これは、フッ素樹脂の高い疎水性のためと考えられる。そこで、本発明ではフッソ樹脂を処理して、適当な親水性に改良することにより、生体内安定性などのフッ素樹脂の特質は残したまま、細胞培養基材表面での細胞培養性を付与する。
細胞培養基材表面での細胞培養性を付与するために、細胞増殖性の観点から、本発明のフッ素樹脂を含む細胞培養基材の細胞培養表面の水静的接触角は95°〜50°とし、特に95°〜65°が好適である。水静的接触角は、測定温度25℃において、純水の液滴1μlをシリンジより測定対象物に付着させ、シリンジのみを引き離して測定面に水滴を形成させて約5秒後に、測定面と水滴の接触角を測定して求めることができる(図1参照)。水静的接触角が95°を超えると撥水性が高くなり、細胞培養性が低下する。一方、水静的接触角が50°未満であると、親水性が高くなりすぎ、接着タンパク質が基材に吸着しにくくなり、細胞培養性が低下する。
上記の条件を満たすためのフッ素樹脂を含む細胞培養基材の表面改良方法は、特に限定されるものではないが、例えば、プラズマ処理、コロナ処理などの放電処理、UV処理、電子線・放射線処理、イオン注入法などが挙げられる。特に親水性基導入が容易な方法として紫外線照射を行うことができ、フッ素樹脂との結合エネルギーが128kcal/mol以上の原子と親水基を有する化合物の存在下で、フッ素樹脂にエキシマレーザーを照射して親水化する方法などを適用することができる(特許第3340501号)。
その他、エキシマレーザーの代わりに、紫外線源として低圧水銀ランプを用いることもできる。具体的には、図2に示す配置からなる装置で、処理水溶液として水酸化アルミニウム/水酸化ナトリウム水溶液やホウ酸水溶液などを用いて、フッ素樹脂のフィルムの上から低水銀ランプで紫外線を照射して親水化を行うことができる。上記方法により、処理水溶液と接している面が改良され、親水化される。
他の方法として、図3に示すように、フッ素樹脂フィルムと石英ガラスで処理水溶液を挟み込み、石英ガラスを通して紫外線を照射することにより、フッ素樹脂フィルムの処理水溶液と接している面を改良し、親水化を行ってもよい。
上記表面改良方法により、紫外線処理でフッ素樹脂を含む細胞培養基材表面のC−F結合のフッ素原子が炭素原子より外れ、水酸基や水素原子などによって置換され、細胞培養基材の表面が親水化される。処理水溶液を用いずに紫外線を照射するのみで、はずれたフッ素原子がそのまま再結合するため、親水化が十分になされない。アルミニウムイオンやホウ素存在下では、これらの原子とフッ素が結合をつくることによりトラップされ、樹脂表面へのフッ素原子の再結合が抑制され、水溶液中の水酸基や水素原子が炭素原子と結合する。したがって、紫外線照射の際に利用可能な処理液として、アルミニウムイオンやホウ素を含む水溶液であれば良く、特に限定されないが、例えば水酸化アルミニウムのNaOH水溶液やホウ酸水溶液などが挙げられる。
フッ素樹脂を含む細胞培養基材表面の化学結合は、化学結合分析装置、例えば光電子分光分析装置(ESCA)を用いて調べることができる。ESCAにおいて、例えば炭素との結合を調べるC1sスペクトルの分析結果から、フッ素原子が他の原子や官能基に置換された炭素原子の比率を調べることができる。光電子取り出し角は45°としたとき、本発明のフッ素樹脂を含む細胞培養基材において、基材表面のフッ素原子が他の原子、官能基に置換された炭素原子の比率は、細胞培養性の面から25〜60%の割合であるのが好ましい。C−F結合から置換される共有結合種類としては、C−H、C−OH、C=Oなどが挙げられる。置換された炭素原子の比率は、C1sスペクトルを波形分析して、Fが2つとも結合したまま残存する炭素原子の割合を差し引いて計算することができる。上記のような置換基を導入することで、細胞培養基材表面濡れ性が向上し、また細胞外マトリクスを形成するタンパク質などが細胞培養基材表面に接着しやすくなり、細胞培養性が向上すると考えられる。置換された炭素原子の比率が25%未満の場合は撥水性が高くなり、接着タンパク質の活性が落ちると考えられ、細胞培養性が低下する。60%を超えると親水性が高くなりすぎ、接着タンパク質が基材に吸着しにくくなり、細胞培養性が低下する。
(実施例1)
水静的接触角123°のPTFEフィルム(日東電工製、No.900)(厚さ0.1mm、11cm×8cm)に処理水溶液3mlを加え、さらに石英ガラス(厚さ3mm)を重ねたものに、図2に示す配置で、低圧水銀灯(照度10〜20mW/cm)で30分間照射した。
処理水溶液は、Al(OH)が0.1mol/l、NaOHが5mol/lになるように調製した。
処理後のPTFEフィルム表面の処理面の水静的接触角は53°であった。また、炭素原子置換率は、ESCAによるC1sスペクトル分析で60%であった。
(実施例2)
図1に示す配置で、低水銀灯で5分間照射した以外は実施例1と同様の方法により、接触角72°の表面処理PTFEフィルムを得た。
(実施例3)
図2に示す配置で、低水銀灯で20分間照射した以外は実施例1と同様の方法により、接触角88°の表面処PTFEフィルムを得た。
(実施例4)
図1に示す配置で、低水銀灯で1分間照射した以外は実施例1と同様の方法により、接触角95°の表面処理PTFEフィルムを得た。炭素原子置換率は、25%であった。
(比較例1)
低圧水銀ランプで表面処理しない水静的接触角123°のPTFEフィルム(日東電工製、No.900)(厚さ0.1mm、11cm×8cm)を、比較例のPTFEフィルムとした。
(実験例)
実施例1〜4、比較例1のフィルムについて細胞培養試験を行った。実施例1〜4、および比較例1のPTFEフィルムをエチレンオキサイドガス滅菌し、24ウェル培養皿(ポリスチレンコロナ処理品:イワキ製)に置いた。参考例では、PTFEフィルムを置かなかった。次に、L6細胞(マウス骨格筋由来細胞株)をCell Counting Kit-8 (DOJINDO)を用いて細胞数を計測し、40cells/mmとなるように上記各ウェルに播種し、DMEM(1%ペニシリン/ストレプトマイシン、10%ウシ胎児血清)を用いて37±1℃で4日間培養した。培養4日目にCell Counting Kit-8 (DOJINDO)を用いて細胞数を計測した。
細胞数の観察を行った結果を表1に示した。これにより、フッ素樹脂に表面処理を施すことで、従来用いられている市販の培養皿と同等以上の細胞培養性を得ることができた。
Figure 2008306977
以上詳述したように、本発明のフッ素樹脂層を含む細胞培養基材によると、優れた細胞培養性が認められた。さらには、該細胞培養基材は、耐薬剤品、クリーン性に優れ、また生体内安定性に優れているという性質は保持しており、例えば体内で使用される再生医療用基材として優れた補綴材とすることができる。
水静的接触角の測定スキームを示す図である。 フッ素樹脂層を含む細胞培養基材の表面処理の態様を示す図である。 フッ素樹脂層を含む細胞培養基材の表面処理の他の態様を示す図である。
符号の説明
α 水静的接触
1 低圧水銀ランプ
2 フッ素樹脂層を含む細胞培養基材
3 処理水溶液
4 処理台
5 石英ガラス

Claims (2)

  1. フッ素樹脂を含む細胞培養基材において、前記細胞培養基材の細胞培養表面の水静的接触角が95°〜50°であることを特徴とする細胞培養基材。
  2. フッ素樹脂が、ポリテトラフルオロエチレンである請求項1の細胞培養基材。
JP2007157492A 2007-06-14 2007-06-14 細胞培養基材 Pending JP2008306977A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007157492A JP2008306977A (ja) 2007-06-14 2007-06-14 細胞培養基材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007157492A JP2008306977A (ja) 2007-06-14 2007-06-14 細胞培養基材

Publications (1)

Publication Number Publication Date
JP2008306977A true JP2008306977A (ja) 2008-12-25

Family

ID=40235158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007157492A Pending JP2008306977A (ja) 2007-06-14 2007-06-14 細胞培養基材

Country Status (1)

Country Link
JP (1) JP2008306977A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150031542A (ko) * 2013-09-16 2015-03-25 건국대학교 산학협력단 미세조류 배양 및 수확장치와 이를 이용한 이산화탄소 고정장치, 공기 또는 수질 정화장치
WO2016024566A1 (ja) * 2014-08-13 2016-02-18 三井化学株式会社 医療器具、細胞培養方法、フッ素含有環状オレフィンポリマー、フッ素含有環状オレフィンポリマー組成物、および培養細胞
WO2016158039A1 (ja) * 2015-03-31 2016-10-06 三井化学株式会社 医療器具、フッ素含有環状オレフィンポリマー、フッ素含有環状オレフィンポリマー組成物、および細胞培養方法
JP2016214210A (ja) * 2015-05-26 2016-12-22 住友電気工業株式会社 細胞培養担体及びこれを備える細胞シート
WO2017033898A1 (ja) * 2015-08-25 2017-03-02 旭硝子株式会社 細胞培養装置および生体試料製造方法
JP2017163898A (ja) * 2016-03-16 2017-09-21 株式会社日本触媒 神経幹細胞の培養方法、およびニューロスフェロイドの形成方法
JP2020141640A (ja) * 2019-03-08 2020-09-10 住友ベークライト株式会社 細胞培養デバイス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283576A (ja) * 1987-05-15 1988-11-21 Sumitomo Electric Ind Ltd 細胞培養用基材
JPH037577A (ja) * 1989-06-03 1991-01-14 Kanegafuchi Chem Ind Co Ltd 細胞の配列制御用具、その製法および細胞の配列制御法
JPH04336072A (ja) * 1991-05-10 1992-11-24 Japan Gore Tex Inc 生体親和性基材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283576A (ja) * 1987-05-15 1988-11-21 Sumitomo Electric Ind Ltd 細胞培養用基材
JPH037577A (ja) * 1989-06-03 1991-01-14 Kanegafuchi Chem Ind Co Ltd 細胞の配列制御用具、その製法および細胞の配列制御法
JPH04336072A (ja) * 1991-05-10 1992-11-24 Japan Gore Tex Inc 生体親和性基材

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101658529B1 (ko) * 2013-09-16 2016-09-21 건국대학교 산학협력단 미세조류 배양 및 수확장치와 이를 이용한 이산화탄소 고정장치, 공기 또는 수질 정화장치
KR20150031542A (ko) * 2013-09-16 2015-03-25 건국대학교 산학협력단 미세조류 배양 및 수확장치와 이를 이용한 이산화탄소 고정장치, 공기 또는 수질 정화장치
EP3181681A4 (en) * 2014-08-13 2018-07-04 Mitsui Chemicals, Inc. Medical device, method for culturing cells, fluorine-containing cyclic olefin polymer, fluorine-containing cyclic olefin polymer composition, and cultured cells
WO2016024566A1 (ja) * 2014-08-13 2016-02-18 三井化学株式会社 医療器具、細胞培養方法、フッ素含有環状オレフィンポリマー、フッ素含有環状オレフィンポリマー組成物、および培養細胞
JP2019004884A (ja) * 2014-08-13 2019-01-17 三井化学株式会社 医療器具、細胞培養方法およびフッ素含有環状オレフィンポリマー組成物
US11597910B2 (en) 2014-08-13 2023-03-07 Mitsui Chemicals, Inc. Medical instrument, cell culture method, fluorine-containing cyclic olefin polymer and fluorine-containing cyclic olefin polymer composition for it, and cultured cells
JPWO2016024566A1 (ja) * 2014-08-13 2017-04-27 三井化学株式会社 医療器具、細胞培養方法、フッ素含有環状オレフィンポリマー、フッ素含有環状オレフィンポリマー組成物、および培養細胞
CN106661537A (zh) * 2014-08-13 2017-05-10 三井化学株式会社 医疗器具、细胞培养方法、含氟环状烯烃聚合物、含氟环状烯烃聚合物组合物及培养细胞
CN106661537B (zh) * 2014-08-13 2019-06-25 三井化学株式会社 医疗器具、细胞培养方法、含氟环状烯烃聚合物、含氟环状烯烃聚合物组合物及培养细胞
WO2016158039A1 (ja) * 2015-03-31 2016-10-06 三井化学株式会社 医療器具、フッ素含有環状オレフィンポリマー、フッ素含有環状オレフィンポリマー組成物、および細胞培養方法
KR20170122231A (ko) * 2015-03-31 2017-11-03 미쓰이 가가쿠 가부시키가이샤 의료 기구, 불소 함유 환상 올레핀 폴리머, 불소 함유 환상 올레핀 폴리머 조성물, 및 세포 배양 방법
CN107429210A (zh) * 2015-03-31 2017-12-01 三井化学株式会社 医疗器具、含氟环状烯烃聚合物、含氟环状烯烃聚合物组合物及细胞培养方法
JPWO2016158039A1 (ja) * 2015-03-31 2017-09-28 三井化学株式会社 医療器具、フッ素含有環状オレフィンポリマー、フッ素含有環状オレフィンポリマー組成物、および細胞培養方法
EP3279308A4 (en) * 2015-03-31 2018-12-19 Mitsui Chemicals, Inc. Medical instrument, fluorinated cyclic olefin polymer, fluorinated cyclic olefin polymer composition, and cell culture method
KR101965998B1 (ko) 2015-03-31 2019-04-04 미쓰이 가가쿠 가부시키가이샤 의료 기구, 불소 함유 환상 올레핀 폴리머, 불소 함유 환상 올레핀 폴리머 조성물, 및 세포 배양 방법
JP2016214210A (ja) * 2015-05-26 2016-12-22 住友電気工業株式会社 細胞培養担体及びこれを備える細胞シート
WO2017033898A1 (ja) * 2015-08-25 2017-03-02 旭硝子株式会社 細胞培養装置および生体試料製造方法
JP2017163898A (ja) * 2016-03-16 2017-09-21 株式会社日本触媒 神経幹細胞の培養方法、およびニューロスフェロイドの形成方法
JP2020141640A (ja) * 2019-03-08 2020-09-10 住友ベークライト株式会社 細胞培養デバイス

Similar Documents

Publication Publication Date Title
Wang et al. Silk fibroin film-coated MgZnCa alloy with enhanced in vitro and in vivo performance prepared using surface activation
Almasi et al. Preparation methods for improving PEEK’s bioactivity for orthopedic and dental application: a review
Gumpenberger et al. Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene
JP2008306977A (ja) 細胞培養基材
Desmet et al. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review
Koroleva et al. Two-photon polymerization-generated and micromolding-replicated 3D scaffolds for peripheral neural tissue engineering applications
US20210115211A1 (en) Nanostructured polymer-based compositions and methods to fabricate the same
Riau et al. Surface modification of PMMA to improve adhesion to corneal substitutes in a synthetic core–skirt keratoprosthesis
Johnson et al. Biocompatibility studies on plasm polymerized interface materials encompassing both hydrophobic and hydrophilic surfaces
Yamaguchi et al. Surface modification of poly (L-lactic acid) affects initial cell attachment, cell morphology, and cell growth
Böke et al. Plasma-enhanced chemical vapor deposition (PE-CVD) yields better hydrolytical stability of biocompatible SiOx thin films on implant alumina ceramics compared to rapid thermal evaporation physical vapor deposition (PVD)
Mahjoubi et al. Surface modification of poly (D, L-lactic acid) scaffolds for orthopedic applications: a biocompatible, nondestructive route via diazonium chemistry
Griffin et al. Enhancing tissue integration and angiogenesis of a novel nanocomposite polymer using plasma surface polymerisation, an in vitro and in vivo study
Ding et al. Effects of microtopographic patterns on platelet adhesion and activation on titanium oxide surfaces
Ma et al. Multifunctional 3D micro-nanostructures fabricated through temporally shaped femtosecond laser processing for preventing thrombosis and bacterial infection
KR20160100057A (ko) 카테콜기를 함유한 접착 유도체가 도입된 생체 적합성 고분자로 표면 개질된 생체 재료 및 그 제조 방법
Ovcharenko et al. Polyisobutylene-based thermoplastic elastomers for manufacturing polymeric heart valve leaflets: In vitro and in vivo results
Arias et al. Ion-induced nanopatterning of bacterial cellulose hydrogels for biosensing and anti-biofouling interfaces
Fisher Challenges in the characterization of plasma-processed three-dimensional polymeric scaffolds for biomedical applications
Czwartos et al. Effect of extreme ultraviolet (EUV) radiation and EUV induced, N2 and O2 based plasmas on a PEEK surface’s physico-chemical properties and MG63 cell adhesion
Buxadera-Palomero et al. One-step liquid phase polymerization of HEMA by atmospheric-pressure plasma discharges for Ti dental implants
Kim et al. Eggshell membrane as a bioactive agent in polymeric nanotopographic scaffolds for enhanced bone regeneration
JP6200621B2 (ja) 細胞担持用基材及びその製造方法
Monge et al. Improvement of silicone endothelialization by treatment with allylamine and/or acrylic acid low‐pressure plasma
Özkucur et al. Biological relevance of ion energy in performance of human endothelial cells on ion‐implanted flexible polyurethane surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120910