JP2008300890A - Method for forming resist pattern - Google Patents

Method for forming resist pattern Download PDF

Info

Publication number
JP2008300890A
JP2008300890A JP2008237020A JP2008237020A JP2008300890A JP 2008300890 A JP2008300890 A JP 2008300890A JP 2008237020 A JP2008237020 A JP 2008237020A JP 2008237020 A JP2008237020 A JP 2008237020A JP 2008300890 A JP2008300890 A JP 2008300890A
Authority
JP
Japan
Prior art keywords
film
resist film
substrate
resist
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008237020A
Other languages
Japanese (ja)
Other versions
JP4672763B2 (en
Inventor
Shinichi Ito
信一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008237020A priority Critical patent/JP4672763B2/en
Publication of JP2008300890A publication Critical patent/JP2008300890A/en
Application granted granted Critical
Publication of JP4672763B2 publication Critical patent/JP4672763B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress occurrence of defects in a resist pattern, in immersion exposure which exposes a local region on a substrate via a liquid film. <P>SOLUTION: A resist film is formed on the substrate (step ST102). The substrate formed with the resist film is transferred to an exposure device which is provided with a reticle formed with a pattern and a projection optical system (step ST105). In order to selectively form a first liquid film in a local region on the resist film, the immersion exposure is performed in a state where the liquid film is formed locally (step ST105). In order to form a second liquid film substantially on the entire faces of the substrate, a second chemical liquid is supplied on the resist film (step ST108). The second liquid film is removed (step ST109). The resist film formed with a latent image is heated (step ST110). The resist film is developed (step ST111). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、基板上に形成されたレジスト膜に対して液体を介して露光を行い潜像を形成し、選択的な現像を行うことでレジストパターンを形成する手法に関する。   The present invention relates to a technique for forming a resist pattern by exposing a resist film formed on a substrate through a liquid to form a latent image and performing selective development.

液浸露光装置は被処理基板上に形成したレジスト膜に対する露光を行う際に、レジスト膜表面と露光装置のレンズの間を液で満たして露光を行う手法である。このような露光法に用いる装置には例えば特許文献1記載のものがある。特許文献1では水を供給可能なステージの中で、被処理基板全体を水没させ、このステージを露光装置に対して相対的に移動させながら露光を行う装置について開示されている。このような形態の装置ではステージ全体に液が供給されているためステージを高速で移動させた際にステージから液が溢れるなどの問題があり高速駆動できないという問題があった。   The immersion exposure apparatus is a technique for performing exposure by filling a space between a resist film surface and a lens of an exposure apparatus with a liquid when performing exposure on a resist film formed on a substrate to be processed. An apparatus used for such an exposure method is disclosed in Patent Document 1, for example. Patent Document 1 discloses an apparatus that performs exposure while immersing the entire substrate to be processed in a stage capable of supplying water and moving the stage relative to the exposure apparatus. In the apparatus of this type, since the liquid is supplied to the entire stage, there is a problem that when the stage is moved at a high speed, the liquid overflows from the stage and cannot be driven at a high speed.

ステージ移動による液の乱れの対策については、露光を行う部分に対して局所的に液体を供給しながらステージを駆動する手法が開示されている(非特許文献1)。この方式によりステージの高速移動が可能になった。このような局所的に液体を供給する手法を用いた場合にレンズが去った部分の露光領域などに水が取り残され、この状態でレジスト膜の露光後加熱を行った際に水しみが発生したり、水が存在した部分で温度低下が生じてレジストパターン異常が生じたりするなどの問題があった。   As a countermeasure against liquid disturbance due to stage movement, a method of driving a stage while locally supplying liquid to a portion to be exposed is disclosed (Non-Patent Document 1). This method enabled high-speed movement of the stage. When such a method of supplying liquid locally is used, water is left in the exposed area of the part where the lens has left, and when the resist film is heated after exposure in this state, water stains are generated. In addition, there is a problem that a temperature drop occurs in a portion where water is present and a resist pattern abnormality occurs.

また、基板の縁周辺で露光を行う場合、レジスト膜のエッジ部に水が流れることがある。この時、基板とレジスト膜のエッジ部との段差で乱流が生じて、空気を巻き込む恐れがある。この空気が露光スリット領域に達すると、露光異常が発生することがある。露光異常により、レジストパターン異常が生じたりするなどの問題があった。
特開平10−303114号公報 Soichi Owa and Hiroyuki Nagasaka, Immersion lithography; its potential performance and issues, Proc. of SPIE Vol.5040, pp.724-733
In addition, when exposure is performed around the edge of the substrate, water may flow to the edge portion of the resist film. At this time, a turbulent flow is generated at the level difference between the substrate and the edge portion of the resist film, and there is a possibility that air is involved. When this air reaches the exposure slit region, an exposure abnormality may occur. There has been a problem that a resist pattern abnormality occurs due to an abnormal exposure.
JP-A-10-303114 Soichi Owa and Hiroyuki Nagasaka, Immersion lithography; its potential performance and issues, Proc. Of SPIE Vol.5040, pp.724-733

基板上の局所的な領域に液膜を介して露光する液浸露光において、レジストパターンに欠陥が発生することを抑制し得るレジストパターン形成方法を提供することを提供することにある。   An object of the present invention is to provide a resist pattern forming method capable of suppressing the occurrence of defects in a resist pattern in immersion exposure in which a local region on a substrate is exposed through a liquid film.

本発明の一例に係わるレジストパターン形成方法は、基板上にレジスト膜を形成する工程と、前記レジスト膜が形成された基板およびパターンが形成されたレチクルを、投影光学系を具備する露光装置に搭載する工程と、前記レジスト膜上の局所的な領域に第1の液膜を選択形成するために、前記レジスト膜上への第1の薬液としての水の供給と供給された第1の薬液の回収とを行う工程であって、前記第1の液膜は流れを有し、前記第1の液膜を前記レジスト膜と投影光学系との間に形成する工程と、前記レジスト膜に潜像を形成するために、前記第1の液膜が形成された状態で前記レチクルに形成されたパターンを前記レジスト膜に転写する工程と、前記基板上に点在する前記第1の液膜の残留液滴を含むように、第2の薬液としての水を前記レジスト膜上に供給して、前記第1の液膜の残留液滴を含む第2の液膜を形成する工程と、前記第2の液膜を除去する工程と、前記除去後、前記潜像が形成されたレジスト膜を加熱する工程と、前記加熱されたレジスト膜からレジストパターンを形成するために、前記レジスト膜を現像する工程と、を含むことを特徴とする。   A resist pattern forming method according to an example of the present invention includes a step of forming a resist film on a substrate, a substrate on which the resist film is formed, and a reticle on which the pattern is formed in an exposure apparatus having a projection optical system. In order to selectively form the first liquid film in a local region on the resist film, and supply of water as the first chemical liquid onto the resist film and the supplied first chemical liquid The first liquid film has a flow, the first liquid film is formed between the resist film and the projection optical system, and a latent image is formed on the resist film. To transfer the pattern formed on the reticle to the resist film in a state in which the first liquid film is formed, and the residual of the first liquid film scattered on the substrate. Water as the second chemical so as to contain droplets Supplying the resist film on the resist film to form a second liquid film containing residual droplets of the first liquid film; removing the second liquid film; The method includes a step of heating a resist film on which an image is formed, and a step of developing the resist film to form a resist pattern from the heated resist film.

本発明によれば、露光領域のレジスト膜表面と露光装置のレンズとの間に選択的に液膜を形成し、これを介して露光する際に、レジスト膜から液体に溶出する物質の影響を低減でき、また、露光領域の移動に伴いレジスト膜表面に残存する液体によるレジストパターン寸法精度劣化及び欠陥を防止することが可能になる。   According to the present invention, a liquid film is selectively formed between the resist film surface in the exposure region and the lens of the exposure apparatus, and the influence of substances eluted from the resist film into the liquid when exposed through the film. In addition, it is possible to prevent deterioration of resist pattern dimensional accuracy and defects due to liquid remaining on the resist film surface as the exposure region moves.

本発明の実施の形態を以下に図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施形態)
半導体基板上に反射防止膜用塗布材料を滴下し回転して広げた後で加熱処理を行い、約50nmの厚さの反射防止膜を形成する(ステップST101)。反射防止膜上に酸発生材を含むArF化学増幅型レジスト膜を膜厚200nmで形成する(ステップST102)。化学増幅型レジストは以下の手順で形成される。スピンコート法により反射防止膜上に化学増幅型レジスト用塗布材料を広げる。そして、加熱処理を行って、塗布材料に含まれる溶剤を除去する。
(First embodiment)
An antireflection film coating material is dropped on the semiconductor substrate and rotated and spread, and then heat treatment is performed to form an antireflection film having a thickness of about 50 nm (step ST101). An ArF chemically amplified resist film containing an acid generator is formed on the antireflection film to a thickness of 200 nm (step ST102). The chemically amplified resist is formed by the following procedure. A coating material for chemically amplified resist is spread on the antireflection film by spin coating. Then, heat treatment is performed to remove the solvent contained in the coating material.

別途行ったArF化学増幅型レジスト膜の表面分析では、膜表面に酸発生材や酸トラップ材(アミンなど)が分布していることが判っている。レジスト膜表面の酸発生材や酸トラップ材を除去するために、レジスト膜上に純水を供給して洗浄処理を行う(ステップST103)。この洗浄により、レジスト膜表面の酸発生材と酸トラップ材が除去される。なお、加熱処理後の膜表面に残存する酸発生材や酸トラップ材の影響を除くためにレジスト膜上に更に保護膜を形成する場合がある。このときの加熱状態によっても保護膜上に酸発生材や酸トラップ材が存在してしまい、同様の洗浄が必要になる場合がある。   In the surface analysis of the ArF chemically amplified resist film separately performed, it is known that acid generating materials and acid trap materials (such as amines) are distributed on the film surface. In order to remove the acid generating material and acid trap material on the resist film surface, pure water is supplied onto the resist film to perform a cleaning process (step ST103). By this cleaning, the acid generating material and the acid trap material on the resist film surface are removed. In some cases, a protective film is further formed on the resist film in order to eliminate the influence of the acid generator or acid trap material remaining on the film surface after the heat treatment. Depending on the heating state at this time, the acid generating material and the acid trapping material may be present on the protective film, and the same cleaning may be necessary.

図2は、本発明の一実施形態に係わる洗浄処理を行っている状態を示す図である。図2(a)は洗浄処理を行っている状態の平面図、図2(b)は洗浄処理を行っている状態の側面図である。   FIG. 2 is a diagram showing a state in which a cleaning process according to an embodiment of the present invention is performed. FIG. 2A is a plan view showing a state where the cleaning process is being performed, and FIG. 2B is a side view showing a state where the cleaning process is being performed.

図2に示すように、半導体基板10を基板支持部11上に保持させる。基板支持部11は、駆動部12により回転される。半導体基板10を回転させつつ洗浄ノズル13から半導体基板に対して洗浄液である純水(第3の薬液)14を供給する。洗浄処理時、図2(a)に示すように、洗浄ノズル13を基板10の周方向の一端と他端との間を往復移動させる。洗浄ノズル13が基板10外周部にある状態でのノズル13の移動速度は、ノズル13が基板10中心部上に位置する状態での移動速度より遅くする。その結果、基板10の単位面積辺りに供給される洗浄液がほぼ等しくなり、洗浄の効果を高めることができる。なお、ノズル13が等速運動する場合、ノズルの径方向位置に対して逆比例するように基板の回転数を変更することで同様の効果を得ることができる。   As shown in FIG. 2, the semiconductor substrate 10 is held on the substrate support portion 11. The substrate support unit 11 is rotated by the drive unit 12. While rotating the semiconductor substrate 10, pure water (third chemical solution) 14 that is a cleaning liquid is supplied from the cleaning nozzle 13 to the semiconductor substrate. During the cleaning process, the cleaning nozzle 13 is reciprocated between one end and the other end in the circumferential direction of the substrate 10 as shown in FIG. The moving speed of the nozzle 13 in a state where the cleaning nozzle 13 is on the outer peripheral portion of the substrate 10 is slower than the moving speed in a state where the nozzle 13 is located on the central portion of the substrate 10. As a result, the cleaning liquid supplied per unit area of the substrate 10 becomes substantially equal, and the cleaning effect can be enhanced. When the nozzle 13 moves at a constant speed, the same effect can be obtained by changing the rotation speed of the substrate so as to be inversely proportional to the radial position of the nozzle.

またこれらの物質を除去しやすい薬液であればよく本実施形態記載の純水には限らない。洗浄にかかる時間が長い場合、洗浄液として酸素溶存水、水素溶存水、炭酸溶存水などを用いることで短時間処理が可能となった。酸素溶存水を用いる場合には10ppm以下で作用させることで膜表面にダメージを与えることなく洗浄することができた。また水素水を用いる場合にはほぼ飽和の状態(1.2ppm程度)で作用させると良い。これらの薬液の選択は膜表面を薬液に晒したときに生じる電位、酸発生材、酸トラップ材の液中での電位などに応じて、酸発生材、酸トラップ材が膜表面から遊離しやすい条件で用いると良い。   Moreover, the chemical solution is not limited to the pure water described in the present embodiment as long as it is a chemical solution that can easily remove these substances. When the time required for cleaning is long, the treatment can be performed for a short time by using oxygen-dissolved water, hydrogen-dissolved water, carbonate-dissolved water, etc. as the cleaning liquid. In the case of using oxygen-dissolved water, it was possible to perform cleaning without damaging the film surface by acting at 10 ppm or less. When hydrogen water is used, it is preferable to act in a substantially saturated state (about 1.2 ppm). The choice of these chemicals depends on the potential generated when the membrane surface is exposed to the chemical, the potential of the acid generator and the acid trap material in the solution, etc., and the acid generator and acid trap material are easily released from the membrane surface. It is good to use under conditions.

また、図3のようにノズル13を基板10の中心部と基板10の外周部の一端との間で折り返して移動させても良い。図3は、本発明の一実施形態に係わる洗浄処理を行っている状態を示す図である。図3(a)は洗浄処理を行っている状態の平面図、図3(b)は洗浄処理を行っている状態の側面図である。図3において、図2と同一な部位には同一符号を付し、その説明を省略する。   Further, as shown in FIG. 3, the nozzle 13 may be folded and moved between the central portion of the substrate 10 and one end of the outer peripheral portion of the substrate 10. FIG. 3 is a diagram showing a state in which a cleaning process according to an embodiment of the present invention is performed. FIG. 3A is a plan view showing a state where the cleaning process is being performed, and FIG. 3B is a side view showing a state where the cleaning process is being performed. 3, parts that are the same as those in FIG. 2 are given the same reference numerals, and descriptions thereof are omitted.

また、本実施形態での基板10主面に対する注水は主面と直交する方向に行ったがこれに限るものではない。例えば、基板10の回転方向と同じ向きに注水しても良い。その結果、純水14が膜表面にぶつかる時の衝撃を和らげ、膜表面にダメージを与えることなく洗浄することができる。また、基板回転方向と逆向きに注水することで膜表面に付着した酸発生材や酸トラップ材を効率よく除去することができる。また、基板外周方向に向けて注水することで膜表面から除去した酸発生材や酸トラップ材を効率よく基板外に排出できる。   Moreover, although water injection with respect to the board | substrate 10 main surface in this embodiment was performed in the direction orthogonal to a main surface, it does not restrict to this. For example, water may be injected in the same direction as the rotation direction of the substrate 10. As a result, the impact when the pure water 14 hits the film surface can be reduced, and the film can be cleaned without damaging the film surface. Moreover, the acid generating material and the acid trap material adhering to the film surface can be efficiently removed by pouring water in the direction opposite to the substrate rotation direction. Moreover, the acid generating material and the acid trap material removed from the film surface by pouring water toward the outer periphery of the substrate can be efficiently discharged out of the substrate.

次いで、レジスト膜表面の乾燥処理を行う(ステップST104)。乾燥処理は、図4に示すように、エアーナイフ21から基板10の主面に酸、アルカリをフィルタリングしたガス22を吹き付ける。エアーナイフ21が基板上にエアーを吹き付ける領域は、基板表面の一部である。基板10全面にエアーを吹き付けるために、エアーナイフ21が基板10表面上を基板10の周方向の一端から他端に向けて走査する。この時、基板10を回転させてもよいし、静止させた状態でも良い。   Next, the resist film surface is dried (step ST104). In the drying process, as shown in FIG. 4, a gas 22 obtained by filtering acid and alkali is sprayed from the air knife 21 to the main surface of the substrate 10. A region where the air knife 21 blows air onto the substrate is a part of the substrate surface. In order to blow air over the entire surface of the substrate 10, the air knife 21 scans the surface of the substrate 10 from one end to the other end in the circumferential direction of the substrate 10. At this time, the substrate 10 may be rotated or may be stationary.

図4は、本発明の一実施形態に係わる洗浄液の除去処理を行っている状態を示す図である。図4(a)は洗浄液の除去処理を行っている状態の平面図、図4(b)は洗浄液の除去処理を行っている状態の側面図である。純水14の除去は膜表面に吸着水が残る程度であっても良い。エアーナイフ21から吹き付けられるエアー22の向きはエアーナイフ21の進行方向であることが望ましい。向きを同じにすることで、効率的且つ短時間で水の除去が可能である。この工程での純水14の除去のポイントは、熱処理または減圧下で乾燥を行わないことにある。熱処理または減圧下での乾燥を行った場合にはレジスト膜内部から酸発生材と酸トラップ材が抽出されて再び膜表面に現れてしまい、先の洗浄の効果を失う。径が小さい基板の場合にはエアーナイフを使わずに基板を回転して乾燥を行っても良い。   FIG. 4 is a diagram showing a state in which the cleaning liquid removal process according to the embodiment of the present invention is performed. FIG. 4A is a plan view showing a state where the cleaning liquid is being removed, and FIG. 4B is a side view showing a state where the cleaning liquid is being removed. The removal of the pure water 14 may be such that adsorbed water remains on the membrane surface. The direction of the air 22 blown from the air knife 21 is preferably the traveling direction of the air knife 21. By making the directions the same, water can be removed efficiently and in a short time. The point of removal of the pure water 14 in this step is that the drying is not performed under heat treatment or reduced pressure. When heat treatment or drying under reduced pressure is performed, the acid generating material and the acid trapping material are extracted from the inside of the resist film and appear again on the film surface, losing the effect of the previous cleaning. In the case of a substrate having a small diameter, drying may be performed by rotating the substrate without using an air knife.

洗浄処理後、基板をスキャン露光装置に搬送する(ステップST105)。スキャン露光装置を用いてレチクルに形成された半導体素子パターンをレジスト膜に転写し、潜像を形成する(ステップST106)。   After the cleaning process, the substrate is transported to the scan exposure apparatus (step ST105). The semiconductor element pattern formed on the reticle is transferred to a resist film using a scanning exposure apparatus to form a latent image (step ST106).

本実施形態で用いる露光装置は液浸型である。図5に露光装置の概略を示す。図5は、本発明の一実施形態に係わる露光装置の概略構成を示す図である。図示されない照明光学系の下方にレチクルステージ31が配置されている。レチクルステージ31上にレチクル32が設置されている。レチクルステージ31は平行移動可能である。レチクルステージ31の下方に投影レンズ系33が配置されている。投影レンズ系33の下方にウェハステージ34が配置されている。ウェハステージ34上に前述した処理が行われた半導体基板10が設置されている。ウェハステージ34は、半導体基板10と共に平行移動する。半導体基板10の周囲にはサポート板37が設けられている。   The exposure apparatus used in this embodiment is a liquid immersion type. FIG. 5 shows an outline of the exposure apparatus. FIG. 5 is a view showing the schematic arrangement of an exposure apparatus according to an embodiment of the present invention. A reticle stage 31 is disposed below an illumination optical system (not shown). A reticle 32 is installed on the reticle stage 31. The reticle stage 31 is movable in parallel. A projection lens system 33 is disposed below the reticle stage 31. A wafer stage 34 is disposed below the projection lens system 33. On the wafer stage 34, the semiconductor substrate 10 having been subjected to the above-described processing is installed. The wafer stage 34 moves in parallel with the semiconductor substrate 10. A support plate 37 is provided around the semiconductor substrate 10.

投影レンズ系33の下方には、フェンス35が取り付けられている。投影レンズ系33の横にフェンス35内への水(第1の薬液)の供給及びフェンス35内からの水の排出を行う一対の水供給・排出器36が設けられている。露光時、フェンス35と投影レンズ33で囲まれた領域の基板10と投影レンズ系33との空間は水の液膜(第1の液膜)で満たされる。投影レンズ系33から射出する露光光は水の層を通過して照射領域に到達する。照射領域にあたる基板表面のフォトレジストにレチクル32上のマスクパターン(図示せず)の像が投影され、潜像が形成される。   A fence 35 is attached below the projection lens system 33. Next to the projection lens system 33, a pair of water supply / discharge devices 36 for supplying water (first chemical solution) into the fence 35 and discharging water from the fence 35 are provided. At the time of exposure, the space between the substrate 10 and the projection lens system 33 in the region surrounded by the fence 35 and the projection lens 33 is filled with a liquid film of water (first liquid film). The exposure light emitted from the projection lens system 33 passes through the water layer and reaches the irradiation area. An image of a mask pattern (not shown) on the reticle 32 is projected onto the photoresist on the surface of the substrate corresponding to the irradiation region, thereby forming a latent image.

図6は基板上に形成される各露光フィールドの配置を表す平面図である。1枚のレチクルに描かれたマスクパターンが、スキャン露光により基板10上の矩形の露光フィールド41にそれぞれ投影・転写される。スキャン露光時、例えば図7に示すように、露光スリット領域51が露光フィールド41を紙面の上から下へ走査する。または図8に示すように、露光スリット領域51が露光フィールド41を紙面の下から上へ走査する。図7及び図8は、本発明の一実施形態に係わるスキャン露光を説明するために用いられる図である。   FIG. 6 is a plan view showing the arrangement of each exposure field formed on the substrate. A mask pattern drawn on one reticle is projected and transferred to a rectangular exposure field 41 on the substrate 10 by scanning exposure. At the time of scan exposure, for example, as shown in FIG. 7, the exposure slit area 51 scans the exposure field 41 from the top to the bottom of the paper. Alternatively, as shown in FIG. 8, the exposure slit area 51 scans the exposure field 41 from the bottom to the top of the paper. 7 and 8 are diagrams used to explain scan exposure according to an embodiment of the present invention.

図9は、各露光フィールドを順次走査露光する際の露光順序の一例を表す平面図である。図9における上向きの矢印・下向きの矢印はそれぞれ、露光スリット領域が移動する方向を示している。図9に示すように、一つの露光フィールドをスキャン露光し、隣の露光フィールドをスキャン露光するときには走査の向きが逆になっている。このような動作を繰り返しながら基板全面の露光を行う。   FIG. 9 is a plan view showing an example of an exposure order when sequentially scanning and exposing each exposure field. The upward arrow and the downward arrow in FIG. 9 indicate the directions in which the exposure slit region moves. As shown in FIG. 9, when one exposure field is scanned and the next exposure field is scanned, the scanning direction is reversed. The entire surface of the substrate is exposed while repeating such operations.

スキャン露光の間、水供給・排出器36はフェンス35で囲まれた領域の外に水が残らないように水の回収を行う。ところが、基板上のレジスト膜が水をはじきやすい(レジスト膜の水に対する接触角が高い)場合、ステージの移動速度が速い場合、ステージの加減速度が大きい場合、比較的大きい露光領域を有する場合などでは、図10に示すように、基板10上に残留水71が生じてしまう。このように露光後に部分的に水がレジスト膜上で残った状態で次の加熱(Post exposure bake)を行うと、水が残った部分では熱が吸収されて他の部分と比べてレジスト膜へ供給される熱量が少なくなり、レジスト膜中での加熱による反応を十分に生じさせることができず線幅異常が生じる。レジストがポジレジストである場合には未開口の欠陥が発生してしまう。ネガレジストである場合にはオープン不良の欠陥が発生するという問題が生じる。   During the scanning exposure, the water supply / discharger 36 collects water so that no water remains outside the area surrounded by the fence 35. However, the resist film on the substrate tends to repel water (the contact angle of the resist film with water is high), the stage moving speed is fast, the stage acceleration / deceleration is large, or the exposure area has a relatively large exposure area. Then, as shown in FIG. 10, residual water 71 is generated on the substrate 10. In this way, when the next heating (post exposure bake) is performed in a state where water remains partially on the resist film after exposure, heat is absorbed in the remaining water portion, and the resist film is compared with other portions. The amount of heat supplied is reduced, and a reaction due to heating in the resist film cannot be sufficiently caused, resulting in an abnormal line width. If the resist is a positive resist, an unopened defect occurs. In the case of a negative resist, there arises a problem that an open defect occurs.

これらの問題を解消するため、本実施形態では液浸露光を行った後に、基板上に残った残留水71を除去することが望まれる。基板10上の残留水を除去するために、回転乾燥がよく用いられる。ところが、残留水71は基板10上に点在しているために、回転乾燥で残留水71を除去することは困難である。   In order to solve these problems, in the present embodiment, it is desired to remove the residual water 71 remaining on the substrate after performing immersion exposure. Rotational drying is often used to remove residual water on the substrate 10. However, since the residual water 71 is scattered on the substrate 10, it is difficult to remove the residual water 71 by rotary drying.

本実施形態では、残留水71を除去するために以下の処理を行う。即ち、潜像が形成された基板を水処理ユニットに搬送する(ステップST107)。基板の表面に再度基板全面に純水(第2の薬液)を供給して、基板上の略全面に液膜(第2の液膜)を形成する(ステップST108)。洗浄処理後の乾燥と同様、回転乾燥またはエアーナイフを用いて、純水の液膜を除去する(ステップST109)。この処理で膜表面の水(残留水+液膜)が完全に除去される。水を完全に除去できない場合には、チップ間で同じように水が吸着する状態を形成すると良い。チップ間で同じように水が吸着させることで、後の加熱で生じる寸法差を予め露光時に用いるマスクに寸法変換差としてフィードバックさせることで最終的に所望のレジストパターンを得ることができる。   In the present embodiment, the following process is performed to remove the residual water 71. That is, the substrate on which the latent image is formed is transported to the water treatment unit (step ST107). Pure water (second chemical solution) is again supplied to the entire surface of the substrate to form a liquid film (second liquid film) on substantially the entire surface of the substrate (step ST108). Similar to the drying after the cleaning process, the liquid film of pure water is removed using rotary drying or an air knife (step ST109). This treatment completely removes water (residual water + liquid film) on the film surface. When water cannot be completely removed, it is preferable to form a state in which water is adsorbed in the same manner between chips. By adsorbing water in the same way between chips, a desired resist pattern can be finally obtained by feeding back a dimensional difference caused by subsequent heating as a dimensional conversion difference to a mask used during exposure in advance.

なお、ここでは水を用いたがこれに限らない。水との親和性がよく且つレジスト膜にダメージを与えることがなく、液滴(この実施形態の場合は水:気化熱=583cal/g at 100℃)より気化熱が小さい薬液、例えばアルコール類やエーテル類などの薬液を用いたり、これら薬液を液滴と同じ(第1の薬液と同じ)成分の溶媒に溶かして用いても良い。用いる薬液が速乾性であればなお良い。これらの処理はレジスト膜表面に対してだけではなく保護膜を用いた場合の保護膜表面に対しても有効であった。   In addition, although water was used here, it is not restricted to this. A chemical solution that has a good affinity with water and does not damage the resist film, and has a lower heat of vaporization than a droplet (in this embodiment, water: heat of vaporization = 583 cal / g at 100 ° C.), such as alcohols Chemical solutions such as ethers may be used, or these chemical solutions may be dissolved in the same component solvent as the droplet (same as the first chemical solution). It is even better if the chemical used is quick-drying. These treatments were effective not only on the resist film surface but also on the protective film surface when the protective film was used.

また、液浸露光時に、レジスト膜表面から感光剤などが水に溶け出し、この感光剤が淀む部分で再付着を起こしたりするなどして、レジストパターンの精度が得られないことがある。本実施形態では、液浸露光後に水の供給/除去を行うことによって、レジスト膜表面に再付着した感光剤などを洗浄することができる。その結果、レジストパターンの精度が向上する。なお、水の供給/除去の後に表面吸着水を除去する目的で水より気化熱が小さい薬液、例えばアルコール類やエーテル類などの薬液をレジスト膜表面に供給/乾燥させても良く、次のベークの工程でより均一にベークをおこなうことができる。これらの処理はレジスト膜表面に対してだけではなく保護膜を用いた場合の保護膜表面に対しても有効であった。   Also, at the time of immersion exposure, the resist pattern accuracy may not be obtained due to, for example, the photosensitive agent dissolved in water from the resist film surface and reattachment at the portion where the photosensitive agent is trapped. In this embodiment, by supplying / removing water after immersion exposure, it is possible to clean the photosensitive agent and the like that have reattached to the resist film surface. As a result, the accuracy of the resist pattern is improved. For the purpose of removing surface adsorbed water after the supply / removal of water, a chemical solution having a lower heat of vaporization than water, for example, a chemical solution such as alcohols or ethers may be supplied / dried to the resist film surface. In this process, baking can be performed more uniformly. These treatments were effective not only on the resist film surface but also on the protective film surface when the protective film was used.

上述の処理を行った基板をベーカーに搬送して被処理基板の加熱(PEB)を行う(ステップST110)。この加熱により露光段階で発生した酸の拡散、増幅反応を行う。更に前述の被処理基板を現像ユニットに搬送し現像を行って、ArFレジストパターンが形成される(ステップST111)。   The substrate subjected to the above-described processing is transported to a baker, and the substrate to be processed is heated (PEB) (step ST110). This heating causes diffusion and amplification reaction of the acid generated in the exposure stage. Further, the aforementioned substrate to be processed is transported to the developing unit and developed to form an ArF resist pattern (step ST111).

ところで、少なくとも露光ユニットから露光後の水処理ユニットを経てベーカーユニットに至るまでの工程は雰囲気制御を行う必要がある。レジストパターン形成に影響を与えない程度に酸の失活を抑えるには塩基性物質の濃度を10ppb以下にする必要があることが判った。また、搬送時間を含む処理時間についても±10%の範囲で管理することが望ましいという実験結果を得た。   By the way, it is necessary to perform atmosphere control at least from the exposure unit through the post-exposure water treatment unit to the baker unit. It has been found that the concentration of the basic substance needs to be 10 ppb or less in order to suppress the deactivation of the acid to the extent that it does not affect the formation of the resist pattern. Moreover, the experimental result that it was desirable to manage also about the processing time including conveyance time in the range of +/- 10% was obtained.

本実施形態によれば、液浸露光後にレジスト膜上に水を供給し、水の除去を行うことによって、レジスト膜表面の残留水を除去することができる。その結果、パターン形成不良の発生を抑制することができる。   According to this embodiment, residual water on the resist film surface can be removed by supplying water onto the resist film after immersion exposure and removing the water. As a result, occurrence of pattern formation defects can be suppressed.

なお、液浸露光を行った後に、基板上に点在する残留水71を除去するために、純水供給(ステップST108)、純水除去(ステップST109)を行った。しかし、残留水71を除去するために、ステップST103の乾燥処理と同様、スリット状の吹き出し口から基板の一部にガスを吹き付けるエアーナイフ21が基板上を走査しても良い。また、エアーナイフの変わりにエアーガンが基板上を走査しても良い。残留水の除去能力は、エアーガンを用いるより、エアーナイフを用いた方が高い。よって、エアーガンを用いるよりエアーナイフを用いて残留水71を除去することが好ましい。   After immersion exposure, pure water supply (step ST108) and pure water removal (step ST109) were performed in order to remove residual water 71 scattered on the substrate. However, in order to remove the residual water 71, as in the drying process in step ST103, the air knife 21 that blows a gas to a part of the substrate from the slit-shaped outlet may scan the substrate. Further, instead of the air knife, an air gun may scan the substrate. The ability to remove residual water is higher with an air knife than with an air gun. Therefore, it is preferable to remove the residual water 71 using an air knife rather than using an air gun.

ところで、スキャン露光時、基板の外周部の露光を行う場合について説明する。図11は、露光領域41に対して露光スリット領域51をスキャン方向54に走査させつつ、水を水流方向72aに流す場合を示している。図11において、符号38はフェンス35で囲まれた液浸領域である。レジスト膜とのエッジ部での段差で巻き込まれた気泡73が流水により移動して露光スリット領域51に到達して露光不良を生じさせてしまう。なお、液浸領域が基板10と図示されないサポート板との境界部にある場合でも気泡が発生する。   By the way, a case where the outer peripheral portion of the substrate is exposed during the scan exposure will be described. FIG. 11 shows a case where water is allowed to flow in the water flow direction 72 a while the exposure slit area 51 is scanned in the scan direction 54 with respect to the exposure area 41. In FIG. 11, reference numeral 38 denotes an immersion area surrounded by the fence 35. The bubbles 73 entrained by a step at the edge portion with the resist film move by running water and reach the exposure slit region 51 to cause exposure failure. Even when the liquid immersion area is at the boundary between the substrate 10 and a support plate (not shown), bubbles are generated.

この問題を解決するために、レジスト膜のエッジに対する流水の方向を考慮することが好ましい。図12に示すように、液浸領域38内にレジスト膜エッジ70が存在する場合には、水流方向72bが露光スリット領域51からエッジ部70に向かった方向であると良い。このように水流を形成することでエッジ部70で発生した気泡71は露光スリット領域51に到達せずに効率よく排出できる。この時に露光スリット領域51を水流方向に向けて走査させると流水の温度上昇を軽減できるのでなお良い。このことは、基板10の移動方向を水流方向と逆に水平移動させると言い換えることができる。   In order to solve this problem, it is preferable to consider the direction of flowing water with respect to the edge of the resist film. As shown in FIG. 12, when the resist film edge 70 exists in the liquid immersion region 38, the water flow direction 72 b may be a direction from the exposure slit region 51 toward the edge portion 70. By forming the water flow in this way, the bubbles 71 generated at the edge portion 70 can be efficiently discharged without reaching the exposure slit region 51. At this time, if the exposure slit region 51 is scanned in the direction of the water flow, the temperature rise of the running water can be reduced. In other words, the movement direction of the substrate 10 is horizontally moved in the direction opposite to the water flow direction.

また、基板の外周部露光を行う場合であって、液浸領域内で露光領域走査方向と概ね平行する方向に基板エッジが存在する場合には際には液浸領域内で水圧差を設けたほうが好ましい。図13において、露光スリット領域51をスキャン方向54に走査させつつ、水を水流方向72cに流す場合を示している。   Further, in the case where the outer periphery of the substrate is exposed, and there is a substrate edge in a direction substantially parallel to the scanning direction of the exposure area in the immersion area, a water pressure difference is provided in the immersion area. Is preferred. FIG. 13 shows a case where water is caused to flow in the water flow direction 72c while the exposure slit region 51 is scanned in the scan direction 54.

図13の処理においてはエッジ部70で空気がかみ、この部分のコンダクタンスが小さくなるなり、圧力バランスが崩れるために気泡が基板内側に流れ込んでしまう。これを防ぐためには、図14に示すように、水の水流方向72dが基板内側から基板外側に向かうように調整すると良い。具体的には注水側の圧力を基板内側で高くなるように設定するか、排水側において基板エッジ側の排水圧力を高くすれば良い。これら手法により水流の向きを基板外側に向かうように設定することで気泡を基板の外側に排出できる。また図15に示すように水流方向72eを露光領域走査方向に対して直交させて、更に基板の内側から外側に向かうように水流を形成しても良い。   In the process of FIG. 13, air is caught at the edge portion 70, the conductance of this portion is reduced, and the pressure balance is lost, so that bubbles flow into the substrate. In order to prevent this, as shown in FIG. 14, the water flow direction 72d may be adjusted so as to go from the inside of the substrate to the outside of the substrate. Specifically, the pressure on the water injection side may be set so as to increase inside the substrate, or the drainage pressure on the substrate edge side may be increased on the drainage side. Air bubbles can be discharged to the outside of the substrate by setting the direction of water flow to the outside of the substrate by these methods. In addition, as shown in FIG. 15, the water flow direction 72e may be orthogonal to the exposure region scanning direction, and the water flow may be formed further from the inside to the outside of the substrate.

なお、本実施形態で露光の際にレンズと被処理基板間に介在させた水は脱気させた純水を用いていたがこれに限るものではない。屈折率を大きくするためにI族、II族などのアルカリイオンを添加したり、吸収係数を小さくするために酸イオンを添加した液体を用いても良い。露光光に対して吸収係数が小さく、特定の屈折率に併せた露光装置を用いる場合、特定の屈折率を有する液体であって、レンズ系などにダメージを与えないものであればいかなるものを用いても良い。   In the present embodiment, degassed pure water is used as the water interposed between the lens and the substrate to be processed in the exposure, but the present invention is not limited to this. In order to increase the refractive index, an alkali ion such as Group I or Group II may be added, or a liquid to which an acid ion is added to reduce the absorption coefficient may be used. When using an exposure apparatus that has a small absorption coefficient for exposure light and that has a specific refractive index, any liquid that has a specific refractive index and that does not damage the lens system or the like is used. May be.

本発明はArF(193nm)光を用いた露光に関するが、KrF(248nm)光を用いた露光に関しても同様の処理を行うことで精度良くパターニングを行うことができる。また、F2露光(157nm)露光では第一の溶媒にフッ素系オイルを用いることで精度良くパターニングを行うことができることを確認した。   Although the present invention relates to exposure using ArF (193 nm) light, patterning can be performed with high accuracy by performing the same process for exposure using KrF (248 nm) light. In addition, it was confirmed that the F2 exposure (157 nm) exposure can be performed with high accuracy by using a fluorinated oil as the first solvent.

なお、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、種々変形して実施することが可能である。   In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary, it can change and implement variously.

図1は、本発明の一実施形態に係わる半導体素子の製造工程を示す断面図。FIG. 1 is a cross-sectional view showing a manufacturing process of a semiconductor device according to an embodiment of the present invention. 本発明の一実施形態に係わる洗浄処理を行っている状態を示す図。The figure which shows the state which is performing the cleaning process concerning one Embodiment of this invention. 本発明の一実施形態に係わる洗浄処理を行っている状態を示す図。The figure which shows the state which is performing the cleaning process concerning one Embodiment of this invention. 本発明の一実施形態に係わる洗浄液の除去処理を行っている状態示す図。The figure which shows the state which is performing the removal process of the washing | cleaning liquid concerning one Embodiment of this invention. 本発明の一実施形態に係わる露光装置の概略構成を示す図。1 is a diagram showing a schematic configuration of an exposure apparatus according to an embodiment of the present invention. 基板上の各露光フィールドの配置を示す平面図。The top view which shows arrangement | positioning of each exposure field on a board | substrate. 本発明の一実施形態に係わる走査露光を説明するために用いられる図。The figure used in order to demonstrate the scanning exposure concerning one Embodiment of this invention. 本発明の一実施形態に係わる走査露光を説明するために用いられる図。The figure used in order to demonstrate the scanning exposure concerning one Embodiment of this invention. 本発明の一実施形態に係わる各露光フィールドを順次走査露光する際の露光順序を表す平面図。The top view showing the exposure order at the time of carrying out sequential scanning exposure of each exposure field concerning one Embodiment of this invention. 本発明の一実施形態に係わるスキャン露光後に基板上に残存する液滴を示す平面図。The top view which shows the droplet which remains on a board | substrate after the scanning exposure concerning one Embodiment of this invention. 液浸領域内にレジスト膜エッジがある場合の、露光スリット領域の走査方向と水流方向を示す平面図。The top view which shows the scanning direction and water flow direction of an exposure slit area | region when there exists a resist film edge in a liquid immersion area | region. 液浸領域内にレジスト膜エッジがある場合の、露光スリット領域の走査方向と水流方向を示す平面図。The top view which shows the scanning direction and water flow direction of an exposure slit area | region when there exists a resist film edge in a liquid immersion area | region. 液浸領域内にレジスト膜エッジがある場合の、露光スリット領域の走査方向と水流方向を示す平面図。The top view which shows the scanning direction and water flow direction of an exposure slit area | region when there exists a resist film edge in a liquid immersion area | region. 液浸領域内にレジスト膜エッジがある場合の、露光スリット領域の走査方向と水流方向を示す平面図。The top view which shows the scanning direction and water flow direction of an exposure slit area | region when there exists a resist film edge in a liquid immersion area | region. 液浸領域内にレジスト膜エッジがある場合の、露光スリット領域の走査方向と水流方向を示す平面図。The top view which shows the scanning direction and water flow direction of an exposure slit area | region when there exists a resist film edge in a liquid immersion area | region.

符号の説明Explanation of symbols

10…半導体基板,11…基板支持部,12…駆動部,13…洗浄ノズル,13…ノズル,14…純水   DESCRIPTION OF SYMBOLS 10 ... Semiconductor substrate, 11 ... Board | substrate support part, 12 ... Drive part, 13 ... Cleaning nozzle, 13 ... Nozzle, 14 ... Pure water

Claims (5)

基板上にレジスト膜を形成する工程と、
前記レジスト膜が形成された基板およびパターンが形成されたレチクルを、投影光学系を具備する露光装置に搭載する工程と、
前記レジスト膜上の局所的な領域に第1の液膜を選択形成するために、前記レジスト膜上への第1の薬液としての水の供給と供給された第1の薬液の回収とを行う工程であって、前記第1の液膜は流れを有し、前記第1の液膜を前記レジスト膜と投影光学系との間に形成する工程と、
前記レジスト膜に潜像を形成するために、前記第1の液膜が形成された状態で前記レチクルに形成されたパターンを前記レジスト膜に転写する工程と、
前記基板上に点在する前記第1の液膜の残留液滴を含むように、第2の薬液としての水を前記レジスト膜上に供給して、前記第1の液膜の残留液滴を含む第2の液膜を形成する工程と、
前記第2の液膜を除去する工程と、
前記除去後、前記潜像が形成されたレジスト膜を加熱する工程と、
前記加熱されたレジスト膜からレジストパターンを形成するために、前記レジスト膜を現像する工程と、
を含むことを特徴とするレジストパターン形成方法。
Forming a resist film on the substrate;
Mounting the substrate on which the resist film is formed and the reticle on which the pattern is formed in an exposure apparatus having a projection optical system;
In order to selectively form the first liquid film in a local region on the resist film, water is supplied as the first chemical liquid on the resist film and the supplied first chemical liquid is recovered. The first liquid film has a flow, and the first liquid film is formed between the resist film and the projection optical system; and
Transferring a pattern formed on the reticle to the resist film in a state where the first liquid film is formed in order to form a latent image on the resist film;
Water as a second chemical solution is supplied onto the resist film so as to include residual liquid droplets of the first liquid film scattered on the substrate, and the residual liquid droplets of the first liquid film are supplied to the resist film. Forming a second liquid film including:
Removing the second liquid film;
Heating the resist film on which the latent image is formed after the removal;
Developing the resist film to form a resist pattern from the heated resist film;
A resist pattern forming method comprising:
前記第2の液膜は、前記レジスト膜表面の略全面にされることを特徴とする請求項1記載のレジストパターン形成方法。   2. The method of forming a resist pattern according to claim 1, wherein the second liquid film is formed on substantially the entire surface of the resist film. 前記第2の液膜の除去は、
前記レジスト膜の表面の一部に対してガス噴射部からガスを吹き付ける工程と、
前記ガス噴射部が前記基板上の略全面を走査する工程と、
を含むことを特徴とする請求項1に記載のレジストパターン形成方法。
The removal of the second liquid film is as follows:
A step of spraying a gas from a gas injection unit on a part of the surface of the resist film;
Scanning the substantially whole surface of the gas injection unit on the substrate;
The resist pattern forming method according to claim 1, comprising:
前記露光装置に搭載する前に、前記レジスト膜上に保護膜を形成する工程を更に含むことを特徴とする請求項1記載のレジストパターン形成方法。   2. The resist pattern forming method according to claim 1, further comprising a step of forming a protective film on the resist film before mounting on the exposure apparatus. 半導体ウエハを用意する工程と、
請求項1〜4の何れかにレジストパターンパターン形成方法を用いて、前記半導体ウエハ上にレジストパターンを形成する工程とを含むことを特徴とする半導体装置の製造方法。
Preparing a semiconductor wafer;
A method of manufacturing a semiconductor device, comprising: forming a resist pattern on the semiconductor wafer using a resist pattern pattern forming method according to claim 1.
JP2008237020A 2008-09-16 2008-09-16 Resist pattern forming method Expired - Lifetime JP4672763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008237020A JP4672763B2 (en) 2008-09-16 2008-09-16 Resist pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008237020A JP4672763B2 (en) 2008-09-16 2008-09-16 Resist pattern forming method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004087420A Division JP4220423B2 (en) 2004-03-24 2004-03-24 Resist pattern forming method

Publications (2)

Publication Number Publication Date
JP2008300890A true JP2008300890A (en) 2008-12-11
JP4672763B2 JP4672763B2 (en) 2011-04-20

Family

ID=40174034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008237020A Expired - Lifetime JP4672763B2 (en) 2008-09-16 2008-09-16 Resist pattern forming method

Country Status (1)

Country Link
JP (1) JP4672763B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139104A (en) * 2004-06-09 2011-07-14 Nikon Corp Exposure device and cleaning method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101487A (en) * 2002-12-10 2005-04-14 Nikon Corp Exposure apparatus, device manufacturing method, and exposure system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101487A (en) * 2002-12-10 2005-04-14 Nikon Corp Exposure apparatus, device manufacturing method, and exposure system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139104A (en) * 2004-06-09 2011-07-14 Nikon Corp Exposure device and cleaning method

Also Published As

Publication number Publication date
JP4672763B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4220423B2 (en) Resist pattern forming method
KR100814040B1 (en) Immersion lithography defect reduction
JP4709698B2 (en) Semiconductor wafer processing method, semiconductor wafer, method of performing immersion lithography, and edge bead removal apparatus for use with immersion lithography processing
KR101032225B1 (en) Substrate cleaning device and substrate cleaning method
TWI286341B (en) Method for forming resist pattern and method for manufacturing semiconductor device
US8564759B2 (en) Apparatus and method for immersion lithography
US20060008746A1 (en) Method for manufacturing semiconductor device
US20070093067A1 (en) Wafer edge cleaning process
JP2005353763A (en) Exposure device and pattern forming method
JP2006024692A (en) Forming method of resist pattern
JP2019216170A (en) Substrate processing apparatus and substrate processing method
TWI324791B (en)
JP4167642B2 (en) Resist pattern forming method
TWI331170B (en) Cleaning liquid and cleaning method
JP4374042B2 (en) Manufacturing method of semiconductor device
JP4672763B2 (en) Resist pattern forming method
US20110059405A1 (en) Substrate processing method
JP2006317774A (en) Pattern forming method
WO2024085016A1 (en) Substrate treatment method and substrate treatment device
JP2007088256A (en) Pattern forming method and manufacturing method of semiconductor device
JP2022068194A (en) Substrate processing apparatus and substrate processing method
JP2011071170A (en) Pattern formation method and pattern formation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110119

R151 Written notification of patent or utility model registration

Ref document number: 4672763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350