JP2008300923A - Base station equipment - Google Patents

Base station equipment Download PDF

Info

Publication number
JP2008300923A
JP2008300923A JP2007141667A JP2007141667A JP2008300923A JP 2008300923 A JP2008300923 A JP 2008300923A JP 2007141667 A JP2007141667 A JP 2007141667A JP 2007141667 A JP2007141667 A JP 2007141667A JP 2008300923 A JP2008300923 A JP 2008300923A
Authority
JP
Japan
Prior art keywords
base station
rtt
terminal
measurement
target sir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007141667A
Other languages
Japanese (ja)
Inventor
Kiichi Nakano
喜一 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007141667A priority Critical patent/JP2008300923A/en
Publication of JP2008300923A publication Critical patent/JP2008300923A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide base station equipment which can obtain stabilized RTT measurements with high precision. <P>SOLUTION: The base station equipment having an RTT (Round trip time) measuring function for radio signals reciprocating on a predetermined channel between base station 20 and terminal 10 is provided with a first target SIRa being updated to satisfy required communication quality, a second target SIRb most suitable for measurement of RTT, and a control section performing measurement of RTT under control of terminal transmission power by the second target SIR if the first target SIR is lower than the second target SIR when the RTT is measured. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は基地局装置に関し、更に詳しくは、基地局と端末(移動局)間における所定の通信チャネルを往復する無線信号のRTT(Round trip time)測定機能を有する基地局装置に関する。   The present invention relates to a base station apparatus, and more particularly, to a base station apparatus having an RTT (Round Trip Time) measurement function for a radio signal reciprocating between a predetermined communication channel between a base station and a terminal (mobile station).

W−CDMA(Wideband Code Division Multiple Access)では、基地局と端末(移動局)間を往来する無線信号のRTTを測定することにより基地局と端末間の距離を求め、該求めた距離に基づいて端末の位置を特定する所謂測位サービスが行われる。ここで、RTT(Round trip time)とは、基地局から端末に送ったダウンリンク伝送に対して、該端末が応答したアップリンクの伝送が基地局に届くまでの時間を意味する。RTT測定に基づく位置の測定精度は、GPS(Global Positioning System)を使用したものより低いが、低コストで、かつ屋内等でも利用できること等から、GPSの代替サービスとして、又はGPSを補間するサービスとして、更なる測位精度の向上が望まれている。   In W-CDMA (Wideband Code Division Multiple Access), a distance between a base station and a terminal is obtained by measuring an RTT of a radio signal traveling between the base station and the terminal (mobile station), and based on the obtained distance. A so-called positioning service for specifying the position of the terminal is performed. Here, RTT (Round trip time) means the time until the uplink transmission that the terminal responds to the base station in response to the downlink transmission sent from the base station to the terminal. Although the measurement accuracy of the position based on RTT measurement is lower than that using GPS (Global Positioning System), it can be used at low cost and indoors, so as an alternative service of GPS or as a service that interpolates GPS Therefore, further improvement in positioning accuracy is desired.

図6(A)は従来の移動通信システムのブロック図で、RTTの測定に係る構成を示している。この移動通信システムには、端末(移動局)10と、無線基地局20’と、無線基地局制御装置50とが含まれる。更に、この無線基地局20’は、自局と無線基地局制御装置50との間の有線通信回線(Iubインタフェース)を終端するIub終端部21と、下り個別チャネル(DPCH)の信号処理を行う下りDPCH処理部22と、下りIQデータを直交変調及び増幅してアンテナより送信する無線送信部23と、アンテナからの受信信号を増幅及び直交復調して上りIQデータを出力する無線受信部24と、上り制御チャネル(DPCCH)のパス検出、逆拡散、検波、復号処理、並びに、端末側送信電力の制御及びRTTの測定等を行う上りDPCCH処理部30’と、上りデータチャネル(DPDCH)の逆拡散、検波及び復号処理を行う上りDPDCH処理部25とを備える。   FIG. 6A is a block diagram of a conventional mobile communication system, showing a configuration related to RTT measurement. This mobile communication system includes a terminal (mobile station) 10, a radio base station 20 ′, and a radio base station control device 50. Further, the radio base station 20 ′ performs signal processing of the Iub termination unit 21 that terminates the wired communication line (Iub interface) between the own station and the radio base station controller 50, and the downlink dedicated channel (DPCH). A downlink DPCH processing unit 22, a radio transmission unit 23 that orthogonally modulates and amplifies downlink IQ data and transmits it from an antenna, a radio reception unit 24 that amplifies and orthogonally demodulates a reception signal from the antenna and outputs uplink IQ data, and Uplink control channel (DPCCH) path detection, despreading, detection, decoding processing, uplink side DPCCH processing unit 30 'for controlling terminal side transmission power, measuring RTT, etc., and uplink data channel (DPDCH) And an upstream DPDCH processing unit 25 that performs spreading, detection, and decoding.

図6(B)に従来のRTT測定処理のシーケンスを示す。端末10〜無線基地局20’〜無線基地局制御装置50の間で個別CHのリンクを張ると共に(ステップS11)、引き続き行われる端末送信電力のアウターループ制御(S12)によって上り通信のサービス品質(データの伝送レートや変調方式等によって異なる)に最適化された電力制御の実施状態(即ち、疎通状態)になる。この状態で、無線基地局制御装置50がRTT測定を起動すると(S13)、これを受けた無線基地局20’ではRTTの測定を実行(S14)し、同時に、端末10ではRx−Tx時間差測定を実行(S15)する。   FIG. 6B shows a conventional RTT measurement processing sequence. The link of the individual CH is established between the terminal 10 to the radio base station 20 ′ to the radio base station controller 50 (step S11), and the uplink transmission service quality (S12) is continuously performed by the outer loop control of the terminal transmission power (S12). The power control implementation state (that is, the communication state) optimized to the data transmission rate and the modulation method is obtained. In this state, when the radio base station control device 50 starts RTT measurement (S13), the radio base station 20 ′ receiving the measurement performs RTT measurement (S14), and at the same time, the terminal 10 measures Rx−Tx time difference. Is executed (S15).

これを具体的に言うと、今、基地局20’が時刻t1に開始したダウンリンクの送信は端末10で時刻t2に受信され、かつ該端末10がその受信から所定時間(例えば、1024チップに相当する時間)T0の経過後(時刻t3)に開始したアップリンクの送信が時刻t4に基地局20’に受信されたとする。この場合の、基地局20’における下り上りの時間差RTTは、RTT=(t4−t1)により求められ、この測定結果を無線基地局制御装置50に報告する。   Specifically, the downlink transmission started by the base station 20 ′ at time t1 is received by the terminal 10 at time t2, and the terminal 10 has received a predetermined time (for example, 1024 chips) from the reception. It is assumed that the uplink transmission started after the lapse of T0 (time t3) is received by the base station 20 ′ at time t4. In this case, the downlink time difference RTT in the base station 20 ′ is obtained by RTT = (t 4 −t 1), and the measurement result is reported to the radio base station controller 50.

RTTの報告を受けた上位装置では無線基地局20’と端末10との間の無線伝送に要した時間rを、r=(t4−t1−T0)/2により求める(S16)。そして、ステップS17では、前記求めた端末−無線基地局間の遅延時間rを用いて端末10への付帯サービス(位置情報サービス等)を行う。
特開2006−33207
The host device that has received the RTT report obtains the time r required for radio transmission between the radio base station 20 'and the terminal 10 by r = (t4-t1-T0) / 2 (S16). In step S17, an additional service (location information service or the like) to the terminal 10 is performed using the obtained delay time r between the terminal and the radio base station.
JP 2006-33207 A

しかし、上記従来のRTT測定は、データ通信のサービス品質に最適化された電力制御の下で行われているため、必ずしもRTT(受信最速パス)測定に最適化された条件とは言えず、このため高いRTT測定精度が得られなかった。また、従来のRTT測定は端末の移動速度に応じた無線伝搬環境の変化を考慮せずに行われていたため、RTTの測定精度が劣化していた。   However, since the conventional RTT measurement is performed under power control optimized for the quality of data communication service, it is not necessarily a condition optimized for RTT (Receiving Fastest Path) measurement. Therefore, high RTT measurement accuracy could not be obtained. Further, since the conventional RTT measurement is performed without considering the change of the radio propagation environment according to the moving speed of the terminal, the measurement accuracy of the RTT is deteriorated.

本発明は上記従来技術の問題点に鑑みなされたものであって、その目的は、高い精度で安定なRTT測定結果の得られる基地局装置を提供することにある。   The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a base station apparatus that can obtain a stable RTT measurement result with high accuracy.

本発明の第1の態様による基地局装置は、基地局と端末間における所定の通信チャネルを往復する無線信号のRTT(Round trip time)測定機能を有する基地局装置において、所要の通信品質を満足するように更新される第1の目標SIRと、RTTの測定に最適な第2の目標SIRと、RTT測定時における前記第1の目標SIRが前記第2の目標SIRよりも低い場合に、前記第2の目標SIRによる端末送信電力の制御下でRTT測定を行う制御部と、を備えるものである。   A base station apparatus according to a first aspect of the present invention satisfies a required communication quality in a base station apparatus having an RTT (Round Trip Time) measurement function of a radio signal reciprocating between predetermined communication channels between a base station and a terminal. A first target SIR that is updated so that the second target SIR is optimal for RTT measurement, and the first target SIR at the time of RTT measurement is lower than the second target SIR. And a control unit that performs RTT measurement under control of terminal transmission power by the second target SIR.

本発明によれば、RTT測定時における端末送信電力の目標SIRをRTTの測定に最適な第2の目標SIRとすることにより、基地局における受信品質がRTT測定に最適化され、よって高精度のRTT測定を安定に行える。   According to the present invention, the reception quality at the base station is optimized for the RTT measurement by setting the target SIR of the terminal transmission power at the time of the RTT measurement as the second target SIR optimum for the measurement of the RTT. RTT measurement can be performed stably.

本発明の第2の態様では、前記制御部は、前記第2の目標SIRによる端末送信電力の制御下でRTT測定を行う場合は、前記端末送信電力の制御収束を待ってRTT測定を行う。従って、高精度なRTT測定を確実に行える。   In the second aspect of the present invention, when the RTT measurement is performed under the control of the terminal transmission power by the second target SIR, the control unit performs the RTT measurement after waiting for the control convergence of the terminal transmission power. Therefore, highly accurate RTT measurement can be performed reliably.

本発明の第3の態様では、前記制御部は、RTT測定時における前記第1の目標SIRが前記第2の目標SIRよりも高い場合に、該第1の目標SIRによる端末送信電力の制御下でRTT測定を行う。この場合は第1の目標SIRをそのまま利用することで、速やかにRTT測定を行える。   In the third aspect of the present invention, when the first target SIR at the time of RTT measurement is higher than the second target SIR, the control unit performs control of terminal transmission power by the first target SIR. Perform RTT measurement with. In this case, the RTT measurement can be performed promptly by using the first target SIR as it is.

本発明の第4の態様による基地局装置は、基地局と端末間における所定の通信チャネルを往復する無線信号のRTT(Round trip time)測定機能を有する基地局装置において、上り通信チャネルのチャネル推定値に基づいて端末の移動速度を検出する速度検出部と、前記検出した移動速度に応じたRTT測定サンプル数に基づいて上り通信チャネルの最速パスを抽出する最速パス抽出部と、下り送信の開始時刻と、前記抽出した上り最速パスの受信時刻とに基づきRTTを測定する制御部と、を備えるものである。   According to a fourth aspect of the present invention, there is provided a base station apparatus having an RTT (Round Trip Time) measurement function for a radio signal reciprocating between a predetermined communication channel between a base station and a terminal. A speed detector that detects a moving speed of the terminal based on the value; a fastest path extractor that extracts the fastest path of the uplink communication channel based on the number of RTT measurement samples according to the detected moving speed; and start of downlink transmission And a control unit that measures RTT based on the time and the reception time of the extracted uplink fastest path.

本発明においては、端末の移動速度が遅い場合は、無線伝搬環境(フェージング)の変動速度も小さいので、短い時間内に複数のRTT測定サンプルを取得できると共に、これらを使用してより高精度なRTT測定を行える。一方、端末の移動速度が速い場合は、フェージングの変動速度も大きいので、単一のRTT測定サンプルを使用して高精度なRTT測定を速やかに行う。   In the present invention, when the moving speed of the terminal is slow, the fluctuation speed of the radio propagation environment (fading) is also small, so that a plurality of RTT measurement samples can be acquired within a short time, and these can be used to obtain higher accuracy. RTT measurement can be performed. On the other hand, when the moving speed of the terminal is high, the fluctuation speed of fading is also large, so that a high-precision RTT measurement is quickly performed using a single RTT measurement sample.

本発明の第5の態様では、前記最速パス抽出部は、所定以上の振幅を有するパスのうち、最速のものを最速パスとして抽出する。   In the fifth aspect of the present invention, the fastest path extraction unit extracts the fastest path among the paths having an amplitude greater than or equal to a predetermined value as the fastest path.

以上述べた如く本発明によれば、様々なデータ通信のサービス品質を満足させるような稼働下においても、RTT測定に最適化された通信条件を速やかに生み出すことで、RTT測定精度の向上が図れる。   As described above, according to the present invention, it is possible to improve the accuracy of RTT measurement by quickly generating communication conditions optimized for RTT measurement even under operation that satisfies various data communication service qualities. .

以下、添付図面に従って本発明に好適なる複数の実施の形態を詳細に説明する。なお、全図を通して同一符号は同一又は相当部分を示すものとする。図1は第1の実施の形態によるの移動通信システムのブロック図で、主にRTTの測定機能に係る部分の構成を示している。この移動通信システムには、端末(移動局)10と、本実施の形態による無線基地局20と、無線基地局制御装置50とが含まれる。   Hereinafter, a plurality of preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that the same reference numerals denote the same or corresponding parts throughout the drawings. FIG. 1 is a block diagram of a mobile communication system according to the first embodiment, and mainly shows a configuration of a part related to an RTT measurement function. This mobile communication system includes a terminal (mobile station) 10, a radio base station 20 according to the present embodiment, and a radio base station control device 50.

また、この無線基地局20は、Iub終端部21と、下りDPCH処理部22と、無線送信部23と、無線受信部24と、上り制御チャネル(DPCCH)のパス検出、逆拡散、検波、復号処理、並びに、端末側送信電力の制御及びRTTの測定等を行う上りDPCCH処理部30と、上りデータチャネル(DPDCH)の逆拡散、検波及び復号処理を行う上りDPDCH処理部25とを備える。   Further, the radio base station 20 includes an Iub termination unit 21, a downlink DPCH processing unit 22, a radio transmission unit 23, a radio reception unit 24, and path detection, despreading, detection, and decoding of an uplink control channel (DPCCH). An uplink DPCCH processing unit 30 that performs processing, control of terminal-side transmission power, RTT measurement, and the like, and an uplink DPDCH processing unit 25 that performs uplink data channel (DPDCH) despreading, detection, and decoding processing are provided.

更に、上りDPCCH処理部30は、上りDPCCHの遅延プロファイルを求めてその受信パスを検出するパス検出部32と、該検出された受信パスに基づき上りDPCCHをチャネルコードとスクランブルコードとで逆拡散する逆拡散部33と、前記逆拡散後の受信パイロット信号と既知のパイロット信号とに基づきチャネル伝搬路特性を推定するチャネル推定部34と、チャネル推定出力に基づき受信シンボルを同期検波する検波部35と、TFCI(Transport Format Combination Indicator)情報を復号するTFCI復号部36と、受信パイロットの検波出力に基づき受信SIRを推定するSIR推定部37とを備える。   Further, the uplink DPCCH processing unit 30 obtains a delay profile of the uplink DPCCH and detects a reception path thereof, and despreads the uplink DPCCH with a channel code and a scramble code based on the detected reception path. A despreading unit 33, a channel estimation unit 34 for estimating channel propagation path characteristics based on the received pilot signal after despreading and a known pilot signal, a detection unit 35 for synchronously detecting received symbols based on the channel estimation output, , TFCI decoding unit 36 for decoding TFCI (Transport Format Combination Indicator) information, and SIR estimation unit 37 for estimating the received SIR based on the detection output of the received pilot.

更に、受信データの長区間受信品質を求める長区間品質測定部26と、上りDPDCHのサービス品質(ビットレート,変調方式等)によって決まる目標品質との比較に基づき受信信号の目標SIRaを生成する目標SIR生成部39と、現時点の目標SIRaとRTT測定に最適な目標SIRbとの比較に基づき目標SIRaに加算すべきオフセットSIRαを生成するオフセットSIR生成部40と、前記受信SIR推定部37で求めた受信SIRと、加算器出力の目標SIR(a+α)との比較に基づき端末送信電力を制御するためのTPC(Transmit Power Control)ビットを生成するTPC生成部38と、前記下りDPCH処理部22から通知された下りDPCHの送信タイミング(t1)と、上りDPCCHの遅延プロファイルから自ら検出した受信最速パスのタイミング(t4)とに基づきRTTを測定するRTT測定部31とを備える。なお、図1は紙面の関係でフィンガ部とRAKE合成に係る部分の図示を省略している。   Further, a target for generating the target SIRa of the received signal based on a comparison between the long section quality measuring unit 26 for obtaining the long section reception quality of the received data and the target quality determined by the service quality (bit rate, modulation scheme, etc.) of the uplink DPDCH The SIR generation unit 39, the offset SIR generation unit 40 that generates an offset SIRα to be added to the target SIRa based on the comparison between the current target SIRa and the target SIRb that is optimal for RTT measurement, and the reception SIR estimation unit 37 Notification from the downlink DPCH processing unit 22, a TPC generation unit 38 that generates a TPC (Transmit Power Control) bit for controlling terminal transmission power based on a comparison between the received SIR and the target SIR (a + α) of the adder output From the transmission timing (t1) of the downlink DPCH and the uplink DPCCH delay profile And a RTT measurement unit 31 for measuring the RTT based on the timing of receiving the fastest path out (t4). In FIG. 1, the finger portion and the portion related to the RAKE composition are not shown because of space.

図2に第1の実施の形態によるRTT測定処理のシーケンス図を示す。端末10〜無線基地局20〜無線基地局制御装置50の間で個別CHのリンクを張ると共に(ステップS21)、引き続き行われる端末送信電力のアウターループ制御(S22)により上り通信のサービス品質に最適化された電力制御の実施状態になる。   FIG. 2 shows a sequence diagram of the RTT measurement process according to the first embodiment. An individual CH link is established between the terminal 10 and the radio base station 20 to the radio base station controller 50 (step S21), and the terminal transmission power outer loop control (S22) that is subsequently performed is optimal for the quality of service of uplink communication. It will be in the implementation state of power control.

この状態で、無線基地局制御装置50がRTT測定を起動すると(S23)、これを受けた無線基地局20では、RTT測定の起動前に、上りDPCCHの通信品質(SIR)をRTT測定に最適化された目標SIRbに更新するため、現時点の目標SIRaにオフセットSIRαを加算する(S24)。このオフセットSIRαは、b−a>0の場合は、α=b−aにより求められ、b−a>0でない場合はα=0とする。なお、RTT測定に最適な目標SIRbについては、予め行った多数の実測データやシミュレーション結果に
基づき統計的に決定されている。
In this state, when the radio base station controller 50 activates the RTT measurement (S23), the radio base station 20 that receives the RTT measurement optimizes the uplink DPCCH communication quality (SIR) for the RTT measurement before the RTT measurement is activated. In order to update to the converted target SIRb, the offset SIRα is added to the current target SIRa (S24). This offset SIRα is obtained by α = ba when b−a> 0, and α = 0 when ba−0 is not satisfied. The target SIRb optimum for the RTT measurement is statistically determined based on a large number of previously measured data and simulation results.

そして、引き続き行われる端末送信電力のインナーループ制御(S25)により、前記b−a>0の場合は、上り送信電力制御が新たな目標SIRに収束するに充分な時間(即ち、オフセットαの大きさに応じた時間)Tを経過した時点でRTT測定に最適化された送信電力制御の実施状態(SIR=b)となり、また前記b−a>0でない場合は、そのままで直ちにRTT測定可能な送信電力制御の実施状態(SIR>b)になる。この状態で、無線基地局20より端末10のRx−Tx時間差測定機能を起動すると共に(S26)、無線基地局20ではRTTの測定を実行(S27)し、同時に、端末10ではRx−Tx時間差測定を実行(S28)する。   Then, by the terminal loop control of the terminal transmission power (S25) that is subsequently performed, when ba−0> 0, the time sufficient for the uplink transmission power control to converge to the new target SIR (that is, the offset α is large). When the time T elapses, the transmission power control state optimized for RTT measurement (SIR = b) is entered. If ba−0 is not satisfied, RTT measurement can be performed immediately. The transmission power control is performed (SIR> b). In this state, the radio base station 20 activates the Rx-Tx time difference measurement function of the terminal 10 (S26), and the radio base station 20 executes RTT measurement (S27). At the same time, the terminal 10 performs the Rx-Tx time difference measurement. Measurement is executed (S28).

これを具体的に言うと、今、基地局20より時刻t1に送信開始されたダウンリク伝送の最速パスが時刻t2に端末10に受信され、かつ、端末10が該受信から所定時間(例えば、1024チップに相当する時間)T0を経過した時点(時刻t3)に送信開始したアップリンク伝送の最速パスが時刻t4に無線基地局20に受信されたとすると、基地局20における下り上りの時間差RTTはRTT=(t4−t1)により求められ、これを無線基地局制御装置50に報告する。ここでは1回分のRTT測定例を示すが、必要に応じて複数回分のRTT測定が行われる。そして、RTTの報告を受けた上位装置では無線基地局20と端末10との間の無線伝送に要した時間rをr=(t4−t1−T0)/2により求める(S31)。更に、前記求めた端末−無線基地局間の遅延量を用いて端末10への付帯サービス(位置情報サービス等)を行う(S32)。   Specifically, the fastest path of downlink transmission that has started transmission from the base station 20 at time t1 is received by the terminal 10 at time t2, and the terminal 10 has received a predetermined time (for example, 1024) from the reception. Assuming that the radio base station 20 receives the fastest path for uplink transmission that starts transmission at the time (time t3) after the time T0 has elapsed (time corresponding to the chip), the time difference RTT in the uplink and downlink at the base station 20 is RTT. = (T4-t1), and this is reported to the radio base station controller 50. Here, an example of one RTT measurement is shown, but a plurality of RTT measurements are performed as necessary. The host device that has received the RTT report obtains the time r required for wireless transmission between the wireless base station 20 and the terminal 10 by r = (t4-t1-T0) / 2 (S31). Further, using the obtained delay amount between the terminal and the radio base station, an incidental service (location information service or the like) is performed for the terminal 10 (S32).

一方、ステップS30では目標SIRに加えたオフセットを解除(=0)し、引き続き行われるインナーループ制御により、システムは速やかに上り通信のサービス品質に最適化された送信電力制御の実施状態になる。   On the other hand, in step S30, the offset added to the target SIR is canceled (= 0), and the system is immediately put into a transmission power control implementation state optimized for the quality of service of uplink communication by the subsequent inner loop control.

なお、上記受信SIRが収束するまでの間に、サービス品質の変化等によって目標SIRaを小さくするような指示がきた場合には、これを破棄する。また、大きくする指示が来た場合には目標SIRaを大きくする。これによって、より良い無線環境下でRTT測定を行える。   If an instruction to reduce the target SIRa is received due to a change in service quality or the like until the reception SIR converges, this is discarded. Further, when an instruction to increase is received, the target SIRa is increased. Thereby, RTT measurement can be performed in a better wireless environment.

図3は第2の実施の形態によるの移動通信システムのブロック図で、基地局20が端末10の移動速度を考慮することで、より精度の高いRTT測定を行う場合を示している。図において、45は上りDPCCHのチャネル推定値につき求めたフェージングの時間相関に基づいて、公知の方法により端末の移動速度vを求める速度検出部、60は端末10の移動速度vに応じて抽出した複数(M個)のRTT測定サンプル(遅延プロファイル)に基づき上りDPCCHの受信最速パスを検出し、RTTの測定制御を行うRTT測定制御部である。このRTT測定制御部60には、最大N個のRTT測定サンプル(遅延プロファイル)を記憶可能なメモリ(MEM)と、後述の図4に示すRTT測定制御を行うプロセッサ(MPU)とが含まれる。その他の構成については上記図1で述べたものと同様で良い。   FIG. 3 is a block diagram of the mobile communication system according to the second embodiment, and shows a case where the base station 20 performs RTT measurement with higher accuracy by considering the moving speed of the terminal 10. In the figure, 45 is a speed detector that obtains the moving speed v of the terminal by a known method based on the fading time correlation obtained for the uplink DPCCH channel estimation value, and 60 is extracted according to the moving speed v of the terminal 10. It is an RTT measurement control unit that detects the fastest reception path of the uplink DPCCH based on a plurality (M) of RTT measurement samples (delay profiles) and performs RTT measurement control. The RTT measurement control unit 60 includes a memory (MEM) that can store a maximum of N RTT measurement samples (delay profiles) and a processor (MPU) that performs RTT measurement control shown in FIG. Other configurations may be the same as those described in FIG.

図4は第2の実施の形態によるRTT測定処理のフローチャートで、無線基地局制御装置50からRTT測定の起動を受けることによりこの処理に入力する。テップS31では現時点の目標SIRaを取得し、ステップS32ではb−a>0か否かを判別する。b−a>0の場合は、現時点の目標SIRaがRTT測定に最適な目標SIRbよりも低いので、ステップS33に進み、それらの差分b−aをオフセットSIRレジスタαにセットする。また、b−a>0でない場合は、現時点の目標SIRaの方がRTT測定に最適な目標SIRbよりも高いので、ステップS34に進み、オフセットSIRレジスタαに0をセットする。これにより、上り送信電力のインナーループ制御は新たな目標SIR(a
+α)に向けて速やかに収束する。
FIG. 4 is a flowchart of the RTT measurement process according to the second embodiment, and inputs to this process upon receiving activation of the RTT measurement from the radio base station controller 50. In step S31, the current target SIRa is acquired, and in step S32, it is determined whether b−a> 0. If b−a> 0, the current target SIRa is lower than the target SIRb optimum for RTT measurement, so the process proceeds to step S33, and the difference b−a is set in the offset SIR register α. On the other hand, if b−a> 0 is not satisfied, the current target SIRa is higher than the target SIRb optimum for the RTT measurement, so that the process proceeds to step S34 and 0 is set in the offset SIR register α. As a result, the inner loop control of the uplink transmission power becomes the new target SIR (a
Converge quickly toward + α).

ステップS35ではオフセットSIRαの大きさに応じた時間Tの時間経過を待ち、やがて経過すると、ステップS36では速度検出部45より端末10の移動速度vを取得する。ステップS37では移動速度vに応じた個数(M個)のRTT測定サンプル(遅延プロファイル)を取得し、メモリMEMに記憶する。ステップS38ではメモリMEMのRTT測定サンプルに基づき、上りDPCCHの受信最速パスを抽出する。ステップS39では下りDPCH処理部22より通知されたRTT測定に係る信号の下り送信タイミングt1と、RTT測定制御部60で検出した受信最速パスの時刻t4とに基づき、RTT=t4−t1を求め、出力する。   In step S35, the passage of time T according to the magnitude of the offset SIRα is waited. When the time elapses, the moving speed v of the terminal 10 is acquired from the speed detector 45 in step S36. In step S37, the number (M) of RTT measurement samples (delay profiles) corresponding to the moving speed v is acquired and stored in the memory MEM. In step S38, the fastest DCPCH reception path is extracted based on the RTT measurement sample in the memory MEM. In step S39, RTT = t4-t1 is obtained based on the downlink transmission timing t1 of the signal related to the RTT measurement notified from the downlink DPCH processing unit 22 and the time t4 of the fastest reception path detected by the RTT measurement control unit 60. Output.

図5は第2の実施の形態におけるRTT測定サンプル(遅延プロファイル)のグラフ図で、横軸はシステムの基準タイミングt0を基準にして表したパスタイミング(チップタイミング)、縦軸は受信信号のパスレベル(相関電力)を表す。一般に、基地局に近い端末の相関ピークは早く現れ、基地局に遠い端末の相関ピークは遅く現れる。また、同一端末で言うと、見通し内直接波の相関ピークは相対的に早く現れ、反射や回折した見通し外間接波の相関ピークは相対的に遅く現れる。   FIG. 5 is a graph of an RTT measurement sample (delay profile) in the second embodiment, where the horizontal axis is the path timing (chip timing) expressed with reference to the system reference timing t0, and the vertical axis is the path of the received signal. Represents the level (correlation power). In general, a correlation peak of a terminal close to the base station appears early, and a correlation peak of a terminal far from the base station appears late. Further, in the same terminal, the correlation peak of the line-of-sight direct wave appears relatively early, and the correlation peak of the reflected or diffracted non-line-of-sight indirect wave appears relatively late.

図5(A)は端末の移動速度vが遅い場合のRTT測定サンプル例で、メモリMEMの記憶容量いっぱいにN個の測定サンプルを記憶した場合を示している。ここで、速度vが遅いとは、レイリーフェージング変動速度(周期)≫RTT測定周期の状態を意味する。基地局と端末間の無線環境は端末の移動に伴って変化するが、移動速度vがRTT測定周期に比べて充分に遅い場合は、比較的類似した無線環境下で複数のRTTサンプルを取得できる。そこで、この場合は複数の測定サンプルを取得して、その中から最適(最速)のパスを検出する。   FIG. 5A shows an example of the RTT measurement sample when the moving speed v of the terminal is low, and shows a case where N measurement samples are stored to the full storage capacity of the memory MEM. Here, the slow speed v means the state of Rayleigh fading fluctuation speed (cycle) >> RTT measurement cycle. Although the radio environment between the base station and the terminal changes as the terminal moves, if the moving speed v is sufficiently slow compared to the RTT measurement period, a plurality of RTT samples can be acquired in a relatively similar radio environment. . Therefore, in this case, a plurality of measurement samples are acquired, and the optimum (fastest) path is detected from them.

図5(A)の例では測定サンプル#Nの最速パス(↓で示す)を測定全体の最速パスと決定できる。なお、最速パスの決定の安全(信頼性)のために複数の測定サンプルを平均化してそれらの中から測定全体の最速パスを決定しても良い。この場合に、平均化する測定サンプルの数は固定でも良いが、各サンプルにおける最速パスが所定の時間幅以内に含まれるような複数の測定サンプルを抽出して、これらの平均を求めるようにしても良い。その後、測定全体での最速パスを決定する。   In the example of FIG. 5A, the fastest path (indicated by ↓) of the measurement sample #N can be determined as the fastest path of the entire measurement. For the safety (reliability) of determining the fastest path, a plurality of measurement samples may be averaged and the fastest path of the entire measurement may be determined from them. In this case, the number of measurement samples to be averaged may be fixed, but a plurality of measurement samples are extracted so that the fastest path in each sample is included within a predetermined time width, and an average of these is obtained. Also good. Then, the fastest path in the whole measurement is determined.

図5(B)は端末の移動速度vが中間の場合を示しており、移動速度vの大きさに応じた個数(M個)の測定サンプルをメモリMEMに記憶した場合を示している。上記同様にして、M個の測定サンプルを使用して測定全体の最速パスを決定する。図5(B)の例では、M個の測定サンプルの内の、単純に最速のパスを有する測定サンプル#Mのパス(↓で示す)を測定全体の最速パスに決定する。   FIG. 5B shows a case where the moving speed v of the terminal is intermediate, and shows a case where the number (M) of measurement samples corresponding to the magnitude of the moving speed v is stored in the memory MEM. In the same manner as described above, the fastest path of the entire measurement is determined using M measurement samples. In the example of FIG. 5B, the path of measurement sample #M (shown by ↓) having the fastest path among the M measurement samples is simply determined as the fastest path of the entire measurement.

図5(C)は端末の移動速度vが速い場合のRTT測定サンプル例であり、メモリMEMに1個の測定サンプルを記憶した場合を示している。速度が速いとは、レイリーフェージング変動速度(周期)≪RTT測定周期の状態を意味しており、この場合は1つの測定サンプル中にも比較的多くの無線通信環境が反映されており、よって1つの測定サンプルを使用して最速パスを決定する。   FIG. 5C shows an example of the RTT measurement sample when the moving speed v of the terminal is high, and shows a case where one measurement sample is stored in the memory MEM. High speed means a state of Rayleigh fading fluctuation speed (period) << RTT measurement period. In this case, a relatively large number of wireless communication environments are reflected in one measurement sample. Use one measurement sample to determine the fastest path.

なお、上記実施の形態では、データ通信のサービス品質に応じた目標SIRaにオフセットSIRα(=b−a)を加える場合を説明したが、こに限らない。データ通信のサービス品質に応じた目標SIRaと、RTT測定に最適な目標SIRbとを切り替えて使用するように構成しても良い。   In the above embodiment, the case where the offset SIRα (= b−a) is added to the target SIRa corresponding to the service quality of data communication has been described. However, the present invention is not limited to this. A target SIRa corresponding to the service quality of data communication and a target SIRb optimum for RTT measurement may be switched and used.

また、上記実施の形態では、オフセットSIRαの大きさに応じた時間TだけRTTの測定開始を待たせたが、これに限らない。実際の受信SIRが目標SIR(a+α)の所定範囲内に収束したか否かを判別してRTTの測定を開始しても良い。   In the above embodiment, the start of RTT measurement is waited for the time T corresponding to the magnitude of the offset SIRα. However, the present invention is not limited to this. RTT measurement may be started by determining whether or not the actual reception SIR has converged within a predetermined range of the target SIR (a + α).

また、上記本発明に好適なる複数の実施の形態を述べたが、本発明思想を逸脱しない範囲内で各部の構成、制御、処理及びこれらの組合せの様々な変更が行えることは言うまでも無い。   Moreover, although several embodiment suitable for the said invention was described, it cannot be overemphasized that the structure of each part, control, a process, and these combination can be variously changed within the range which does not deviate from this invention. .

第1の実施の形態によるの移動通信システムのブロック図である。1 is a block diagram of a mobile communication system according to a first embodiment. 第1の実施の形態によるRTT測定処理のシーケンス図である。It is a sequence diagram of the RTT measurement process by 1st Embodiment. 第2の実施の形態によるの移動通信システムのブロック図である。It is a block diagram of the mobile communication system by 2nd Embodiment. 第2の実施の形態によるRTT測定処理のフローチャートである。It is a flowchart of the RTT measurement process by 2nd Embodiment. 第2の実施の形態におけるRTT測定サンプルのグラフ図である。It is a graph of the RTT measurement sample in 2nd Embodiment. 従来技術を説明する図である。It is a figure explaining a prior art.

符号の説明Explanation of symbols

10 端末(移動局)
20 無線基地局
21 Iub終端部
22 下りDPCH処理部
23 無線送信部
24 無線受信部
30 上りDPCCH処理部
31 RTT測定部
45 速度検出部
50 無線基地局制御装置
60 RTT測定制御部
10 terminal (mobile station)
20 radio base station 21 Iub termination unit 22 downlink DPCH processing unit 23 radio transmission unit 24 radio reception unit 30 uplink DPCCH processing unit 31 RTT measurement unit 45 speed detection unit 50 radio base station control device 60 RTT measurement control unit

Claims (5)

基地局と端末間における所定の通信チャネルを往復する無線信号のRTT(Round trip time)測定機能を有する基地局装置において、
所要の通信品質を満足するように更新される第1の目標SIRと、
RTTの測定に最適な第2の目標SIRと、
RTT測定時における前記第1の目標SIRが前記第2の目標SIRよりも低い場合に、前記第2の目標SIRによる端末送信電力の制御下でRTT測定を行う制御部と、
を備えることを特徴とする基地局装置。
In a base station apparatus having an RTT (Round Trip Time) measurement function of a radio signal that reciprocates a predetermined communication channel between a base station and a terminal,
A first target SIR that is updated to satisfy the required communication quality;
A second target SIR optimal for measuring RTT;
A control unit that performs RTT measurement under control of terminal transmission power by the second target SIR when the first target SIR at the time of RTT measurement is lower than the second target SIR;
A base station apparatus comprising:
前記制御部は、前記第2の目標SIRによる端末送信電力の制御下でRTT測定を行う場合は、前記端末送信電力の制御収束を待ってRTT測定を行うことを特徴とする請求項1記載の基地局装置。 The said control part waits for control convergence of the said terminal transmission power, and performs RTT measurement, when performing a RTT measurement under control of the terminal transmission power by said 2nd target SIR. Base station device. 前記制御部は、RTT測定時における前記第1の目標SIRが前記第2の目標SIRよりも高い場合に、該第1の目標SIRによる端末送信電力の制御下でRTT測定を行うことを特徴とする請求項1記載の基地局装置。 The control unit performs RTT measurement under control of terminal transmission power by the first target SIR when the first target SIR at the time of RTT measurement is higher than the second target SIR. The base station apparatus according to claim 1. 基地局と端末間における所定の通信チャネルを往復する無線信号のRTT(Round trip time)測定機能を有する基地局装置において、
上り通信チャネルのチャネル推定値に基づいて端末の移動速度を検出する速度検出部と、
前記検出した移動速度に応じたRTT測定サンプル数に基づいて上り通信チャネルの最速パスを抽出する最速パス抽出部と、
下り送信の開始時刻と、前記抽出した上り最速パスの受信時刻とに基づきRTTを測定する制御部と、
を備えることを特徴とする基地局装置。
In a base station apparatus having an RTT (Round Trip Time) measurement function of a radio signal that reciprocates between predetermined communication channels between a base station and a terminal,
A speed detector that detects the moving speed of the terminal based on the channel estimation value of the uplink communication channel;
A fastest path extraction unit that extracts the fastest path of the uplink communication channel based on the number of RTT measurement samples according to the detected moving speed;
A control unit that measures RTT based on the start time of downlink transmission and the reception time of the extracted uplink fastest path;
A base station apparatus comprising:
前記最速パス抽出部は、所定以上の振幅を有するパスのうち、最速のものを最速パスとして抽出することを特徴とする請求項4記載の基地局装置。 5. The base station apparatus according to claim 4, wherein the fastest path extraction unit extracts the fastest path among paths having an amplitude greater than or equal to a predetermined value as the fastest path.
JP2007141667A 2007-05-29 2007-05-29 Base station equipment Withdrawn JP2008300923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007141667A JP2008300923A (en) 2007-05-29 2007-05-29 Base station equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007141667A JP2008300923A (en) 2007-05-29 2007-05-29 Base station equipment

Publications (1)

Publication Number Publication Date
JP2008300923A true JP2008300923A (en) 2008-12-11

Family

ID=40174062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007141667A Withdrawn JP2008300923A (en) 2007-05-29 2007-05-29 Base station equipment

Country Status (1)

Country Link
JP (1) JP2008300923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9332543B2 (en) 2012-03-19 2016-05-03 Fujitsu Limited Mobile radio device and determining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9332543B2 (en) 2012-03-19 2016-05-03 Fujitsu Limited Mobile radio device and determining method

Similar Documents

Publication Publication Date Title
US7010320B2 (en) Transmission power control method, base station, mobile station and mobile communication system
US9307518B2 (en) Method and apparatus for communicating with base station based on speed of user equipment in mobile communication system
US7136665B2 (en) Mobile communications system and method for controlling transmission power
KR100728894B1 (en) Position information providing system, base station and position information providing method for use therewith, and computer readable recording medium storing program
US7133682B2 (en) Mobile communication system and communication method for mobile communication system
US8924155B2 (en) System and method for access point based positioning
US8000733B2 (en) Mobile communication terminal and transmission power controlling method
JP2001359140A (en) Wireless position measurement terminal and wireless position measurement system
JP2001186559A (en) Mobile communication system and simple synchronization method between base stations used therefor
WO2013125993A1 (en) Method and arrangement for determining a beam parameter of an antenna in a wireless communications system
JP2010237184A (en) Mobile communication method and radio base station
JP2006319462A (en) Transmission power control method and device thereof
EP1315310A2 (en) Radio base station, mobile station, radio receiving apparatus, SIR estimation method, transmission power controlling method and program
EP1161010A1 (en) Sir measuring device and sir measuring method
US20060019661A1 (en) Service area determination method for determining whether a mobile terminal is in the service area of a repeater or in the service area of a radio base station
JP2007013352A (en) Transmission power control system, its method, base station to be used for the same and mobile communication system
JP2006054625A (en) Mobile communication system, mobile communication terminal, and handover control method used for them and program thereof
JP2008300923A (en) Base station equipment
JP5083328B2 (en) Transmission power control method and apparatus
JP2006203674A (en) Base station device
KR101862285B1 (en) Bluetooth Low Energy (BLE) Distance Estimation Method of Mobile Device Using Beacon Transmission Signal
US20020077125A1 (en) Efficient CDMA earliest phase offset search for geo-location
US8879605B1 (en) Mobile station time reference that is adjusted based on propagation delay
JP2004112624A (en) Base station equipment, higher-rank station equipment, and method of setting transmission power
JP2006148484A (en) Communication apparatus and transmission power control method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803