JP2008297925A - Glow plug failure diagnostic device - Google Patents

Glow plug failure diagnostic device Download PDF

Info

Publication number
JP2008297925A
JP2008297925A JP2007142311A JP2007142311A JP2008297925A JP 2008297925 A JP2008297925 A JP 2008297925A JP 2007142311 A JP2007142311 A JP 2007142311A JP 2007142311 A JP2007142311 A JP 2007142311A JP 2008297925 A JP2008297925 A JP 2008297925A
Authority
JP
Japan
Prior art keywords
glow plug
cylinder
glow
current
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007142311A
Other languages
Japanese (ja)
Other versions
JP4864814B2 (en
Inventor
Yasushi Omura
寧 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2007142311A priority Critical patent/JP4864814B2/en
Publication of JP2008297925A publication Critical patent/JP2008297925A/en
Application granted granted Critical
Publication of JP4864814B2 publication Critical patent/JP4864814B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/027Safety devices, e.g. for diagnosing the glow plugs or the related circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/021Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls
    • F02P19/023Individual control of the glow plugs

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely diagnose a failure in a glow plug provided for each cylinder from a conduction current value without being influenced by the temperature state of the glow plug and to specify the abnormal glow plug. <P>SOLUTION: The glow plug 3#i for each cylinder is parallel-connected to a battery 5 via a corresponding glow relay 4#i. An engine ECU2 sequentially conducts or breaks the glow plugs 3#i for the respective cylinders while shifting the timing at the start of the engine and monitors a change with time of the current value by a current sensor 7. When the glow plugs 3#i for the respective cylinders are sequentially conducted, no increase in current at a timing of conducting the glow plug for a predetermined cylinder is judged that the glow plug for the cylinder concerned is abnormal. When the glow plugs 3#i for the respective cylinders are sequentially broken, no decrease in current at a timing of breaking the glow plug for the predetermined cylinder is judged that the glow plug for the cylinder concerned is abnormal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エンジンの各気筒毎に備えられたグロープラグの異常の有無を診断するグロープラグの故障診断装置に関する。   The present invention relates to a failure diagnosis device for a glow plug for diagnosing whether there is an abnormality in a glow plug provided for each cylinder of an engine.

ディーゼルエンジン等の圧縮点火式エンジンでは、始動時の燃焼室の予熱のためにグロープラグを気筒毎に備えており、従来から、このグロープラグの断線等の故障を検出する診断技術が種々提案されている。   A compression ignition engine such as a diesel engine is provided with a glow plug for each cylinder for preheating the combustion chamber at start-up, and various diagnostic techniques for detecting failures such as disconnection of the glow plug have been proposed. ing.

例えば、特許文献1には、グロープラグの上流側電圧と下流側電圧の差に基づいてグロープラグの断線を検出する技術が提案されている。また、特許文献2には、グロープラグの加熱状態が所定の状態に達するまでの時間に基づいて、断線の有無を判定する技術が提案されている。   For example, Patent Document 1 proposes a technique for detecting disconnection of a glow plug based on a difference between an upstream voltage and a downstream voltage of the glow plug. Patent Document 2 proposes a technique for determining the presence or absence of disconnection based on the time until the heated state of the glow plug reaches a predetermined state.

更に、特許文献3には、複数個並列接続されたグロープラグの合計電流値が設定値まで低下した時からさらに設定減少分だけ少ない電流値に低下するまでの時間、或いは、合計電流値が設定値まで低下した後の設定時間経過した時までの電流変化に基づいて、グロープラグの断線を検出する技術が提案されている。
特開平11−182400号公報 特開昭58−172472号公報 特開昭57−26275号公報
Furthermore, Patent Document 3 sets the time until the total current value of a plurality of glow plugs connected in parallel decreases to a set value until the current value decreases further by the set decrease, or the total current value is set. There has been proposed a technique for detecting disconnection of a glow plug based on a change in current up to the time when a set time has elapsed after decreasing to a value.
Japanese Patent Laid-Open No. 11-182400 JP 58-172472 A JP 57-26275 A

しかしながら、特許文献1〜3に開示されているような従来の技術は、何れも並列接続される全気筒のグロープラグに対して、並列接続の共通信号線から得られる電圧や電流を用いて診断を行うものであり、全気筒のグロープラグをまとめて診断している。   However, the conventional techniques disclosed in Patent Documents 1 to 3 are all diagnosed by using the voltage and current obtained from the common signal line connected in parallel to the glow plugs of all cylinders connected in parallel. Diagnoses all the glow plugs of all cylinders.

従って、従来の技術では、断線しているグロープラグの数は検出可能であるものの、各気筒のグロープラグの故障を個々に診断することはできず、当然、故障が発生しているグロープラグを特定することもできない。特に、グロープラグの通電電流値によって故障診断を行う場合には、グロープラグの温度等の状況によって電流値が異なるため、異常状態と正常状態とを区別することが困難である。   Therefore, in the conventional technology, although the number of glow plugs that are disconnected can be detected, failure of the glow plugs of each cylinder cannot be diagnosed individually. It cannot be specified. In particular, when failure diagnosis is performed based on the energization current value of the glow plug, it is difficult to distinguish between the abnormal state and the normal state because the current value varies depending on the temperature of the glow plug.

本発明は上記事情に鑑みてなされたもので、気筒毎に備えられたグロープラグに対して、グロープラグの温度状態に影響されることなく通電電流値から確実に故障を診断すると共に、異常の発生しているグロープラグを特定することのできるグロープラグの故障診断装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and for a glow plug provided for each cylinder, a failure is reliably diagnosed from an energized current value without being affected by a temperature state of the glow plug, and an abnormal condition is determined. An object of the present invention is to provide a glow plug fault diagnosis device that can identify a glow plug that has occurred.

上記目的を達成するため、本発明による第1のグロープラグの故障診断装置は、エンジンの各気筒毎に備えられたグロープラグの異常の有無を診断するグロープラグの故障診断装置において、各気筒のグロープラグを個別に通電/遮断可能な駆動手段と、各気筒のグロープラグの並列接続の電流値を検出する電流検出手段と、上記駆動手段を介して各気筒のグロープラグを時間的にずらしながら順次通電させ、上記電流検出手段で検出した電流値の増加状態に基づいて、上記グロープラグの異常の有無を診断し、異常のグロープラグを特定する診断手段とを備えることを特徴とする。   In order to achieve the above object, a first glow plug failure diagnosis device according to the present invention is a glow plug failure diagnosis device for diagnosing the presence or absence of abnormality of a glow plug provided for each cylinder of an engine. A driving means capable of individually energizing / cutting off the glow plug, a current detecting means for detecting a current value of parallel connection of the glow plugs of each cylinder, and a time-shift of the glow plug of each cylinder via the driving means And a diagnostic means for diagnosing the presence or absence of abnormality of the glow plug based on the increased state of the current value detected by the current detection means and identifying the abnormal glow plug.

本発明による第2のグロープラグの故障診断装置は、エンジンの各気筒毎に備えられたグロープラグの異常の有無を診断するグロープラグの故障診断装置において、各気筒のグロープラグを個別に通電/遮断可能な駆動手段と、各気筒のグロープラグの並列接続の電流値を検出する電流検出手段と、上記駆動手段を介して全気筒のグロープラグを通電した後、各気筒のグロープラグを時間的にずらしながら順次通電終了させ、上記電流検出手段で検出した電流値の減少状態に基づいて、上記グロープラグの異常の有無を診断し、異常のグロープラグを特定する診断手段とを備えることを特徴とする。   A second glow plug failure diagnosis device according to the present invention is a glow plug failure diagnosis device for diagnosing the presence or absence of abnormality of a glow plug provided for each cylinder of an engine. The drive means that can be shut off, the current detection means for detecting the current value of the parallel connection of the glow plugs of each cylinder, and after the glow plugs of all cylinders are energized via the drive means, And diagnosing the presence or absence of an abnormality of the glow plug based on the decrease state of the current value detected by the current detection means, and identifying the abnormal glow plug. And

本発明によれば、気筒毎に備えられたグロープラグに対して、グロープラグの温度状態に影響されることなく通電電流値から確実に故障を診断することができると共に、異常の発生しているグロープラグを特定することができる。   According to the present invention, with respect to the glow plug provided for each cylinder, it is possible to reliably diagnose a failure from the energized current value without being affected by the temperature state of the glow plug, and an abnormality has occurred. A glow plug can be identified.

以下、図面を参照して本発明の実施の形態を説明する。図1〜図5は本発明の実施の一形態に係り、図1はグロープラグの駆動及び診断系を示す構成図、図2はグロープラグの他の駆動及び診断系を示す構成図、図3はグロープラグ故障診断処理のフローチャート、図4は正常時の電流波形を示す説明図、図5は異常時の電流波形を示す説明図である。   Embodiments of the present invention will be described below with reference to the drawings. 1 to 5 relate to an embodiment of the present invention, FIG. 1 is a block diagram showing a drive and diagnostic system for a glow plug, FIG. 2 is a block diagram showing another drive and diagnostic system for a glow plug, and FIG. Is a flowchart of the glow plug failure diagnosis process, FIG. 4 is an explanatory view showing a current waveform in a normal state, and FIG. 5 is an explanatory view showing a current waveform in an abnormal state.

図1において、符号1はディーゼルエンジンであり、符号2は、エンジン1を制御するマイクロコンピュータ等からなる電子制御装置(ECU;Electric Control Unit)である。以下では、ディーゼルエンジン1を、単にエンジン1と記載し、また、エンジン1を制御する電子制御装置2を、エンジンECU2と記載する。   In FIG. 1, reference numeral 1 denotes a diesel engine, and reference numeral 2 denotes an electronic control unit (ECU) including a microcomputer that controls the engine 1. Hereinafter, the diesel engine 1 is simply referred to as the engine 1, and the electronic control device 2 that controls the engine 1 is referred to as the engine ECU 2.

エンジン1には、気筒毎にグロープラグ3,…が備えられている。本形態においては、エンジン1が4気筒エンジンであり、4個のグロープラグ3#i(#iは気筒番号;i=1,2,3,4)を備える例について説明する。   The engine 1 is provided with glow plugs 3,... For each cylinder. In this embodiment, an example in which the engine 1 is a four-cylinder engine and includes four glow plugs 3 # i (#i is a cylinder number; i = 1, 2, 3, 4) will be described.

グロープラグ3#iは、それぞれ、対応するグローリレー4#i(#iは気筒番号;4気筒の場合、i=1,2,3,4)の常開接点を介してバッテリ5の正極端子に並列に接続され、エンジン1の接地ラインを介してバッテリ5の負極端子に接続されている。各グローリレー4#iは、それぞれのリレーコイルの一端側がバッテリ5の正極端子に接続されると共に他端側がエンジンECU2の出力側に接続されており、エンジンECU2により個別に駆動される。   Each of the glow plugs 3 # i is connected to a positive terminal of the battery 5 via a normally open contact of a corresponding glow relay 4 # i (#i is a cylinder number; i = 1, 2, 3, 4 in the case of four cylinders). And connected to the negative terminal of the battery 5 through the ground line of the engine 1. Each glow relay 4 # i has one end of each relay coil connected to the positive terminal of the battery 5 and the other end connected to the output side of the engine ECU 2, and is individually driven by the engine ECU 2.

エンジンECU2は、入力側にイグニッションスイッチ6を初めとして、バッテリ5の負極端子側の電源ラインに介装された電流センサ7、エンジン1のクランク角を検出するクランク角センサ8等の各種センサ・スイッチ類が接続されている。エンジンECU2は、これらの各種センサ・スイッチ類からの信号に基づいて、グローリレー4#iを介したグロープラグ3#iの通電制御や、図示しない燃料噴射ノズル(インジェクタ)を介した燃料噴射制御等を行い、また、各気筒のグロープラグ3#iに対する故障診断を行う。   The engine ECU 2 includes various sensors and switches such as an ignition switch 6 on the input side, a current sensor 7 interposed in the power supply line on the negative terminal side of the battery 5, and a crank angle sensor 8 that detects the crank angle of the engine 1. Is connected. Based on signals from these various sensors and switches, the engine ECU 2 controls energization of the glow plug 3 # i via the glow relay 4 # i and fuel injection control via a fuel injection nozzle (injector) (not shown). In addition, the failure diagnosis for the glow plug 3 # i of each cylinder is performed.

診断手段としてのECU2のグロープラグ3#iに対する故障診断は、グロープラグ3#iを個別に通電/遮断可能な駆動手段としてのグローリレー4#iと、グロープラグ3#iの並列接続電流を検出する電流検出手段としての電流センサ7とを用いて実施される。具体的には、エンジンECU2は、エンジン始動時に各気筒のグロープラグ3#iを通電する際、各気筒のグロープラグ3#iを時間的にずらしながら通電開始或いは通電終了させ、そのときの通電電流の変化を電流センサ7でモニタすることにより異常の有無を診断し、異常が発生しているグロープラグの気筒が有れば、その気筒を特定する。   The failure diagnosis for the glow plug 3 # i of the ECU 2 as the diagnostic means is performed by calculating the parallel connection current between the glow relay 4 # i as the driving means capable of individually energizing / cutting off the glow plug 3 # i and the glow plug 3 # i. It implements using the current sensor 7 as a current detection means to detect. Specifically, when energizing the glow plug 3 # i of each cylinder at the time of starting the engine, the engine ECU 2 starts energization or ends energization while shifting the glow plug 3 # i of each cylinder in time, and energizes at that time. By monitoring the current change with the current sensor 7, the presence or absence of an abnormality is diagnosed. If there is a glow plug cylinder in which an abnormality has occurred, the cylinder is identified.

尚、電流センサ7をバッテリ5の充電制御用として備えるシステムでは、グロープラグの故障診断用に新たな部品を要することなく、故障診断が可能となる。また、電流センサ7のエンジンECU2への出力値は、実際には検出電流値に相当する電圧値であり、エンジンECU2はグロープラグ3#iの通電電流を電圧値でモニタする。   In the system provided with the current sensor 7 for charging control of the battery 5, failure diagnosis is possible without requiring new parts for glow plug failure diagnosis. The output value of the current sensor 7 to the engine ECU 2 is actually a voltage value corresponding to the detected current value, and the engine ECU 2 monitors the energization current of the glow plug 3 # i with the voltage value.

すなわち、並列接続される各気筒のグロープラグ3#iを時間的にずらしながら順次通電開始或いは通電終了すると、電流センサ7で検出される通電電流値は、グロープラグ3#iの個々の温度状態(抵抗値の変化)に拘わらず、通電或いは遮断されるグロープラグの数に応じた並列接続の電流値となる。このため、グロープラグ3#iが全て正常の場合、グロープラグ3#iが順次通電或いは遮断されるに応じて、電流センサ7の電流検出値も順次増加或いは減少する。   That is, when energization starts or ends sequentially while shifting the glow plugs 3 # i of the cylinders connected in parallel, the energization current values detected by the current sensor 7 are the individual temperature states of the glow plugs 3 # i. Regardless of (change in resistance value), the current value is connected in parallel according to the number of glow plugs to be energized or cut off. For this reason, when all the glow plugs 3 # i are normal, the current detection value of the current sensor 7 also sequentially increases or decreases as the glow plugs 3 # i are sequentially energized or cut off.

従って、エンジンECU2は、各気筒のグロープラグ3#iを時間的にずらしながら順次通電或いは遮断すると同時に、電流センサ7による電流値の時間変化をモニタする。そして、各気筒のグロープラグ3#iを順次通電したとき、所定気筒のグロープラグを通電したタイミングで電流増加がない場合には、該当気筒のグロープラグが異常であると判断する。同様に、各気筒のグロープラグ3#iを順次遮断したとき、所定気筒のグロープラグを遮断したタイミングで電流減少がない場合には、該当気筒のグロープラグが異常であると判断する。   Therefore, the engine ECU 2 sequentially energizes or shuts off the glow plugs 3 # i of the respective cylinders while shifting the time, and at the same time, monitors the time change of the current value by the current sensor 7. When the glow plug 3 # i of each cylinder is sequentially energized, if the current does not increase at the timing when the glow plug of the predetermined cylinder is energized, it is determined that the glow plug of the corresponding cylinder is abnormal. Similarly, when the glow plug 3 # i of each cylinder is sequentially shut off, if the current does not decrease at the timing when the glow plug of the predetermined cylinder is shut off, it is determined that the glow plug of the corresponding cylinder is abnormal.

ここで、各気筒のグロープラグ3#iを時間的にずらしながら通電するタイミングは、エンジン始動時の燃料噴射気筒順に対応した順番としている。すなわち、グロープラグの故障診断に際しては、各気筒のグロープラグ3#iを、エンジン始動時の燃料噴射気筒順に従った順番で、且つグロープラグの抵抗温度特性に基づいて予め定めた時間間隔で順次通電していくことで、各気筒の温度上昇のばらつきを無くし、エンジン始動性を向上することができる。また、この燃料噴射気筒順に従った順番で各気筒のグロープラグ3#iを順次通電した場合には、通電終了も同じ順番として先に通電したグロープラグから順に通電終了させることで、各気筒の温度バランスを均一に維持することができる。   Here, the timing of energizing the glow plug 3 # i of each cylinder while shifting the time is set to an order corresponding to the order of the fuel injection cylinder at the time of engine start. That is, when diagnosing a failure of the glow plug, the glow plug 3 # i of each cylinder is sequentially placed in the order according to the order of the fuel injection cylinder at the time of starting the engine and at a predetermined time interval based on the resistance temperature characteristic of the glow plug. By energizing, variation in temperature rise of each cylinder can be eliminated and engine startability can be improved. In addition, when the glow plugs 3 # i of each cylinder are energized sequentially in the order in accordance with the order of the fuel injection cylinders, the energization is terminated in the same order, starting from the previously energized glow plug. A uniform temperature balance can be maintained.

例えば、エンジン1の燃料噴射気筒順(燃焼行程順)が、#1→#3→#2→#4の気筒順である場合、エンジンECU2は、前回のエンジン停止時に、クランク角センサ8からの信号に基づいて停止したクランク位置を記憶しており、この停止したクランク位置が#3気筒の燃料噴射位置である場合、次回のエンジン始動時、次の燃料噴射対象となる気筒は、#2気筒であり、#2気筒から燃料噴射を開始する。   For example, when the order of the fuel injection cylinders (combustion stroke order) of the engine 1 is the order of cylinders # 1 → # 3 → # 2 → # 4, the engine ECU 2 receives the signal from the crank angle sensor 8 when the engine is stopped last time. When the stopped crank position is stored based on the signal and the stopped crank position is the # 3 cylinder fuel injection position, the next fuel injection target cylinder is the # 2 cylinder when the engine is next started. The fuel injection is started from the # 2 cylinder.

すなわち、エンジン始動における燃料噴射に先だって、燃料噴射開始対象となる気筒から燃料噴射順に従って予め順にグロープラグを通電することで、実際の燃料噴射に対応して効果的に燃焼室内を予熱することができ、故障診断を行いながらエンジン始動性を向上することができると共に、暖機促進を図ることができる。   That is, prior to fuel injection at engine start, the glow plug is energized in advance in order according to the fuel injection order from the cylinder that is the target of fuel injection, so that the combustion chamber can be effectively preheated in response to actual fuel injection. In addition, engine startability can be improved while performing failure diagnosis, and warm-up can be promoted.

尚、エンジンECU2によるグロープラグ3#iの通電制御及び診断処理は、図2に示すように、専用のグローコントローラ10が行うように構成しても良い。図2のシステム構成では、エンジンECU2は、メインリレーRyを介してグローコントローラ10の電源をON,OFFすると共に、通信ライン9を介してグローコントローラ10と接続されている。   Note that the energization control and diagnosis processing of the glow plug 3 # i by the engine ECU 2 may be configured to be performed by a dedicated glow controller 10 as shown in FIG. In the system configuration of FIG. 2, the engine ECU 2 turns on and off the power of the glow controller 10 via the main relay Ry and is connected to the glow controller 10 via the communication line 9.

グローコントローラ10は、各気筒のグロープラグ3#iを個別に通電/遮断する回路機能を備えており、エンジンECU2から通信ライン9を介して送信されるエンジン始動時のグロープラグ通電開始指令やグロープラグ通電終了指令を受けて各グロープラグの通電/遮断を制御すると共に、エンジンECU2から通信ライン9を介して送信される電流センサ7の検出電流値や始動時の燃料噴射順データ等に基づいてグロープラグの故障診断を行う。   The glow controller 10 has a circuit function for individually energizing / interrupting the glow plug 3 # i of each cylinder, and a glow plug energization start command or glow glow at the time of engine start transmitted from the engine ECU 2 via the communication line 9. In response to the plug energization end command, the energization / cutoff of each glow plug is controlled, and based on the detected current value of the current sensor 7 transmitted from the engine ECU 2 via the communication line 9, the fuel injection sequence data at the start, and the like. Diagnose glow plug failure.

次に、エンジンECU2(或いはグローコントローラ10)によるグロープラグ故障診断処理について、図3のフローチャートを用いて説明する。   Next, glow plug failure diagnosis processing by the engine ECU 2 (or the glow controller 10) will be described with reference to the flowchart of FIG.

尚、本形態においては、診断の精度及び信頼性を向上するため、グロープラグの通電開始時と通電終了時との双方で診断を行う例について説明するが、簡易的には、通電開始時或いは通電終了時の何れか一方のみの診断とすることも可能である。   In this embodiment, in order to improve the accuracy and reliability of diagnosis, an example in which diagnosis is performed both at the start of energization and at the end of energization of the glow plug will be described. It is also possible to make a diagnosis only at one end of energization.

図3に示す診断処理では、先ず、最初のステップS1において、イグニッションスイッチ(IGSW)6のON,OFF状態を調べ、OFFからONに切り換えられたか否かを判断する。そして、イグニッションスイッチ6がOFF→ONに切り換えられたとき、ステップS2へ進み、エンジン始動時の燃料噴射気筒順Nを判定する。   In the diagnosis process shown in FIG. 3, first, in the first step S1, the ON / OFF state of the ignition switch (IGSW) 6 is checked to determine whether or not the switch has been switched from OFF to ON. When the ignition switch 6 is switched from OFF to ON, the process proceeds to step S2 to determine the fuel injection cylinder order N when the engine is started.

燃料噴射気筒順Nは、エンジン始動時に燃料噴射を開始する順番を示す噴射番号であり、例えば、燃料噴射気筒順が#1→#3→#2→#4の気筒順であり、前回のエンジン停止時のクランク位置が#3気筒の燃料噴射位置であった場合、今回のエンジン始動で最初に燃料を噴射する気筒は#2気筒であり、この#2気筒が噴射番号N=1の気筒となる。次の噴射番号N=2,…に対応する気筒は、燃料噴射順に従って#4,…気筒となる。   The fuel injection cylinder order N is an injection number indicating the order in which fuel injection is started when the engine is started. For example, the fuel injection cylinder order is the cylinder order of # 1 → # 3 → # 2 → # 4, and the previous engine When the crank position at the time of stop is the fuel injection position of the # 3 cylinder, the cylinder that injects fuel first by the current engine start is the # 2 cylinder, and this # 2 cylinder is the cylinder of the injection number N = 1. Become. The cylinders corresponding to the next injection numbers N = 2,... Are # 4,.

当初、ステップS3において噴射番号NがN=1に初期設定されると、ステップS4で噴射1番目の気筒のグロープラグ3#iに対応するグローリレー4#iがON(通電)され、該当するグロープラグがONされる。そして、ステップS5で、電流センサ7の出力から電流が増加しているか否かを調べる。   Initially, when the injection number N is initially set to N = 1 in step S3, the glow relay 4 # i corresponding to the glow plug 3 # i of the first cylinder in the injection is turned on (energized) in step S4. The glow plug is turned on. In step S5, it is checked whether or not the current increases from the output of the current sensor 7.

その結果、グロープラグの通電に伴って電流が増加している場合には、該当気筒のグロープラグは正常であると判定してステップS5からステップS7へ進む。一方、グロープラグの通電に伴う電流増加がない場合には、ステップS6でN番目のグロープラグが異常であると仮判定(グロー仮異常判定1)し、ステップS7へ進む。   As a result, when the current increases with energization of the glow plug, it is determined that the glow plug of the corresponding cylinder is normal, and the process proceeds from step S5 to step S7. On the other hand, if there is no increase in current due to the energization of the glow plug, it is temporarily determined that the Nth glow plug is abnormal in step S6 (glow temporary abnormality determination 1), and the process proceeds to step S7.

ステップS7では、噴射番号Nが気筒数(4気筒の場合は4)に達したか否かを調べ、N<気筒数の場合、ステップS8で気筒順Nを増分1でインクリメントしてステップS4へ戻る。ステップS4では、前の噴射番号の気筒のグロープラグをONしてから設定時間が経過したタイミングで今回の噴射番号の気筒のグロープラグをONし、同様に電流値の増加状態から異常の有無を判定する処理を行う。   In step S7, it is checked whether or not the injection number N has reached the number of cylinders (4 in the case of 4 cylinders). If N <the number of cylinders, the cylinder order N is incremented by 1 in step S8, and the process proceeds to step S4. Return. In step S4, the glow plug of the cylinder of the current injection number is turned on at the timing when the set time has elapsed since the glow plug of the cylinder of the previous injection number is turned on, and the presence or absence of abnormality is similarly detected from the current value increasing state. Processing to determine is performed.

すなわち、図4に示すように、グロープラグ3#iが正常である場合、最初に(N=1)番目の気筒のグロープラグをONすると、電流センサ7の検出電流値が急激に立ち上がり、グロープラグの急速昇温による抵抗値の増大によって電流値がピーク値から緩やかに減少してゆく。この電流値が減少していくタイミングで、次の(N=2)番目の気筒のグロープラグをONすると、(N=2)番目の気筒のグロープラグの電流値が急激に立ち上がり、(N=1)番目の気筒のグロープラグの電流値に重畳した電流波形となる。   That is, as shown in FIG. 4, when the glow plug 3 # i is normal, when the glow plug of the (N = 1) -th cylinder is first turned on, the current value detected by the current sensor 7 rises sharply and the glow plug 3 # i The current value gradually decreases from the peak value due to the increase in the resistance value due to the rapid temperature rise of the plug. When the glow plug of the next (N = 2) th cylinder is turned on at the timing when the current value decreases, the current value of the glow plug of the (N = 2) th cylinder suddenly rises and (N = 1) A current waveform superimposed on the current value of the glow plug of the first cylinder.

従って、N番目の気筒のグロープラグをONしたときの電流センサ7の検出電流値が(N−1)番目の気筒のグロープラグをONしたときの検出値よりも増加していれば、N番目の気筒のグロープラグは正常、増加していなければ、N番目の気筒のグロープラグは異常であると判定することができる。   Therefore, if the detected current value of the current sensor 7 when the glow plug of the Nth cylinder is turned on is larger than the detected value when the glow plug of the (N-1) th cylinder is turned on, the Nth If the glow plug of the cylinder No. is normal and not increasing, it can be determined that the glow plug of the Nth cylinder is abnormal.

図5は、(N=3)番目の気筒のグロープラグが異常である場合を示しており、(N=2)番目の気筒のグロープラグをONした後、(N=3)番目の気筒のグロープラグをONしても、電流波形が減少傾向のままで電流値の増加を検出することができず、(N=3)番目の気筒のグロープラグが異常であると判定される。   FIG. 5 shows a case where the glow plug of the (N = 3) th cylinder is abnormal. After the glow plug of the (N = 2) th cylinder is turned on, the (N = 3) th cylinder Even if the glow plug is turned on, the current waveform remains in a decreasing trend and an increase in the current value cannot be detected, and it is determined that the glow plug of the (N = 3) th cylinder is abnormal.

その後、噴射番号Nが気筒数に達すると、ステップS7からステップS9へ進み、グロープラグのOFF(通電遮断)条件が成立するか否かの判断ループとなる。グロープラグOFF条件は、例えばグロープラグによる予熱が完了した後のアフターグローが完了した条件であり、エンジン水温に応じてテーブル参照等により設定される時間が経過した条件である。   Thereafter, when the injection number N reaches the number of cylinders, the process proceeds from step S7 to step S9, and a determination loop is made as to whether or not a glow plug OFF (energization cut-off) condition is satisfied. The glow plug OFF condition is, for example, a condition in which after glow after completion of preheating by the glow plug is completed, and is a condition in which a time set by referring to a table or the like has elapsed according to the engine water temperature.

このステップS9の判断ループにおいてグロープラグOFF条件が成立すると、ステップS10へ進んで噴射番号Nを1に初期化する。そして、ステップS11で噴射N番目の気筒のグロープラグ3#iに対応するグローリレー4#iをOFF(通電遮断)して該当するグロープラグをOFFする。   When the glow plug OFF condition is satisfied in the determination loop of step S9, the process proceeds to step S10 and the injection number N is initialized to 1. In step S11, the glow relay 4 # i corresponding to the glow plug 3 # i of the injection Nth cylinder is turned off (energization cut off) to turn off the corresponding glow plug.

次に、ステップS12で電流センサ7の出力から電流が減少してるか否かを調べ、グロープラグのOFFに伴って電流が減少している場合には、該当気筒のグロープラグは正常であると判定してステップS12からステップS4へ進む。一方、グロープラグのOFFに伴う電流減少がない場合には、ステップS13でN番目のグロープラグが異常であると仮判定(グロー仮異常判定2)し、ステップS14へ進む。   Next, in step S12, it is checked whether or not the current is decreasing from the output of the current sensor 7. If the current is decreasing as the glow plug is turned off, the glow plug of the corresponding cylinder is normal. Determination is made and the process proceeds from step S12 to step S4. On the other hand, if there is no current reduction due to the glow plug being turned off, in step S13, it is temporarily determined that the Nth glow plug is abnormal (glow temporary abnormality determination 2), and the process proceeds to step S14.

ステップS14では、噴射番号Nが気筒数に達したか否かを調べ、N<気筒数の場合、ステップS15で気筒順Nを増分1でインクリメントしてステップS11へ戻り、グロープラグ3#iを順次OFFして同様に電流値の減少状態から異常の有無を判定する処理を行う。尚、グロープラグ3#iを順次OFFする場合の時間間隔は、ONする場合の時間間隔に比較して短い時間で良く、電流値の減少を検出して異常の有無を判定可能な時間で適宜設定される。   In step S14, it is checked whether or not the injection number N has reached the number of cylinders. If N <the number of cylinders, the cylinder order N is incremented by 1 in step S15 and the process returns to step S11, and the glow plug 3 # i is turned on. In the same manner, a process of determining the presence or absence of an abnormality from the current value decreasing state is performed in the same manner. Note that the time interval when the glow plug 3 # i is sequentially turned off may be shorter than the time interval when the glow plug 3 # i is turned on. The time interval is appropriately determined so that the presence or absence of an abnormality can be determined by detecting a decrease in the current value. Is set.

図4に示すように、グロープラグによる予熱完了の状態では、電流センサ7で検出される電流は一定値で飽和した波形となっており、この状態からグロープラグを順次OFFしてゆくと、正常であれば、検出電流値はステップ的に減少していく。一方、何れかのグロープラグが異常である場合、例えば、図5に例示するように、(N=3)番目の気筒のグロープラグが異常である場合には、(N=3)番目の気筒のグロープラグをOFFしても前の(N−2)番目の気筒のグロープラグをOFFした状態の電流値から減少しない。   As shown in FIG. 4, when the preheating by the glow plug is completed, the current detected by the current sensor 7 has a waveform saturated with a constant value. If the glow plug is sequentially turned off from this state, it is normal. If so, the detected current value decreases stepwise. On the other hand, when any of the glow plugs is abnormal, for example, as illustrated in FIG. 5, when the glow plug of the (N = 3) th cylinder is abnormal, the (N = 3) th cylinder Even if the glow plug is turned off, the current value does not decrease from the state in which the glow plug of the previous (N-2) th cylinder is turned off.

従って、N番目の気筒のグロープラグをOFFたときの電流センサ7の検出電流値が(N−1)番目の気筒のグロープラグをOFFしたときの検出値よりも減少していれば、N番目の気筒のグロープラグは正常、減少していなければ、N番目の気筒のグロープラグは異常であると判定する。   Accordingly, if the detected current value of the current sensor 7 when the glow plug of the Nth cylinder is turned off is smaller than the detected value when the glow plug of the (N−1) th cylinder is turned off, the Nth If the glow plug of the cylinder No. is normal or not decreasing, it is determined that the glow plug of the Nth cylinder is abnormal.

その後、噴射番号Nが気筒数に達すると、ステップS14からステップS16へ進み、グロー仮異常判定1,2の両方が成立した気筒が有るか否かを調べる。その結果、グロー仮異常判定1,2の両方が成立している気筒が無い場合には、ステップS17で全気筒のグロープラグが正常であると判定して本診断処理を終了する。一方、グロー仮異常判定1,2の両方が成立している気筒が有る場合には、両方の仮異常判定が成立している気筒のグロープラグが異常であり、その他の気筒のグロープラグは正常であると判定して本診断処理を終了する。   Thereafter, when the injection number N reaches the number of cylinders, the process proceeds from step S14 to step S16, and it is checked whether or not there is a cylinder in which both glow provisional abnormality determinations 1 and 2 are established. As a result, when there is no cylinder in which both of the glow provisional abnormality determinations 1 and 2 are established, it is determined in step S17 that the glow plugs of all the cylinders are normal, and this diagnosis process is terminated. On the other hand, when there is a cylinder in which both of the temporary provisional abnormality determinations 1 and 2 are established, the glow plugs of the cylinders in which both of the provisional abnormality determinations are established are abnormal, and the glow plugs of the other cylinders are normal. This diagnosis process is terminated.

このように本実施の形態においては、各気筒のグロープラグ3#iの並列接続の電流値を検出する単一の電流センサ7を用いて、各気筒のグロープラグ3#iを時間的にずらしながら順次通電或いは遮断し、そのときの並列接続電流の検出値の順次増加或いは減少の状態に基づいて異常の有無を判定する。   Thus, in the present embodiment, the glow plug 3 # i of each cylinder is shifted in time using the single current sensor 7 that detects the current value of the parallel connection of the glow plug 3 # i of each cylinder. Then, the power is turned on or off sequentially, and the presence or absence of abnormality is determined based on the state of the sequential increase or decrease in the detected value of the parallel connection current.

これにより、グロープラグ3#iの個々の温度状態(抵抗値の変化)に影響されることなく正確に異常の有無を診断することができるばかりでなく、異常の発生しているグロープラグを特定することができ、メンテナンス性を向上することができる。しかも、電流センサ7をバッテリ5の充電制御用の電流センサと兼用することにより、コスト上昇を抑制しつつ正確な故障診断を行うことができる。   As a result, it is possible not only to accurately diagnose the presence or absence of an abnormality without being affected by the individual temperature state (change in resistance value) of the glow plug 3 # i, but also to identify the glow plug in which an abnormality has occurred. And maintainability can be improved. In addition, by using the current sensor 7 also as a current sensor for charge control of the battery 5, an accurate failure diagnosis can be performed while suppressing an increase in cost.

更に、本実施の形態においては、グロープラグの通電/遮断の順番をエンジン始動時の料噴射順としているので、実際の燃料噴射に対応して燃焼室内を効果的に予熱することができ、効率的に電力を使用してエンジン始動性を向上し、また、暖機促進を図ることができる。   Furthermore, in the present embodiment, the order of energization / cutoff of the glow plug is the order of charge injection at the time of starting the engine, so that the combustion chamber can be effectively preheated corresponding to the actual fuel injection, and the efficiency Therefore, it is possible to improve engine startability by using electric power and to promote warm-up.

グロープラグの駆動及び診断系を示す構成図Schematic diagram showing glow plug drive and diagnostic system グロープラグの他の駆動及び診断系を示す構成図Configuration diagram showing another drive and diagnostic system for glow plug グロープラグ故障診断処理のフローチャートFlow chart of glow plug fault diagnosis processing 正常時の電流波形を示す説明図Explanatory diagram showing current waveform during normal operation 異常時の電流波形を示す説明図Explanatory diagram showing current waveform at the time of abnormality

符号の説明Explanation of symbols

1 ディーゼルエンジン
2 電子制御装置
3 グロープラグ
4 グローリレー
7 電流センサ
1 Diesel Engine 2 Electronic Control Device 3 Glow Plug 4 Glow Relay 7 Current Sensor

Claims (3)

エンジンの各気筒毎に備えられたグロープラグの異常の有無を診断するグロープラグの故障診断装置において、
各気筒のグロープラグを個別に通電/遮断可能な駆動手段と、
各気筒のグロープラグの並列接続の電流値を検出する電流検出手段と、
上記駆動手段を介して各気筒のグロープラグを時間的にずらしながら順次通電させ、上記電流検出手段で検出した電流値の増加状態に基づいて、上記グロープラグの異常の有無を診断し、異常のグロープラグを特定する診断手段と
を備えることを特徴とするグロープラグの故障診断装置。
In the glow plug failure diagnosis device for diagnosing the presence or absence of abnormality of the glow plug provided for each cylinder of the engine,
Drive means capable of individually energizing / cutting off the glow plugs of each cylinder;
Current detection means for detecting a current value of parallel connection of glow plugs of each cylinder;
The glow plugs of the respective cylinders are sequentially energized through the drive means while being shifted in time, and the presence or absence of abnormality of the glow plug is diagnosed based on the increase state of the current value detected by the current detection means. And a diagnostic means for identifying the glow plug.
エンジンの各気筒毎に備えられたグロープラグの異常の有無を診断するグロープラグの故障診断装置において、
各気筒のグロープラグを個別に通電/遮断可能な駆動手段と、
各気筒のグロープラグの並列接続の電流値を検出する電流検出手段と、
上記駆動手段を介して全気筒のグロープラグを通電した後、各気筒のグロープラグを時間的にずらしながら順次通電終了させ、上記電流検出手段で検出した電流値の減少状態に基づいて、上記グロープラグの異常の有無を診断し、異常のグロープラグを特定する診断手段と
を備えることを特徴とするグロープラグの故障診断装置。
In the glow plug failure diagnosis device for diagnosing the presence or absence of abnormality of the glow plug provided for each cylinder of the engine,
Drive means capable of individually energizing / cutting off the glow plugs of each cylinder;
Current detection means for detecting a current value of parallel connection of glow plugs of each cylinder;
After energizing the glow plugs of all the cylinders via the driving means, the energization is sequentially terminated while shifting the glow plugs of the respective cylinders in time, and the glow plugs are determined based on the current value decreasing state detected by the current detecting means. A glow plug failure diagnosis apparatus comprising: a diagnosis unit that diagnoses whether there is an abnormality in the plug and identifies an abnormal glow plug.
各気筒のグロープラグの通電開始順又は通電終了順を、エンジン始動時の燃料噴射気筒順とすることを特徴とする請求項1又は2記載のグロープラグの故障診断装置。   The glow plug failure diagnosis apparatus according to claim 1 or 2, wherein the order of starting energization or the order of ending energization of the glow plugs of each cylinder is the order of the fuel injection cylinders at the time of starting the engine.
JP2007142311A 2007-05-29 2007-05-29 Glow plug fault diagnosis device Expired - Fee Related JP4864814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142311A JP4864814B2 (en) 2007-05-29 2007-05-29 Glow plug fault diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142311A JP4864814B2 (en) 2007-05-29 2007-05-29 Glow plug fault diagnosis device

Publications (2)

Publication Number Publication Date
JP2008297925A true JP2008297925A (en) 2008-12-11
JP4864814B2 JP4864814B2 (en) 2012-02-01

Family

ID=40171681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142311A Expired - Fee Related JP4864814B2 (en) 2007-05-29 2007-05-29 Glow plug fault diagnosis device

Country Status (1)

Country Link
JP (1) JP4864814B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009132910A1 (en) * 2008-04-28 2009-11-05 Robert Bosch Gmbh Method, control device, and system for restarting an internal combustion engine
WO2010069423A1 (en) * 2008-12-18 2010-06-24 Gm Global Technology Operations, Inc. A method for controlling glow plugs in a diesel engine, particularly for motor-vehicles
EP2290224A2 (en) 2009-08-20 2011-03-02 Toyota Jidosha Kabushiki Kaisha Glow plug deterioration determination system
DE102011006790A1 (en) 2010-04-05 2012-01-05 Denso Corporation Glow-plug electricity supply control apparatus used to install in cylinder of diesel combustion engine has drive controller made to regulate separate electricity supply to glow plug based on signal from comparator
KR101286995B1 (en) * 2011-06-30 2013-07-23 주식회사 유라테크 Apparatus and method for detecting disconnection number of Glow Plug
KR101315164B1 (en) 2011-06-30 2013-10-07 주식회사 유라테크 Apparatus and method for detecting disconnection number of Glow Plug with Glow Plug resistance design
WO2014204140A1 (en) * 2013-06-17 2014-12-24 주식회사 유라테크 Apparatus and method for preventing over-heating of glow plug
KR101503912B1 (en) * 2013-03-13 2015-03-19 유재용 Glow plug test apparatus
DE102009000232B4 (en) * 2008-01-15 2019-10-31 Denso Corporation Device for detecting a deterioration of a heating element and device for controlling a power supply of a glow plug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726275A (en) * 1980-07-24 1982-02-12 Nippon Denso Co Ltd Method and device for detecting glow plug disconnection
JPS58172472A (en) * 1982-04-02 1983-10-11 Nippon Denso Co Ltd Detection of wire-breaking of heating element
JPH11182400A (en) * 1997-12-18 1999-07-06 Isuzu Motors Ltd Disconnection detection system of glow plug
JP2007315322A (en) * 2006-05-26 2007-12-06 Auto Network Gijutsu Kenkyusho:Kk Glow plug control device
JP2008031979A (en) * 2006-07-06 2008-02-14 Auto Network Gijutsu Kenkyusho:Kk Abnormality detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726275A (en) * 1980-07-24 1982-02-12 Nippon Denso Co Ltd Method and device for detecting glow plug disconnection
JPS58172472A (en) * 1982-04-02 1983-10-11 Nippon Denso Co Ltd Detection of wire-breaking of heating element
JPH11182400A (en) * 1997-12-18 1999-07-06 Isuzu Motors Ltd Disconnection detection system of glow plug
JP2007315322A (en) * 2006-05-26 2007-12-06 Auto Network Gijutsu Kenkyusho:Kk Glow plug control device
JP2008031979A (en) * 2006-07-06 2008-02-14 Auto Network Gijutsu Kenkyusho:Kk Abnormality detection device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009000232B4 (en) * 2008-01-15 2019-10-31 Denso Corporation Device for detecting a deterioration of a heating element and device for controlling a power supply of a glow plug
DE102009000232A8 (en) * 2008-01-15 2019-12-12 Denso Corporation Device for detecting a deterioration of a heating element and device for controlling a power supply of a glow plug
WO2009132910A1 (en) * 2008-04-28 2009-11-05 Robert Bosch Gmbh Method, control device, and system for restarting an internal combustion engine
WO2010069423A1 (en) * 2008-12-18 2010-06-24 Gm Global Technology Operations, Inc. A method for controlling glow plugs in a diesel engine, particularly for motor-vehicles
GB2466273B (en) * 2008-12-18 2013-01-09 Gm Global Tech Operations Inc A method for controlling glow plugs in a diesel engine particularly for motor-vehicles
US8583344B2 (en) 2008-12-18 2013-11-12 GM Global Technology Operations LLC Method for controlling glow plugs in a diesel engine, particularly for motor-vehicles
EP2290224A2 (en) 2009-08-20 2011-03-02 Toyota Jidosha Kabushiki Kaisha Glow plug deterioration determination system
DE102011006790A1 (en) 2010-04-05 2012-01-05 Denso Corporation Glow-plug electricity supply control apparatus used to install in cylinder of diesel combustion engine has drive controller made to regulate separate electricity supply to glow plug based on signal from comparator
DE102011006790B4 (en) * 2010-04-05 2021-04-22 Denso Corporation CONTROL DEVICE FOR CONTROLLING A POWER SUPPLY TO A GLOW PLUG MOUNTED IN A DIESEL ENGINE
KR101315164B1 (en) 2011-06-30 2013-10-07 주식회사 유라테크 Apparatus and method for detecting disconnection number of Glow Plug with Glow Plug resistance design
KR101286995B1 (en) * 2011-06-30 2013-07-23 주식회사 유라테크 Apparatus and method for detecting disconnection number of Glow Plug
KR101503912B1 (en) * 2013-03-13 2015-03-19 유재용 Glow plug test apparatus
WO2014204140A1 (en) * 2013-06-17 2014-12-24 주식회사 유라테크 Apparatus and method for preventing over-heating of glow plug

Also Published As

Publication number Publication date
JP4864814B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4864814B2 (en) Glow plug fault diagnosis device
CN103261604B (en) Device for detecting malfunction in electrically heated catalyst
JP2007192045A (en) Abnormality detection device of temperature sensor
JP2008051014A (en) Automatic start control device for internal combustion engine
JP5965384B2 (en) Fuel pressure sensor characteristic abnormality diagnosis device
JP2007120335A (en) Abnormality diagnostic system for vehicle
JP3625835B2 (en) Function monitoring method for misfire identification in internal combustion engines
JP6134608B2 (en) Fuel pressure sensor characteristic abnormality diagnosis device
US20110106392A1 (en) Method and system for detecting a fault during catalyst light-off
JP2006226157A (en) Method and device for failure diagnosis of atmospheric pressure sensor
JP2009092035A (en) Internal-combustion-engine ignition diagnosis device and internal-combustion-engine control device
JP4941391B2 (en) Heating element control device
JP2012062769A (en) Engine control device
JP4166354B2 (en) Temperature sensor failure diagnosis device
JP2004032903A (en) Relay fault deciding device for electrically-propelled vehicle
US20080163679A1 (en) Method for Operating an Internal Combustion Engine, Internal Combustion Engine, and Control Unit for an Internal Combustion Engine
WO2012144191A1 (en) Electrification control device for glow plug
JP4107611B2 (en) Internal combustion engine control device
JP2007224832A (en) Diagnostic equipment of internal combustion engine
JP5988805B2 (en) Control device for internal combustion engine
WO2014103554A1 (en) Glow plug diagnosis method and device for controlling driving of vehicle glow plug
JP2008063957A (en) Malfunction diagnosis device for glow plug
JP2011038452A (en) Fuel supply system
US7948240B2 (en) Abnormality diagnosing apparatus for a glow plug
JP2012036803A (en) Engine throttle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees